
The University of Manchester Research

Hybrid extreme learning machine approach for
heterogeneous neural networks
DOI:
10.1016/j.neucom.2019.04.092

Document Version
Submitted manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Christou, V., Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., & Brown, G. (2019). Hybrid extreme learning
machine approach for heterogeneous neural networks. Neurocomputing, 361, 137-150.
https://doi.org/10.1016/j.neucom.2019.04.092

Published in:
Neurocomputing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:01. May. 2024

https://doi.org/10.1016/j.neucom.2019.04.092
https://research.manchester.ac.uk/en/publications/853ff261-0580-4422-bb4d-0233346d25ad
https://doi.org/10.1016/j.neucom.2019.04.092

Hybrid extreme learning machine approach for

heterogeneous neural networks

Vasileios Christoua,∗, Markos G. Tsipourasb,c, Nikolaos Giannakeasc,
Alexandros T. Tzallasc, Gavin Browna

aSchool of Computer Science, The University of Manchester, Oxford Road, M13 9PL,
Manchester, United Kingdom

bDepartment of Informatics and Telecommunications Engineering, University of Western
Macedonia, Kozani, Greece

cSchool of Applied Technology, Department of Computer Engineering, Technological
Educational Institute of Epirus, Kostakioi, GR-47100, Arta, Greece

Abstract

In this paper, a hybrid learning approach, which combines the extreme learn-
ing machine (ELM) with a genetic algorithm (GA), is proposed. The uti-
lization of this hybrid algorithm enables the creation of heterogeneous single
layer neural networks (SLNNs) with better generalization ability than tradi-
tional ELM in terms of lower mean square error (MSE) for regression prob-
lems or higher accuracy for classification problems. The architecture of this
method is not limited to traditional linear neurons, where each input partic-
ipates equally to the neuron’s activation, but is extended to support higher
order neurons which affect the network’s generalization ability. Initially, the
proposed heterogeneous hybrid extreme learning machine (He-HyELM) algo-
rithm creates a number of custom created neurons with different structure,
which are used for the creation of homogeneous SLNNs. These networks are
trained with ELM and an application specific GA evolves them into heteroge-
neous networks according to a fitness criterion utilizing the uniform crossover
operator for the recombination process. After the completion of the evolution
process, the network with the best fitness is selected as the most optimal.

∗ Corresponding Author.
Email addresses: vasileios.christou@postgrad.manchester.ac.uk (Vasileios

Christou), tsipouras@teiep.gr (Markos G. Tsipouras), giannakeas@teiep.gr
(Nikolaos Giannakeas), tzallas@teiep.gr (Alexandros T. Tzallas),

gavin.brown@manchester.ac.uk (Gavin Brown)

Preprint submitted to Neurocomputing January 30, 2019

Experimental results demonstrate that the proposed learning algorithm can
get better results than traditional ELM, homogeneous hybrid extreme learn-
ing machine (Ho-HyELM) and optimally pruned extreme learning machine
(OP-ELM) for homogeneous and heterogeneous SLNNs.

Keywords:
artificial neural network, classification problem, custom neuron, genetic
algorithm, hybrid extreme learning machine, regression problem

1. Introduction

The extreme learning machine (ELM) learning algorithm proposed by
Huang et al. [31, 32] for single layer neural networks (SLNNs) was created
with purpose to overcome the slow training speed problem of gradient based
algorithms. The main advantages of this approach include simplicity (since
it doesn’t require a learning rate and stopping criteria), efficiency (since
it doesn’t stuck in local minima) and it’s ability to train a SLNN in one
calculation step without the need of an iterative process like in gradient
based approaches. The main characteristic of ELM is that it tends to reach
low training error with small norm of output weights which according to
Bartlett [6] leads to better generalization performance [69].

ELM trains a network without adapting the hidden layer weights and
thresholds but by randomly selecting them; then with the use of the Moore-
Penrose generalized pseudo-inverse analytically determines the output node
weights. This approach has shown to be effective for both regression and
classification problems although it may require more nodes than networks
trained with gradient-based methods like back-propagation [24] due to the
randomization of the hidden layer weights and thresholds [72, 69]. Further-
more, the ELM algorithm is unable to create SLNNs containing different
combinations of neuron types1 in the hidden layer (these network types will

1 The term different combinations of neuron types refers to neuron types with structural
units like the structured composite model (C-Model) proposed by Christou et al. [9] which
is utilized in the proposed algorithm. This model divides the neuron into three subunits
(subcomponents) named dendrite (D), activation (Sa) function, activation-output (Sao)
function and is able to create a custom neuron by varying any of the subunits from each
category. Finally, supports both traditional linear neurons where each input participates
equally to the neuron’s activation and higher order neurons (the higher order units used
in this paper will be analysed in Section 3).

2

be termed heterogeneous networks). Most previous studies contained SLNNs
with the same neuron types in the hidden layer (these network types will be
termed homogeneous networks) [24]. However, combining together differ-
ent neuron types in the hidden layer affects the generalization performance
of the network. The motivation of this research is to find the appropriate
combination of hidden layer units in acceptable time that will have better
generalization performance than their equivalent homogeneous ones for each
regression or classification problem.

Since the invention of the ELM algorithm by Huang et al. [31, 32], a
significant number of ELM-based approaches have been proposed with pur-
pose to solve ELM’s problems. A large number of these approaches are
hybridizations with evolutionary algorithms aiming to optimize the hidden
layer weights and thresholds.

The evolutionary ELM (E-ELM) method proposed by Zhu et al. [72]
utilizes differential evolution (DE) for the optimization of the hidden layer
weights and thresholds and the Moore-Penrose pseudo-inverse to analyti-
cally calculate the output weights. DE is known as one of the most efficient
heuristic evolutionary based approaches for minimizing possibly non-linear
and non-differentiable continuous space functions [56, 55, 72]. An extension
of E-ELM for ordinal regression problems proposed by Sánchez-Monedero
et al. [51]. This method uses a continuous weighted root mean square fitness
function to guide the optimization process. The differential evolution ELM
algorithm (DE-ELM) proposed by Bazi et al. [7] is an automatic method
for classification of hyper-spectral images which also uses a DE to solve the
model selection issue of ELM. Li et al. [36] proposed the tunable activation
function ELM (TAF-ELM) algorithm. This method optimizes the hidden
neurons transfer functions along with the hidden layer weights and thresh-
olds altogether in one chromosome using a modified DE. The evolutionary
selection ELM (ES-ELM) method for regression tasks proposed by Feng et al.
[15] is based on the evolutionary algorithm and generates two ELM networks
with L and L

2
hidden nodes accordingly. Then, it uses a natural selection

strategy to make sure that the best hidden nodes will be selected for the next
generation. The PSO-ELM approach by Xu and Shu [62] hybridizes ELM
with the particle swarm optimization (PSO) algorithm in order to find the
optimal combination of hidden layer weights and thresholds. PSO is an evo-
lutionary based optimization algorithm proposed by Eberhart and Kennedy
[13] which is inspired from the simulation of a simple social system (bird
flocking or fish schooling). Similarly, the GSO-ELM algorithm by Silva et al.

3

[52] uses the group search optimization algorithm to select the ELM parame-
ters. GSO was proposed by He et al. [21] and is also based in a simple social
system (takes inspiration from the animal searching behaviour). These ELM
variants employ an evolutionary algorithm mainly for the optimization of the
hidden weights and thresholds. However, they lack a mechanism to create
heterogeneous networks. An exception is the TAF-ELM approach with the
use of the tunable parameter for the hidden units but it is unable to choose
a suitable combination of transfer functions.

The Ho-HyELM approach proposed by Christou et al. [9] can create net-
works with different neuron types in the hidden layer but is restricted in the
creation of homogeneous hidden layers.

Very few ELM-based approaches are able to create heterogeneous hid-
den layers. Optimally pruned ELM (OP-ELM) by Miche et al. [42] uses
neurons with linear, sigmoid and Gaussian transfer functions to construct
the heterogeneous layer. The construction is done by pruning of the least
useful neurons from a large randomly created heterogeneous hidden layer.
The ranking method used for the evaluation of the neurons is the multi-
response sparse regression [53] algorithm. TROP-ELM proposed by Miche
et al. [43] is an improvement of OP-ELM that uses a L1 regularization penalty
to rank the hidden layer neurons followed by a L2 penalty on the regression
weights for numerical stability. The synaptic kernel inverse method (SKIM)
by Tapson et al. [59] for event-based systems redefines the hidden neurons
as synaptic kernels in which the input event based signals are transformed
into continuous-valued signals. The advanced ELM ensemble (AELME) from
Abuassba et al. [1] constructs a network ensemble by training a randomly
chosen ELM classifier on a subset of training data selected through random
resampling. These methodologies work only with original units and they are
not taking into consideration higher order units. Additionally, the SKIM
methodology and AELME are ELM approaches that are used for spatio-
temporal pattern recognition and classification problems respectively.

A series of ELM-based approaches is focused to improve the performance
of ELM in sparse data sets. The unified ELM approach by Huang et al. [30]
provides a unified framework which simplifies and combines different train-
ing methods, including support vector machine (SVM) [11] variants like least
squares SVM (LS-SVM) [57] and proximal SVM (PSVM) [41]. Sparse ELM
by Bai et al. [4], unifies different learning algorithms for classification, includ-
ing SVM and radial basis function (RBF) networks. The main advantage of
sparse ELM over unified ELM is its ability to create more compact net-

4

works which reduces storage space and testing time. Sparse Bayesian ELM
(SBELM) for multi-class classification proposed by Luo et al. [40] estimates
the marginal likelihood of network outputs and prunes most of the redundant
hidden units during training, resulting in an accurate and compact model.
These three methods work with original neurons only without taking into
consideration higher order units.

A number of ELM-based approaches have been proposed to improve the
transfer learning capability of ELM in cross domains. Zhang and Zhang [66]
propose a unified framework named domain adaptation extreme learning ma-
chine (DAELM) with purpose to address the sensor drift issue which exhibits
a non-linear dynamic property in electronic nose (E-nose) systems. This
framework is able to learn a robust classifier utilizing a limited number of la-
belled target data for drift compensation as well as gas recognition in E-nose
systems while retaining the speed and learning ability of ELM. This frame-
work is comprised from two algorithms named source DAELM (DAELM-S)
and target DAELM (DAELM-T). The former can learn a robust classifier on
the source domain by leveraging a small number of labelled samples from the
target domain. The latter can learn a classifier based on a small number of
labelled data in target domain by leveraging a pre-learned base classifier in
source domain. The source domain adaptation transfer ELM (TELM-SDA)
and target domain adaptation transfer ELM (TELM-TDA) are proposed by
Zhang and Zhang [67] for learning multi-domain tasks. The first algorithm is
able to learn a classifier utilizing a small number of labelled instances while
a large number of unlabelled data are exploited by approximating the pre-
diction of the base classifier. The training of the base classifier is done in the
source domain utilizing regularized ELM or support vector machine (SVM).
On the other hand, TELM-SDA can learn a classifier utilizing a large num-
ber of labelled instances from the source domain and a very small number of
labelled instances from the target domain as regularization. Both algorithms
can form a unified ELM framework which refers to two stages including ran-
dom feature mapping and output weights training. The ELM-based Domain
Adaptation (EDA) framework by Zhang and Zhang [68] addresses the visual
knowledge adaptation problem. It is able to learn a network classifier and
a category transformation at the same time by utilizing labelled source do-
main data, a small number of labelled target domain data and unlabelled
target domain data. The EDA method is extended to a joint learning frame-
work of multiple views for structural information sharing of multiple local
features with different feature representations. These methods are focused

5

in the improvement of ELM’s transfer learning capability in cross domains
and they work with original neurons only without taking into consideration
higher order units.

Some ELM-based approaches have been proposed for specific problems.
The local discriminant preservation projection based kernelized ELM (LDPP-
based KELM) method proposed by Zhang et al. [65] is a voltammetric elec-
tronic tongue (E-Tongue) system. This system is used as a taste analysis
tool in taste recognition problems. The evolutionary cost-sensitive ELM
(ECSELM) approach by Zhang and Zhang [69] addresses the robustness of
ELM in cost-sensitive learning tasks like face recognition based access control
system, where the misclassification of an unauthorized person as an autho-
rized one can have greater impact than the misclassification of an authorized
person as an unauthorized one. The self-expression ELM (SE2LM) method
proposed by Zhang and Deng [64] is an (E-nose) system which combines
gas sensor technology and artificial intelligence for abnormal odor detection.
These methods work only in specific tasks without taking into consideration
higher order units.

A series of other non-ELM approaches uses neural networks ensembles to
construct networks with heterogeneous structure. Zhao et al. [70] combines
neural network ensembles and multi-population swarm intelligence to con-
struct the proposed improved neural network ensemble (INNE). The accurate
and diverse ensemble-maker giving united predictions (ADDEMUP) algo-
rithm from Opitz and Shavlik [48] creates ensemble networks by utilizing
GAs to search for a correct and diverse population of neural networks to
be used in the ensemble. Rosen [50] linearly combines outputs from indi-
vidually trained networks using back-propagation to produce the output of
the ensemble network. The evolutionary ensembles with negative correlation
learning (EENCL) method from Liu et al. [39] utilizes an evolutionary al-
gorithm based on evolutionary programming to search for a population of
diverse individual neural networks that solve a problem together. It encour-
ages different individual neural networks in the ensemble to learn different
parts or aspects of the training data, so that the ensemble can learn better
the entire training data. The GASEN method from Zhou et al. [71] assigns
random weights to a set of neural networks and uses a GA to evolve these
weights. Then it selects some neural networks based on the evolved weights
to make up the ensemble. Finally, Bakker and Heskes [5] propose a method
which summarizes large ensembles of models to a small number of represen-
tative models. These methodologies are focused in the creation of ensemble

6

networks and work only with original units without taking into consideration
higher order units.

This paper presents a novel ELM hybrid algorithm named heterogeneous
hybrid extreme learning machine (He-HyELM) which is able to find the op-
timal heterogeneous SLNN for each specific problem type. The algorithm
creates a pool of custom created neurons and utilizes them to construct a
series of ELM trained homogeneous networks. These networks are evolved
into heterogeneous networks utilizing a genetic algorithm (GA) with uniform
crossover and the most optimal one is selected according to a fitness crite-
rion. The GA was selected for the construction of the heterogeneous SLNNs,
because it is straightforward to apply in this case, and forms ELM hybrids
with improved generalization ability as seen from the numerous GA-based
ELM hybrid approaches described above.

According to the experimental analysis, the He-HyELM created networks
managed to achieve better generalization ability than homogeneous networks
and heterogeneous networks created using optimally pruned extreme learning
machine (OP-ELM). The challenging task for the creation of heterogeneous
networks is to find the proper combination of hidden units in acceptable
time since the search space rises exponentially with each neuron added to
the hidden layer. These types of networks have the advantage of better
generalization in comparison with traditional ELM in both regression and
classification datasets as seen in Section 4, but they require more processing
power for their creation.

This paper has been structured into 6 main sections, starting with Sec-
tion 1 (Introduction) containing a brief explanation of the ELM algorithm,
a literature review of the related work and a small description of the mo-
tivation and challenges of the proposed He-HyELM algorithm. Section 2
(Related Work) contains a detailed explanation of ELM and GA while Sec-
tion 3 (The He-HyELM architecture), contains an in depth description of
He-HyELM’s architecture. The following section contains the experimental
results in 2 different problem types (regression and classification). Finally,
the last 2 sections contain the discussion and conclusion of the proposed
method.

7

2. Related work

2.1. ELM

This section describes the ELM algorithm, which was originally proposed
for shallow (one hidden layer) networks and later has been extended where
the hidden layer need not be neuron-like [30, 27, 28].

In conventional neural network training methods, single feed-forward neu-
ral networks (SFLNNs) with additive or radial basis functions (RBFs) work
as universal approximators when all networks parameters are adjusted [29].
Huang et al. [29] proved using an incremental construction method that
in order to employ SLFNNs as universal approximators, the hidden layer
nodes can be chosen randomly and need not to be tuned. Then the output
node weights can be determined utilizing the Moore-Penrose pseudo-inverse.
In this network type, the transfer functions for additive nodes can be any
bounded non-constant piecewise continuous function g : R → R, and the
transfer functions for RBF nodes can be any integrable piecewise continuous
function g : R→ R and

∫
R
g(x)dx 6= 0 [27, 29].

A standard SLNN having:

� An input matrix x =

x11 . . . x1n
... . . .

...

xN1 . . . xNn

N×n

� A hidden weight matrix w =

w11 . . . w1n

... . . .
...

wh1 . . . whn

h×n

� A threshold vector θ = [θ1, . . . , θh]

� An output nodes weight matrix β =

β11 . . . β1m
... . . .

...

βh1 . . . βhm

h×m

where N ∈ N∗ is the number of input samples, n ∈ N∗ is the number of
inputs/features, h ∈ N∗ is the number of hidden neurons, m ∈ N∗ is the

8

number of outputs/output neurons and g(u) is the transfer function, can be
mathematically modelled as:

h∑
i=1

[βi1, . . . , βim]g

(
[wi1 . . . win]

xj1...
xjn

+ θi

)
, j = 1, . . . , N (1)

This network has the identity activation function (g(u) = u) and no
threshold in the output nodes. These types of networks can be trained with
the ELM algorithm which is illustrated in Algorithm 1.

Algorithm 1 ELM

1 : w =

w11 . . . w1n

... . . .
...

wh1 . . . whn

h×n

Randomise the hidden layer weights.
2 : θ = [θ1, . . . , θh]
Randomise the hidden layer thresholds.
3 : H =

g

(
[w11 . . . w1n]

x11...
x1n

+ θ1

)
. . . g

(
[wh1 . . . whn]

x11...
x1n

+ θh

)
... · · · ...

g

(
[w11 . . . w1n]

xN1

...

xNn

+ θ1

)
. . . g

(
[wh1 . . . whn]

xN1

...

xNn

+ θh

)

N×h

Calculate the hidden layer matrix H.

4 : T =

 t11 . . . t1m
... . . .

...

tN1 . . . tNm

N×m

Calculate the target output matrix T .
5 : β = H†T
Calculate the output weights matrix β.

In line 1, it randomizes the hidden layer weight matrix w where each row

9

contains the input weights of each hidden neuron. In line 2, it randomizes
the threshold matrix θ where each entry to the matrix contains the threshold
value of each hidden unit. In line 3, it calculates the hidden layer matrix
H [26, 25]. The rows of the hidden layer matrix contain the output data
of every hidden node. Each row of H contains the data for every training
pattern introduced to the network. For this reason, the dimension of H is N
(which is the number of the training patterns) multiplied by h (which is the
number of output nodes). Line 4 involves the calculation of the target output
matrix T which contains the expected values of the training set. Each row
of T contains the corresponding expected values for each training pattern.
In the fifth and final step, the algorithm calculates the output weights. The
equation β = H†T where H† is the Moore-Penrose pseudo-inverse derives
from the equation T = Hβ which describes the relationship of the hidden
layer and the output weights matrix with the target matrix [31, 32]. The
output weights matrix β has dimension h ×m where each column contains
the weight values of each output node.

The parameters and the notation used for describing the ELM algorithm
can be summarized in Table 1.

Table 1: ELM Parameter Settings

Parameter Name Symbol Values/Types

No of Hidden Neurons h h ∈ N∗

No of Input Samples N N ∈ N∗

No of Inputs/Features n n ∈ N∗

No of Outputs/Output Neurons m m ∈ N∗

Input Matrix x x ∈ RN×n, (N,n) ∈ N∗

Weight Matrix w w ∈ [−1, 1]h×n, (h, n) ∈ N∗

Thresholds θ θ ∈ [−1, 1]h, h ∈ N∗

Hidden Layer Output Matrix H H ∈ RN×h, (N,h) ∈ N∗

Activation Function g g ∈ R
Target Output Matrix T T ∈ RN×m, (N,m) ∈ N∗

Output Weight Matrix β β ∈ Rh×m, (h,m) ∈ N∗

2.2. GA

This section presents the generic structure of a GA. In organisms, the
chromosomes can be arrayed in pairs or can be unpaired. The first ones are

10

called diploids while the latter haploids. The structure of a GA that artifi-
cially represents the reproduction process for a haploid organism can be seen
in Fig. 1. The GA is an iterative procedure that starts with an initial fixed
set or pool of candidate solutions called population. A candidate solution is
called chromosome and represents a possible solution to the problem which
is usually encoded as bit strings (binary encoding scheme).

Figure 1: Flowchart of a typical GA. The GA starts with an initial pool of candidate
solutions called population. Each iteration step selects the best solution according to
a fitness criterion. The crossover operator involves the partial exchange of information
between two parent chromosomes and the mutation operator alters one randomly chosen
chromosome. The process is continued until a termination criterion is reached.

In a binary encoding scheme every chromosome is a string of bits, 0 or 1
with length L as seen in Table 2. An allele in a bit string is represented by
0 or 1 and represents the alternative forms of a gene. The variables for the
problem that is going to be solved are discretized in a priori fashion and the
range of the discretization corresponds to a power of 2. In the chromosomes
of Table 2, it is possible to represent 220 = 1048576 discrete values. This

11

type of encoding is acceptable and doesn’t lead to any specific problems, if
the parameters are continuous and the discretization provides enough level
of accuracy for the desired output [45, 61].

Table 2: Binary Encoding Scheme

Chromosome A: 10101000011001101100

Chromosome B: 11000111001101010010

As seen in Algorithm 2, the GA starts with the creation of the initial pop-
ulation, which is usually chosen randomly or by using heuristic construction.
Once the initial population has been defined, the evolution process begins
(line 2), which involves a series of iterative steps. Each iteration of the al-
gorithm is called generation and involves 4 genetic operators (evaluation,
selection, crossover, mutation). In line 3, the GA evaluates the population
according to the fitness value of each individual. Fitter chromosomes have
more chances to be selected and the average fitness of the population is ex-
pected to grow with successive generations. The next step involves checking
the stopping criteria of the algorithm. The GA stops the evolution process
if the stopping criteria have been met (e.g. the maximum number of genera-
tions has been reached) or when it converges to the best chromosome which
represents the optimal or a suboptimal solution of the problem. If these
criteria have been met, the algorithm (line 5) selects the best solution and
returns the outcome (line 6) [45].

The next genetic operator is the selection mechanism (line 8) which usu-
ally resides in the selection of fitter chromosomes, with higher probability,
in the evolution process. The roulette wheel selection is one of the most
straightforward implementations of this strategy. This method adjusts the
selection probability of each chromosome according to it’s fitness value. The
formula which defines each chromosome’s probability can be seen below.

Pi =
fi∑N
i=1 fi

(2)

In this formula, N is the number of chromosomes, each defined from it’s
fitness fi > 0 (i = 1, 2, . . . , N). This method mimics a roulette wheel with
sectors of size proportional to fi (i = 1, 2, . . . , N). The selection procedure
of a chromosome is done by choosing a random point on the wheel and

12

locating the corresponding sector. When a simple search is utilized, such a
location requires O(N) complexity while the binary search requires O(logN)
complexity [37, 22].

GAs explore the search space by using two different operations named
crossover and mutation. Crossover (line 9) is a local search operator and can
be viewed as the procedure of constructing the next population after con-
structing the intermediate population using selection. Crossover is applied
to randomly paired parent chromosomes which are recombined according to
various methods [61]. Single-point crossover is one of the simplest and most
popular crossover operators. It initially selects the parents and uses a ran-
dom selected crossover point. This point is used for mutual exchange of the
parent information and produces two offspring as seen in Table 3 [23, 60].
In this example the crossover point is selected between the fourth and fifth
gene.

Table 3: Single-Point Crossover

Parent A: 1010|10100

Parent B: 0011|11011

Offspring A: 1010|11011

Offspring B: 0011|10100

Mutation (line 9) is a simple search operator which allows the GA to
escape from the local minimum trap. It is a global search operator used for
searching the entire search space which introduces genetic diversity to the
evolution process. For binary encoding, mutation can be implemented by
simply changing the value of each gene (from 0 to 1 and 1 to 0) according to
a small probability, which is usually proportional to the chromosome length.
The mutation probability defines how many genes of the chromosome are
going to be changed and must be selected very carefully. In general, this
probability is low because high values of the mutation operator transform
the GA to random search [54].

The new generation of chromosomes is then created according to the
fitness measure by selecting from either the combined pool of parents and
offspring or the offspring pool. Fitter chromosomes have more chances to
be selected and the average fitness of the population is expected to grow

13

with successive generations. The process is continued until the termination
criterion is reached or until the algorithm converges to the best chromosome
which represents the optimal or a suboptimal solution of the problem [45].

Algorithm 2 GA
1 : create Pop
Create the initial population.
2 : Loop
Start the evolution process.
3 : Popevaluate = evaluate(Pop)
Evaluate the population.
4 : If (stop = true) or (solutionbest = true)

Check if stopping criteria have been met or if the best solution has
been found.

5 : solutionbest ← best(Popevaluate)
Select the optimal solution.

6 : Return solutionbest
Stop the evolution process and return the optimal solution.

7 : End If
8 : Popselect ← select(Popevaluate)

Select the chromosomes for reproduction.
9 : Popcrossover ← crossover(Popselect)

Reproduce the selected population.
10 : Pop← mutation(Popcrossover)

Mutate the offspring.
11 :End Loop

3. The He-HyELM architecture

3.1. He-HyELM structural units

In this section, a structured view of the custom neurons, that are utilized
in this research, is presented. It divides neurons into three subcomponents
(the last two form the neuron’s soma S) according to the structured com-
posite model (C-Model) proposed by Christou et al. [9]. These neuron
subcomponents are the dendrite (D), the activation (Sa) function and the
activation-output (Sao) function. In this model, the subscript in S takes
the values a and ao with purpose to distinguish between the neuron’s soma

14

activation function (Sa) and the neuron’s soma activation-output function
(Sao).

In machine learning, feature vectors are used to represent numeric or
symbolic characteristics called features of an object in a mathematical way
[38]. The vector space, which is associated with these vectors is called feature
space. The feature space in this research contains all artificial neural network
input signals. These input signals are weighted and they are named dendrites.
The summation (along with an optional threshold for the original neuron
types) provides the neuron’s soma activation function. The soma activation-
output function or transfer function takes as input the activation function
and produces the neuron’s output. A neuron is depicted as a 3-tuple (<
D,Sa, Sao >) and contains three different building blocks: the dendrite, the
activation function and the activation-output function. These building blocks
form a composite function and produce the neuron’s output y = g(u) =
Sao(Sa(D)) [9].

3.2. Varying the dendrites

The weighted input vectors form the neuron’s dendrite which is summed
by the activation function and passed as input to the activation-output func-
tion. This study used two different types of dendrites, the linear (Dl) dendrite
and a variation of the cubic (Dc) dendrite called multi-cube (Dmc) dendrite
[9] which are going to be analysed in Sections 3.2.1 and 3.2.2. The dis-
tinction between different types of dendrites is done utilizing the l, c and mc
superscripts which define the linear, cubic and multi-cubic types accordingly.

3.2.1. Linear dendrites

The linear configuration is depicted in Fig. 2 [20] where each input par-
ticipates equally to the neuron’s activation. In this dendritic type, the inputs
are modelled as the input vector x = [x1, x2, . . . , xn], n ∈ N∗, x ∈ R and they
are multiplied element-wise with the weight vector wl = [w1, w2, . . . , wn], n ∈
N∗, wl ∈ R as seen in equation (3) [9].

Dl = [w1x1, w2x2, . . . wnxn] (3)

15

Figure 2: Linear neuron structure. The linear dendrite multiples element-wise the input
vector with the weight vector and sends as input to the activation function, the vector
containing the outcome of this multiplication. The ‘sum-of-weights’ activation function
sums together all dendrite elements and adds an optional threshold θ depicted by a dashed
arrow. Finally, the output of the activation function is sent to the activation-output
function to produce the neuron’s output [9].

3.2.2. Cubic dendrites

The main difference of the higher order neuron model units 2 [10, 16, 18,
19, 46, 47] from the linear units is that they can receive a multi-dimensional
cube as input vector. Also, the number of neuron weights wcno is not propor-
tional to the number of neuron inputs but increases exponentially according
to the number of inputs (wcno = 2n, n ∈ N∗ where n is the number of inputs).
In the higher order neurons dendrite, each input participates to the neuron’s
activation function according to a probability and each weight participates
to the activation function according to the equation calculated in (4).

Pµ =
1

2n

n∏
i=1

(1 + µi
xi
xmax

) (4)

The above formula is used to calculate the probability of each real-valued
weight. The term 1

xmax
normalizes the input to the range [−1, 1]. The µi is

the ith component of the n-bit cube site address string µ = µ1µ2 . . . µi . . . µn.
This bit string takes only the values -1 and 1. Finally, with n we define the

2 These types of neurons are termed cubic neurons or cubic units in this paper.

16

number of inputs [19, 9].
The higher order dendritic type is depicted in equation (5) and utilizes

the weight vector wcµ = [w1, w2, . . . , w2n], n ∈ N∗.

Dc = wcµ
1

wcmax

n∏
i=1

(1 + µi
xi
xmax

) (5)

The factor 1
wcmax

normalises the weights to the range of [−1, 1] (as wcmax is

defined the maximum value from the weight vector wcµ) [19, 9]. A diagram
presenting the structure of the 1 to n input cubic neuron is depicted in Fig. 3.

Figure 3: Cubic unit structure. This diagram depicts the structure of the 1 to n input
cubic neuron. Initially the dendrite creates a vector containing 2n, n ∈ N∗ elements where
n is the number of inputs. This vector is created according to equation (5) and is sent as
input to the activation function. The ‘sum-of-weights’ activation function sums together
all dendrite elements and the output of the activation function is sent to the activation-
output function to produce the neuron’s output [9].

A significant issue of these cubic neurons is that the number of input
weights rises exponentially according to the number of inputs which can
cause performance problems even with relatively small number of inputs
(e.g. a linear unit with 10 inputs requires 10 weights while a cubic unit re-
quires 210 = 1024 weights). In order to circumvent this issue, Gurney [19]

17

proposed the multi-cube unit. In the multi-cube unit instead of having one
high dimension cube as input vector, we use several lower dimension cubes
(sub-cubes) which do not necessary share the same dimension. The formula
for the dendritic type which takes as input multiple cubes having the same
dimension is given in (6). In this formula n is the number of inputs for each
cube and q is the total number of cubes.

Dmc =

[
wmcµ,1

1

wmcmax

n∏
i=1

(1 + µi
xi,1
xmax

),

wmcµ,2
1

wmcmax

n∏
i=1

(1 + µi
xi,2
xmax

), . . . , wmcµ,q
1

wmcmax

n∏
i=1

(1 + µi
xi,q
xmax

)

] (6)

The multi-cube unit structure with the same dimension in all cubes which
was used in the experimental part of this research can be seen in Fig. 4.

Figure 4: Multi-cube unit structure with the same dimension in all cubes. This diagram
depicts a multi-cube unit containing q number of n-dimensional cubes. Initially the den-
drite creates a vector containing q ·n, (q, n) ∈ N∗ elements where n is the number of inputs
and q is the number of multi-cube units. This vector is created according to equation (6)
and is sent as input to the activation function (the superscript in each input value denotes
the current sub-cube). The ‘sum-of-weights’ activation function sums together all dendrite
elements and the output of the activation function is sent to the activation-output function
to produce the neuron’s output.

18

3.3. Varying the activation function.

This paper utilizes the ‘sum of weights’ activation function3 shown in
equation (7) which it’s main purpose is to aggregate the dendrite elements.
For linear dendrites besides aggregating, it also adds an optional threshold
θ [20, 9]. The distinction between the linear, cubic and multi-cubic types of
activation functions is done utilizing the l, c and mc subscripts as seen in the
following three formulas.

SSoWαl
=

n∑
i=1

xiwi + θ (7)

The ‘sum of weights’ activation function for the cubic units is shown in
(8) [19, 9].

SSoWαc =
1

wcmax2
n

2n∑
µ=1

wcµ

n∏
i=1

(1 + µi
xi
xmax

) (8)

The ‘sum of weights’ activation function for the multi-cube units hav-
ing the same dimension is shown in (9) which is derived from the sum
of the multi-cube dendrite’s matrix elements, SSoWαmc =

∑q
j=1

∑2n

µ=1D
c
µ =∑q

j=1

∑2n

µ=1w
c
µ

1
wcmax2

n

∏n
i=1(1+µi

xi
xmax

) = 1
wcmax2

n

∑q
j=1

∑2n

µ=1w
c
µ

∏n
i=1(1+µi

xi
xmax

)

[19].

SSoWαmc =
1

wmcmax2
n

q∑
j=1

2n∑
µ=1

wmcµ

n∏
i=1

(1 + µi
xi
xmax

) (9)

3.4. Varying the activation-output function.

The activation-output function is responsible for the neuron’s output.
The following six activation functions were used during the experimental
part of this research and utilize the ρ = {0.1, 0.2, . . . , 1} parameter to change
their shape. The distinction between different types of activation-output
functions is done utilizing the BI,G,HT, Sig, Sin, and SSign superscripts.

3 This specific type of activation function is depicted with the SoW superscript in the
activation function’s notation (SSoWα).

19

� Bent Identity: SBIao = ρ
(√

Sa2+1

2
+ Sa

)
.

� Gaussian: SGao = e
−
(
Sa
ρ

)2

.

� Hyperbolic Tangent: SHTao = tanh
(
Sa
ρ

)
.

� Sigmoid: SSigao = 1

1+e
−Sa
ρ
.

� Sinusoid: SSinao = sin
(
Sa
ρ

)
.

� Soft Sign: SSSignao =
Sa
ρ

1+|Sa
ρ
| .

3.5. He-HyELM

The He-HyELM algorithm contains two phases. The first phase creates a
series of homogeneous networks while the second phase selects the best ones
for the evolution process that will result in the creation of heterogeneous
networks. The first phase creates three neuron pools containing different
number of dendrites, activation functions and activation-output functions.
The experimental part of this paper used the PlD, P la and Plao neuron sub-
components pools (we used the Pl symbol to define each pool and a spe-
cific subscript to distinguish between different types of pools). These pools
contain two dendrites (linear , multi-cube), the ‘sum of weights’ activation
function for linear and multi-cube units and six activation-output functions
(SBIao , S

G
ao, S

HT
ao , S

Sig
ao , S

Sin
ao , S

SSign
ao) accordingly.

PlD =

[w1x1, w2x2, . . . wnxn],

[
wmcµ,1

1

wmcmax

n∏
i=1

(1 + µi
xi,1
xmax

),

wmcµ,2
1

wmcmax

n∏
i=1

(1 + µi
xi,2
xmax

), . . . , wmcµ,q
1

wmcmax

n∏
i=1

(1 + µi
xi,q
xmax

)

]

Pla =

{
n∑
i=1

xiwi + θ,
1

wmcmax2
n

q∑
j=1

2n∑
µ=1

wmcµ

n∏
i=1

(1 + µi
xi
xmax

)

}

20

Plao =

ρ
(√Sa

2 + 1

2
+ Sa

)
, e
−
(
Sa
ρ

)2

, tanh
(Sa
ρ

)
,

1

1 + e−
Sa
ρ

, sin
(Sa
ρ

)
,

Sa
ρ

1 + |Sa
ρ
|

The above structural units are combined together to form the custom

created neurons pool seen below. The contents of this pool include all the
possible neuron combinations of neuron subcomponents from the previous
three pools which result in the creation of the custom neuron pool (Plcn)
containing 12 neurons. The subscripts l and mc are used to distinguish be-
tween linear and multi-cube neuron types.

Plcn =

{
SBIaol , S

BI
aomc , S

G
aol
, SGaomc , S

HT
aol
, SHTaomc ,

SSigaol
, SSigaomc , S

Sin
aol
, SSinaomc , S

SSign
aol

, SSSignaomc ,

}
These custom neurons are used to create a pool of neural networks (Plnets)

which will contain the same number of nodes in the hidden layer and will
be trained using ELM. A SLNN containing h hidden nodes, m output nodes
and the activation function g(u) in the hidden layer nodes is mathematically
modelled in as

∑h
i=1[βi1, . . . , βim]g(u). This network has the identity acti-

vation function (g(u) = u), no threshold in the output nodes and can be
trained with the ELM algorithm. The contents of the neural network pool
Plnets for the experimental part of this research can be seen below while the
first phase of the He-HyELM algorithm can be seen in Fig. 5.

Plnets =
∑h

i=1[βi1, . . . , βim]g(u), g(u) ∈ Plcn

21

Figure 5: He-HyELM Structure (Phase 1). This diagram depicts the homogeneous net-
works creation phase of the He-HyELM algorithm. Initially, the algorithm utilises three
different neuron subcomponents from the dendrite, activation function and activation-
output function pools to form the custom neurons pool. Then it utilizes these neurons to
create a series of SLNNs trained with ELM.

The second phase (as seen in Fig. 6) uses a GA for the evolution process
and begins with the creation of the initial population. The initial population
is created utilizing the ELM trained networks from the previous phase. After
the creation of the initial population, the evolution process begins with the
evaluation of the population followed by the selection, crossover and mutation
procedures.

During the evaluation process the networks are trained with ELM and
they are ranked from best to worst according to a fitness criterion.The fit-
ness criterion uses the k-fold cross-validation method to calculate the fitness
from all folds on training data. The He-HyELM method utilizes a test set
containing unknown data at the end of the evolution process in order to
avoid over-fitting. The selected statistic for regression problems is the aver-
age mean square error (MSE) over all folds. The MSE for each network is
calculated on the training set during the evolution process and on the test
set after the evolution process has completed where the network with lowest

22

MSE is selected as the most optimal.

MSE =
1

kp

k∑
i=1

(p∑
j=1

(tji − y
j
i)

2
)

(10)

The above formula with k defines the number of folds, with p the number
of testing patterns,with tji the current pattern target network output value
for the current fold and finally, with yji the current pattern network output
value for the current fold.

Figure 6: He-HyELM Structure (Phase 2). This diagram depicts the heterogeneous net-
works creation phase of the He-HyELM algorithm. The algorithm uses a GA to evolve
the homogeneous networks created in the previous phase (they form the initial popula-
tion) to heterogeneous networks. Initially, the algorithm ranks the networks from best to
worst according to a fitness criterion. Then it checks if the maximum number of gener-
ations (gensNo) has been reached in order to stop the evolution process and select the
best network according to fitness. If the maximum number of generations has not been
reached, then selects the best networks for reproduction (according to fitness), creates the
offspring and mutates a small percentage of the population. This procedure repeats until
the maximum number of generations is reached.

The selected statistic for classification problems is the accuracy percent-
age over all folds shown in (11). The network acquiring the highest percentage

23

is considered the optimum.

acc =
1

k

k∑
i=1

(
1− err

p

)
. (11)

In the above formula k defines the number of folds, p is the number of
testing patterns and finally, err is the number of misclassified test patterns for
the current fold. After the evaluation process is finished, the GA checks if the
maximum number of generations has been reached in order to terminate the
evolution process. When the maximum number of generations is reached,
the selection of the final optimal network is done using the proper fitness
function on the test set. Alternatively, continues the evolution process with
the selection process.

During the selection process, only 50% of the networks from the initial
population and after each generation are selected. This is done in order to
keep a fixed population number at each generation (the crossover operation
described next doubles the population).

The crossover operation is aimed for local search between the best can-
didates and is done utilizing the uniform crossover operator. The uniform
crossover operator exchanges information between the selected parent chro-
mosomes by choosing a uniform random real number u ∈ [0, 1] for each gene.
It creates two offspring containing genes from both the parent chromosomes
uniformly [60, 58].

In the mutation operation, a small percentage of the offspring (10%) will
have one of its neurons replaced with a neuron taken from the neuron pool.
This is done with purpose to have a global search amongst the search space.

After the selection, crossover and mutation procedures are finished, the
generation completes, and the evolution process is repeated for a fixed num-
ber of generations.

3.6. The He-HyELM Algorithm

This section presents a detailed explanation of the proposed He-HyELM
algorithm.

24

Algorithm 3 Heterogeneous Hybrid ELM Algorithm (Phase 1)

1 : PlD =

[w1x1, w2x2, . . . wnxn],

[
wmcµ,1

1

wmcmax

n∏
i=1

(1 + µi
xi,1
xmax

),

wmcµ,2
1

wmcmax

n∏
i=1

(1 + µi
xi,2
xmax

), . . . , wmcµ,q
1

wmcmax

n∏
i=1

(1 + µi
xi,q
xmax

)

]

Dendrite pool.

2 : Pla =

{
n∑
i=1

xiwi + θ,
1

wmcmax2
n

q∑
j=1

2n∑
µ=1

wmcµ

n∏
i=1

(1 + µi
xi
xmax

)

}
Activation functions pool.

3 : Plao =

ρ
(√Sa

2 + 1

2
+ Sa

)
, e
−
(
Sa
ρ

)2

, tanh
(Sa
ρ

)
,

1

1 + e−
Sa
ρ

, sin
(Sa
ρ

)
,

Sa
ρ

1 + |Sa
ρ
|

Activation-output functions pool.

4 : Plcn =

{
SBIaol , S

BI
aomc , S

G
aol
, SGaomc , S

HT
aol
, SHTaomc ,

SSigaol
, SSigaomc , S

Sin
aol
, SSinaomc , S

SSign
aol

, SSSignaomc ,

}
Custom neurons pool.
5 : Plnets =

∑h
i=1[βi1, . . . , βim]g(u), g(u) ∈ Plcn

Create the homogeneous SLNNs.
6 : train(Plnets)
Train using ELM the homogeneous SLNNs.

In the first phase of the He-HyELM algorithm which involves the creation
of a series of homogeneous networks with fixed number of hidden units, the
algorithm starts with the initialization of the three neuron subcomponents
pools in lines 1, 2 and 3. Then, creates the custom neurons pool (line 4),
utilizing the neuron subcomponents taken from the previous pools. In line
5, it creates a series of homogeneous neural networks while in line 6 trains
them using the ELM algorithm. The first 6 lines of the algorithm complete
the homogeneous networks creation phase as seen in Algorithm 3.

25

Algorithm 4 Heterogeneous Hybrid ELM Algorithm (Phase 2)

1 : create Pop
Create the initial population.
2 : Loop
Start the evolution process.
3 : generation← generation+ 1
Increase the number of generations.
4 : If (generation = gensNo)

Check for maximum number of generations.
5 : Net← best(Pop)

Select the optimal network.
6 : Return Net

Stop the evolution process and return the optimal network.
7 : End If
8 : Popselect ← Pop

2

Select 50% of the networks.
9 : Popcrossover ← crossover(Popselect)

Reproduce the selected population.
10 : Pop← mutation(Popcrossover)

Mutate the offspring.
11 :End Loop

The second phase involves the creation of the heterogeneous networks
utilizing a GA and starts with the creation of the initial population. This
process (line 1) utilizes all the created networks. Line 2 begins the evolu-
tion process. Line 3 increases the generation counter. Line 4 checks if the
maximum allowed number of generations has been achieved and then in line
5 it selects the optimal heterogeneous network utilizing the test set. In line
6, returns the selected optimal network. Line 8 selects 50% of the networks
with the best fitness for the reproduction process utilizing the training set.
Line 9 reproduces the selected population while line 10 mutates the created
offspring.

4. Simulation results

In this section, we compare the performance of He-HyELM with four
existing algorithms (classic ELM, Ho-HyELM, OP-ELM for homogeneous

26

networks and OP-ELM for heterogeneous networks) using ten regression
and six classification problems. The regression problems include five func-
tion approximation problems (Ackley, Beale, Goldstein-Price, Holder Ta-
ble (x21 − x22)sin(0.5x1)) and five real world regression datasets (‘airfoil self-
noise’, ‘auto MPG’, ‘concrete compressive strength’ [63], ‘servo’, ‘yacht hy-
drodynamics’). The classification problems include six real world datasets
(‘banknote authentication’, ‘breast cancer Wisconsin’, ‘cryotherapy’ [34, 35],
‘diabetic retinopathy Debrecen’ [2], ‘HIV-1 protease cleavage’ [49] and ‘mam-
mographic mass’ [14]). These real world datasets were taken from the UCI
machine learning repository [12] and we normalized the inputs and weights
for every experiment run. Regarding the neuron subcomponents, we used
original and multi-cube dendrites, the ‘sum of the weights’ activation func-
tion and six tunable activation-output functions (bent identity, Gaussian,
hyperbolic tangent, sigmoid, sinusoid, soft sign). We dealt the missing val-
ues problem of the ‘mammographic mass’, ‘auto MPG’ and ‘breast cancer
Wisconsin’ datasets by replacing them with the average values taken from
the available data for the first two datasets while for the ’breast cancer Wis-
consin’ dataset we removed the entries contained those values (16 out of
699).

4.1. Parameter details

All the experiments were run in MATLAB 2017a environment utilizing
the parameters shown in Table 4. The function approximation problems con-
tained 150 randomly generated samples taken from [−15, 15] interval. The
above interval was divided into 30 equal sized subintervals and we took 5 ran-
dom samples from each subinterval with purpose to have even distribution
of the samples across the interval. The initialization of the hidden weights
and thresholds was done by taking values from the [−1, 1] interval. The di-
mension of each sub-cube was set to 1 which resulted utilizing n sub-cubes
and n21 = 2n weights in total. We also used a fixed number (15) for the
hidden layer nodes and each activation-output function was tuned using the
parameter ρ = {0.1, 0.2, . . . , 1}. The GA was run for 10 generations using
the uniform crossover and a fixed 10% mutation rate. For the validation
method, 5-fold cross validation was used (80% for training and 20% for test-
ing). Finally, each experiment was repeated 10 times having different values
for the weights and thresholds.

27

Table 4: He-HyELM Parameter Settings

Parameter Name Symbol Values/Types

Linear Unit Weights wl wl ∈ [−1, 1]n, n ∈ N∗

Multi-Cube Unit Weights wmc wmc ∈ [−1, 1]2n, n ∈ N∗

Threshold θ θ ∈ [−1, 1]

Inputs x x ∈ [−15, 15]n, n ∈ N∗

Number of Hidden Layer Nodes h 15

Tuning Parameter ρ {0.1, 0.2, . . . , 1}
Generations gensNo 10

Crossover crossover uniform

Mutation Rate mr 10%

Number of Folds k 5

Experiment Sets expNo 10

4.2. Regression problems

The first function approximation experiment is the approximation of the
Ackley function [3] depicted in formula (12). The characteristics of the Ackley
multimodal two-dimensional (2D) function include the existence of one global
minimum at x∗ = f(0, 0), f(x∗) = 0 and multiple local minimums.

fAckley(x1, x2) =− 20exp

[
− 0.2

√
0.5(x21 + x22)

]
−

exp[0.5(cos2πx1 + cos2πx2)] + e+ 20

(12)

The second experiment is the approximation of the Beale function de-
picted in formula (13). The characteristic of the Beale multimodal 2D func-
tion is the existence of one global minimum at x∗ = (3, 0.5), f(x∗) = 0 [33].

fBeale(x1, x2) =(1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2+

(2.625− x1 + x1x
3
2)

2 (13)

The third experiment is the approximation of the Goldstein–Price func-
tion [17] depicted in formula (14). The characteristic of the Goldstein–
Price multimodal 2D function is the existence of one global minimum at

28

x∗ = f(0,−1), f(x∗) = 3 [33].

fGoldsteinPrice(x1, x2) =[1 + (x1 + x2 + 1)2·
(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]·
[30 + (2x1 − 3x2)

2·
(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

(14)

The fourth experiment is the approximation of the Holder Table func-
tion [44] depicted in formula (15). The characteristic of the Holder Table
multimodal 2D function is the existence of four global minimums located at
x∗ = f(±9.646168,±9.646168), f(x∗) = −26.920336 [33].

fHolderTable(x1, x2) = −

∣∣∣∣∣sin(x1)cos(x2) exp

(∣∣∣∣∣1−
√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣ (15)

The fifth experiment is the approximation of the 2D function depicted in
formula (16) which has multiple global minimums.

f(x1, x2) = (x21 − x22)sin(0.5x1). (16)

The results in terms of MSE from the comparison of He-HyELM with
classic ELM, Ho-HyELM, OP-ELM for homogeneous networks and OP-ELM
for heterogeneous networks for the above function approximation problems
can be summarized in Table 5. The linear unit with the sigmoid activation-
output function (ρ = 1) was selected for ELM and homogeneous OP-ELM.
For heterogeneous OP-ELM the created networks contained linear units with
three different transfer functions (Gaussian, linear, sigmoid). Ho-HyELM
and He-HyELM both used custom neurons containing linear and multi-cube
dendrites, the ‘sum of the weights’ activation function and six activation-
output functions (bent identity, Gaussian, hyperbolic tangent, sigmoid, si-
nusoid, soft sign). The number of hidden units for ELM , Ho-HyELM and
He-HyELM and the maximum number of hidden units allowed for both OP-
ELM variations were set to 15.

29

Table 5: Comparison of the Approximation Results for Each Function in terms of MSE

Datasets ELM Ho-HyELM
OP-ELM
(Hom.)

OP-ELM
(Het.)

He-HyELM

Ackley 3.88× 10−3 1.19× 10−3 1.83× 10−3 1.26× 10−3 7.44 × 10−4

Beale 1.68× 10−4 1.11× 10−4 1.45× 10−3 1.33× 10−4 7.8 × 10−6

Goldstein
Price

7.45× 10−4 4.79× 10−4 1.54× 10−3 9.4× 10−4 6.02 × 10−5

Holder
Table

9.91× 10−3 9.23× 10−3 1.16× 10−2 1.13× 10−2 6.99 × 10−3

(x21 − x22)
sin(0.5x1)

1.64× 10−2 1.33× 10−2 4.41× 10−2 3.28× 10−2 8.64 × 10−3

The results in terms of MSE from the comparison of He-HyELM with
ELM, Ho-HyELM, OP-ELM for homogeneous networks and OP-ELM for
heterogeneous networks for the ‘airfoil self-noise’, ‘auto MPG’, ‘concrete com-
pressive strength’, ‘servo’ and ‘yacht hydrodynamics’ real world regression
datasets can be summarized in Table 6.

Table 6: Comparison of Results Based on Real-world Regression Datasets in terms of
MSE

Datasets ELM Ho-HyELM
OP-ELM
(Hom.)

OP-ELM
(Het.)

He-HyELM

Airfoil
Self-Noise

9.63× 10−4 9.51× 10−4 1.32× 10−3 9.44× 10−4 7.56 × 10−4

Auto MPG 3.93× 10−3 3.89× 10−3 6.61× 10−3 3.81× 10−3 3.35 × 10−3

Concrete
Compressive
Strength

1.31× 10−2 1.22× 10−2 2.32× 10−2 1.12× 10−2 9.77 × 10−3

Servo 1.74× 10−2 1.49× 10−2 2.38× 10−2 1.6× 10−2 1.08 × 10−2

Yacht
Hydrodynamics

8.17× 10−3 6.23× 10−3 1.54× 10−2 5.89× 10−3 2.94 × 10−3

As shown in the above Tables, the heterogeneous ELM trained networks

30

created from the proposed He-HyELM algorithm achieved lower MSE than
the compared methods in all regression datasets.

4.3. Classification problems

The results in terms of accuracy percentage from the comparison of
He-HyELM with ELM, Ho-HyELM, OP-ELM for homogeneous networks
and OP-ELM for heterogeneous networks for the ‘banknote authentication’,
‘breast cancer Wisconsin’, ‘cryotherapy’, ‘diabetic retinopathy Debrecen’,
‘HIV-1 protease cleavage’ and ‘mammographic mass’ real world classifica-
tion datasets can be summarized in Table 7.

Table 7: Comparison of Results Based on Real-world Classification Datasets in terms of
Accuracy Percentage

Datasets ELM Ho-HyELM
OP-ELM
(Hom.)

OP-ELM
(Het.)

He-HyELM

Banknote
Authentication

98.36% 98.91% 97.05% 98.98% 100%

Breast Cancer
Wisconsin

96.89% 97.26% 95.48% 96.93% 97.61%

Cryotherapy 89.11% 90.44% 81.28% 88.03% 94.11%

Diabetic
Retinopathy
Debrecen

68.13% 69.75% 60.39% 71.28% 72.94%

HIV-1
Protease
Cleavage

70.76% 71.2% 67.6% 72.77% 75.31%

Mammographic
Mass

81.44% 81.97% 78.14% 80.58% 82.57%

As shown in the above Table, the heterogeneous ELM trained networks
created from the proposed He-HyELM algorithm achieved higher accuracy
percentage than the compared methods in all classification datasets.

5. Discussion

The He-HyELM experimental results depicted in Sections 4.2 and 4.3
experimentally proved that the proposed method outperformed the other

31

ELM methods. Specially, in the function approximation problems, the results
showed a significant difference in the generalization error since in four out
of five datasets the error was significantly reduced. The results were also
consistent in the real world regression and classification datasets, but the
error reduction for the regression problems and the accuracy increase for the
classification problems did not have a very significant change. One interesting
result was in the ‘banknote authentication’ classification dataset where He-
HyELM managed to get 100% accuracy compared to 98.98% accuracy from
heterogeneous OP-ELM which was the second best.

The purpose of this study was to propose a method which would be
able to create heterogeneous SLNNs with better generalization ability than
their equivalent homogeneous ones in acceptable time. The exhaustive search
for all possible combinations of heterogeneous layers would be unfeasible in
short time. It would require an enormous number of networks, to be trained
with ELM, which rises exponentially with every new neuron added to the
network’s hidden layer. The utilization of a modified GA for this task resulted
in the creation of heterogeneous networks with lower MSE for regression
problems and higher accuracy for classification problems in acceptable time
than the ELM-based compared methods.

One issue of the He-HyELM approach is its increased processing power
demand if compared with the OP-ELM method. This is due to the fact that
He-HyELM requires to train a set of networks at each generation. A solution
to this problem would be the utilization of a multi-core system or a CUDA
compatible graphics processing unit.

6. Conclusion

The He-HyELM approach used a set of custom neurons to create a series
of homogeneous SLNNs that were evolved to heterogeneous SLNNs with the
help of a GA. At the end of the evolution process the best network was
selected as the most optimal according to a fitness criterion.

A series of regression and classification problems were used to validate
whether the He-HyELM algorithm was able to create heterogeneous SLNNs
with good generalization ability. The purpose of these experiments was to
find the optimal combination of hidden layer units for each problem. Exper-
imentally, we validated that the creation of different heterogeneous networks
for each specific problem achieved better generalization performance than
the homogeneous networks having the same number of hidden units. This

32

claim was experimentally proven because in all three different categories of
datasets, the He-HyELM networks outperformed the homogeneous networks
created using ELM, HyELM and OP-ELM. Also, it managed to outperform
the heterogeneous networks created using OP-ELM.

The proposed He-HyELM method can be modified in order to create an
ensemble classifier, by generating a number of different architectures using
multiple GA optimizations. This can result to individual classifiers of high
strength, while the GA optimization will ensure the low correlation; this
two attributes (low correlation between classifiers and individual classifier
strength) guarantee the quality of the ensemble according to Breiman [8].
This issue will be addressed in future communications.

References

[1] Abuassba, A. O., Zhang, D., Luo, X., Shaheryar, A., Ali, H., 2017. Im-
proving classification performance through an advanced ensemble based
heterogeneous extreme learning machines. Computational intelligence
and neuroscience 2017.

[2] Antal, B., Hajdu, A., 2014. An ensemble-based system for automatic
screening of diabetic retinopathy. Knowledge-based systems 60, 20–27.

[3] Back, T., 1996. Evolutionary algorithms in theory and practice: Evolu-
tion strategies, evolutionary programming, genetic algorithms. Oxford
university press.

[4] Bai, Z., Huang, G.-B., Wang, D., Wang, H., Westover, M. B., 2014.
Sparse extreme learning machine for classification. IEEE transactions
on cybernetics 44 (10), 1858–1870.

[5] Bakker, B., Heskes, T., 2003. Clustering ensembles of neural network
models. Neural networks 16 (2), 261–269.

[6] Bartlett, P. L., 1998. The sample complexity of pattern classification
with neural networks: the size of the weights is more important than
the size of the network. IEEE transactions on Information Theory 44 (2),
525–536.

33

[7] Bazi, Y., Alajlan, N., Melgani, F., Hichri, H., Malek, S., Yager, R. R.,
2014. Differential evolution extreme learning machine for the classifica-
tion of hyperspectral images. IEEE Geosci. Remote Sensing Lett. 11 (6),
1066–1070.

[8] Breiman, L., 2001. Random forests. Machine learning 45 (1), 5–32.

[9] Christou, V., Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., 2018.
Hybrid extreme learning machine approach for homogeneous neural net-
works. Neurocomputing.

[10] Clarkson, T. G., Gorse, D., Taylor, J. G., Ng, C., 1992. Learning prob-
abilistic RAM nets using VLSI structures. IEEE Transactions on com-
puters 41 (12), 1552–1561.

[11] Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine learning
20 (3), 273–297.

[12] Dheeru, D., Karra Taniskidou, E., 2017. UCI machine learning reposi-
tory.
URL http://archive.ics.uci.edu/ml

[13] Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm
theory. In: Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on. IEEE, pp. 39–43.

[14] Elter, M., Schulz-Wendtland, R., Wittenberg, T., 2007. The prediction
of breast cancer biopsy outcomes using two cad approaches that both
emphasize an intelligible decision process. Medical physics 34 (11), 4164–
4172.

[15] Feng, G., Qian, Z., Zhang, X., 2012. Evolutionary selection extreme
learning machine optimization for regression. Soft Computing 16 (9),
1485–1491.

[16] Ferguson, A., 1995. Learning in RAM-based artificial neural networks.
Ph.D. thesis, University of Herfordshire.

[17] Goldstein, A., Price, J., 1971. On descent from local minima. Mathe-
matics of Computation 25 (115), 569–574.

34

http://archive.ics.uci.edu/ml

[18] Gorse, D., Taylor, J., 1990. A general model of stochastic neural pro-
cessing. Biological Cybernetics 63 (4), 299–306.

[19] Gurney, K., 1989. Learning in networks of structured hypercubes. Tech.
rep., Brunel Univ., Uxbridge (UK).

[20] Gurney, K., 1997. An introduction to neural networks. CRC press.

[21] He, S., Wu, Q. H., Saunders, J., 2009. Group search optimizer: an
optimization algorithm inspired by animal searching behavior. IEEE
transactions on evolutionary computation 13 (5), 973–990.

[22] Holland, J., Goldberg, D., 1989. Genetic algorithms in search, optimiza-
tion and machine learning. Massachusetts: Addison-Wesley.

[23] Holland, J. H., 1992. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press.

[24] Huang, G., Huang, G.-B., Song, S., You, K., 2015. Trends in extreme
learning machines: A review. Neural Networks 61, 32–48.

[25] Huang, G.-B., 2003. Learning capability and storage capacity of two-
hidden-layer feedforward networks. IEEE Transactions on Neural Net-
works 14 (2), 274–281.

[26] Huang, G.-B., Babri, H. A., 1998. Upper bounds on the number of hid-
den neurons in feedforward networks with arbitrary bounded nonlinear
activation functions. IEEE Transactions on Neural Networks 9 (1), 224–
229.

[27] Huang, G.-B., Chen, L., 2007. Convex incremental extreme learning
machine. Neurocomputing 70 (16-18), 3056–3062.

[28] Huang, G.-B., Chen, L., 2008. Enhanced random search based incremen-
tal extreme learning machine. Neurocomputing 71 (16-18), 3460–3468.

[29] Huang, G.-B., Chen, L., Siew, C. K., et al., 2006. Universal approxima-
tion using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans. Neural Networks 17 (4), 879–892.

35

[30] Huang, G. B., Zhou, H., Ding, X., Zhang, R., April 2012. Extreme learn-
ing machine for regression and multiclass classification. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (2),
513–529.

[31] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine:
a new learning scheme of feedforward neural networks. In: Neural Net-
works, 2004. Proceedings. 2004 IEEE International Joint Conference on.
Vol. 2. IEEE, pp. 985–990.

[32] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine:
theory and applications. Neurocomputing 70 (1), 489–501.

[33] Jamil, M., Yang, X.-S., 2013. A literature survey of benchmark functions
for global optimisation problems. International Journal of Mathematical
Modelling and Numerical Optimisation 4 (2), 150–194.

[34] Khozeimeh, F., Alizadehsani, R., Roshanzamir, M., Khosravi, A.,
Layegh, P., Nahavandi, S., 2017. An expert system for selecting wart
treatment method. Computers in biology and medicine 81, 167–175.

[35] Khozeimeh, F., Jabbari Azad, F., Mahboubi Oskouei, Y., Jafari, M.,
Tehranian, S., Alizadehsani, R., Layegh, P., 2017. Intralesional im-
munotherapy compared to cryotherapy in the treatment of warts. In-
ternational journal of dermatology 56 (4), 474–478.

[36] Li, B., Li, Y., Rong, X., 2013. The extreme learning machine learn-
ing algorithm with tunable activation function. Neural Computing and
Applications 22 (3-4), 531–539.

[37] Lipowski, A., Lipowska, D., 2012. Roulette-wheel selection via stochas-
tic acceptance. Physica A: Statistical Mechanics and its Applications
391 (6), 2193–2196.

[38] Liu, H., Motoda, H., 2012. Feature selection for knowledge discovery
and data mining. Vol. 454. Springer Science & Business Media.

[39] Liu, Y., Yao, X., Higuchi, T., 2000. Evolutionary ensembles with neg-
ative correlation learning. IEEE Transactions on Evolutionary Compu-
tation 4 (4), 380–387.

36

[40] Luo, J., Vong, C.-M., Wong, P.-K., 2014. Sparse bayesian extreme learn-
ing machine for multi-classification. IEEE Transactions on Neural Net-
works and Learning Systems 25 (4), 836–843.

[41] Mangasarian, O. L., Wild, E. W., 2001. Proximal support vector ma-
chine classifiers. In: Proceedings KDD-2001: Knowledge Discovery and
Data Mining. Citeseer.

[42] Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse,
A., 2010. OP-ELM: Optimally pruned extreme learning machine. IEEE
Transactions on Neural Networks 21 (1), 158–162.

[43] Miche, Y., Van Heeswijk, M., Bas, P., Simula, O., Lendasse, A., 2011.
TROP-ELM: A double-regularized ELM using LARS and Tikhonov reg-
ularization. Neurocomputing 74 (16), 2413–2421.

[44] Mishra, S. K., 2006. Global optimization by differential evolution and
particle swarm methods: Evaluation on some benchmark functions.

[45] Mitchell, M., 1998. An introduction to genetic algorithms. MIT press.

[46] Morgan, P., Ferguson, A., Bolouri, H., 1994. Cost-performance analy-
sis of FPGA, VLSI and WSI implementations of a RAM-based neural
network. In: Microelectronics for Neural Networks and Fuzzy Systems,
1994., Proceedings of the Fourth International Conference on. IEEE, pp.
235–243.

[47] Neville, R., Glover, R., Stonham, J., 1995. Mapping sigma–pi net-
works and the associative reward-penalty training regime to the asso-
ciative string processor. IEEE Transactions on Massively Parallel Pro-
cessors/Associative Processors (Special Issue).

[48] Opitz, D. W., Shavlik, J. W., 1996. Generating accurate and diverse
members of a neural-network ensemble. In: Advances in neural informa-
tion processing systems. pp. 535–541.

[49] Rögnvaldsson, T., You, L., Garwicz, D., 2014. State of the art prediction
of hiv-1 protease cleavage sites. Bioinformatics 31 (8), 1204–1210.

[50] Rosen, B. E., 1996. Ensemble learning using decorrelated neural net-
works. Connection science 8 (3-4), 373–384.

37

[51] Sánchez-Monedero, J., Gutiérrez, P. A., Hervás-Mart́ınez, C., 2013. Evo-
lutionary ordinal extreme learning machine. In: International Confer-
ence on Hybrid Artificial Intelligence Systems. Springer, pp. 500–509.

[52] Silva, D. N., Pacifico, L. D., Ludermir, T. B., 2011. An evolutionary
extreme learning machine based on group search optimization. In: Evo-
lutionary computation (CEC), 2011 IEEE congress on. IEEE, pp. 574–
580.

[53] Similä, T., Tikka, J., 2005. Multiresponse sparse regression with ap-
plication to multidimensional scaling. In: International Conference on
Artificial Neural Networks. Springer, pp. 97–102.

[54] Sivanandam, S., Deepa, S., 2008. Genetic algorithms. In: Introduction
to genetic algorithms. Springer, pp. 15–37.

[55] Storn, R., 1996. On the usage of differential evolution for function op-
timization. In: Fuzzy Information Processing Society, 1996. NAFIPS.,
1996 Biennial Conference of the North American. IEEE, pp. 519–523.

[56] Storn, R., Price, K., 1997. Differential evolution - A simple and effi-
cient heuristic for global optimization over continuous spaces. Journal
of global optimization 11 (4), 341–359.

[57] Suykens, J. A., Vandewalle, J., 1999. Least squares support vector ma-
chine classifiers. Neural processing letters 9 (3), 293–300.

[58] Syswerda, G., 1989. Uniform crossover in genetic algorithms. In: Pro-
ceedings of the third international conference on Genetic algorithms.
Morgan Kaufmann Publishers, pp. 2–9.

[59] Tapson, J., Cohen, G., van Schaik, A., 2015. ELM solutions for event-
based systems. Neurocomputing 149, 435–442.

[60] Umbarkar, A., Sheth, P., 2015. Crossover operators in genetic algo-
rithms: A review. ICTACT journal on soft computing 6 (1).

[61] Whitley, D., 1994. A genetic algorithm tutorial. Statistics and comput-
ing 4 (2), 65–85.

38

[62] Xu, Y., Shu, Y., 2006. Evolutionary extreme learning machine–based
on particle swarm optimization. In: International Symposium on Neural
Networks. Springer, pp. 644–652.

[63] Yeh, I.-C., 1998. Modeling of strength of high-performance concrete us-
ing artificial neural networks. Cement and Concrete research 28 (12),
1797–1808.

[64] Zhang, L., Deng, P., 2017. Abnormal odor detection in electronic nose
via self-expression inspired extreme learning machine. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems (99), 1–11.

[65] Zhang, L., Wang, X., Huang, G.-B., Liu, T., Tan, X., 2018. Taste recog-
nition in e-tongue using local discriminant preservation projection. IEEE
Transactions on Cybernetics.

[66] Zhang, L., Zhang, D., 2015. Domain adaptation extreme learning ma-
chines for drift compensation in e-nose systems. IEEE Transactions on
instrumentation and measurement 64 (7), 1790–1801.

[67] Zhang, L., Zhang, D., 2015. Domain adaptation transfer extreme learn-
ing machines. In: Proceedings of ELM-2014 Volume 1. Springer, pp.
103–119.

[68] Zhang, L., Zhang, D., 2016. Robust visual knowledge transfer via ex-
treme learning machine-based domain adaptation. IEEE Trans. Image
Processing 25 (10), 4959–4973.

[69] Zhang, L., Zhang, D., 2017. Evolutionary cost-sensitive extreme learning
machine. IEEE transactions on neural networks and learning systems
28 (12), 3045–3060.

[70] Zhao, Z.-S., Feng, X., Lin, Y.-y., Wei, F., Wang, S.-K., Xiao, T.-L., Cao,
M.-Y., Hou, Z.-G., 2015. Evolved neural network ensemble by multiple
heterogeneous swarm intelligence. Neurocomputing 149, 29–38.

[71] Zhou, Z.-H., Wu, J., Tang, W., 2002. Ensembling neural networks: many
could be better than all. Artificial intelligence 137 (1-2), 239–263.

[72] Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., Huang, G.-B., 2005. Evolu-
tionary extreme learning machine. Pattern recognition 38 (10), 1759–
1763.

39

	Introduction
	Related work
	ELM
	GA

	The He-HyELM architecture
	He-HyELM structural units
	Varying the dendrites
	Linear dendrites
	Cubic dendrites

	Varying the activation function.
	Varying the activation-output function.
	He-HyELM
	The He-HyELM Algorithm

	Simulation results
	Parameter details
	Regression problems
	Classification problems

	Discussion
	Conclusion

