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Abstract

Feature selection plays an important role in reducing irrelevant and redun-
dant features, while retaining the underlying semantics of selected ones.
An effective feature selection method is expected to result in a significant-
ly reduced subset of the original features without sacrificing the quality of
problem-solving (e.g., classification). In this paper, a non-unique decision
measure is proposed that captures the degree of a given feature subset be-
ing relevant to different categories. This helps to represent the uncertainty
information in the boundary region of a granular model, such as rough sets
or fuzzy-rough sets in an efficient manner. Based on this measure, the paper
further introduce a differentiation entropy as an evaluator of feature subsets
to implement a novel feature selection algorithm. The resulting feature se-
lection method is capable of dealing with either nominal or real-valued data.
Experimental results on both benchmark data sets and a real application
problem demonstrate that the features selected by the proposed approach
outperform those attained by state-of-the-art feature selection techniques, in
terms of both the size of feature reduction and the classification accuracy.
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1. Introduction

With the augment of the dimensionality of information, the prediction
performance, the learning efficiency, the data visualisation and the informa-
tion comprehensibility will be degraded due to the existence of the irrelevant,
redundant and noisy features. In general, there are two approaches to combat
such problems: dimensionality reduction (DR) and feature (subset) selection
(FS) [1]. DR transforms the data in the high-dimensional space to a space
of fewer dimensions. The data transformation may be linear, as in princi-
pal component analysis (PCA) [2] and linear discriminant analysis [3], but
many nonlinear dimensionality reduction techniques also exist, such as Sam-
mon mapping [4] and Laplacian eigenmaps [5]. FS processes data to select
those features that are most informative of a given result, which maintain
the meaning of the features from an original set by eliminating irrelevant and
redundant features. Three strategies exist that may be utilised to implement
either approach: the filter strategy [6], the wrapper strategy [7], and the
embedded strategy [8]. Since both DR and FS may even help increase the
quality of the reduced data sets [9], they are widely used in many areas such
as text categorisation [10, 11], plant monitoring [12], and patient treatment
[13, 14].

Rough set theory is an effective tool to deal with incomplete, uncertain
information [15]. Generally the extension of rough sets consists of fuzzy-
rough sets [16] (e.g. vaguely quantified rough sets [17], kernelised fuzzy-
rough set [18]), probabilistic rough sets [19] (e.g., decision-theoretic rough
sets [20], variable precision rough sets [21]) and the rough sets based on
the tolerance relation (e.g., neighbourhood rough set [22], covering rough
sets [23]). It is noteworthy that due to the variety of fuzzy membership
representations, certain fuzzy-rough sets, such as kernelised fuzzy-rough sets,
employ the tolerance relations also. One of the applications of rough sets
and the associated variances is to identify feature (subset) dependency or
uncertainty to the class decision. Either of these two measures has proven to
be a decent indicator to implement FS [24].

Amongst different approaches to FS, the filter-based is by far the most
popular when implemented with rough or fuzzy-rough methods. Following
this FS strategy, in order to obtain a feature subset for a given problem,
many searching mechanims have been employed. In [25], for example, a pos-
itive region-based FS algorithm is presented, where the significance of condi-
tional features for the decision is measured by feature dependency between
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them. Also, a rough entropy-based uncertainty measure is proposed in [26]
to perform FS via evaluating the roughness and accuracy of the knowledge
embedded in the data. However, these FS algorithms are typically focused on
dependency degree in the positive region of a rough set, and the uncertainty
information remains in the boundary region of a rough set is neglected. In
[27], a boundary region-based algorithm is reported to evaluate the feature
subsets, enabling the algorithm to find a reduct more effectively.

In this paper, a general non-unique decision measure (NDM) is presented
to depict the inconsistency of a conditional feature subset for decision catego-
ry distinguishing. In particular, for nominal data, this measure degenerates
into counting the number of feature values that may lead to different deci-
sions. For real-valued data, NDM takes the form of an aggregation of the
degrees measuring the implication between the equivalence classes induced
by the feature subsets regarding the decision. It implementation, when such
an aggregator is set to be the maximum operator, NDM collapses to the
amount of uncertainty information remaining in the fuzzy-rough boundary
region. Based on NDM, a differentiation entropy (NDE) is proposed as a
feature subset quality evaluator to implement FS. With the degradation of
the NDE value, the significance of the corresponding feature subset becomes
more representative for all the original features within the information system
concerned.. This NDE-based FS method works because NDE exploits a more
comprehensive understanding of the uncertainty information that contained
within conventional rough set-based dependency measures.

In order to demonstrate the efficacy of the proposed FS method, com-
parative experimental studies are carried out on both benchmark data sets
(for nominal data) and a real-world application, regarding mammographic
risk assessment [28] (involving real-valued data). The work is compared with
popular state-of-the-art FS and other DR techniques, including ACOFS [29],
CFS [30], RFS [25], PCA [2] and CSFS [31]. It is shown that the proposed
algorithm outperforms the rest, returning a high classification accuracy for
the benchmark data sets investigated.

The remainder of this paper is structured as follows. In Section 2, the
preliminary of rough set theory, fuzzy-rough set theory and differentiation
entropy is reviewed. Section 3 introduces the concept of NDM and the as-
sociated NDE, and describes the NDE-based FS algorithm. In Section 4,
the comparative experimental results are presented and discussed. Section 5
summarises the paper and points out interesting further work.
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2. Background

This section reviews the mathematical concepts concerning rough sets,
fuzzy-rough sets which are relevant to the FS process developed in this work,
and introduces the basic ideas of differentiation entropy.

2.1. Rough set theory

Let (U,A) be an information system, where U is a non-empty finite set
of objects, and A is a non-empty finite set of features such that a : U → Va

for every a ∈ A. Where Va is the set of values that the feature a can take.
The information system (U,A) can also be defined as a decision table by
(U,C ∪ D), where C ∪ D = A,C ∩ D = ∅, and C is the set of conditional
features and D is the set of decision attributes, respectively. For each feature
subset P ⊆ C an associated indistinguishable relation can be determined:

IND(P ) = {(x, y) ∈ U2 | ∀a ∈ P, a(x) = a(y)}. (1)

where a(x) is the value of an object x on the feature a.
Obviously, IND(P ) is an equivalence relation on U . The partition of U

determined by IND(P ) is herein denoted by U/P which can be defined such
that

U/P = ⊗{U/a|a ∈ P}. (2)

where ⊗ is defined as follows for sets A and B:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y ̸= ∅} . (3)

For any object x ∈ U , the equivalence class determined by IND(P ), is
denoted by [x]P . For any X ⊆ U and P ⊆ C, the P -lower and P -upper
approximations of X are respectively defined as:

PX = {x ∈ U | [x]P ⊆ X}. (4)

PX = {x ∈ U | [x]P ∩X ̸= ∅}. (5)

Informally, the former depicts the set of those objects which can be said with
certainty to belong to the concept to be approximated, and the latter idoes
the set of objects which either definitely or possibly belong to the concept to
be approximated. The difference between the upper and lower approximation
is the area known as the boundary region and thus, represents the area of
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uncertainty. When the boundary region is empty, there is no uncertainty
regarding the concept which is being approximated and all objects belong to
the subset of objects of interest with full certainty.

Thanks to the introduction of equivalence relations, the universe U can be
partitioned into such different regions. Particularly, given the feature subsets
P and Q with respect to C, the important concepts of positive, negative and
boundary regions can be defined respectively as:

POSP (Q) =
∪

X∈U/Q

PX, (6)

NEGP (Q) = U −
∪

X∈U/Q

PX, (7)

BNDP (Q) =
∪

X∈U/Q

PX −
∪

X∈U/Q

PX. (8)

Interestingly, in conventional rough set-based approach to FS [10], by
employing the above concept of positive region, it is possible to calculate the
degree of dependency of a feature set Q upon another P . In particular, for
P , Q ⊆ A, it can be said that Q depends on P in a degree k (0 ≤ k ≤ 1),
which is defined as follow:

k = γP (Q) =
| POSP (Q) |

| U |
. (9)

2.2. Fuzzy-rough set theory

Fuzzy-rough sets are a fuzzy extension of rough sets [16]. In a fuzzy-rough
set, the two types of approximation in rough sets are both fuzzified, leading
to fuzzy lower and upper approximations. Definitions for the fuzzy lower and
upper approximations can be found in [16, 25], where a T -transitive fuzzy
similarity relation is used to approximate a fuzzy concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)), (10)

µRPX(x) = sup
y∈U

T (µRP
(x, y), µX(y)). (11)

In the above, U is a nonempty set of finite objects; I is a fuzzy implicator;
T is a T -norm; RP is the fuzzy similarity relation induced by the subset of
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features P :
µRP

(x, y) = Ta∈P{µRa(x, y)}. (12)

µRa(x, y) is the degree to which objects x and y are similar with respect to
feature a, and may be defined in many ways, for example:

µRa(x, y) = 1 − |a(x) − a(y)|
|amax − amin|

, (13)

µRa(x, y) = max

(
min

(
(a(y) − (a(x) − σa))

(a(x) − (a(x) − σa))
,

((a(x) + σa) − a(y))

((a(x) + σa) − a(x))

)
, 0

)
,

(14)

where σa
2 is the statistical variance of the feature a.

Given these definitions regarding fuzzy-rough lower and upper approx-
imations, the fuzzy-rough boundary region for a fuzzy concept X can be
introduced, such that

µBNDRP
X(x) = µRPX(x) − µRPX(x). (15)

The uncertainty for a concept X using features in P can therefore be calcu-
lated as follows:

µP (X) =

∑
x∈U µBNDRP

X(x)

|U |
. (16)

Indeed, the value of such indicator is the average extent to which objects
belong to the fuzzy boundary region for the concept X.

The total uncertainty degree for all concepts, which are based on the
equivalence relations over U induced by the decision attribute set Q upon a
conditional feature subset P , is defined by

λP (Q) =

∑
X∈U/Q UP (X)

|U/Q|
. (17)

2.3. Differentiation entropy

The notion of differentiation entropy is proposed to facilitate measuring
the difference between the partition induced by a certain feature subset and
that by all features [32]. Significantly, a number of important properties
can be derived from this uncertainty measure. Formally, let (U,C ∪ D)
be an information decision system as defined previously and P ⊆ C, the
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differentiation entropy of P with respect to C is defined by

E(P |U ⊕ C) = − 1

U

∑
x∈U

log2
|[x]C ∩ [x]P |

|[x]P |
. (18)

This entropy measure represents the difference of the discernibility of the
information between a feature subset and the full feature set. Thus, it pro-
vides a way to gauge the discernibility over the knowledge embedded in the
original data.

Note that, for any P ⊆ C and x ∈ U , there is [x]C ⊆ [x]P and

E(P |U ⊕ C) = − 1

U

∑
x∈U

log2
|[x]C |
|[x]P |

. (19)

Therefore, for P ⊆ B ⊆ C, the following properties of the differentiation
entropy hold:

E(B|U ⊕ C) 6 E(P |U ⊕ C), (20)

E(B|U ⊕ C) = E(P |U ⊕ C), U/P = U/B. (21)

Given these properties, it can be seen that E(P |U ⊕ C) not only shows
the difference between U/P and U/C regarding their respective overall de-
scription ability, but also reflects the significance of the feature subset P with
respect to the entire original feature set C. Indeed, the larger the value of
E(P |U ⊕ C), the greater the difference of the feature subset P in represent-
ing C becomes. In particular, if E(P |U ⊕ C) = 0, then U/P = U/C. This
implies that the same knowledge description power between U/P and U/C
results, which in turn, means that the significance of the reduced feature
subset P is equivalent to that of the entire feature set C.

3. Non-unique decision-based differentiation entropy

This section introduces the concept of NDM and the associated NDE
measure, based upon which the section also puts forward a novel FS algo-
rithm.

3.1. NDE for nominal data

The concept of unique decision for nominal data is introduced in [33]
in an effort to optimise the degree of dependency defined by exploiting the

7



concept of positive region in rough sets. However, since the degree of depen-
dency can only provide information from the positive region, the information
contained within the boundary region is neglected. Having recognised this,
in this paper, the notion of an NDM is proposed to effectively characterise
the uncertainty information resided in this region.

Let (U,C ∪D) be an information decision system as specified earlier, for
any P, Q ⊆ C ∪ D. Define a non-deducible or inconsistent relation over U
between Q and P as

τPQ = |U/P − (U/P ⊗ U/Q)| . (22)

From this definition, if Q is the decision attribute set D, for conditional
feature subset P , τPD represents the total number of feature values that lead
to a non-unique decision using P . This therefore, captures the same infor-
mation as with the boundary region of a rough set. With the introduction
of τPD, the NDM for D on P can be rewritten as

NDMP =
τPD

|U |
. (23)

It can be readily established that 0 6 NDMP 6 0.5. If NDMP = 0, this
means that the indistinguishable relation IND(P ) can be used to classify
each sample into a distinct decision. If NDMP = 0.5 it implies that each
[x]P only contains two samples and is not subsumed by any [x]D, and hence,
that the number of [x]P is |U |/2. More generally, the value of NDM provides
a measure over any inconsistency of a given conditional feature subset P for
decision-making. In particular, if features subsets P ⊆ B ⊆ C, then [x]B ⊆
[x]P . Therefore, it can be observed that τBD 6 τPD and NDMB 6 NDMP ,
given P ⊆ B.

From the above, for any P ⊆ C, the differentiation entropy of P with
respect to C, and also to D (owing to the embedment of D in τPD) can then
be defined as:

E(P |U ⊕ C) = − 1

|U |
∑
x∈U

log2
NDMC + 1

NDMP + 1
. (24)

In this case, for any P ⊆ B ⊆ C, there is E(B|U ⊕ C) 6 E(P |U ⊕ C).
Thus, E(P |U ⊕C) monotonically decreases while the number of the features
in the subset increases. As 0 6 E(P |U ⊕ C), the optimal selection for the
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feature subset P can be determined by minimising E(P |U ⊕ C). Therefore,
following the use of standard rough set-based FS terminology [10], for any
P ⊆ C, if E(P |U ⊕C) = 0 and for every p ∈ P , E(P − {p} |U ⊕C) ̸= 0), P
is called a reduct of C with respect to D.

3.2. NDE for real-valued data

As introduced above, for nominal data, NDM reflects the total number of
feature values leading to non-unique decisions. Generalising this definition
to cope with real-valued data intuitively, NDM is herein designed to be an
aggregation of the degrees to which those fuzzy equivalence classes induced
by the decision D fail to be implicated by the fuzzy equivalence classes of a
given sample x.

Formally, given an information decision system (U,C ∪D), the inconsis-
tency measure for the decision D on feature subset P ⊆ C is defined by

τPD(x) = A
y∈U

{1 − I (µRP
(x, y) , µRD

(x, y))} , (25)

where A is an aggregation operator ranging from 0 to 1; I is a fuzzy impli-
cator; µRp is the fuzzy similarity function defined in Eq.(12); µRD

(x, y) is 1
when x and y have the identical classification decision, or 0 otherwise. Note
that when A is set to be the S-norm maximum (or supremum), τPD(x)
collapses to the fuzzy-rough boundary region of the decision D (Eq. (15))
where the upper approximation (11) is equal to 1. Thus, τPD(x) reflects the
uncertain information contained within boundary region.

From this, the non-unique decision measure using features in P can be
calculated as follows:

NDMP =

∑
x∈U τPD(x)

|U |
. (26)

Thus, the differentiation entropy of P with respect to C and D can be defined
as:

E(P |U ⊕ C) = − 1

|U |
∑
x∈U

log2
NDMC + 1

NDMP + 1
. (27)

Similar to the crisp version, for any P ⊆ B ⊆ C, as µRB
(x, y) 6

µRP
(x, y), it is induced that τBD(x) 6 τPD(x) and then E(B|U ⊕ C) 6

E(P |U ⊕ C). Thus, E(P |U ⊕ C) is inversely proportional to the number of
the features in the subset.
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3.3. Feature selection using NDE

Based on the two definitions of NDE proposed above, a feature selection
approach is derived here.

3.3.1. For nominal data

The value of NDM can be implemented in an incremental manner. In
particular, for a feature subset P ⊆ C, given a new sample:

• If the new sample is identical to N existing objects but with a distinct
decision, NDMP = τPD+N

|U |+1
.

• If the new sample is distinct to any existing object with respect to P ,
NDMP = τPD

|U |+1
.

Algorithm 1 summarises the above intuitions to calculate NDM for nominal
features, starting from an initial object set U0. For each iteration, the number
of the objects within the boundary region is derived from the τPD computed
in response to the addition of any new object. The time complexity of this
algorithm is O(|C| × |U |).

Algorithm 1 NDMP for nominal data

Input: DT = (U,C ∪D), U = U0 ∪ U
′
, P ⊆ C,

Output: NDMP

1: for each x′ ∈ |U ′| do
2: ∀ T ∈ U0/P ∩ (U0/P ⊗ U0/D)
3: U0 = U0 ∪ {x′}
4: ∀ S ∈ (U0/P − (U0/P ⊗ U0/D)).
5: if x′ ∈ S and ∃xi ∈ T , s.t. xi = x′, i = 1, . . . , N , then
6: NDMP = τPD+N

|U |+1

7: else if x′ /∈ T then
8: NDMP = τPD

|U |+1

9: end if
10: end for

3.3.2. For real-value data

Given Eqs. (25) and (26), Algorithm 2 can be derived following a similar
approach to Algorithm 1, in an effort to compute NDM with respect to a
real-valued feature subset P and categoric decision D. The time complexity
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of this algorithm is O(|U |2). In particular, if the aggregator A is set to
be the S-norm maximum, the computation regarding an object y can be
simplified in the range of U − [x]D dictated by another object x. In this
case, the time complexity for real-value data can be reduced to O(|U | ×
(|U | − |[x]D|). Meanwhile, compared to boundary region-based fuzzy-rough
FS, the proposed method avoids computing the upper approximation. Thus,
the overall efficiency of this algorithm can be improved considerably.

Algorithm 2 NDMP for real-valued data

Input: DT = (U,C ∪D), P ⊆ C,
Output: NDMP

1: for each x ∈ U do
2: for each y ∈ U do
3: τPD(x) = A

y∈U
{1 − I (µRP

(x, y) , µRD
(x, y))}

4: end for
5: NDMP =

∑
x∈U τPD(x)

|U |
6: end for

By computing NDM for each feature subset, the FS process based on
the computation of NDE results, as shown in Algorithm 3. This method,
shorthanded as NDEFS (standing for NDE-based FS) searches for the small-
est feature subset whose NDE is equal to 0. Given the time consumed by
calculating NDM, the time complexity of Algorithm 3 is O(|C|2 × |U |).

Algorithm 3 NDE-based Feature Selection

Input: DT = (U,C ∪D), P ⊆ C,
Output: R
1: Initialise R = ∅, E0 = 1
2: for ∀a ∈ C −R do
3: if 0 < E(R ∪ {a} |U ⊕ C) 6 E0 then
4: E0 = E(R ∪ {a} |U ⊕ C)
5: else
6: Return R and Break
7: end if
8: R = R ∪ {a}
9: end for
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4. Experimental Evaluation

In this section, comparative experimental investigations are reported to
evaluate the results of reduced data sets, in terms of the size of returned
feature subsets and the running accuracy of employing them (when used to
perform classification tasks). The experiments are run on eight nominal data
sets taken from UCI repository of machine learning databases [34] and four
real-valued data sets for mammographic risk assessment [28].

4.1. On nominal data sets

As indicated above, experimental results are herein discussed from two
aspects: feature subset reduction and classification effectiveness.

4.1.1. Comparison on reduct size

Table 1 summarises the data sets used to conduct this experiment. Table
2 presents the experimental results in terms of reduced data set size gained
by NDEFS are compared to those of state-of-the-art FS methods, such as
ACOFS [29], CFS [30], RFS [25] and PCA [2]. These results show that
NDEFS outperforms other popular FS methods on most of the eight data
sets. For example, on the data set spectf, NDEFS selects only 2 features as a
reduct, while the reducts returned by the alternatives are much larger than
it. Considering the average size of the reducts returned by all FS methods,
NDEFS results in the best performance as well. Note that whilst ACOFS,
CFS and RFS automatically determine the number of selected features, the
size of each returned subset by PCA is empirically determined with respect
to the best classification accuracy achievable as a certain number of principal
components is taken. The following further investigation into the accuracy of
using selected feature subsets will show that the returned reducts by NDEFS
also retain sufficient information to entail high discriminating ability.

4.1.2. Comparison on classification accuracy

The classification accuracies achievable using the reduced data sets are
compared here, again amongst NDEFS, ACOFS, CFS, FRFS [25] and PCA.
For completeness, the classification methods used in this paper are briefly
summarised as follows.

• NB (Naive Bayes) [35] is a simple probabilistic classifier, directly apply-
ing Bayes theorem [36] with strong (naive) independence assumptions.
Depending on the precise nature of the probability model used, naive
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Table 1: Eight nominal benchmark data sets

Data set Objects Features
coil 9822 86

credit 1000 25
handwritten 1953 257

satellite 6435 37
spect 187 23
spectf 187 45

wisconsin 683 10
zoo 101 17

Table 2: Reduct sizes for benchmark data sets
Data set NDEFS ACOFS CFS RFS PCA

coil 28 73 9 33 46
credit 5 17 6 13 20

handwritten 22 21 74 22 162
satellite 7 19 24 15 6

spect 12 15 9 15 18
spectf 2 6 9 6 24

wisconsin 4 7 9 7 7
zoo 6 8 9 7 10

average 10.75 20.75 18.63 14.75 36.63

Bayesian classifiers can be trained very efficiently in a supervised learn-
ing setting. The training only requires a small amount of training data
to estimate the parameters (means and variances of the variables) nec-
essary for classification.

• SMO (sequential minimal optimisation) [37] is an algorithm for effi-
ciently solving optimisation problems which arise during the training
of a support vector machine [38]. It breaks optimisation problems in-
to a series of smallest possible sub-problems, which are then resolved
analytically.

• J48 (decision tree based classifier) [39] creates decision trees by choosing
the most informative features and recursively partitioning a training da-
ta table into subtables based on the values of such features. Each node
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in the tree represents a feature, with the subsequent nodes branching
from the possible values of this node according to the current subtable.
Partitioning stops when all data items in the subtable have the same
classification. A leaf node is then created to represent this classifica-
tion. Incidentally, J48 is a representative of the wrapped approach to
feature selection as it is capable of generalising the training data into
a decision tree that involves only a subset of the original features.

To demonstrate the validity of the feature subsets selected by NDEFS,
Tables 3, 4 and 5 show the classification accuracy rates produced by the above
three classification algorithms, respectively. The last column of each table
lists the results for unreduced original data sets. 10×10-fold cross-validation
is constructed throughout the experimentation. The advantage of running
cross validation over random sub-sampling is that all objects are used for
both training and testing, and each object is used for testing only once per
fold [40].

Table 3: Classification accuracy by NB

Data set NB
NDEFS ACOFS CFS RFS PCA Unred

coil 89.77 76.59 92.60 86.86 77.33 77.98
credit 71.18 76.29 75.24 75.46 71.82 75.59

handwritten 69.45 59.00 85.76 69.45 48.93 86.19
satellite 78.23 79.33 79.54 78.49 77.69 79.59

spect 86.89 86.25 88.21 80.95 82.26 80.92
spectf 90.51 74.45 69.30 78.46 64.69 66.89

wisconsin 96.47 96.41 96.34 96.73 96.08 96.34
zoo 94.84 97.83 95.95 94.90 89.55 96.95

Take Table 3 as an example. It can be seen from the table that in conjunc-
tion with the use of NB, NDEFS leads to better classification accuracy results
for several data sets. In particular, the accuracy rates over the data sets coil
and spectf generated by NDEFS are superior to those generated by all other
FS methods. This is achieved through the use of the smallest feature subsets
returned by it. For those data sets where the use of NDEFS-returned features
do not lead to the highest accuracy, the performances remain compatible to
the rest, but mostly involving far less features.

14



Table 4: Classification accuracy by SMO

Data set SMO
NDEFS ACOFS CFS RFS PCA Unred

coil 94.03 94.03 94.03 94.03 94.03 94.03
credit 70.00 76.94 75.15 75.92 73.26 76.72

handwritten 74.98 62.78 89.10 74.98 53.57 93.58
satellite 84.19 85.49 85.86 85.46 82.27 86.78

spect 92.02 92.02 92.02 92.02 92.02 91.96
spectf 92.02 92.02 92.02 92.02 92.02 92.02

wisconsin 96.72 96.62 97.01 97.07 96.59 97.01
zoo 82.39 90.84 94.49 92.49 89.65 93.68

Table 5: Classification accuracy by J48

Data set J48
NDEFS ACOFS CFS RFS PCA Unred

coil 93.96 93.93 94.03 93.97 94.01 93.92
credit 68.91 72.81 73.05 73.13 69.26 73.57

handwritten 67.11 58.84 76.17 67.11 51.29 76.13
satellite 85.24 86.71 86.50 86.17 83.87 86.41

spect 92.02 92.02 92.02 92.02 92.02 92.02
spectf 91.65 91.91 88.16 90.90 86.11 84.99

wisconsin 96.91 95.85 95.44 95.36 95.43 95.44
zoo 93.83 94.03 93.08 95.15 90.45 92.61

Tables 4 and 5 show similar observations to Table 3. For instance, when
J48 is employed for classification (see Table 5), the results using NDEFS
over the data sets wisconsin and monk3 are consistently better than those
of the alternatives. Again, this performance is obtained with the use of
less features. Occasionally, NDEFS does not lead to a top classification
rate. However, for such cases, it does not lead to the poorest performance
either, producing generally well above average accuracy across the compared
methods. Together, these results illustrate that the proposed approach has
a better overall performance in terms of both classification accuracy and
feature subset size.
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4.2. Mammographic risk assessment

The data employed in this experimental evaluation is derived from the
mammographic image analysis society (MIAS) database [41] (see [28] for the
feature extraction process). It includes a complete data set of Medio-Lateral-
Oblique (MLO) left and right mammograms of 161 women (322 objects).
Each mammgram object is reprented by 280 features, in which 10 derived
from morphological characteristics, and the remaining 270 derived from the
extracted texture information. The spatial resolution of the images is 50µm×
50µm, quantised to 8 bits, and the linear optical density range is 0-3.2.
Mammography images commonly used to perform risk assessment are based
on the BI-RADS [42], Boyd [43], Tabar [44] or Wolfe [45] labelling schemes.

Table 6 shows the reduced feature subset size of the mammographic data
sets using NDEFS, with respect to the aforementioned four labelling strate-
gies, respectively. These reduced data sets are used in the comparative study
below.

Table 6: Reduct size of MIAS data sets
Data set NDEFS ACOFS CFS CSFS PCA
BI-RADS 7 7 35 15 12

Boyd 6 8 32 14 12
Tabár 6 7 31 15 12
Wolfe 6 7 30 14 12

average 6.25 7.25 32 14.5 12

As with the experiments on nominal-valued benchmark datasets, strati-
fied 10×10-fold cross-validation is also used herein for all the four different
labelling strategies. Also, comparisons are made again amongst the use of
Unred (i.e., the unreduced original datasets) and that of those returned by
NDEFS, CFS, CSFS [31], PCA and ACOFS, via running the same classifiers
described previously.

The classification accuracy rates of the reduced MIAS data sets are re-
ported in Tables 7, 8 and 9, respectively for the three classifiers. Generally,
the data sets reduced by NDEFS give the best results. Especially, for the re-
duced Boyd data set, the classification task conducted with NDEFS-returned
feature subset results in the best performance. Together with the previous
results, overall, it is clear that NDEFS can effectively select less features
while leading to a better classification performance.
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Table 7: Classification accuracy by NB

Data set NB
NDEFS ACOFS CFS CSFS PCA Unred

BI-RADS 72.05 68.94 72.36 70.19 66.15 70.81
Boyd 53.42 56.52 59.01 57.45 50.93 57.45
Tabár 59.01 59.63 61.80 59.94 59.94 58.70
Wolfe 62.42 65.21 68.01 66.15 59.63 65.53

Table 8: Classification accuracy by SMO

Data set SMO
NDEFS ACOFS CFS CSFS PCA Unred

BI-RADS 71.74 71.43 75.77 73.29 69.25 73.60
Boyd 57.45 56.83 58.38 61.49 58.69 59.32
Tabár 59.01 59.32 68.01 63.35 64.90 66.46
Wolfe 65.53 66.15 69.87 69.57 65.22 70.50

Table 9: Classification accuracy by J48

Data set J48
NDEFS ACOFS CFS CSFS PCA Unred

BI-RADS 63.66 68.63 71.43 66.46 67.39 65.84
Boyd 50.00 48.76 51.24 53.10 50.00 48.75
Tabár 53.73 51.55 59.63 59.01 59.31 59.32
Wolfe 56.21 59.94 63.97 63.35 59.62 62.42

5. Conclusion

This paper has presented a non-unique decision measure to evaluate the
uncertainty of a feature subset for use in support of classification. Particular-
ly, the work utilises differentiation entropy to examine the difference between
an emerging feature subset and the original full set of features, identifying
an optimal feature subset that contains sufficient information for maintaining
the discriminating ability of the original features. The proposed FS algorith-
m has been fully implemented and tested against popular, state-of-the-art
FS methods on both nominal-valued benchmark data sets and real-valued
data sets, with the latter in the context of addressing real-world problems
of mammographic risk assessment. Comparative experimental results have
demonstrated in general that the proposed FS approach can identify fea-
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ture subsets of much smaller in size than those competing existing methods,
and that the proposed FS algorithm can lead to the achievement of higher
classification accuracy.

Topics for further research include a more comprehensive development
of the FS method to handle more complicated large-scale data sets [46],
including mixed forms of both nominal and real-valued data. In addition,
how this work may be extended to deal with non-boolean classification tasks
is also very interesting. Last but not least, potential alternative applications
of the proposed NDM in unsupervised feature selection [47], fuzzy-rough
classification [48, 49], classification ensembles [50], parallel computing [51, 52]
or uncertain data query [53, 54], remain active research.

Acknowledgments

This work is jointly supported by the National Natural Science Founda-
tion of China (No. 61502068), the China Postdoctoral Science Foundation
(No. 2013M541213 and 2015T80239), the Royal Society International Ex-
changes Cost Share Award with NSFC (No. IE160875), and a Sêr Cymru
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[11] H. Uğuz, A two-stage feature selection method for text categorization
by using information gain, principal component analysis and genetic
algorithm, Knowledge-Based Systems 24 (7) (2011) 1024–1032.

[12] Q. Shen, R. Jensen, Selecting informative features with fuzzy-rough sets
and its application for complex systems monitoring. Pattern Recogni-
tion, 37 (7) (2004) 1351–1363.

[13] J. Chen, K. Li, Z. Tang, K. Bilal, K. Li, A parallel patient treatmen-
t time prediction algorithm and its applications in hospital queuing-
recommendation in a big data environment, IEEE Access 4 (2016) 1767–
1783.

[14] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, K. Li, A parallel
random forest algorithm for big data in a spark cloud computing envi-
ronment, IEEE Transactions on Parallel and Distributed Systems 28 (4)
(2017) 919–933.

[15] Z. Pawlak, Rough sets, International Journal of Computer & Informa-
tion Sciences 11(5) (1982) 341–356.

19



[16] R. Jensen, Q. Shen, Computational intelligence and feature selection:
rough and fuzzy approaches, Vol. 8, John Wiley & Sons, 2008.

[17] C. Cornelis, M. De Cock, A. Radzikowska, Vaguely quantified rough
sets, Lecture Notes in Artificial Intelligence 4482 (2007) 87–94.

[18] Y. Qu, C. Shang, Q. Shen, N. Mac Parthaláin, W. Wu, Kernel-
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[19] Y. Yao, S. Greco, R. S lowiński, Probabilistic Rough Sets, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015, pp. 387–411.

[20] G. Lang, D. Miao, M. Cai, Three-way decision approaches to conflict
analysis using decision-theoretic rough set theory, Information Sciences
37–407 (2017) 185–207.

[21] Y. Yao, J. Mi, Z. Li, A novel variable precision (θ, σ)-fuzzy rough set
model based on fuzzy granules, Fuzzy Sets and Systems 236 (2014) 58–
72.

[22] Y. Chen, Y. Xue, Y. Ma, F. Xu, Measures of uncertainty for neighbor-
hood rough sets. Knowledge-Based Systems 120 (2017) 226-235.

[23] L. Ma, The investigation of covering rough sets by Boolean matrices,
International Journal of Approximate Reasoning 100 (2018) 69–84.

[24] R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction:
Rough and fuzzy-rough approaches. IEEE Transactions on Knowledge
and Data Engineering, 16 (12) (2004) 1457–1471.

[25] R. Jensen, Q. Shen, New approaches to fuzzy-rough feature selection,
IEEE Transactions on Fuzzy Systems 17 (4) (2009) 824–838.

[26] L. Sun, J. Xu, Y. Tian, Feature selection using rough entropy-based
uncertainty measures in incomplete decision systems, Knowledge-Based
Systems 36 (2012) 206–216.

[27] Z. Lu, Z. Qin, Y. Zhang, J. Fang, A fast feature selection approach based
on rough set boundary regions, Pattern Recognition Letters 36 (2014)
81–88.

20



[28] A. Oliver, J. Freixenet, R. Marti, J. Pont, E. Perez, E. Denton,
R. Zwiggelaar, A novel breast tissue density classification methodology,
IEEE Transactions on Information Technology in Biomedicine 12 (1)
(2008) 55–65.

[29] R. Jensen, Q. Shen, Fuzzy-rough data reduction with ant colony opti-
mization, Fuzzy Sets and Systems 149 (1) (2005) 5–20.

[30] M. A. Hall, Correlation-based feature selection for machine learning,
Ph.D. thesis, The University of Waikato (1999).

[31] H. Liu, R. Setiono, A probabilistic approach to feature selection – a
filter solution, in: International Conference on Machine Learning, 1996,
pp. 319–327.

[32] F. Li, Z. Zhang, C. Jin, Feature selection with partition differentiation
entropy for large-scale data sets, Information Sciences 329 (2016) 690–
700.

[33] M. S. Raza, U. Qamar, An incremental dependency calculation tech-
nique for feature selection using rough sets, Information Sciences 343
(2016) 41–65.

[34] C. Blake, C. Merz, UCI repository of machine learning databases, uni-
versity of California, Irvine, School of Information and Computer Sci-
ences (1998).

[35] C. R. Stephens, H. F. Huerta, A. R. Linares, When is the Naive Bayes
approximation not so naive?, Machine Learning 107 (2) (2018) 397–441.

[36] Bayes’ theorem in statistics, in: A. Papoulis (Ed.), Probability, Random
Variables, and Stochastic Processes, 2nd Edition, 1984.

[37] X. Huang, L. Shi, J. Suykens, Sequential minimal optimization for SVM
with pinball loss, Neurocomputing 149 (C) (2015) 1596–1603.

[38] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20
(1995) 273–297.

[39] J. Quinlan, C4.5: Programs for Machine Learning, The Morgan Kauf-
mann Series in Machine Learning, Morgan Kaufmann, San Mateo, 1993.

21



[40] Y. Bengio, Y. Grandvalet, Bias in estimating the variance of K -fold
cross-validation, in: Statistical Modeling and Analysis for Complex Data
Problems, Springer, 2005, pp. 75–95.

[41] J. Suckling, J. Partner, D. Dance, S. Astley, I.Hutt, C. Boggis, I. Rick-
etts, E. Stamatakis, N. Cerneaz, S. Kok, D.Betal, P.Taylor, J. Sav-
age, The mammographic image analysis society digital mammogram
database, in: International Workshop on Digital Mammography, 1994,
pp. 211–221.

[42] American College of Radiology, Illustrated Breast Imaging Reporting
and Data System BIRADS, 3rd Edition (1998).

[43] N. Boyd, J. Byng, R. Jong, E. Fishell, L. Little, A. Miller, G. Lockwood,
D. Tritchler, M. Yaffe, Quantitative classification of mammographic den-
sities and breast cancer risk: results from the canadian national breast
screening study, Journal of The National Cancer Institute 87 (9) (1995)
670–675.

[44] L. Tabár, T. Tot, P. Dean, The Art and Science of Early Detection with
Mammography, Georg Thieme Verlag, 2005.

[45] J. Wolfe, Risk for breast cancer development determined by mammo-
graphic parenchymal pattern, Cancer 37 (1976) 2486–2492.

[46] C. Shang, Q. Shen, Aiding classification of gene expression data with
feature selection: A comparative study, International Journal of Com-
putational Intelligence Research 1 (1) (2001) 68–76.

[47] T. Boongoen, C. Shang, N. Iam-On, Q. Shen, Extending data reliability
measure to a filter approach for soft subspace clustering. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41 (6)
(2011), 1705–1714.
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