1801.05387v1 [cs.CV] 16 Jan 2018

arxXiv

StressedNets: Efficient Feature Representations
via Stress-induced Evolutionary Synthesis of
Deep Neural Networks

Mohammad Javad Shafiee, IEEE Member, Brendan Chwyl, Francis Li, Rongyan Chen, Michelle Karg,
Christian Scharfenberger, and Alexander Wong, IEEE Senior Member

Abstract—The computational complexity of leveraging deep neural networks for extracting deep feature representations is a significant
barrier to its widespread adoption, particularly for use in embedded devices. One particularly promising strategy to addressing the
complexity issue is the notion of evolutionary synthesis of deep neural networks, which was demonstrated to successfully produce
highly efficient deep neural networks while retaining modeling performance. Here, we further extend upon the evolutionary synthesis
strategy for achieving efficient feature extraction via the introduction of a stress-induced evolutionary synthesis framework, where
stress signals are imposed upon the synapses of a deep neural network during training to induce stress and steer the synthesis
process towards the production of more efficient deep neural networks over successive generations and improved model fidelity at a
greater efficiency. The proposed stress-induced evolutionary synthesis approach is evaluated on a variety of different deep neural
network architectures (LeNet5, AlexNet, and YOLOV2) on different tasks (object classification and object detection) to synthesize
efficient StressedNets over multiple generations. Experimental results demonstrate the efficacy of the proposed framework to
synthesize StressedNets with significant improvement in network architecture efficiency (e.g., 40x for AlexNet and 33x for YOLOv2)
and speed improvements (e.g., 5.5x inference speed-up for YOLOv2 on an Nvidia Tegra X1 mobile processor).

Index Terms—deep neural networks, stress-induced evolutionary synthesis, evolutionary synthesis.

1 INTRODUCTION

EATURE learning, representation, and extraction is a
F crucial and challenging aspect of machine learning and
computer vision as the modeling performance is heavily
dependent on the extracted features. While a very large
number of approaches have been proposed to tackle this
challenge, it is still considered as an open problem. At a high
level, feature representation approaches can be primarily
divided into two main categories: i) hand-crafted feature
representations, and ii) learned feature representations.

Hand-crafted feature representations, which are quanti-
tative features that are designed by human experts, have a
long history in machine learning and computer vision liter-
ature. For instance, histogram of oriented gradient (HOG)
features had been utilized in different problems such as
people detection [1], crowd segmentation [2] and object
detection [3]. Scale-invariant feature transform (SIFT) [4] or
speeded up robust features (SURF) [5] have been applied in
a wide variety of applications such as image matching [6],
object classification [7], image registration [8] and action
recognition [9]. In addition to these well-known feature
representations, there have been a wide variety of other
hand-crafted feature representations for different applica-
tions from different edge detection algorithms [10], corner
detection [11], texture extraction [12], just to name a few.
While the hand-crafted features designed by human experts
has shown good performance in different problems, they

e M. |. Shafiee, B. Chwyl, F. Li, and A. Wong are with the Department of
Systems Design Engineering, University of Waterloo, Waterloo, Canada.

e R. Chen, M. Karg, and C. Scharfenberger are with ADC Automotive
Distance Control Systems GmbH, Continental, Germany.

are often limited to being applicable specific applications
and highly dependent on the knowledge of human experts.

To mitigate the high dependency on the knowledge of
human experts to hand craft features for particular appli-
cations, learned feature representations are automatically
learned directly from training data using machine learning
approaches [13], [14]. Such learned feature representations
are typically learned simultaneously with the training of
the inference approach designed for a particular task (e.g.,
for a classification task, the feature extractor and classifier
are learned and trained at the same time), and thus the
learned features can be considered to be optimal in an error
minimization sense for the inference task at hand.

One of the most successful strategies in recent years for
feature learning is deep learning [15], where the feature
extraction and inference method for a particular task can
be learned and performed within an end-to-end learning
process. In particular, deep neural networks [16], [17], [18],
the most popular form of deep learning, have demonstrated
tremendous success for learning powerful feature represen-
tations from data, leading to state-of-the-art performance
in a variety of different applications over the past decade
such as object detection [19], [20], semantic image seg-
mentation [21], [22], image classification [17], [23], speed
recognition [16], [24], and gene sequencing [25]].

The success of deep neural networks for learning fea-
ture representations is influenced by two important factors.
First of all, a deep neural network training process can
be formulated as an end-to-end approach where feature
extraction and inference are trained simultaneously based
on training data. This way makes the learning in different

layers of deep neural networks as a joint process where the
best possible feature representation is optimized through
the training step. This approach helps deep neural network
to be optimized in the inference time as well. For example,
the convolution layers and the fully connected layers of
convolutional neural networks [17], are designed to play
the roles of feature extractor and the inference framework
respectively. This type of configuration is very effective since
each part (i.e.,, feature extractor or inference framework
(classification)) can compensate for the modeling deficien-
cies of each other when trained together and leads to an
efficient feature representation. Given the rise in big data,
deep neural networks can learn highly powerful feature
representations around such data for very high inference
performance.

Secondly, the significant growth of computational power,
particularly the rise in parallel computing devices such
as graphics processing units (GPUs) and distributed com-
puting systems, has greatly accelerated the training and
inference speed of deep neural networks. For example, the
seminal paper of Krizhevsky et al. [17] described a new ap-
proach for enabling the training of deep neural networks on
a GPU which is the turning point of deep neural networks.
These improvements in high-performance computing de-
vices have encouraged researchers to focus on the design
of larger and deeper neural networks [23] that can produce
more and more powerful feature representations.

Despite the successes demonstrated with the design
of more complex deep neural networks, one of the main
drawbacks to this approach is that the improvement in
performance often came at the expense of increased com-
plexity, making such networks not well-suited for many
applications, particular those that require efficient inference
on embedded systems with considerable computational
and memory limitations such as self-driving cars, smart-
phone applications, and surveillance cameras. For example,
high-performance yet complex deep neural networks are
not only more computationally expensive but also require
large memories to store an enormous number of network
parameters. Fast data transmission is required additionally
to support the expensive computation and to load the
large network parametrization. These issues associated with
computational complexity, memory complexity and band-
width can be considered as the main barriers to widespread
adoption of deep neural networks for feature extraction in a
variety of operational scenarios and applications.

To tackle the challenge of computational complexity
when leveraging deep neural networks for learning and ex-
tracting feature representations, there has been a very strong
recent interest towards obtaining efficient deep neural net-
works capable of producing efficient deep features [26],
[271, 128], [29], [30], [31], [32]], [33], [33]. One particularly
promising strategy to addressing the complexity issue is the
notion of evolutionary synthesis of deep neural networks
(EvoNet) [34], [35], [36]], where biological processes are mim-
icked within a probabilistic framework to synthesize pro-
gressively more efficient deep neural networks generation
after generation. This evolutionary synthesis strategy was
demonstrated to successfully produce highly efficient deep
neural networks while retaining modeling performance,
thus enabling efficient yet powerful deep feature extraction.

2

In the most recent work by Shafiee et al. [36], they
took inspiration from a study by Dias & Ressler [37], which
studied the inheritance of parental traumatic exposure [36]
to their offsprings and found that environmental stimuli
imposed on the exposed parents — here, an olfactory trau-
matic exposure on mice— had a strong genetic influence on
their offsprings that were not conceived at the time. This
fascinating effect has been also showed by Klosin et al. [38]
where environmental information, induced by environmen-
tal stresses experienced during the lifetime of C. elegans,
was transmitted genetically to subsequent generations. In-
spired by how past stressful experiences are passed down
through genetics from generation to generation, Shafiee et
al. [36] mimicked this phenomena in their preliminary work
by imposing environmental stresses on an ancestor network
during training, so that it results in a genetic encoding favor-
ing the synthesis of even more efficient and robust offspring
networks. The preliminary results presented in [36], where
evolutionary synthesis was performed on the AlexNet ar-
chitecture [[17] for the task of image classification, showed
considerable promise in synthesizing highly efficient deep
neural networks with strong model accuracy retainment, an
thus motivates us to extend upon that preliminary work
to fully develop an evolutionary synthesis framework built
around environmental stress induction.

Motivated by the encouraging results, we further extend
upon the initial ideas presented in [36] via the introduc-
tion of a formalized stress-induced evolutionary synthesis
framework, where stress signals are imposed upon the
synapses of a deep neural network during training to induce
stress and steer the synthesis process towards the produc-
tion of more efficient deep neural networks (which we will
refer to as StressedNets over successive generations. This
stress-induced evolutionary synthesis approach improves
the robustness of the synthesized network architectures in
facing traumatic changes, which as a consequence promotes
the synthesis of StressedNets with improved model fidelity
at a greater efficiency. More specifically, in the formalized
stress-induced evolutionary synthesis framework, the train-
ing of deep neural networks within an evolutionary syn-
thesis framework is formulated as a maximum a posteriori
(MAP) problem, with traumatic stresses to synapses en-
coded within the prior model. The prior model is designed
such that the distribution of synaptic strength in an exposed
parent deep neural network is tailored to exhibit inherent
genetic encodings to favor offspring neural networks with
greater efficiency during the synthesis process, thus trans-
mitting the environmental information experienced by a
deep neural network from generation to generation.

While the initial idea was introduced in [36], this paper
makes the following significant contributions to greatly
expand beyond the initial introduction of the proposed
framework in [36]:

e More comprehensive formalization and discussion
of the stress-induced evolutionary synthesis process
within the MAP framework,

e introduction and evaluation of a large family of
StressedNets based on a variety of different network
architectures (LeNet5, AlexNet, and YOLOv2) on dif-
ferent types of tasks (object classification and object de-
tection) to demonstrate generalizability of the proposed

approach,

» more comprehensive evaluation of stress-induced evo-
lutionary synthesis using a wider variety of benchmark
datasets (i.e., MNIST, CIFAR-10, KITTI) to demonstrate
generalizability of the proposed approach,

o introduction of performance comparison with six differ-
ent state-of-the-art methods for achieving efficient deep
neural networks (i.e., [28], [29], [33, [39], [40]),

e introduction of a run-time evaluation of stress-induced
evolutionary synthesis on an embedded processor (i.e.,
Nvidia Tegra X1),

o introduction of a comprehensive parametric test to
study the effect of the environmental factor parameter
in evolutionary deep intelligence framework, and

e introduction of a comprehensive qualitative and quanti-
tative feature analysis on the generated features within
StressedNets.

The paper is organized as follow. In Section re-
lated work in achieving efficient deep neural networks
is presented to provide context. In Section the pro-
posed stressed-induced evolutionary synthesis framework
is formalized and explained in a detailed manner. In Sec-
tion [the proposed stressed-induced evolutionary synthe-
sis framework is comprehensively examined and evaluated
on a variety of different deep neural network architectures
(LeNet5, AlexNet, and YOLOv2), on different tasks (object
classification and object detection), and different benchmark
datasets (MNIST, CIFAR-10, KITTI) to synthesize efficient
StressedNets over multiple generations, along with a study
of the effect of environmental factors as well as quantitative
and qualitative feature analysis.

2 RELATED WORK

Prior to discussing the proposed stressed-induced evolu-
tionary synthesis framework in great detail, it is important
to give context to previous related methods for achieving
efficient deep neural networks from which deep feature
representations can be obtained. The majority of methods
in previous literature on achieving efficient deep neural net-
works can be grouped into two main categories: I) methods
addressing memory complexity associated with deep neural
networks, and II) methods focusing on computational and
memory complexity issues together.

In the area of methods tackling memory complexity,
Lecun et al. [26] addressed this issue in their seminal paper
by proposing the optimal brain damage method where
synapses were pruned based on their strengths. They uti-
lized the second-derivative information to specify the neu-
ron to be pruned and made a trade-off between the number
of parameters and training error. They formulated a new
error function and the effect of perturbing the parameter
vector was analytically calculated during the training. The
main framework can be summarized as follow, the initial
network architecture is chosen and the network is trained
to obtain a reasonable performance. Based on the second
derivative the saliency value for each parameter is com-
puted and at then end, the set of parameters with low-
saliency value are removed from the network model. The
proposed approach took advantage of information theory
to select non-important parameters in the model to be

3

removed. The neural networks can be considered as a non-
linear mapping between inputs and outputs where the net-
work parameters extract the knowledge, therefore, different
information theoretic methods can be applied in this area.

Gong et al. [27] took advantage of information-theoretical
vector-quantization methods to compress the parameters of
the network. They used k-means clustering on the weights
to quantize the parameters of the dense connected layers.
They examined different quantization algorithms in differ-
ent levels including binarization, vector quantization, prod-
uct quantization and residual quantization and compared
them against each in terms of saving storage requirement of
deep neural network given the preservation of the modeling
accuracy to some extent.

To further reduce the network structure and the storage
requirement, Han et al. [28] proposed the combination of
pruning, quantization and Huffman coding. Followed by
optimal brain damage approach [26], the weights with
smaller weights and below a pre-defined threshold are
pruned from the network and the network is trained again
to compensate for the loss. Then they applied a quantization
and weight sharing approach to reduce the number of
required bits to store a weight in the network. They also
performed Huffman coding to further reduce the bit storage
based on the occurrence of each weights in the network.
Guo et al. [29] extended upon this algorithm and proposed
dynamic network surgery method where beside pruning
the splicing procedure is performed. The splicing procedure
enables connection recovery once the pruned connections
are found to be important.

The storage demand of deep neural networks is one
issue needed to be resolved, however the bigger issue is the
computational complexity and running time problem when
deep neural networks are processed on embedded devices
where several methods have been trying to address this
issue. In the area of methods addressing computational and
memory complexity issues simultaneously, low-rank matrix
factorization [30], [31] was proposed to approximate the
filter structures and convolutional kernels in convolutional
layers. For example, Jaderberg et al. [30] took advantage
of low-rank matrix factorization to learn separable smaller
kernels like [31]], the separable kernels are optimized after
training the network. The convolutional kernels are approx-
imated based on a filter banks of horizontal and vertical
kernels. The proposed filter bank approaches reduces the
redundancy among filters by approximate them vai smaller
kernel playing the role of bases. By use of this approach,
in addition to reduce the number of parameters, they could
decrease the computational complexity and as a results, de-
creased the running time of the feed-forward pass through
the network.

Ioannou et al. [31] proposed a new training approach
such that the network learns a set of small basis filters
from scratch via low-rank matrix factorization and by using
smaller kernel size addresses the running-time issue. The
learned kernels are rectangular in the spatial domain. The
conventional squared kernels (k x k) are factorized into
rectangular horizontal (1 x k) and vertical kernels (k£ x 1)
which their responses are then linearly combined by the
next layer of 1 x 1 filters.

Learning the structures of kernels during the training

process is another way to address the network optimization
issue. Wen et al. [32] suggested applying regularization
techniques to learn the kernel structures and account for
structured sparsity. They introduced a new regularization
approach to learning the filter shapes and layer depth dur-
ing training. They formulated the loss function to account
for the structure of the network as well. The proposed
loss function is the combination of loss on data, a non-
structured regularization on every weight in the network
and a structured sparsity regularization on each layer. They
applied a group Lasso on a set of weights which can zero
out all weights in the set. The proposed approached tends to
remove less important filters and channels in the network.

Variational learning and Bayesian algorithms [33]], [39]
are other techniques that have been proposed to formulate
the model compression and network optimization. Ullrich
et al. [39] took advantage of minimum description length
in a variational learning framework for neural network
compression. They enforced the sparsity and model com-
pression via a prior distribution during the training time.
Molchanov et al. [33] utilized a variational dropout ap-
proach to sparsify the neural networks. They applied an
unbounded dropout technique leading to sparse neural
networks.

Louizos et al. [40] extended upon the proposed method
by Ullrich et al. [39] and used a hierarchical priors to prune
neurons instead of synapses in the network. They applied
a sparsity inducing priors for hidden units instead of indi-
vidual weights which prunes neuron instead of synapses in
the network. They also utilized a posterior uncertainty to
determines the optimal fixed point precision.

Another promising approach to tackling both the com-
putational and memory complexity issues simultaneously
is the evolutionary sythesis (EvoNet) framework proposed
by Shafiee et al. [34], where inspirations from evolutionary
biology such as random mutation, natural selection, and
heredity were leveraged within a probabilistic framework
to synthesize increasingly efficient deep neural networks
over successive generations, resulting in the learning of
highly efficient yet powerful feature representations. While
previous works have explored the use of evolutionary com-
puting methods for training and generating deep neural
networks [41]], [42], they have not only largely focused on
accuracy and not on progressively more efficient deep neu-
ral networks, but also have leveraged classical methods such
as genetic algorithms and evolutionary programming which
differs greatly from the probabilistic generative framework
proposed in [34].

One of the key aspects of the evolutionary synthesis
framework greatly influencing the efficiency and quality
of the synthesized offspring deep neural networks is the
genetic encoding scheme, which acts as a probabilistic
‘DNA’ to mimic the heredity aspect of biological evolu-
tion. For instance, Shafiee & Wong [35] extended the genetic
encoding scheme to synthesize deep neural networks with
architectures that enable more efficient inference on parallel
computing devices such as GPUs. More specifically, they
proposed a new genetic encoding scheme to promote the
formation of highly sparse sets of synaptic clusters, thus
tailoring them to the hardware architecture of GPUs that can
execute a set of kernel computing instructions in a highly

parallel manner.

3 METHODOLOGY

Here, we introduce and formalize an extended evolutionary
synthesis framework for learning efficient deep feature rep-
resentations by using stress-induced evolutionary synthesis
strategy where several synapses in a network are exposed
to stress signals during the training to induce stress within
the network. The imposed stress signals leveraged here for
inducing environmental stresses improves the robustness of
the synthesized network architectures in facing traumatic
changes, which as a consequence promotes the synthesis
of StressedNets with improved model fidelity at a greater
efficiency. In this section, we first review the underlying con-
cept behind evolutionary synthesis of deep neural networks,
followed by a detailed description and explanation of the
proposed stress-induced evolutionary synthesis scheme.

3.1 Evolutionary Synthesis of Deep Neural Networks

The evolutionary synthesis framework leveraging in this
work was first proposed by Shafiee et al. [34], where pro-
gressively more efficient deep neural networks are syn-
thesized within a probabilistic framework over multiple
generations by leveraging processes that mimic heredity,
natural selection and random mutation. More specifically,
the architectural traits of a deep neural network are modeled
by synaptic probability models that can be considered as
the probabilistic ‘DNA’, and that are used to mimic heredity
to pass genetic information to subsequent generations. Off-
spring deep neural networks with diverse network archi-
tectures are synthesized stochastically based on this prob-
abilistic ‘'DNA’ together with probabilistic computational
environmental factor models for encouraging progressively
increasing network architecture efficiency over generations.

An architecture of a deep neural network can be encoded
via two different sets of random variables representing the
existence of neurons and synapses in the network. The
realization of random variables are binary values, {0, 1},
which determines whether the interested neuron or synapse
is realized in the network architecture or not. However, it is
possible to infer the existence of a neuron given the existence
of any ingoing or outgoing synapse.

Therefore, the network architecture of a deep neu_rall ?et-

i=1:
work can be characterized by S, where S = {sl’i L’ is
the set of binary states defining the existence of all }l)aééible
synapses in the network having L possible layers, and I;
possible synapses at each layer .

The main purpose of evolutionary synthesis frame-
works [34] is to model the optimal probability distribution
of a network architecture through time and in a generational
manner. The generational approach helps the probability
distribution of network architecture to account for any
change in the network and model the optimal network
architecture in a better way. As such, the process of syn-
thesizing a deep neural network is formulated within an
evolutionary framework where at each generation a better
probability distribution is introduced based on the new
network architecture and for the next generation, g + 1, an

Training with Stress

Stress-Induced Synthesis

>

i\/:landom Mutatioj
\,7 /,/

|
RS L e i -
—’\\ Stresses + |— : I !
y7775% I ——
R &30
™ (Environmenwer?
\ s
// 1 \7""/«/
——>{ Heredity, — e S
N\ ' 1L—>>(Heredity —
[N J
U
|
|
|

Fig. 1. Overview of the proposed stress-induced evolutionary synthesis framework (for simplification purposes, only a single generation is shown).
The architectural traits of ancestor networks are encoded via probabilistic ‘'DNA’ sequences. Environmental stresses are induced during each epoch
of training, thus enabling synapses to be prepared for a traumatic exposure between generation. A new offspring StressedNet is synthesized in
each generation based on the probabilistic ‘DNA’ sequences (heredity), environmental factors (natural selection), and random mutation. The main
steps of the proposed framework are 1) induce stress during the training process (i.e., training with stress), Il) synthesize StressedNets based
on the probabilistic DNA of the ancestor network trained with stress (i.e., stress-induced synthesis). The proposed framework synthesizes a new
StressedNets with network architectures that are more efficient compared to its ancestor.

offspring deep neural network is synthesized stochastically
by a synthesis probability P(S,):

P(Sg) = P(84[Wy-1) - F, ¢y

with P(Sg|W;_1) the synaptic probability model, and F
the imposed environmental factors. The offspring networks
are then trained at each generation to achieve modeling
accuracy while preserving the efficiency and architectural
diversity. The environmental factor, F, plays the role of prior
constraints regarding the desired network architecture and
is applied during the synthesis of an offspring network.
By use of this approach, the search domain to model the
optimal architecture is reduced and as a result, a better prob-
ability distribution is created to model the optimal network
architecture. Furthermore, the synaptic probability model
P(S,), which can be treated as the genetic encoding of the
network architecture in the context of the evolutionary syn-
thesis framework, plays the main role to evolve a network
architecture to survive in the simulated environment F'.
The effect of genetic encoding on synthesizing efficient
network architectures is crucial. Shafiee et al. [34] utilized the
trained weights of the ancestor network to formulate the ge-
netic encoding and probability distribution. Following [34],
the genetic encoding of offspring networks is modeled
by P(S4|Wy—1) where W,_; represents the set of trained
synaptic strengths of the network at generation g — 1 based
on the notion, that the desired traits to be inherited by the
offspring networks are related to strong synaptic strengths
in the ancestor networks. The synaptic strength of s

g—1 18

represented by wlg’il € Wy—1, and the non-existence of a
synapse is encoded as wé”_l = 0 and equals sfq’z_l =0.
A deep neural network is composed of a set of different
components in a hierarchical manner where synapses are
the smallest components in this hierarchy. As shown in
Figure |2} a set of synapses constructs a 2D kernel, a set of
kernels creates a filter in a layer and consecutively, a layer
in a network is constructed based on different filters. Due

Synapse (weight)

Input Channels Output Channels

/ Kernel
/ Filter

A Network Layer

[

Fig. 2. The visualization of synapse, kernel and filter in a layer of a con-
volution layer. While a kernel is a 2D structure consisting of synapses, a
filter is a combination of kernels with the same size as input channels.
The number of output channels is specified by the number of filters in
the layer.

~

to this hierarchical structure, Shafiee et al. [35]], [43] further
decomposed P(Sy|W,—1) into a multi-factor probability
distribution to promote the formation of synaptic clusters,
resulting in the synthesis of offspring deep neural networks
that are tailored to be more efficient for computation on
parallel computing systems:

PSWor) = T [PUS;Wy0) - TT Pl)]
ceC Gl ee
)

where 57 C S is a cluster of synapses at generation g.
A cluster ¢ can be encoded as a subset of synapses of
the network, with a filter or a kernel inside a filter as
the examples of synaptic clusters in the genetic encoding
scheme (2).

The architecture of a deep neural network regarding to
the number of synapses, kernels or the numbers of filters
in the network can have different outcomes depends on
the host (i.e., computational power) where the execution is

taken place. For example, the main speed up for parallel
computing devices such as GPUs is when the synthesized
network is with less number of filter since a parallel comput-
ing device computes a whole filter at the same time. How-
ever, this is different for processing on CPU only devices
since all processing tasks are computed sequentially.

Therefore, the creation of the genetic encoding
P(S84|Wy—1) is very important as it has a significant in-
fluence over the network architectures of offspring deep
neural networks in addition to preserving the accuracy. As
mentioned before, the genetic encoding scheme previously
proposed is highly dependent on the synaptic strengths
of the ancestor deep neural network, i.e., W,_1; therefore,
optimizing the distribution of synaptic strengths in W,_; in
a way that promotes optimal genetic encoding P(Sgy|[W,—_1)
favoring the synthesis of offspring neural networks with
greater architectural efficiency is highly desired.

Inspired to further improve the architectural efficiency
of synthesized offspring deep neural networks, we propose
a stress-induced evolutionary synthesis approach where
stress signals are imposed on deep neural networks during
the training. The stress is encoded as a prior model within
a probabilistic framework to induce environmental stresses
and better promote the synthesis of robust networks that
can achieve greater efficiency while maintaining modeling
performance.

3.2 Stress-Induced Evolutionary Synthesis

The general idea is the imposition of epoch-level traumatic
stresses to weaken the strengths of a subset of synapses to
induce environmental stresses on the network during train-
ing. Here, the stresses imposed on the exposed parent deep
neural network during training influence the distribution
of synaptic strengths in a deep neural network to favor
offspring networks with greater architectural efficiency. This
effect is transmitted genetically to the next generation, i.e.,
by use of the probabilistic genetic encoding. More specifi-
cally, the induced stresses encourage configurations of WW,_;
that enable more effective genetic encodings P(Sg|W;—1)
linked to synthesized offspring networks with greater archi-
tectural efficiencies.

Let us model a neural network as a probabilistic
model [44] P(y|z; W) where z € R? is the d-dimensional
input to the network, and the network assigns a proba-
bility to each possible output y € Y regarding the set
of trained synaptic strengths WV. The learning process of
synaptic strengths VW within a deep neural network can
be formulated as a maximum likelihood estimation (MLE)
given a set of training data D = (z;, y;):

W = arg mazx log P(D|W)
w
= arg max Z log P(y;|xi; W). 3)
w i
This optimization is usually performed by a gradient de-

scent approach with the assumption that log P(D|W) is
differentiable in W .

6

We now wish to impose prior knowledge to the synaptic
strengths W, and re-formulate the problem as a maximum
a posteriori (MAP) problem:

W = arg maz log P(W|D)
w
= arg maz log P(D|W) + log P(W) 4)
w

where P(W) is the prior model imposed during the training
stage. Here, the prior model encodes the imposed stresses to
synapses during the training at each generation. As shown
in Figure [I} we encode the imposed stresses to synapses
within the prior model during the training of the deep neu-
ral network at each generation. This approach prepares the
network for a traumatic change which would happen on the
offspring network and helps ancestor network to transmit
such stressful experiences via the probabilistic DNA.

Given the goal that P(S4|WW,—1) better promotes the
synthesis of offspring networks with more effective and
efficient network architectures:

P(8Wg-1) = P(Sg|Wg,1), ®)
we take advantage of (4 and benefit from
P(W) := P(W,_1) to provide a more effective genetic

encoding scheme.

Here, the prior model, P(W,_1), is realized as a Bino-
mial probability distribution such that the strengths of a
subset of synapses are weakened at each epoch level during
the training, and is formulated as follows:

Wt+1,g—1 = [Qt,g—l > 0} 'Wt,g—l
+8- Qg1 < O] Wiy ©)

where @ 4—1 is the Binomial distribution formulating such
that P(W, ,_1), U is a set of uniformly distributed random
numbers based on uniform distribution U(0, 1), [. } is the
Iverson bracket determining whether a synapse is selected
in @ at epoch t for generation g — 1, and W, 41 encodes
the set of trained synaptic strengths of epoch ¢ at generation
g. The Binomial distribution Q) 41 is formulated based on
the trained synaptic strengths VAVt,gq at epoch t:

Qt,g—l = qt17g—1 . Qt27g—1 Teet q?;g—l (7)
A

i Wi, g—1 .
Gig-1=exp(—5— —1) 1<i<n ®)

where ¢} ,_; is a Bernoulli distribution for the ith synapse
in a network containing n synapses computed based on
11)2 g—1 € VAVt, g—1, and 2* a normalization factor.

The factor 0 < [< 1 is the intra-generational
environmental factor applied at each epoch of training to
weaken the strength of stochastically selected synapses. The
factor § imposes minor stress to the deep neural network
at the epoch level. These stochastically selected synapses at
each epoch are meant to be less important to the modeling
power of the deep neural network than other synapses,
and weakening them has a minimal effect on the modeling
accuracy. However, the cumulation of tiny stress-induced
changes shapes the distribution of synaptic strengths to
promote the formation of a synaptic probability model

P (Sg|Wg,1) favoring the synthesis of offspring deep
neural networks with more efficient yet effective network
architectures. As such, the stress induced by the ancestor
deep neural network results in genetic encodings for syn-
thesizing new StressedNets with more efficient yet robust
network architectures.

4 EXPERIMENTAL RESULTS

The performance of the proposed stress-induced evolution-
ary synthesis approach for synthesizing deep neural net-
works with even greater efficiency while retaining modeling
accuracy is evaluated in a comprehensive manner over a
variety of different deep neural network architectures for
different tasks. The performance of the proposed approach
is also compared with six state-of-the-art methods for
achieving efficient deep neural networks [28], [29], [33], [39],
[40] on a widely-used benchmark experiment in research
literature to provide context in the field. Furthermore, the
effect of the various environmental factors on the quality of
the synthesized StressedNets is investigated via parametric
analysis. Finally, a comprehensive qualitative and quantita-
tive feature analysis is performed on the extracted features
within the synthesized StressedNets.

4.1 Efficacy Across Network Architectures

In this section, the efficacy and generalizability of the pro-
posed stress-induced evolutionary synthesis framework is
examined across different network architectures, tasks, and
benchmark datasets.

4.1.1 LeNet5

For the first experiment, the proposed approach is examined
to synthesize StressedNets based on the LetNet5 network
architecture for the task of image classification. The origi-
nal LeNet5 is trained on MNIST dataset [45]. The MNIST
image dataset [45] comprises of 60,000 training images and
10,000 test images of 28 x 28 handwritten digits (0 to 9).
Figure [3|demonstrates some examples from MNIST dataset.
Stress-induced evolutionary synthesis was performed over
generations while the error of the synthesized StressedNets
is within 1% of that achieved by the original network.

The LeNetf] architecture used in this study was imple-
mented in the Caffe platform and is commonly referred
to as LeNet5-Caffe. This architecture is comprised of 2
convolutional layers of 20 and 50 filters with 5 x 5 in size
and 2 fully connected layers of 800 and 500 neurons. This
variant of LeNet5 was chosen as it is commonly used in
research literature for comparing between different methods
for achieving efficient deep neural networks.

Table [1] shows the efficient network architectures and
the corresponding classification errors achieved using six
state-of-the-art methods [28], [29], [33[, [39], [40] and that
of two different StressedNets synthesized via the proposed
stress-induced evolutionary synthesis approach after 14 and
23 generations, respectively. It can be observed that the
network architecture of the synthesized StressedNet#1
has ~ 122x fewer weights when compared to the original

1. https:/ / github.com /BVLC/ caffe/tree /master/examples /mnist

TABLE 1
Experimental results for LeNet5 experiment with MNIST dataset. The
network architectures of the synthesized StressedNets are compared
with state-of-the-art algorithms for achieving efficient deep neural
networks. The original architecture of LeNet5 is 20-50-800-500, where
the first two numbers (in bold) shows the number of filters in the
convolutional layers while the third and fourth number shows the
number of neurons in the fully connected layers. As seen, the proposed
framework synthesized two StressedNets (produced after 14 and 23
generations, respectively) that have significantly fewer filters in
convolutional layers which is very important for computational
efficiency, particularly on parallel computing devices. The comparison
results were extracted from [40]

Method T%? % Error% Architecture
DC [28] 8.0 0.7 NA
DNS [29] 0.9 0.9 NA
SWS [39] 0.5 1.0 NA
Sparse VD [33] 0.7 1.0 14-19-242-131
BC-GNJ [40] 0.9 1.0 8-13-88-13
BC-GHS [40] 0.6 1.0 5-10-76-16
StressedNet#1 0.8 1.2 4-7-112-24
StressedNet#2 0.3 1.6 4-5-80-12

network architecture while achieving a modeling accuracy
of ~ 1.22%. Also, it can be observed that the network
architecture of the smaller synthesized StressedNet#2 has
~ 270x fewer weights than original network architecture
while still achieving a modeling accuracy of ~ 1.64%. More
interesting is the fact that StressedNet#1 consists of just
four filters in the first convolutional layer and seven filters
in the second convolutional layer, while StressedNet#2
contains just four filters in the first convolutional layer
and five filters in the second convolutional layer. This is
very important as much of the computational complexity
lies in the first two convolutional layers while much of
the parameters lie in the fully-connected layers, and as
such this significant decrease in the number of filters in
convolutional layers within the synthesized StressedNets
result in a significant improvement in computational speed.
Taken in the context of performance compared to the other
state-of-the-art methods, it can be observed that while the
StressedNets have slightly higher error compared to the
other methods, their network architectures have comparable
number of non-zero weights but have significantly fewer
filters in the convolutional layers.

From the implementation point of view, on parallel
processing units, such as GPUs and hardware accelerators
on embedded devices, heavy computation of the convo-
lutional layers are the main bottleneck in computational
efficiency od deep neural networks compared to the fully
connected layers. Therefore, reducing the number of filters
in the convolutional layers can significantly speed up the
computational and processing time.

4.1.2 AlexNet

To examine the efficacy of the proposed stress-induced
evolutionary synthesis approach in a larger, more complex
deep neural network than LeNet5 for image classification,
StressNets were synthesized from the AlexNet network
architecture [17], which consists of 5 convolutional layers of
96, 256, 384, 384 and 256 filters, respectively, and two fully

o[o[s[olo
NEEEN
SN[
Slalw]e]w
SEERE
BRI
BEEED
SRR
NEOSN
SRR

Fig. 3. Example images from the MNIST character recognition dataset. The MNIST dataset is the combination of 10 digits in 28 x 28 gray scale

images.

connected layers with 4096 and 4096 neurons. The CIFAR-
10 [46] benchmark dataset was used in this experiment, and
comprises of 50,000 training and 10,000 test 32x32 natural
images (Figure @) with 10 different classes which equally
distributed. To account for the image size in the CIFAR-10
dataset, the kernel sizes of the first two convolutional layers
are 5 X 5 and the rest are 3 x 3. Stress-induced evolutionary
synthesis was performed over generations while the error of
the synthesized StressedNets is within 2% of that achieved
by the original network.

Table [2| shows a comparison between the network ar-
chitecture of the original network and the architecture of
the synthesized StressedNet (synthesized after eight genera-
tions). The network architecture of the synthesized Stressed-
Net is ~ 40x smaller than that of the original network
(i.e., with just 2.5% of the number of weights compared
to the network architecture of the original network), while
experiencing a classification error increase of ~ 1.9%. It is
also important to note that the number of filters in each of
the convolutional layers of the StressedNet is more than 7x
fewer when compared to that of the original network, and as
such the results in noticeably reduced computational com-
plexity particularly on parallel computing devices. Finally,
it can be observed that the model size of the StressedNet
is ~ 37x smaller when compared to that of the original
network, which is very beneficial for embedded scenarios
where the memory and storage are limited.

4.1.3 YOLOv2

One of the main advantages of the proposed stress-induced
evolutionary synthesis framework is that it is easily gener-
alizable to a variety of different network architectures for
different tasks. To demonstrate this flexibility, StressedNets
were synthesized using the proposed approach based on
the YOLOV2 network architecture [47] for the task of object
detection. In YOLOV2, the object detection problem is for-
mulated as a single regression problem and bounding box
coordinates and class probabilities are computed at the same
time. As a result, besides achieving state-of-the-art perfor-
mance, the network architecture of YOLOV2 is considerably
smaller and more efficient when compared to other object
detection deep neural networks and thus is considered as
one of the fastest object detection approaches in research
literature. Despite its efficient design, it is still currently

not tractable to achieve reasonable inference speed using
YOLOV2 on embedded systems for a number of operational
scenarios.

To investigate the efficacy of the proposed framework for
synthesizing StressedNets to perform fast object detection
on embedded systems, a YOLOv2 network was trained on
the KITTI benchmark dataset for the purpose of detecting
two types of objects in an image: i) car, and ii) pedestrian.
Figure |5/ shows some examples from the KITTI dataset. For
each of the two object types (car and pedestrian) used in
this experiment from the KITTI benchmark dataset, there are
three different task difficulty groups: i) Easyﬂ if) Moderateﬂ
and iii) Hardﬂ In this experiment, stress-induced evolution-
ary synthesis was performed over generations while the
average precision (AP) of the synthesized StressedNets is
within 2% of that achieved by the original network.

The proposed framework synthesized an evolved net-
work architecture after 70 generations which is 33.43x
smaller in size than original YOLOV2 architecture (i.e., 5.5
MB compared to 184 MB).

Table 3| shows a comparison between the network archi-
tecture of the original network and the architecture of the
synthesized StressedNet (synthesized after 70 generations).
It can be clearly observed that the synthesized StressedNet
provides comparable results and in some cases outperforms
the original YOLOV2 network in terms of AP for both object
types under all difficulty scenarios, and yet is ~ 33.45x
smaller in model size when compared to that of the original
network (i.e., 5.5 MB compared to 184 MB). This experiment
illustrates the over-parameterization issues faced in deep
neural networks when faced with limited training data sizes
or a task that does not require the full information capacity
of the network. As seen, the proposed framework synthe-
sizes highly efficient deep neural networks that possess
network architectures with sufficient information capacity
for the task at hand.

For the last experiment in this section, the inference
speed of both the original network and the synthesized

2. Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully
visible, Max. truncation: 15%

3. Moderate: Min. bounding box height: 25 Px, Max. occlusion level:
Partly occluded, Max. truncation: 30%

4. Hard: Min. bounding box height: 25 Px, Max. occlusion level:
Difficult to see, Max. truncation: 50%

automobile

Airplane

Fig. 4. Example images from the CIFAR-10 image classification dataset. CIFAR-10 contains 10 different classes with the images being 32 x 32 in

size.

TABLE 2
Experimental results for the AlexNet experiment with the CIFAR-10 dataset. The network architecture of the synthesized StressedNet (synthesized
after 8 generations) is compared with that of the original network. The synthesized StressedNet consists of only 2.5% of the number of non-zero
weights compared to that of the original network and has a model size ~ 38x smaller model size than the original network. The bold-face
numbers show the number of filters in convolutional layers. It can be observed that the StressedNet’s network architecture has 6 x fewer filters
when compared to the original AlexNet network, which leads to significant improvement in computational efficiency.

Method H Model Size (MB) ‘ “I’Zflo % | Error% Architecture
AlexNet 30.979 100 134 96-256-384-384-256-4096-4096
StressedNet 0.820 2.5 153 18-39-58-60-40-640-64

StressedNet were examined on the Nvidia Tegra X1 mobile
processor. As seen in Table (3} it can be observed that while
the original YOLOV2 network achieved 2.45 frames per sec-
ond, the synthesized StressedNet achieved 13.43 frames per
second (a 5.5x speed-up comapred to the original network).

4.2 Effect of Environmental Factors

The effect of different environmental factors and different
levels of enforcement of F' in on synthesizing more
efficient network architectures is studied in this section.
To analyze the behavior of the synthesized StressedNets
through several generations, the YOLOv2 network architec-
ture is utilized as the original ancestor network architecture
for three different experiments with three different environ-
mental factor values using the KITTI dataset.

New offspring StressedNets are synthesized through 5
consecutive generations, and based on six different environ-
mental factors {0.95,0.9,0.8,0.6,0.4,0.2} (which indicate
the expected ratio between the number of synapses in a
descendant offspring network and that of its direct ancestor
network as enforced during the stressed-induced evolution-
ary synthesis process).

Figure [f] illustrates the modeling accuracy of Stressed-
Nets (in this case, AP for cars and pedestrians for the
Moderate difficulty scenarios) at different generations for
each of the six different environmental factors. It can be
observed that the synthesized StressedNets produced via all
three tested configurations (i.e., environmental factors 0.95,
0.9, 0.8) provide better accuracy compared to the original
YOLOV2 network. However when the environmental factor
is decreased (i.e., 0.6, 0.4 and 0.2) the resulted StressedNet
models provide comparable and sometimes worse modeling
accuracy compared to the original YOLOv2 network. This
result demonstrates that when network facing severe condi-
tions it cannot survive and maintain its modeling accuracy.

Figure [f(a) shows the performance of synthesized
StressedNets based on an environmental factor of 0.95. After
five generations, the network architecture of the synthesized
StressedNet had ~9 million fewer parameters while outper-
forming the original network by ~ 5%.

Figure [p{b) shows the performance of synthesized
StressedNets based on an environmental factor of 0.90. It
can be observed that by enforcing greater efficiency in de-
scendent offspring networks, the StressedNets synthesized
here had noticeably higher efficiency at the same generation
when compared to the last experiment (for example, after
five generations the network architecture had ~18 million
fewer parameters), while still outperforming the original
YOLOV2 by ~ 5%.

Figure [6fc) shows the performance of synthesized
StressedNets based on an environmental factor of 0.80. It can
be observed that even at this aggressive level of efficiency
enforcement the trend persists where the StressedNets syn-
thesized here had noticeably higher efficiency at the same
generation when compared to the last experiment (for ex-
ample, after five generations the network architecture had
half the number of parameters).

Figure Ekd), (e) and (f) demonstrate the performance
of the synthesized StressedNet architectures when being
imposed with more severe environmental factors (i.e., en-
vironmental factors, 0.6, 0.4 and 0.2). As seen when the
offspring networks are enforced in such severe environ-
ments, the networks cannot maintain their modeling accu-
racies and it results to lose their modeling accuracy over
generations. This effect can be illustrated by comparing the
generation 6 in the experiment 3 (i.e., F=0.8 Figure[6fc)) and
generation 2 in the experiment 6 (i.e,, F=0.2 Figure [ff)).
As seen, the offspring StressedNet in the experiment 3
provides ~5% increase in modeling accuracy compared to
the original YOLOv2 while the synthesized StressedNet in

10

TABLE 3
Experimental results for YOLOv2 experiment with KITTI dataset. The network architecture of the synthesized StressedNet (synthesized after 70
generations) is compared with that of the original network. The synthesized StressedNet had a model size that was ~ 33.45x smaller than that of
the original network yet outperformed the original network in all test scenarios. It can be observed that the inference speed of the synthesized
StresssedNet on the Nvidia Tegra X1 mobile processor was ~ 13.43 FPS, which is ~ 5.5x faster than that of the original YOLOv2 network.

Method Model Size (MB) || Inference speed (FPS) AP Car (%) AP Pedestrian (%)
Easy Moderate Hard || Easy Moderate Hard

YOLOv2 184 2.45 93.47 85.19 77.54 78.78 76.84 69.46

StressedNet 55 13.43 94.72 86.06 79.16 78.87 75.55 68.96

Fig. 5. Example images from the KITTI object detection dataset. Ground truth object bounding boxes are overlaid onto the images for context.

the experiment 6 has slight drop in the modeling accuracy
compared to the original YOLOv2 network even with the
larger numbers of parameters compared to generation 6 in
the experiment 3 (i.e.,F=0.8 Figure EKC)).

The conducted experiments illustrate that while it is
possible to synthesize deep neural networks with highly
efficient network architectures with the proposed stress-
induced evolutionary synthesis approach, while achieving
modeling accuracies comparable and in some cases higher
than the original network. However, it is important to
consider that while choosing smaller environmental factors
produces more efficient networks in less number of gener-
ations, the offspring networks cannot retain the complete
modeling accuracy in this situations. Therefore, there is a
trade-of between the processing time for synthesizing effi-
cient networks and synthesizing the best possible efficient
network architecture.

4.3 Feature Analysis

As the last experiment of this study, a comprehensive
feature analysis on the generated feature representations
within StressedNets is performed both qualitatively (i.e., vi-
sually) and quantitatively to investigate their discriminative
capacity.

To qualitatively investigate the discriminative capacity of
the generated feature representations within StressedNets, a
deep neural network based on the LeNet5 architecture men-
tioned in Section [£1.1] was trained on the MNIST dataset
and stressed-induced evolutionary synthesis was performed
on that network. The extracted features from the last fully
connected layer of two StressedNets at different generations,
along with that of the original network, were extracted
and t-SNE was performed on the features to visualize
the extracted features (see Figure [7). t-SNE is a variation

of stochastic neighbor embedding which visualizes high-
dimensional data by giving each datapoint a location in a
2- or 3D map. The algorithm is capable of capturing much
of the local structure of the high-dimensional data very well
and it is optimized much easier compared to other state-
of-the-art visualization algorithms. The ability to preserve
the local structure is an important aspect as we want to
study high-dimensional feature representations produced
by deep neural networks. To have a better visualization, 100
samples for each class in the MNIST dataset were selected
for visualization purposes.

Each network produces a different number of features
based on the size of the last fully connected layer; as
seen in Table 1| the original LeNet5 network produces 500
features while the two StressedNets (i.e., StressedNet#1 and
StressedNet#2) results in 26 and 12 features, respectively.

As seen in Figure[7] while the between-class distances of
the feature representations in some specific classes decrease
in the feature domains formed by the synthesized Stressed-
Nets, they still maintain the separability among the classes.
Figure |2| shows that classes {0, 1,2, 3,4} were affected the
least among all classes and classes {6, 8,9} were dispersed
the most. To have a better understanding of the separability
between classes, 1-NN classification was conducted for all
test samples based on 100 selected training samples (i.e.,
a same set of training for all experiments). Table 4| shows
the 1-NN classification accuracy for all 10 classes in the
MNIST dataset. The results show a consistent trend on
classification accuracies where the classification accuracies
for classes {0,1,2,3,4} are almost the same in the original
network and the synthesized StressedNets while the larger
difference in classification accuracies took place in classes
{6,8,9}.

Table i4f also demonstrates the results of 1-KNN when
PCA was applied on the generated features within

75 - - : -
1 2 3 a 5
48.15M 46M 43.78M 41.78M 39.8BM 37.96M
Generation
(a) F =095

£
o
g0l _*--—e-—-e==0--—°
-
o
75 - - - -
o 1 2 3 4 5
48,15M 40.17M 33.07M 27.45M 23.09M 19.3M
Generation
C)F=08
90
Has/"_\/~.q
£
<
80|
B = == = =0 = =0
~o — _,
75 - - - - !
[i] 1 2 3 4 5
4B.15M 25.93M 14.65M B.4BM 5.26M 3.35M

Generation
(dyF=04

11

AP (%)

?5 " " i 4
[i] 1 2 3 4 5
48.15M 43.93M 40.04M 36.46M 35.54M 30.61M
Generation
(b)F=09
a0
‘685/.-'_."—._._._‘—°
&=
T
< 5o i
g = =0 = = = o g~
75 - - - -
(1] 1 2 3 4 5
48.15M 33.45M 22.96M 15.86M 11.33M B8.03M
Generation
(d)F=0.6
a0
B85
)
80|
L4 ""—&'-'.n---uq-\-_‘
75| - -4
70 : : . !
1] 1 2 3 4 5
4B.15M 19.7TM B.B6M 4.34M 2.31M 1.39M
Generation
(e} F=02

Fig. 6. Environmental factor analysis. The effect of different environmental factors (i.e., F' in (1)) is studied by performing stressed-induced
evolutionary synthesis over generations using the YOLOv2 network architecture for six different factor values. “Generation 0” demonstrates the

original network architecture statistics.

4“

BT N.!- . :‘I ID:_\I = : . X .l| bt &]
(a) LeMNet5 (b)) StressedMet#1 () Stressed Met#2

Fig. 7. t-SNE visualization for extracted features from original LetNet5 network compared to those from two different StressedNets. As seen, while
the between-class distances decrease in the feature domains formed by the StressedNets, they still maintain the separability among the classes.

the original LeNet5 network. To show the effectiveness of
the StressedNets and demonstrate that their new network
architectures not only shrink the feature vectors but also
creates a new highly discriminative feature space for the
input data, two new feature sets with the same size as the
generated features within StressedNet#1 (i.e., 26 features)
and StressedNet#2 (i.e., 12 features) were extracted via PCA
as well. The same 1-NN performance metric was conducted
to compare the effectiveness of generated features within
the StressedNets. As seen in Table {4} I) the comparison of
modeling accuracies shows that the discriminatory power of
the StressedNet feature representations are higher than that
obtained using just PCA applied on the features extracted
by the original LeNet5. II) Comparing the total classification
accuracies of the original LetNet5 and StressedNet illus-
trates the discriminatory power of the StressedNet feature
representations which are comparable to that of LeNet5 and
shows the information density of the StressedNet features
has the same level as the original LeNet5 architecture.

5 CONCLUSION

In this paper, a stress-induced evolutionary synthesis frame-
work is proposed for synthesizing progressively more effi-
cient deep neural networks over generations. By inducing
stresses upon networks during the training stage within
the evolutionary synthesis framework, the robustness of
the synthesized networks in facing traumatic changes is
improved, which as a consequence promotes the synthesis
of descendant deep neural networks with improved model
fidelity at a greater efficiency. Experimental results across
a variety of different network architectures and datasets
demonstrate the effectiveness and generality of the pro-
posed stress-induced evolutionary synthesis framework in
synthesizing more efficient deep neural networks while
preserving the modeling accuracy, which makes them very
well-suited for use in embedded applications where the
computational and memory resources are highly limited.
m

ACKNOWLEDGMENTS

The authors would like to thank ADC Automotive Distance
Control Systems GmbH Continental, the Canada Research
Chairs program, and Natural Sciences and Engineering
Research Council of Canada (NSERC) for their financial
support. The authors also thank Nvidia for the GPU hard-
ware used in this study through the Nvidia Hardware Grant
Program.

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1. 1EEE, 2005,
pp. 886-893.

[2] P. Tu, T. Sebastian, G. Doretto, N. Krahnstoever, J. Rittscher, and
T. Yu, “Unified crowd segmentation,” Computer Vision-ECCV 2008,
pp. 691-704, 2008.

[3] N. Dalal and B. Triggs, “Object detection using histograms of
oriented gradients,” in Pascal VOC Workshop, ECCV, 2006.

[4] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91-110, 2004.

12

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer vision—ECCV 2006, pp. 404-417, 2006.

[6] K. Grauman and T. Darrell, “Efficient image matching with distri-

butions of local invariant features,” in Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,

vol. 2. IEEE, 2005, pp. 627-634.

D. Schmitt and N. McCoy, “Object classification and localization

using surf descriptors,” CS, vol. 229, pp. 1-5, 2011.

B. Ayers and M. Boutell, “Home interior classification using sift

keypoint histograms,” in Computer Vision and Pattern Recognition,

2007. CVPR’07. IEEE Conference on. 1EEE, 2007, pp. 1-6.

P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor

and its application to action recognition,” in Proceedings of the 15th

ACM international conference on Multimedia. ACM, 2007, pp. 357-

360.

[10] J. Canny, “A computational approach to edge detection,” in Read-
ings in Computer Vision. Elsevier, 1987, pp. 184-203.

[11] E. Rosten and T. Drummond, “Machine learning for high-speed
corner detection,” Computer Vision—-ECCV 2006, pp. 430443, 2006.

[12] J.R. Smith and S.-F. Chang, “Local color and texture extraction and
spatial query,” in Image Processing, 1996. Proceedings., International
Conference on, vol. 3. 1EEE, 1996, pp. 1011-1014.

[13] P.Ye,]. Kumar, L. Kang, and D. Doermann, “Unsupervised feature
learning framework for no-reference image quality assessment,” in
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on. IEEE, 2012, pp. 1098-1105.

[14] Y-l Boureau, Y. L. Cun et al., “Sparse feature learning for deep
belief networks,” in Advances in neural information processing systems,
2008, pp. 1185-1192.

[15] R. P. Ramos, M. Z. do Nascimento, and D. C. Pereira, “Texture
extraction: An evaluation of ridgelet, wavelet and co-occurrence
based methods applied to mammograms,” Expert Systems with
Applications, vol. 39, no. 12, pp. 11 036-11 047, 2012.

[16] A.Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech:
Scaling up end-to-end speech recognition,” CoRR, abs/1412.5567,
2014.

[17] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), 2012.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.

[19] A.F. Joseph Redmon, “Yolo9000: Better, faster, stronger,” in CVPR,
2017.

[7

—

[8

—_—

[9

—

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems (NIPS), 2015.

[21] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” arXiv preprint arXiv:1511.00561, 2015.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[24] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Process. Mag.,
2012.

[25] B. Alipanahi, A. Delong, M. T. Weirauch, and B.]. Frey, “Predicting
the sequence specificities of dna-and rna-binding proteins by deep
learning,” Nature Biotechnology, 2015.

[26] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel, “Optimal brain damage,” in Advances in Neural Information
Processing Systems (NIPS), 1989.

[27] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” CoRR, abs/1510.00149, 2015.

[29] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for
efficient dnns,” in Advances In Neural Information Processing Systems,
2016, pp. 1379-1387.

TABLE 4
1-NN modeling accuracy; The extracted features by the original LeNet5 network and the two StressedNets are compared by the 1-NN
classification procedure.

Class Label(%)
MOdel 110// //1// 112// //3// 114// //5// ”6” //7// ”8" //9// ‘ TOtal
LetNet5 0.9928 0.9982 0.9835 09801 0.9887 09820 0.9906 0.9834 0.9856 0.9861 | 0.9873
StressedNet#1 0.9938 0.9938 0.9825 09762 0.9867 09719 09864 0.9785 09774 0.9772 | 0.9827
StressedNet#2 0.9887 0.9920 0.9777 09782 0.9745 09641 09749 0.9737 0.9640 0.9702 | 0.9762
PCA-26-Features || 0.9755 0.9938 09437 09524 09714 0.9562 0.9728 09328 0.9661 0.9554 | 0.9623
PCA-16-Features || 09785 0.9903 0.9515 09485 0.978 09506 0.9613 0.9319 0.9496 0.9544 | 0.9599

[30] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[31] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi,
“Training cnns with low-rank filters for efficient image classifica-
tion,” arXiv preprint arXiv:1511.06744, 2015.

[32] W. Wen, C. Wy, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” arXiv preprint arXiv:1608.03665,
2016.

[33] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout
sparsifies deep neural networks,” arXiv preprint arXiv:1701.05369,
2017.

[34] M. J. Shafiee, A. Mishra, and A. Wong, “Deep learning with
Darwin: Evolutionary synthesis of deep neural networks,” arXiv
preprint arXiv:1606.04393, 2016.

[35] M.]. Shafiee and A. Wong, “Evolutionary synthesis of deep neural
networks via synaptic cluster-driven genetic encoding,” in NIPS
Workshop on Efficient Methods for Deep Neural Networks, 2016.

[36] M.]J. Shafiee, E. Barshan, F. Li, B. Chwyl, M. Karg, C. Schar-
fenberger, and A. Wong, “Learning efficient deep feature repre-
sentations via transgenerational genetic transmission of environ-
mental information during evolutionary synthesis of deep neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 979-986.

[37] B. Dias and K. Ressler, “Parental olfactory experience influences
behavior and neural structure in subsequent generations,” Nature
Neuroscience, 2014.

[38] A.Klosin, E. Casas, C. Hidalgo-Carcedo, T. Vavouri, and B. Lehner,
“Transgenerational transmission of environmental information in c.
elegans.” Nature Neuroscience, 2017.

[39] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for
neural network compression,” 2017.

[40] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for
deep learning,” in Advances In Neural Information Processing Systems,
2017.

[41] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary computation, 2002.

[42] D. White and P. Ligomenides, “Gannet: A genetic algorithm for
optimizing topology and weights in neural network design,” in
International Workshop on Artificial Neural Networks. Springer, 1993.

[43] M.]. Shafiee, E. Barshan, and A. Wong, “Evolution in groups: A
deeper look at synaptic cluster driven evolution of deep neural
networks,” arXiv preprint arXiv:1704.02081, 2017.

[44] C. Blundell,]J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
“Weight uncertainty in neural network,” in International Conference
on Machine Learning. PMLR.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

[46] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” 2009.

[47] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
CVPR, 2016.

[48] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605,
2008.

[49] S. Wold, K. Esbensen, and P. Geladi, “Principal component anal-
ysis,” Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3,
pp. 37-52, 1987.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Evolutionary Synthesis of Deep Neural Networks
	3.2 Stress-Induced Evolutionary Synthesis

	4 Experimental Results
	4.1 Efficacy Across Network Architectures
	4.1.1 LeNet5
	4.1.2 AlexNet
	4.1.3 YOLOv2

	4.2 Effect of Environmental Factors
	4.3 Feature Analysis

	5 Conclusion
	References

