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Abstract

We suggest a general approach to quantification of different forms of aleatoric uncertainty
in regression tasks performed by artificial neural networks. It is based on the simultaneous
training of two neural networks with a joint loss function and a specific hyperparameter λ > 0
that allows for automatically detecting noisy and clean regions in the input space and controlling
their relative contribution to the loss and its gradients. After the model has been trained, one of
the networks performs predictions and the other quantifies the uncertainty of these predictions
by estimating the locally averaged loss of the first one. Unlike in many classical uncertainty
quantification methods, we do not assume any a priori knowledge of the ground truth probability
distribution, neither do we, in general, maximize the likelihood of a chosen parametric family
of distributions. We analyze the learning process and the influence of clean and noisy regions
of the input space on the loss surface, depending on λ. In particular, we show that small
values of λ increase the relative contribution of clean regions to the loss and its gradients. This
explains why choosing small λ allows for better predictions compared with neural networks
without uncertainty counterparts and those based on classical likelihood maximization. Finally,
we demonstrate that one can naturally form ensembles of pairs of our networks and thus capture
both aleatoric and epistemic uncertainty and avoid overfitting.
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1 Introduction

Neural networks (NNs) are among the main tools that are used nowadays for solving regression
and forecasting problems [7, 8, 16, 23]. One theoretical limitation of standard NNs with regression
is that they generate averaged predictions of the target variables, but do not provide information
on how certain the predictions are. Obviously, quantification of this uncertainty is crucial from the
viewpoint of the real world applications [4,22]. One of the first approaches to learning uncertainty
by NNs was the delta method [17, 42, 44] originating from nonlinear regression theory. It assumes
that the noise is input-independent (homoscedastic), while the prediction error is proportional to
the noise and to the gradient of the output of a NN with respect to the NN’s weights. Nowadays,
there are two major approaches to learning uncertainty by NNs, both having a probabilistic back-
ground. The first exploits Bayesian NNs allowing one to capture epistemic uncertainty (related to
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lack of data). The second, sometimes called the frequentist approach, treats the weights as deter-
ministic parameters and rather captures aleatoric uncertainty by directly reconstructing probability
distributions of the observed data.

In the Bayesian approach to NNs [14,31,34], the weights are treated as random variables. Based
on the likelihood of the target variables, a prior distribution of the weights and Bayes’ theorem,
one obtains a posterior distribution of the weights, and hence a predictive distribution for the
data. However, in practice, the latter two are computationally intractable, especially for large
data sets and large network architectures. Different ways to approximate them form a field of
ongoing research [3–5, 12–14, 18, 21, 26, 27, 29, 30, 34, 43]. In [5], a connection between NNs trained
with dropout [15, 39] and Gaussian processes [38] was established. The latter are Bayesian, but
generally “non-NN” regression methods. The typical choice of the likelihood in Bayesian NNs is
Gaussian with an input-independent variance. Although this variance is often estimated during
fitting, the input-dependence of the variance of the predictive distribution occurs only due to the
variance of the weights.

In the frequentist approach, one directly approximates the ground truth input-dependent dis-
tribution of the target variables by a parametrically given predictive distribution. The parameters
of the latter are approximated by NNs with deterministic weights. The typical choice of the ap-
proximating distribution is Gaussian [35], explicitly yielding the mean and the variance of the
data, but other options were also considered, e.g., Laplacian [20], Students’ t [10], and mixture of
Gaussians [1, 2, 46].

To explain both epistemic and aleatoric uncertainty at the same time, a combination of the
Bayesian approach (using the dropout variational inference) with the mean-variance estimate was
used in [20]. A combination of the mean-variance estimate and ensembles of NNs was suggested
in [24,25].

We refer the reader to [4, 10, 24, 25, 33] for further references and experimental comparison of
the above methods.

In this paper, we propose an approach that generalizes the frequentist methods (in which one
maximizes the likelihood of the data such as Gaussian or Laplace). However, unlike in the above
methods, we do not require a priori knowledge about the probabilistic structure of the noise and
do not necessarily maximize a likelihood of the data. Our approach quantifies aleatoric uncertainty
by automatically estimating a locally averaged loss of the regression network (called the regressor)
with the help of the second network (called the uncertainty quantifier). This quantification is
applicable to any loss of the regressor and thus allows for estimating uncertainty exactly in terms
of the objective one wants to minimize. We will see that it not only quantifies how certain the
predictions are, but also allows for better predictions (compared with standard NNs and NNs based
on classical likelihood maximization), especially in regions of the input space with relatively small
noise in the target variables (clean regions). This is achieved due to simultaneously training the
regressor and the uncertainty quantifier by minimizing a joint loss.

As we said, our approach does not use any explicit form of probability distribution of the data.
However, once this assumption is done, one can give a natural interpretation for ensembles of
pairs of our networks in terms of mixture distributions, similarly to [24, 25]. This allows one to
capture both aleatoric and epistemic uncertainty and avoid overfitting. Again, we will see that our
ensembles typically outperform those in [24,25].

The paper is organized as follows. In Sec. 2, we informally explain our main idea. In Sec. 3,
we introduce our model and describe the joint loss function. In Sec. 4, we give an explicit formula
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for estimating the expected regressor’s loss, introduce ensembles, and discuss similarities and dis-
similarities of our method to the classical likelihood maximization approach. In Sec. 5, we consider
different functional forms of the joint loss in the cases where the output of the uncertainty quantifier
is implemented as the sigmoid and softplus activation functions, respectively. In Sec. 6, we analyze
how the hyperparameters of the joint loss affect the overall learning speed and how the loss surface
is influenced by clean and noisy regions. In particular, we will see that small values of the hyperpa-
rameter reduce the relative contribution of samples from noisy regions to the loss and explain why
the usage of the joint loss may improve regressor’s predictions. In Sec. 7, we illustrate our results
with synthetic one-dimensional data. In Sec. 8, we apply our approach to publicly available data
sets and compare it with other NN methods. Section 9 contains a conclusion. In Appendix A, we
present the values of hyperparameters of different methods that are compared in Sec. 8.

2 Main idea

Suppose we have a standard neural network Nr = Nr(x) for regression (the regressor) with a loss
function Lr. We complement it by another neural network Nq = Nq(x) (the uncertainty quantifier),
and train both networks by minimizing a joint loss of the form

Ljoint = Lr(Nr)f(Nq) + λg(Nq), (2.1)

where f(z) and g(z) are some fixed functions and λ > 0 is a hyperparameter. The main assumption
concerning the functions f and g is that the former is positive (f(z) > 0) and increasing (f ′(z) > 0)
and the latter is decreasing (g′(z) < 0). We will see below that small values of Nq correspond to
uncertain predictions and large values to certain predictions. Intuitively, the more certain the
quantifier Nq is, the larger f(Nq) is and hence the smaller the loss Lr tends to be. On the other
hand, the less certain the quantifier Nq is, the smaller f(Nq) is and hence the larger the loss Lr can
be. The second term λg(Nq) penalizes uncertain predictions. Thus, the regressor Nr can “afford”
to fit worse in uncertain noisy regions and use this freedom to fit better in certain clean regions.
Moreover, while the regressor Nr predicts the target value, it turns out (Interpretation 4.1) that
the quantifier Nq allows for estimating the expected regressor’s loss via the formula

expected regressor’s loss = −λg
′(Nq)

f ′(Nq)
. (2.2)

We emphasize that relation (2.2) need not involve any likelihood maximization and directly esti-
mates any regressor’s loss (see Sec. 4.3 for more details). However, e.g., in the case where the loss
Lr is chosen as the mean square error (MSE), this yields the empirical variance of the data for any
choice of f , g, and λ and any (a priori unknown) ground truth distribution (Example 4.1).

In Sec. 6, we explain that choosing small λ may significantly facilitate regressor’s ability to learn
in clean regions (compared with standard NNs and NNs based on classical likelihood maximization).
We perform a rigorous analysis that indicates how clean and noisy regions contribute to Ljoint and
its gradients, depending on λ, on the functions f and g, and on the activation function of the
output node of the quantifier Nq. In particular, we show that choosing small λ decreases the
relative contribution of samples from noisy regions to the loss. As a result, the minima of the
original loss Ljoint get close to the minima of the loss containing samples from clean regions only.
Table 2.1 informally summarizes this influence for the sigmoid and softplus activation functions,
while Fig. 2.1 and 2.2 illustrate the qualitative dependence of the overall learning speed and of the
relative contribution of clean and noisy regions, depending on λ.
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sigmoid softplus

λ regressor quantifier regressor quantifier

small clean > noisy clean = noisy clean > noisy clean = noisy

large clean = noisy clean < noisy clean > noisy clean � noisy

Table 2.1: Relative contribution of clean and noisy regions to fitting the parameters of the regressor
and uncertainty quantifier in case of sigmoid and softplus activation functions in the output of the
quantifier Nq. Notation “=” stands for “comparable” contribution, “<” and “>” for a “lower” and
“higher” contribution, and “�” for a “much lower” contribution.

Figure 2.1: The overall learning speed and the relative contribution of clean and noisy regions to
fitting the parameters of the regressor Nr and the uncertainty quantifier Nq, depending on λ for
the sigmoid output of Nq. Left: overall learning speed. Right: Relative contribution of clean and
noisy regions.

Figure 2.2: The overall learning speed and the relative contribution of clean and noisy regions to
fitting the parameters of the regressor Nr and the uncertainty quantifier Nq, depending on λ for
the softplus output of Nq. Left: overall learning speed. Right: Relative contribution of clean and
noisy regions.
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3 General model

Let X = {x1, . . . , xN} ⊂ Rn, n ∈ N, be a (training) data set consisting of N ∈ N samples, and
Y = {y1, . . . , yN} ⊂ Rm, m ∈ N, the corresponding target set of observations. The model we
propose consists of two NNs that are trained simultaneously. The first network Nr : Rn → Rm is
supposed to perform the regression task, while the second network Nq : Rn → R is supposed to
quantify the uncertainty associated with the predictions of the regression network. Thus, to each
sample x ∈ Rn, we assign the pair

(
Nr(x),Nq(x)

)
, where Nr(x) is the prediction and Nq(x) is its

certainty. The networks Nr and Nq are parametrized by learnable weights θr and θq, respectively,
that may be shared but need not be. We omit the dependence of the networks on these weights
whenever it does not lead to confusion. In what follows, we callNr a regressor andNq an uncertainty
quantifier. We will see that the smaller Nq(x) is, the more uncertain the prediction of Nr(x) is.

Let
Lr(yi, yir), yir = Nr(xi),

be a loss of the regressor Nr. This can be any loss function used in artificial NNs for regression.
We only assume that Lr takes positive values. Now we define a joint loss as follows (cf. (2.1)):

Ljoint =
1

N

N∑
i=1

(
Lr(yi, yir)f(zi) + λg(zi)

)
, yir = Nr(xi), zi = Nq(xi), (3.1)

where f, g : I 7→ R are some fixed functions defined on an open interval I ⊂ R and λ > 0 is a
hyperparameter. We discuss their role in Secs. 5 and 6. We will see that the choice of the functions
f(z) and g(z) depends on concrete implementations of the uncertainty quantifier Nq, while λ affects
the overall learning speed and the ratio between the learning speeds in clean and noisy regions. To
keep notations uncluttered, we do not indicate the arguments of Ljoint. Depending on the context,
we will treat it as a function of yir, z

i (i = 1, . . . , N) or θr, θq.
We assume throughout the following.

Condition 3.1. 1. f(z) > 0, f ′(z) > 0, g′(z) < 0 for all z ∈ I.

2. For any L > 0, the function Lf(z) + λg(z) of variable z achieves its finite minimum on I.

Due to item 1, the more certain the quantifier zi = Nq(xi) is, the larger f(zi) is and hence the
smaller the loss Lr in (3.1) tends to be. The term λg(zi) in (3.1) penalizes uncertain predictions.

4 Probabilistic aspects and generalizations to ensembles

In this section, we give a probabilistic interpretation of our approach. In Sec. 6, we analyze the
influence of clean and noisy regions on the loss function and its gradients. In both cases, it is
convenient to use an equivalent representation of the loss function (3.1). We will group the points

in X in pairwise disjoint sets X1, . . . , XJ in such a way that X =
J⋃
j=1

Xj and both Nr(x) and Nq(x)

are almost constant on each Xj . We denote these constants by yjr and zj , respectively (which
have slightly different meaning compared with (3.1)). Denote by Y 1, . . . , Y J the corresponding
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subdivision of Y . Let Mj be the number of points in Xj . Then

Ljoint ≈
J∑
j=1

Mj

N

 1

Mj

∑
y∈Y j

Lr(y, yjr)f(zj) + λg(zj)


=

J∑
j=1

Mj

N

(
Ej [Lr(·, yjr)]f(zj) + λg(zj)

)
,

(4.1)

where Ej [Lr(y, yjr)] stands for the empirical mean of regressor’s loss Lr(y, yjr), y ∈ Y j , and we used
the relation M1 + · · · + MJ = N . For the further theoretical analysis, we will use the right-hand
side of (4.1) for Ljoint.

4.1 Similarity to probabilistic models

We fix the region Xj for some j. The first simple observation is as follows.

Observation 4.1. 1. Let a pair
(yr, z) ∈ Rm × R (4.2)

be such that z is a critical point of the joint loss function

Ej [Lr(·, yr)]f(z) + λg(z)

with respect to z. Then

Ej [Lr(·, yr)] = −λg
′(z)

f ′(z)
.

2. If, additionally, the pair in (4.2) is a critical point of the joint loss function

Ej [Lr(·, yr)]f(z) + λg(z) (4.3)

with respect to (yr, z), then yr is a critical point of Ej [Lr(·, yr)]. Moreover, if Ej [Lr(·, yr)] is
convex with respect to yr, then yr is its global minimum.

Note that, due to Condition 3.1, a critical point z ∈ R always exists and f ′(z) 6= 0. We emphasize
that (yr, z) in Observation 4.1 must be a critical point, but need not be a local minimum. However,
in our concrete implementations in Secs. 5 and 6, it is a global minimum.

Observation 4.1 together with representation of the joint loss function in (4.1) implies the
following interpretation in terms of neural networks.

Interpretation 4.1. Let Nr(x) be a prediction of the regressor and y the ground truth value. Then
the uncertainty quantifier z = Nq(x) provides

expected loss Lr(y,Nr(x)) = −λg
′(z)

f ′(z)
.

Now we illustrate the relation between our approach and learning probability distributions.
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Example 4.1. 1. Assume the observations y are scalar sampled from a ground truth probability
distribution P(y|x). We define regressor’s loss as

Lr(y, yr) = |y − yr|2. (4.4)

Assume that (yr, z) in (4.2) is a critical point of the joint loss (4.3). Then, due to (4.4) and
Observation 4.1,

yr = arg min
µ∈R

Ey∼P(y|x)
[
|y − µ|2

]
= Ey∼P(y|x)[y], (4.5)

− λg′(z)

f ′(z)
= Ey∼P(y|x)

[
|y − yr|2

]
= Vary∼P(y|x)[y]. (4.6)

Thus, the regressor Nr(x) learns the expectation of y due to (4.5), and the uncertainty
quantifier Nq(x) yields the variance of y according to (4.6). We emphasize that we do not
need to know the exact form of the ground truth distribution P(y|x) in order to reconstruct
its mean and variance.

2. Additionally to the special choice (4.4) of regressor’s loss, we consider a particular choice of
the functions f, g and the hyperparameter λ:

f(z) = z, g(z) = − ln z, λ = 1. (4.7)

Then our method becomes equivalent to maximization of the log-likelihood of an approxi-
mating Gaussian distribution

Papprox(y|x, µ, τ) =

√
τ

2π
e−|y−µ|τ/2. (4.8)

In particular, (4.5) and (4.6) take the form yr = µ and −λg
′(z)

f ′(z)
= z = τ . However, we will

see in Secs. 7 and 8 that the choice λ = 1 is not optimal from the practical viewpoint.

Example 4.2. 1. Similarly to Example 4.1 (item 1) it is easy to see that if Lr(y, yr) = |y− yr|,
then

yr = Ey∼P(y|x)[y], −λg
′(z)

f ′(z)
= Ey∼P(y|x) [|y − yr|] (4.9)

for any ground truth distribution P(y|x).

2. For the particular choice (4.7) of the functions f, g and the hyperparameter λ, our method
becomes equivalent to maximization of the log-likelihood of the approximating Laplace dis-
tribution

Papprox(y|x, µ, τ) =
τ

2
e−|y−µ|τ (4.10)

and yields yr = µ and −λg
′(z)

f ′(z)
= z = τ .

Examples 4.1 and 4.2 are illustrated with a flowchart in Fig. 4.1.
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Figure 4.1: A flowchart illustrating particular cases of our method. Expectation and variance are
taken with respect to (a priori unknown) ground truth distribution P(y|x).

4.2 Ensembles

Similarly to [24, 25], one can fit an ensemble of K pairs of our regressor-quantifier networks and
treat their predictions as components of a mixture model. Suppose we are interested in predicting
means and variance of observed data. We assume that the data is sampled from an unknown
ground truth distribution P(y|x, µ, V ) with unknown mean µ and variance V . Each individual pair
of networks estimates the values (µj , Vj), j = 1, . . . ,K. If we interpret them as admissible values
for the mean and variance, respectively, we can marginalize over them and, similarly to [24, 25],
obtain the predictive (approximating) distribution

Papprox(y|x) =
1

K

K∑
j=1

P(y|x, µj , Vj)

of the ensemble. One can easily check that the mean and the variance of Papprox(y|x) are

µ =
1

K

K∑
j=1

µj , V =
1

K

K∑
j=1

(
Vj + (µj − µ)2

)
, (4.11)

independently of the concrete form of the unknown ground truth distribution P(y|x, µ, V ).
As another example, suppose we want to predict means and expected absolute errors (EAE) of

the observed data. To give a probabilistic interpretation to the ensemble in this case, we assume
that the data is sampled from a ground truth Laplace distribution P(y|x, µ, τ) given by the right-
hand side in (4.10) with unknown µ and τ . Due to Example 4.2, each individual pair of networks
(for any choice of f, g, λ) estimates the values (µj , τj), which can be interpreted as admissible
values for the parameters of the Laplace distribution (4.10). Marginalizing over them, we obtain
the predictive (approximating) distribution

Papprox(y|x) =
1

K

K∑
j=1

P(y|x, µj , τj).

One can easily check that, for this distribution,

µ = E[y] =
1

K

K∑
j=1

µj , E[|y − µ|] =
1

K

K∑
j=1

(
|µ− µj |+

1

τj
e−|µ−µj |τj

)
. (4.12)

9



4.3 Dissimilarity to the classical likelihood maximization approach

Let us explain in detail why our approach is different from the classical likelihood maximization.
For each fixed z, one can consider the (approximating) probability distribution

Papprox(y|x, yr, z) =
e−[Lr(y,yr)f(z)+λg(z)]

Z(z)
(4.13)

associated with regressor’s loss Lr(y, yr), cf. [40]. Assuming that regressor’s loss depends only on
y − yr, the normalization constant

Z(z) = e−λg(z)
∫ ∞
−∞

e−Lr(y,yr)f(z)dy (4.14)

does not depend on yr, but depends on z. For a fixed z, the minimization of the joint loss
Lr(y, yr)f(z) + λg(z) with respect to yr is obviously equivalent to the maximization of the log-
likelihood of Papprox(y|x, yr, z) with respect to yr, in which case neither the functions f(z), g(z),
nor the normalization constant Z(z) play any role. However, we minimize the joint loss with respect
to both yr and z in our approach. One could try to maximize the log-likelihood of Papprox(y|x, yr, z)
with respect to both yr and z as well. This is also a valid approach, but then two issues would
arise.

First, the normalization constant Z(z) is in general not explicitly given or the integral in (4.14)
may even diverge, which makes it impossible in practice to maximize the log-likelihood, nor to find
expected regressor’s loss1

Ey∼Papprox(y|x,yr,z)[Lr(y, yr)] =

∫ ∞
−∞
Lr(y, yr)Papprox(y|x, yr, z) dy. (4.15)

On the other hand, the minimization of the joint loss Lr(y, yr)f(z) + λg(z) is still straightforward.
Second, even if Z(z) can be explicitly calculated, it follows from (4.13) and (4.14) that Papprox(y|x, yr, z)

is actually independent of λ and g(z). Hence, the value zmax for which the maximum of log-
likelihood is achieved is also independent of λ and of the choice of the function g. This is obviously
not the case for the minimization of Lr(y, yr)f(z) + λg(z). The value zmin(λ) that minimizes
the joint loss depends on λ and f, g. This value zmin(λ) need not maximize the log-likelihood of
Papprox(y|x, yr, z), but still allows one to estimate the expected loss according to Interpretation 4.1.
Thus, the learning process in our case is completely different. Moreover, we will see in Sec. 6 that
the freedom to choose λ together with the fact that zmin(λ) and hence f(zmin(λ)) depend on λ allow
one to vary the relative contribution of clean and noisy regions to the joint loss and to effectively
downweight samples from noisy regions.

5 Sigmoid and softplus activation functions in the output of Nq

In this section, we discuss different choices of the functions f and g for concrete activation functions
and rewrite the general Interpretation 4.1 accordingly.

1In this formula, we assume that we managed to maximize the log-likelihood and that the found approximating
distribution Papprox(y|x, yr, z) coincides with the ground truth distribution. In general, the family of distributions
Papprox(y|x, yr, z) may even be not rich enough to contain P(y|x). Then formula (4.15) would provide only an
approximation for Ey∼P(y|x)[Lr(y, yr)].
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5.1 Sigmoid output of Nq
Assume the output z of the uncertainty quantifier Nq is implemented as the sigmoid activation
function

z = Z(ξ) =
1

1 + e−ξ
, ξ = (output of the last hidden layer) · w, (5.1)

where w is a column of weights connecting the last hidden layer with the sigmoid activation function.
We define the functions f and g as follows:

f(z) = − ln(1− z), g(z) = − ln z, z ∈ I = (0, 1). (5.2)

It is easy to see that Condition 3.1 is fulfilled. The general Interpretation 4.1 takes the following
form.

Interpretation 5.1. Let Nr(x) be a prediction of the regressor and y the ground truth value. Then
the uncertainty quantifier z = Nq(x) provides

expected loss Lr(y,Nr(x)) = λ

(
1

z
− 1

)
.

5.2 Softplus output of Nq
Assume the output z of the uncertainty quantifier Nq is implemented as the softplus nonlinearity

z = Z(ξ) = ln(1 + eξ), ξ = (output of the last hidden layer) · w, (5.3)

where w has the same meaning as in (5.1). We define the functions f and g as follows:

f(z) = z, g(z) = − ln z, z ∈ I = (0,∞), (5.4)

Condition 3.1 is again fulfilled. The general Interpretation 4.1 takes the following form.

Interpretation 5.2. Let Nr(x) be a prediction of the regressor and y the ground truth value. Then
the uncertainty quantifier z = Nq(x) provides

expected loss Lr(y,Nr(x)) =
λ

z
.

6 Contribution of clean and noisy regions to the joint loss, de-
pending on λ

In this section, we clarify the role of the hyperparameter λ. We study in detail the case of the
sigmoid activation function in the output of Nq. The analysis of the softplus output is analogous,
and hence we will formulate only final conclusions.

We distinguish clean and noisy regions in the data set X. At each learning stage, we say that
a region is clean if the loss of the regressor Nr(x) is small for x in this region. Otherwise, we call
a region noisy. The notions clean and noisy are understood relative to each other. It turns out
that λ affects to what extent the samples from clean and noisy regions contribute to the loss. The
influence is illustrated in Fig. 2.1 and 2.2 and in Table 2.1, which we justify below.
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We discuss two different (but closely related) aspects. First, we analyze the contribution of
different regions to the gradients of the loss (see Sec. 6.1.1 and 6.1.2 for the sigmoid output and
Sec. 6.2.1 and 6.2.2 for the softplus output). Second, we analyze the influence of different regions
on the loss surface itself and its minima (see Sec. 6.1.3 for the sigmoid output and Sec. 6.2.3 for
the softplus output).

In both cases, we are interested in the structure of the joint loss Ljoint = Ljoint(θr, θq) in the
θr-space of the regressor’s weights and in the θq-space of the uncertainty quantifier’s weights. Due
to (4.1), we can write the joint loss as

Ljoint ≈
J∑
j=1

CjM(Lj , ξ
j), (6.1)

where

M(L, ξ) = Lf(Z(ξ)) + λg(Z(ξ)), Cj =
Mj

N
, (6.2)

Lj = Ej [Lr(·, yjr)], the function Z(ξ) is given either by (5.1) or (5.3), ξj = (output of the last hidden layer)·
w, the “output of the last hidden layer” is determined by the inputs from Xj and all the weights
of Nq except for the last layer, and w is a column of weights connecting the last hidden layer with
the corresponding activation function of the output of Nq; finally, f and g are given by (5.2).

In this section, we assume that the weights θq of the uncertainty quantifier satisfy the following.

Condition 6.1. The weights θq of the uncertainty quantifier are in a neighborhood of the global
minimum θq of Ljoint as a function of θq. Moreover, this global minimum corresponds to the values

ξj = ξj(θq) that minimize M(Lj , ξ
j) for all j = 1, . . . , J .

Since the gradient of Ljoint equals the sum of the gradients of the individual terms in (6.1), we
will concentrate on these individual terms, corresponding to different regions Xj .

6.1 Sigmoid output of Nq
In this subsection, we assume that the output z of the uncertainty quantifier Nq is implemented as
the sigmoid activation function, see Sec. 5.1. We will justify the column “sigmoid” in Table 2.1.

We begin with the following simple lemma, which shows in particular that, for any L > 0, the
function M(L, ξ) has a unique global minimum with respect to ξ.

Lemma 6.1. 1. The function M(L, ξ) in (6.2) is convex with respect to ξ. For each L > 0, it
achieves a global minimum with respect to ξ at the point ξ = ξ(L) = ln(λ/L).

2.
∂2M(L, ξ)

∂ξ2

∣∣∣
ξ=ξ

=
Lλ

L+ λ
.

3. f(Z(ξ)) = ln (1 + λ/L).

Proof. Due to (6.2), (5.1), and (5.2), M(L, ξ) = −L ln

(
e−ξ

1 + e−ξ

)
− λ ln

(
1

1 + e−ξ

)
. Hence, the

result follows from the formulas

∂M(L, ξ)

∂ξ
=
L− λe−ξ

1 + e−ξ
,

∂2M(L, ξ)

∂ξ2
= (L+ λ)

e−ξ

(1 + e−ξ)2
.
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6.1.1 Impact of λ on the overall learning speed

To analyze the overall learning speed ofNr, we check how the gradients ofM(L, ξ) (where L = L(θr)
and ξ = ξ(θq)) with respect to θr and θq depend on λ.

Regressor. Due to Condition 6.1,

∇θrM(L, ξ) = ∇θrL(θr) · f(Z(ξ)) ≈ ∇θrL(θr) · f(Z(ξ)). (6.3)

Hence, by Lemma 6.1, item 3,

|∇θrM(L, ξ)| ∝ ln

(
1 +

λ

L

)
(the magenta line in Fig. 2.1, left), (6.4)

where ∝ stands for “approximately proportional”. Thus, for a fixed L, the smaller λ is, the closer
to 0 the learning speed of Nr is (asymptotically proportionally to λ/L). On the other hand, the
larger λ is, the larger the learning speed of Nr is.

Uncertainty quantifier. By Condition 6.1,

∇θqM(L, ξ(θq)) ≈ H(L, θq) · (θq − θq) =
∂2M(L, ξ)

∂ξ2
(∇θqξ) · (∇θqξ)T · (θq − θq), (6.5)

where H(L, θq) is the Hessian of M(L, ξ(θq)) with respect to θq evaluated at θq, and ξ is defined
in Lemma 6.1. Therefore, by Lemma 6.1, item 2,∣∣∇θqM(L, ξ(θq))

∣∣ ∝ Lλ

L+ λ
(the green line in Fig. 2.1, left). (6.6)

Hence, for a fixed L, the smaller λ is, the closer to 0 the learning speed of Nq is (asymptotically
proportionally to λ, independently of L). On the other hand, the larger λ is, the closer to L the
learning speed of Nq is.

6.1.2 Relative contribution of clean and noisy regions to the gradients of the loss,
depending on λ

Now we analyze the relative amplitudes of the gradients in clean and noisy regions. Their ratio
determines which regions are downweighted or upweighted, respectively, during training. Consider
two regions Xj1 and Xj2 with the corresponding values of regressor’s loss L1 and L2. Assume that
Xj1 is a clean region and Xj2 is a noisy region in the sense that

L2 � L1.

Regressor. Due to (6.1) and (6.4), the relative contribution of the clean and noisy regions Xj1

and Xj2 to ∇θrLjoint is determined by the value

Rsigmoid(λ) =

ln

(
1 +

λ

L1

)
ln

(
1 +

λ

L2

) (the magenta line in Fig. 2.1, right). (6.7)

The smaller λ is, the closer to L2/L1 (� 1) the ratio Rsigmoid(λ) is and the lower the relative con-
tribution of the noisy region to ∇θrLjoint is. This is the regime in which Nr can learn more efficient
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in clean regions compared with the usual regression network without the uncertainty quantifier. On
the other hand, the larger λ is, the closer to 1 the ratio Rsigmoid(λ) is and the higher the relative
contribution of the noisy region to ∇θrLjoint is.

Uncertainty quantifier. Due to (6.1) and (6.6), the relative contribution of the clean and
noisy regions Xj1 and Xj2 to ∇θqLjoint is determined by the value

Qsigmoid(λ) =
L1λ

L1 + λ

(
L2λ

L2 + λ

)−1
=
L1(L2 + λ)

L2(L1 + λ)
(the green line in Fig. 2.1, right). (6.8)

The larger λ is, the closer to L1/L2 (� 1) the ratio Qsigmoid(λ) is and the higher the relative
contribution of the noisy region to ∇θqLjoint is. On the other hand, the smaller λ is, the closer to 1
the ratio Qsigmoid(λ) is and the more balanced the relative contributions of clean and noisy regions
to ∇θrLjoint is.

6.1.3 Relative contribution of clean and noisy regions to the loss surface and its
minima, depending on λ

For clarity, assume we have only two regions with regressor’s losses L1 = L1(θr) and L2 = L2(θr),
respectively. As before, let L1 � L2.

Regressor. Due to (6.1), (6.2) and Lemma 6.1 (item 3),

Ljoint ≈ ln

(
1 +

λ

L1

)(
C1L1(θr) +

C2

Rsigmoid(λ)
L2(θr) + C

)
, (6.9)

where C does not depend on θr and Rsigmoid(λ) is given by (6.7). As λ→ 0, we have 1/Rsigmoid(λ)→
L1/L2 � 1, see the magenta line in Fig. 2.1 (right). Thus, for small λ, the minimum θ∗r of Ljoint
is generically close to the minimum θ1r of the loss L1(θr) defined only with samples from the clean
region. Figure 6.1 schematically shows the loss surfaces of the loss Ljoint(θr) defined with all
samples and the loss surfaces defined with samples only from clean regions L1(θr) and only from
noisy regions L2(θr). We see that, for small values of λ, the loss surface Ljoint is close2 to that given
by L1(θr).

Uncertainty quantifier. Now we analyze the loss surface Ljoint in the θq-space for fixed values
L1 and L2 of regressor’s loss. Analogously to (6.5), we have

Ljoint ≈ C1M̃1(θq) + C2M̃2(θq) + C,

where C does not depend on θq,

M̃j(θq) =
1

2

∂2M(L, ξj(θjq))

∂ξj(θjq)
∇θqξj(θjq) · ∇θqξj(θjq)T · (θq − θjq)2

=
1

2

Ljλ

Lj + λ
∇θqξj(θjq) · ∇θqξj(θjq)T · (θq − θjq)2,

and θjq is the minimum of M(Lj , ξ
j) (which is the loss taking into account only the samples from

the jth region, see (6.1) and (6.2)). Now we see that the distance between the minimum θ∗q of the

2After an appropriate vertical shift and rescaling, which do not affect its minima.
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Figure 6.1: Regressor’s losses L1(θr) (blue) and L2(θr) (red) defined with samples from clean and
noisy regions, respectively, and the joint loss Ljoint(θr) defined with all samples as functions of
regressor’s weights θr. The values θ1r and θ2r are the minima of L1(θr) and L2(θr), while θ∗r is the
minimum of Ljoint(θr). Left: Small values of λ imply that θ∗r is close to θ1r ; hence the loss L1(θ

∗
r) in

the clean region is close to its optimal value L1(θ
1
r). Right: Large values of λ imply that θ∗r is far

away from θ1r ; hence the loss L1(θ
∗
r) in the clean region is far away from its optimal value L1(θ

1
r).

joint loss Ljoint and the minima θjq depends on the ratio Qsigmoid(λ) in (6.8). In particular, the
larger λ is the closer θ∗q to θ2q (the minimum corresponding to the noisy region) is.

Note that, due to the assumption in Condition 6.1, the above argument is valid only if the
uncertainty quantifier correctly estimates both values L1 and L2 of regressor’s losses in clean and
noisy regions. These estimates dynamically change during training. Again, due to (6.8), if λ is large,
the uncertainty quantifier “ignores” clean regions and rather learns from samples in noisy regions.
As a result, it may wrongly quantify clean regions as noisy. Hence, it erroneously suppresses their
contribution to the gradient ∇θrLjoint with respect to the regressor’s weights θr. On the other hand,
if λ is small, clean and noisy regions equally contribute to the learning of the quantifier’s weights
θq, which facilitates the fit of the regressor in clean regions.

6.2 Softplus output of Nq
Assume the output z of the uncertainty quantifier Nq is implemented as the softplus nonlinearity,
see Sec. 5.2. We will justify the column “softplus” in Table 2.1. Similarly to Lemma 6.1, one can
show that the functionM(L, ξ) is convex with respect to ξ, and, for each L > 0, it achieves a global
minimum with respect to ξ at the point ξ = ξ(L) = ln

(
eλ/L − 1

)
and

f(Z(ξ)) =
λ

L
. (6.10)

6.2.1 Impact of λ on the overall learning speed

Regressor. Similarly to Sec. 6.1.1, due to (6.10) the overall learning speed of Nr is determined by

|∇θrM(L, ξ)| ∝ λ

L
(the magenta line in Fig. 2.2, left). (6.11)
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Uncertainty quantifier. The overall learning speed of Nq is determined by∣∣∇θqM(L, ξ(θq))
∣∣ ∝ L2

λ

(
1− e−λ/L

)2
(the green line in Fig. 2.2, left). (6.12)

We note that the function in (6.12) asymptotically equals λ as λ → 0 and L2/λ as λ → ∞. In
particular, it tends to zero both as λ → 0 and λ → ∞. It is easy to calculate that it achieves its
maximum

4µ0
(1 + 2µ0)2

L ≈ 0.4 · L (the dashed line in Fig. 2.2, left).

at λ = µ0L, where µ0 ≈ 1.3 is a positive root of the equation eµ0 = 1 + 2µ0.

6.2.2 Relative contribution of clean and noisy regions to the gradients of the loss,
depending on λ

As in Sec. 6.1.2, assume that Xj1 is a clean region and Xj2 is a noisy region in the sense that
L2 � L1.

Regressor. Due to (6.1) and (6.11), the relative contribution of the clean and noisy regions to
∇θrLjoint is determined by the value

Rsoft =
L2

L1
(the magenta line in Fig. 2.2, right). (6.13)

In particular, it does not depend on λ, and clean regions always dominate (provided L1 and L2 are
correctly estimated by the uncertainty quantifier).

Uncertainty quantifier. However, the relative contribution of the clean and noisy regions to
∇θqLjoint does depend on λ. Due to (6.1) and (6.12), it is determined by the value

Qsoft(λ) =

(
L1

(
1− e−λ/L1

)
L2

(
1− e−λ/L2

))2

(the green line in Fig. 2.2, right). (6.14)

As λ increases, Qsoft(λ) decays to (L1/L2)
2 � 1. Note that this limit is even smaller than the limit

L1/L2 of Qsigmoid(λ) in the case of the sigmoid output. Hence, in this case the main contribution
to the gradient ∇θqLjoint is due to noisy regions. On the other hand, for small λ, Qsoft(λ) is close
to 1, i.e., the contributions of clean and noisy regions get balanced.

6.2.3 Relative contribution of clean and noisy regions to the loss surface and its
minima, depending on λ

Regressor. Repeating the argument in Sec. 6.1.3 and using (6.10), we see that the distance
between the minimum θ∗r of Ljoint(θr) and the minimum θ1r of L1(θr) depends on the value Rsoft

in (6.13). In particular, it is small if Rsoft � 1, independently of whether λ is small or large.
Uncertainty quantifier. However, the contribution of the clean region to the loss surface

Ljoint in the θq-space is governed by the ratio Qsoft(λ) in (6.14), which does depend on λ. As λ
increases, Qsoft(λ) decays to (L1/L2)

2 � 1, see the green line in Fig. 2.2 (right). Saying differently,
the minimum θ∗q of the joint loss Ljoint with respect to θq gets close to the minimum θ2q of the loss
defined with the samples from the noisy region only. As a result, clean regions can be misidentified
as noisy. On the other hand, as in Sec. 6.1.3, we see that this does not happen for small λ, and,
therefore, the fit of the regressor in clean regions gets facilitated.
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Figure 7.1: Fit of the networks (Nr,Nq) in (7.1) with λ = 0.1, MSE regressor’s loss for the data y
sampled from the normal distribution with mean 3x+sin(2πx) and standard deviation 1+sin(4πx).
Left: Nr(x) (the curve is almost indistinguishable from the black line indicating the mean of the
data). Right: standard deviation via Nq(x) according to (2.2).

7 Synthetic data

In this section, we generate data with X ⊂ [0, 1] and Y ⊂ R and implement the uncertainty
quantifiers with the sigmoid output, see Sec. 5.1. We choose regressor’s loss to be the MSE and
generate Gaussian noise. We predict the uncertainty in terms of the standard deviation, using (4.6).

7.1 Smooth data

First, we consider smoothly varying mean and variance. Namely, we sample y from the normal
distribution with mean 3x+sin(2πx) and standard deviation 1+sin(4πx), x ∈ [0, 1]. We implement
the network pair (Nr,Nq) as follows:{

Nr : input(1), 2 x hidden(10, tanh), output(1, linear),

Nq : input(1), 2 x hidden(10, tanh), output(1, sigmoid).
(7.1)

We take λ = 0.1. The fit of the regressor Nr(x) is illustrated by Fig. 7.1 (left) and the predictions
of the standard deviation via (2.2) are shown in Fig. 7.1 (right). The corresponding choice of λ,
f , and g is discussed in Sec. 7.1. Figure 7.1 represents the situation where both the mean of the
data and its variance vary smoothly. In this case, the choice of λ is not too important from the
practical point of view. However, it becomes crucial once the data exhibits rather sharp interfaces.
Figure 7.2 illustrates “clean” data given by y = 3x + sin(2πx), x ∈ [0, 1], complemented by two
vertical strips of width 0.1 with the Gaussian noise (mean is −2 in each strip and standard deviation
is 1 in the first strip and 5 in the second). One can see that the standard NN (red line) estimates
the mean in the clean regions outside the two noisy strips much worse than the regressor Nr (blue
line). This is especially evident in the lower picture, where the noisy regions contain 80% of the
data. These and other simulations are discussed in more detail in Sec. 7. We refer to Sec. 8 for the
analysis of real world data sets.
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Figure 7.2: Fit of the networks (Nr,Nq) in (7.1) with MSE regressor’s loss in comparison with a
standard NN (in red). The dashed vertical lines indicate the two regions of width 0.1 each with
Gaussian noise with mean −2 and standard deviations 1 and 5, respectively. Top: noisy regions
contain 20% of the data. Bottom: noisy regions contain 80% of the data. In both cases, λ = 0.05.

7.2 Data with sharp interfaces

In our second example, we generate “clean” data given by y = 3x + sin(2πx), x ∈ [0, 1], and
complement them by two vertical strips of width 0.1 with Gaussian noise (mean is −2 in each strip
and standard deviation is 1 in the first strip and 5 in the second). The fit of the network (7.1) is
illustrated in Fig. 7.2. One can see that even if the data contains 80% of noise, the uncertainty
quantifier allows the regressor to fit well enough for the remaining 20%. This can be explained by
formula (4.1) for the loss and by the results in Sec. 6. Indeed, small coefficients Mj/N in (4.1)
corresponding to regions Xj with low density would also be present in the loss function of a standard
NN for regression. As a consequence, the samples from these regions would contribute little to the
gradient of the loss, and the gradient descent would be mostly governed by the samples from
the noisy regions. On the other hand, as we saw in Sec. 6 (cf. also Table 2.1 and Fig. 2.1 and
2.2 (right)), in case of the joint loss (4.1), small values of λ yield larger gradients of the terms
Ej [Lr(·, yjr)]f(zj) + λg(zj) corresponding to clean regions Xj , which compensate the small values
of Mj/N .

Next, we compare the case λ = 0.05 (Fig. 7.3, the solid lines) with the case λ = 2 (Fig. 7.3, the
dashed lines) and illustrate how λ affects the relative learning speeds in clean and noisy regions (cf.
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Sec. 6.1.2 and Fig. 2.1, right). We fill in the two noisy strips with 80% of the data and plot the fit
of the network Nr and the standard deviation via Nq according to (4.6) on three different learning
stages. The four vertical dashed lines in Fig. 7.3 divide the interval [0, 1] in five subintervals. We
refer to them as regions 1–5 from left to right (with regions 2 and 4 filled with the Gaussian noise).

Consider λ = 0.05 (bold lines in Fig. 7.3). In this case, the regressor Nr learns faster in the
regions that have smaller variance according to Nq. Indeed, we see that Nr first starts to learn in
regions 1 and 2, where Nq is smaller (top figure), and then additionally in region 3, where Nq was
moderately larger (middle figure). As Nq learns that the variance in region 5 is less than in region
4, the regressor Nr accelerates its learning in region 5 (bottom picture).

Now consider λ = 2 (dashed lines in Fig. 7.3). In this case, Nq learns faster in the noisy regions.
In particular, this results (bottom figure) in the domination of the noisy region 2 over the clean
region 1. This prevents Nq from learning that region 1 has a smaller variance compared with region
2. On the other hand, the learning speeds of the regressor Nr in clean and noisy regions are closer
to each other. As a result, it is not able to estimate regions 1, 3, and 5 (outside of the noisy strips)
as well as it does for λ = 0.05.

Finally, we illustrate the implementation of the output of Nq via the softplus, see Sec. 5.2. The
architecture of (Nr,Nq) is identical to (7.1), except for the sigmoid replaced by the softplus. In
Fig. 7.4, we compare the cases λ = 0.03 (the solid lines) and λ = 1 (the dashed lines). Recall that
the minimization of the joint loss (3.1) with λ = 1 is equivalent to maximization of the log-likelihood
of the Gaussian distribution, see Example 4.1. In Fig. 7.4, we see that the choice λ = 0.03 is more
optimal. For larger λ, Nq learns much faster in the noisy regions compared with the clean regions
(cf. Sec. 6.2.2 and Fig. 2.2, right). As a result, it cannot learn properly in the clean regions 1, 3,
and 5, especially in region 1.

8 Real world data

Data sets. We analyzed the following publicly available data sets: Boston House Prices [11] (506
samples, 13 features), Concrete Compressive Strength [45] (1030 samples, 8 features), Combined
Cycle Power Plant [19, 41] (9568 samples, 4 features), Yacht Hydrodynamics [6, 37] (308 samples,
6 features), Kinematics of an 8 Link Robot Arm Kin8Nm3 (8192 samples, 8 feature), and Year
Prediction MSD [28] (515345 samples, 90 features). For each data set, a one-dimensional target
variable is predicted. Each data set, except for the year prediction MSD, is randomly split into 50
train-test folds with 95% of samples in each train subset. All the measure values reported below
are the averages of the respective measure values over 50 folds. For the year prediction MSD, we
used a single split recommended in [28]. The data are normalized so that the input features and
the targets have zero mean and unit variance in the training set.

Methods. We compare the following methods:

1. the maximum likelihood method (ML), in which one maximizes the likelihood of the nor-
mal distribution; like in our method, two networks (one predicting the mean and another
predicting the variance) are trained simultaneously,

2. Stein variational gradient descent (SVGD) [29]; Bayesian method, in which one uses a particle
approximation of the posterior distribution of the weights,

3http://mldata.org/repository/data/viewslug/regression-datasets-kin8nm/
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Figure 7.3: Fit of the networks Nr (left) and Nq with the sigmoid output (right). Solid lines
correspond to λ = 0.05 and dashed lines to λ = 2. Top: early stage. Middle: middle stage.
Bottom: final stage.

3. the probabilistic back propagation (PBP) [12]; Bayesian method, in which one minimizes the
KL divergence from the exact posterior to the approximating one, using assumed density
filtering [36] and expectation-propagation [32] methods,

4. our method (with λ = 0.1, 0.2, 0.5, 1, 2, 5),

5. ensemble of 5 MLs (EnsML) [24,25],
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Figure 7.4: Fit of the networks Nr (left) and Nq with the softplus output (right). Solid lines
correspond to λ = 0.03 and dashed lines to λ = 1.

6. ensemble of 5 pairs of networks according to our method.

To show that our approach works for different types of regressor’s loss, we optimize the above
methods for the root mean squared error (RMSE) and the mean absolute error (MAE). In the
case of RMSE/MAE, we use the Gaussian (4.8) / Laplacian (4.10) likelihood in the ML, SVGD,
and EnsML, and we use the MSE/MAE regressor’s loss in our method. In the case of MAE for
the PBP, we still use the Gaussian likelihood because changing the likelihood would require a
new approximation of the normalization constant in the assumed density filtering method applied
in [12].

In the case of RMSE, our method quantifies uncertainty in terms of the expected squared error
(ESA) due to (4.6). The other non-ensemble methods quantify ESA as the variance of the predictive
distribution. For the ensemble methods 5 and 6, we use (4.11) for the predictive mean and ESA.

In the case of MAE, our method quantifies uncertainty in terms of the expected absolute error
(EAE) due to (4.9). The other non-ensemble methods (except the PBP) quantify EAE as 1/τ ,
where τ is the parameter in (4.10). For the PBP, we use its predictive Gaussian distribution
N (y|µ, V ) to calculate the expectation of |y − µ|, which yields

√
2V π as EAE. For the ensemble

methods, we use (4.12) for the predictive mean and EAE.
Note that the ML and our method estimate aleatoric uncertainty, the Bayesian methods SVGD

and PBP estimate epistemic uncertainty, and ensembles take into account both types of uncertainty.
Architectures. We use architectures proposed in [12,24,25], namely, 1-hidden layer regressors

and 1-hidden layer uncertainty quantifiers with ReLU nonlinearities. Each NN contains 50 hidden
units for all the data sets, except for MSD, where we use 100 hidden units. For our method, we use
the sigmoid output of the uncertainty quantifier (see Secs. 5.1 and 6.1). We refer to Appendix A
for the values of hyperparameters that we used for the different methods.

Measures. We use two measures to estimate the quality of the fit.

1. The overall error: RMSE and MAE.

2. The area under the following curve (AUC), measuring the trade-off between properly learning
the mean and estimating uncertainty. Assume the test set contains N samples. If we are
interested in the RMSE, then we order the samples with respect to their predicted ESA. For
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Figure 8.1: RMSE (upper row) and AUC (lower row) of our method with MSE regressor’s loss
versus λ for different data sets.

Boston

RMSE AUC

ML 3.79±1.44 2.40±0.59
SVGD 3.10±1.14 2.34±0.54
PBP 3.54±1.29 2.28±0.47
Our method 3.76±1.50 2.15±0.51

EnsML 3.60±1.36 2.35±0.49
Our ensemble 3.14±1.31 1.86±0.46

Concrete

RMSE AUC

5.60±0.63 4.00±0.59
6.11±0.59 4.93±0.86
5.58±0.60 4.66±0.64
5.46±0.63 3.80±0.60

4.76±0.64 3.34±0.44
4.71±0.65 3.17±0.38

Power

RMSE AUC

4.09±0.31 3.75±0.24
4.22±0.30 4.26±0.28
4.09±0.26 3.86±0.26
4.13±0.30 3.63±0.24

4.05±0.31 3.71±0.24
4.13±0.30 3.64±0.26

Table 8.1: Values of RMSE and AUC for the different methods on the Boston, Concrete, and Power
data sets.

each n = 0, . . . , N − 1, we remove n samples with the highest ESA and calculate the RMSE
for the remaining N − n samples. We denote the result by RMSE(n) and plot it versus n
as a continuous piecewise linear curve. The AUC is the area under this curve normalized by
N − 1:

AUC =
1

N − 1

N−2∑
n=0

RMSE(n) + RMSE(n+ 1)

2
.

When we use MAE instead of RMSE, the AUC is calculated similarly with MAE(n) instead
of RMSE(n).

RMSE results. Figure 8.1 shows the dependence of RMSE and AUC in our method on λ for
different data sets. We see that typically our method performs better when λ < 1, which is due to
a better fit on clean regions (see Sec. 6). Tables 8.1 and 8.2 show RMSE and AUC for the different
methods4. The values with the best mean and the values that are not significantly different from
those with the best mean (due to the two-tailed paired difference test with p = 0.05) are marked in
bold. Our ensemble achieves the best or not significantly different from the best RMSE and AUC
on all the data sets (except Yacht, where it is second best after the EnsML). Further, note that
our non-ensemble networks are the best among the other non-ensemble methods, again except for
the Yacht data set. Figure 8.2 shows the curves RMSE(n) for the different methods and data sets.
The curve corresponding to our ensemble is typically located below the others.

MAE results.

4We were not able to fit the PBP for the largest MSD data set.
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Yacht

RMSE AUC

ML 0.76±0.38 0.25±0.08
SVGD 2.00±0.72 1.20±0.49
PBP 1.09±0.35 0.64±0.19
Our method 0.94±0.42 0.41±0.13

EnsML 0.48±0.24 0.21±0.07
Our ensemble 0.73±0.33 0.34±0.15

Kin8nm

RMSE AUC

0.086±0.006 0.074±0.004
0.152±0.007 0.129±0.008
0.098±0.005 0.081±0.005
0.085±0.005 0.067±0.003

0.078±0.004 0.062±0.003
0.077±0.004 0.058±0.003

MSD

RMSE AUC

9.09±NA 5.40±NA
9.09±NA 8.38±NA
NA NA
8.87±NA 5.23±NA

8.99±NA 5.32±NA
8.86±NA 5.13±NA

Table 8.2: Values of RMSE and AUC for the different methods on the Yacht, Kin8nm, and MSD
data sets.

Figure 8.2: The curves RMSE(n) for the different methods.

Tables 8.3 and 8.4 show MAE and AUC for the different methods. Our ensemble achieves
the best or not significantly different from the best MAE and AUC on all the data sets (except
for MAE and AUC on Yacht and MAE on Kin8nm, where it is second best after the EnsML).
Our non-ensemble networks are the best among the other non-ensemble methods, with the same
exceptions as for the ensembles. Figure 8.3 shows the curves MAE(n) for the different methods.

Acknowledgements. Both authors would like to thank the DFG project SFB 910. The
research of the first author was also supported by the DFG Heisenberg Programme and the RUDN
University Program 5-100.

9 Conclusion

We introduced a general approach to uncertainty quantification in artificial NNs, based on a specific
joint loss (3.1) for two NNs: one for the regression and another for the uncertainty quantification.
We analyzed in detail how the functions f and g and the hyperparameter λ in the loss affect the
learning process. We showed that the uncertainty quantifier provides an estimate of how certain
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Boston

MAE AUC

ML 2.34±0.57 1.68±0.46
SVGD 2.14±0.53 1.61±0.33
PBP 2.21±0.44 1.65±0.32
Our method 2.20±0.55 1.39±0.39

EnsML 2.17±0.55 1.67±0.35
Our ensemble 2.06±0.57 1.46±0.38

Concrete

MAE AUC

4.09±0.49 2.69±0.38
4.82±0.70 3.29±0.59
4.21±0.64 3.59±0.60
4.05±0.48 2.57±0.38

3.63±0.61 2.32±0.39
3.56±0.63 2.19±0.40

Power

MAE AUC

3.08±0.12 2.72±0.15
3.23±0.12 3.22±0.18
3.19±0.15 3.11±0.19
3.09±0.13 2.66±0.15

3.07±0.13 2.71±0.15
3.07±0.13 2.63±0.16

Table 8.3: Values of MAE and AUC for the different methods on the Boston, Concrete, and Power
data sets.

Yacht

MAE AUC

ML 0.50±0.25 0.18±0.06
SVGD 1.35±0.54 0.46±0.14
PBP 0.73±0.19 0.50±0.15
Our method 0.57±0.20 0.22±0.07

EnsML 0.33±0.14 0.13±0.05
Our ensemble 0.42±0.17 0.15±0.04

Kin8nm

MAE AUC

0.069±0.005 0.053±0.003
0.116±0.006 0.089±0.005
0.076±0.004 0.064±0.004
0.072±0.00 0.052±0.003

0.063±0.003 0.048±0.003
0.069±0.004 0.048±0.002

MSD

MAE AUC

6.11±NA 3.78±NA
6.12±NA 5.66±NA
NA NA
5.89±NA 3.65±NA

6.04±NA 3.69±NA
5.84±NA 3.55±NA

Table 8.4: Values of MAE and AUC for the different methods on the Yacht, Kin8nm, and MSD
data sets.

Figure 8.3: The curves MAE(n) for the different methods.

the predictions are in terms of any regressor’s loss and without the knowledge of the underlying
distribution (whose form may even vary in different regions of the input space). Moreover, we
explained how the presence of the uncertainty quantifier improves the predictions of the regressor
and of NNs based on the classical likelihood maximization. We showed that the crucial role here is
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played by the hyperparameter λ, which allows for better fits on clean regions. Finally, we compared
our NNs and their ensemble counterparts with the other NN methods, using two measures: overall
error (RMSE and MAE) and AUC. We showed that our approach typically yields the best or not
significantly different from the best results.

It is also worth mentioning that one could fit a regressor first and then quantify the uncertainty
of its predictions by training only the neural network Nq with the loss (3.1). Now the function
Lr(yi, yir) need not coincide with the loss function that was used for training the regressor, but can
represent any error whose local average we want to estimate by Nq. With this modification, one
loses the benefit of the joined training of Nr and Nq that may improve regressor’s predictions in
the clean regions, but, on the other hand, one can choose any type of regressor, not only a neural
network. For the uncertainty quantification, one still has the full freedom in the choice of the
functions f and g, while the parameter λ still has the same influence on the learning dynamics of
Nq as in Sec. 6. In both settings, it would be interesting to analyze other choices of the functions f
and g and to develop an automatic procedure that could choose an optimal λ and properly adjust
it during the learning process.
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λ
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Number
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λ
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Table A.1: Hyperparameters for the ML, our method, and the respective ensembles optimising
RMSE on the Boston, Concrete, and Power data sets.
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A Hyperparameters

When we fit different methods on the real world data sets, we normalize them so that the input
features and the targets have zero mean and unit variance in the training set. We used minibatch 5
on Boston, Concrete, and Yacht, minibatch 10 on Power and Kin8nm, and minibatch 5000 on
MSD. For the ML and for our method, we used the dropout regularization [15] during training,
but not for the prediction, and we did not regularize the ensembles. We used Nesterov momentum
(with momentum 0.9) optimizer for fitting the ML, our method and the ensembles. We performed
a grid search for the learning rate and the dropout rate for the non-ensemble methods. For the
ensemble methods, we used the same learning rate as for the corresponding individual predictors.
The parameters yielding the best AUC in case of RMSE are presented in Tables A.1 and A.2, and
the parameters yielding the best AUC in case of MAE are presented in Tables A.3 and A.4. For
the SVGD and PBP, we used the hyperparameters default settings in the authors’ code5.

5See https://github.com/DartML/Stein-Variational-Gradient-Descent for the SVGD and
https://github.com/HIPS/Probabilistic-Backpropagation for the PBP.
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Yacht

λ
Learning

rate
Dropout

Number
of epochs

ML 0.0001 0.1 2000
Our method 0.2 0.0004 0 500

Kin8nm

λ
Learning

rate
Dropout

Number
of epochs

0.00005 0 200
0.5 0.0002 0 300

MSD

λ
Learning

rate
Dropout

Number
of epochs

0.005 0.1 50
0.1 0.2 0.1 50

Table A.2: Hyperparameters for the ML, our method, and the respective ensembles optimising
RMSE on the Yacht, Kin8nm, and MSD data sets.

Boston

λ
Learning

rate
Dropout

Number
of epochs

ML 0.00003 0.4 600
Our method 0.2 0.0002 0.4 2000

Concrete

λ
Learning

rate
Dropout

Number
of epochs

0.00003 0.1 800
0.2 0.0003 0.1 600

Power

λ
Learning

rate
Dropout

Number
of epochs

0.00005 0 150
1 0.0001 0 200

Table A.3: Hyperparameters for the ML, our method, and the respective ensembles optimising
MAE on the Boston, Concrete, and Power data sets.

Yacht

λ
Learning

rate
Dropout

Number
of epochs

ML 0.0001 0.1 1000
Our method 0.2 0.0004 0 500

Kin8nm

λ
Learning

rate
Dropout

Number
of epochs

0.00005 0 400
0.2 0.0002 0 400

MSD

λ
Learning

rate
Dropout

Number
of epochs

0.01 0.1 50
0.5 0.1 0.1 70

Table A.4: Hyperparameters for the ML, our method, and the respective ensembles optimising
MAE on the Yacht, Kin8nm, and MSD data sets.
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