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DR2-Net: Deep Residual Reconstruction Network
for Image Compressive Sensing
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IEEE, Qi Tian, Fellow, IEEE

Abstract—Most traditional algorithms for compressive sensing
image reconstruction suffer from the intensive computation.
Recently, deep learning-based reconstruction algorithms have
been reported, which dramatically reduce the time complex-
ity than iterative reconstruction algorithms. In this paper, we
propose a novel Deep Residual Reconstruction Network (DR2-
Net) to reconstruct the image from its Compressively Sensed
(CS) measurement. The DR2-Net is proposed based on two
observations: 1) linear mapping could reconstruct a high-quality
preliminary image, and 2) residual learning could further im-
prove the reconstruction quality. Accordingly, DR2-Net consists
of two components, i.e., linear mapping network and residual
network, respectively. Specifically, the fully-connected layer in
neural network implements the linear mapping network. We then
expand the linear mapping network to DR2-Net by adding several
residual learning blocks to enhance the preliminary image. Ex-
tensive experiments demonstrate that the DR2-Net outperforms
traditional iterative methods and recent deep learning-based
methods by large margins at measurement rates 0.01, 0.04, 0.1,
and 0.25, respectively. The code of DR2-Net has been released
on: https://github.com/coldrainyht/caffe dr2

Index Terms—Image Compressive Sensing, DR2-Net, Convo-
lutional Neural Networks

I. INTRODUCTION

Compressive sensing is an emerging technique to acquire
and reconstruce digital data, e.g., images and videos. It is to
capture the data in the form of Compressively Sensed (CS)
measurements, then reconstruct the original data from these CS
measurements. Because the required number of measurements
is far fewer than limited by the Nyquist theory, compressive
sensing is very desirable in many applications such as cameras,
medical scanners and so on.

By achieving perfect image reconstruction from CS mea-
surements, some algorithms have been proposed in recently

Hantao Yao is with Key Lab of Intelligent Information Processing of
Chinese Academy of Sciences (CAS), Institute of Computing Technology,
CAS, Beijing 100190, China, and also with the University of the Chinese
Academy of Sciences, Beijing 100049, China, Email: yaohantao@ict.ac.cn

Feng Dai and Yike Ma is with Key Lab of Intelligent Information
Processing of Chinese Academy of Sciences (CAS), Institute of Computing
Technology, CAS, Beijing 100190, China,

Dongming Zhang National Computer Network Emergency Response
Technical Team/Coordination Center of China

Shiliang Zhang is with School of Electronic Engineering and
Computer Science, Peking University, Beijing 100871, China, Email:
slzhang.jdl@pku.edu.cn

Yongdong Zhang, is with Key Lab of Intelligent Information Processing
of Chinese Academy of Sciences (CAS), Institute of Computing Technology,
CAS, Beijing 100190, China, and also with the Beijing Advanced Innovation
Center for Imaging Technology, Capital Normal University, Beijing 100048,
China, Email: zhyd@ict.ac.cn

Qi Tian is with Department of Computer Science University of Texas at
San Antonio, San Antonio, USA, Email: qitian@cs.utsa.edu

33

33

33

33

33

33

64 32 1

Block CS Measurements

Linear

Mapping

Residual 

Learning

Block

(a)

Linear Mapping Output Residual Learning  Output

(Normalized)

DR2-Net Output

(b)

Fig. 1. (a) The framework of Deep Residual Reconstruction Network (DR2-
Net). (b) Illustration of the two components for image reconstruction in DR2-
Net. The right most image is the output of DR2-Net (Best viewed in color
pdf).

years [1], [2], [3], [4], [5]. Most of these approaches com-
monly model the image signal with structured sparsity assump-
tion and solve an optimization problem with iterative opti-
mization strategies. The intensive computation of this iterative
optimization has become the bottleneck for the application of
image compressive sensing.

Deep neural networks [6] have exhibited a series of break-
throughs in computer vision tasks, e.g., image classifica-
tion [6], super-resolution [7], and restoration [8], etc. Re-
cently, several deep neural networks have been proposed
for compressive sensing image reconstruction. Thanks to the
powerful learning ability, current deep learning-based methods
effectively avoid the expensive computation in traditional
approaches and achieve a promising reconstruction perfor-
mance [9], [10].

This paper proposes a Deep Residual Reconstruction Net-
work (DR2-Net), which further boosts the reconstruction qual-
ity from Compressively Sensed (CS) measurements with fast
speed. The DR2-Net takes the CS measurement of an image
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patch as input and consists of two components: linear mapping
network and residual network. The linear mapping network
is first used to obtain a preliminary reconstructed image, the
residual network is then applied to infer the residual between
the ground truth image and the preliminary reconstructed
image. The residual finally updates the preliminary result as
the output of DR2-Net. An intuitive description of DR2-Net
is illustrated in Fig. 1.

Extensive experiments show our DR2-Net significantly out-
performs existing iterative methods and deep learning-based
methods. Our contributions could be summarized as follows:

• We propose a novel Deep Residual Reconstruction Net-
work (DR2-Net) for image compressive sensing, which
outperforms the existing works. With DR2, the deep-
learning CS methods outperform traditional methods at
all four measurement rates for the first time.

• The linear mapping generates a reasonably good prelim-
inary reconstruction image with faster speed and lower
computational cost. The linear mapping network is well-
suited to image reconstruction task in computational
resource and network bandwidth limited scenarios.

• The residual learning further improves the reconstruction
quality. The residual learning is independent with the lin-
ear mapping stage. Therefore, the existing deep learning-
based methods could flexibly fuse with residual learning
to chase higher image reconstruction quality.

II. RELATED WORK

This work is related with image compressive sensing image
reconstruction, deep learning for compressive sensing, and the
deep residual network. In the following, we will review these
three categories of related works.

Compressive sensing image reconstruction: Compressive
sensing is an emerging technique to acquire and process digital
data like images and videos. It aims to recover the source
signal x ∈ Rn×1 from the randomized CS measurements,
i.e., y = Φx(m � n), where Φ ∈ Rm×n, and y ∈ Rm×1.
Since m � n, the equation has multiple solutions. Thus,
there exists more than one x ∈ Rn×1 that can yield the
same CS measurements y. To reconstruct the original signals
from CS measurements, the early recovery algorithms assume
the original image signal has lp-norm (0 ≤ p ≤ 1) sparsity.
Based on this assumption, researchers propose several iterative
algorithms, e.g., matching pursuit [4], orthogonal matching
pursuit [5], iterative hard-thresholding [11], compressive sam-
pling matching search [12], approximate message passing [13],
and iterative soft-thresholding [1], etc. Furthermore, many
elaborate structures, such as total variation sparsity [14], [15],
non-local sparsity [3], [16], [3], block sparsity [17], wavelet
tree sparsity [18], [19] are used as prior knowledge of the
original image signals, which are beneficial to compressive
sensing image reconstruction. All these recovery algorithms
solve an optimization problem. The iterative solvers are often
used and lead to expensive computation, which has become the
bottleneck for the application of image compressive sensing.
Recently, some deep learning-based approaches have been
proposed for this problem. Stacked Denoising Auto-encoders

(SDAs) [10] and Convolutional Neural Network (CNN) [9] are
applied to compressive sensing image reconstruction. Existing
works [10], [9] have shown that the deep learning-based ap-
proaches are about 3 orders of magnitude faster than traditional
reconstruction algorithms.

Deep learning for compressive sensing: Deep learning
has exhibited promising performance in computer vision and
image processing tasks, e.g., semantic segmentation [20],
depth estimation [21], image super-resolution [7] and image
denoising [22]. Recently, some works introduce the deep
learning into image/video reconstruction. For compressive
image recovery, Kulkarni etal. [9] propose a CNN-based
ReconNet to achieve non-iterative compressive sensing im-
age reconstruction. In [10], Stacked Denoising Auto-encoders
(SDAs) are employed to learn a mapping between CS mea-
surements and image blocks. For compressive video recovery,
Iliadis etal. [23], [24] propose Deep Fully-Connected Network,
where the encoder learns binary sensing mask and the decoder
determines the reconstruction of the video. These approaches
effectively avoid the expensive computation in traditional
approaches and have achieved promising image/video recon-
struction performance.

Deep Residual Network: Recently, the deep Residual Net-
work (ResNets) [25] has achieved promising performance on
several computer vision tasks. Compared with the traditional
Convolutional Neural Network, e.g., AlexNet [6], VGG [26],
and GoogleNet [27], the ResNets introduces identity shortcut
connections that directly pass the data flow to later layers,
thus effectively avoids signal attenuation caused by multiple
stacked non-linear transformations. As a consequence, deeper
network can be constructed with ResNets and faster training
speed can be achieved. By going deeper in the network,
ResNet generally gets better performance in comparison with
other deep learning models.

Among the related works, the most similar work to ours
is the one by Kulkarni etal. [9], who propose a ReconNet
for compressive sensing image reconstruction. However, the
proposed Deep Residual Reconstruction Network (DR2-Net)
is different from the one in [9] in the aspects of both
motivation and network structure. The method in [9] is the
first work that employ CNN for compress sensing. The design
of ReconNet [9] is inspired by the SRCNN [], and does not
take the essential of CS into consideration. Therefore, it is
not a carefully-designed network for CS image reconstruction.
By give more analysis for compressive sensing problem, we
found that simply using the linear mapping (fully-connected
operation) could perfectly suitable to solve the CS, and it is not
a optimal choice to train ReconNet in an end-to-end way. The
DR2-Net firstly trains a linear mapping network to obtain a
reasonably good preliminary reconstruction image, then trains
the residual network to further improve the reconstruction
quality. We find that this strategy is more suitable for applying
CNN on image compressive sensing.

III. DEEP RESIDUAL RECONSTRUCTION NETWORK

As shown in Fig. 1(a), DR2-Net takes the Compressively
Sensed (CS) measurements of the 33× 33 sized image patch
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as input, and outputs a 33 × 33 reconstructed image. The
DR2-Net contains a linear mapping sub-network Ff (·) and
a residual sub-network Fr(·). Ff (·) generates a preliminary
reconstructed image. Fr(·) infers the residual between the
preliminary image and ground truth image. In the following,
we firstly give details of linear mapping and residual learning.
Then, we introduce the architecture of DR2-Net. Finally, we
summarize the procedure that DR2-Net reconstructs an image.

A. Linear Mapping

Compressive sensing signal reconstruction recovers the sig-
nal x ∈ Rn×1 from its CS measurement y ∈ Rm×1. The
mapping from y to x can be regarded as an approximate linear
mapping, i.e.,

x = Wy, (1)

where W ∈ Rn×m is the mapping matrix. Eq. (1) is an
overdetermined equation, therefore it has no accurate solution.
However, we could estimate a mapping matrix Wf , which
makes ||x−Wfy||22 have the minimum error.

We denote the CS measurement and its corresponding
source signal as yi ∈ Rm×1 and xi ∈ Rn×1, respectively. The
training data containing N training samples can be denoted
as {(y1,x1), (y2,x2), ......, (yN ,xN )}. Based on this training
data, we could get Wf by solving the following optimization,
i.e.,

Wf = argmin
W
||X−WY||22, (2)

where X = [x1,x2, ......,xN ], and Y = [y1,y2, ......,yN ].
Eq. (2) presents a linear mapping function, which could be

effectively simulated by fully-connected layer in deep learning.
Consequently, we employ the linear mapping network Ff (·)
composed of fully connected layer to infer the optimal map-
ping matrix Wf with the loss function in Eq. (3), i.e.,

L({Wf}) =
1

N

N∑
i=1

||xi −Ff (yi,W
f )||22, (3)

where Ff (yi,W
f ) is the output of linear mapping network

for input yi.
The network Ff (·) contains one fully-connected layer with

1,089 neurons. By using Stochastic Gradient Descent (SGD)
training algorithm, we could obtain an optimal mapping matrix
Wf corresponding to the minimum Eq. (2) on all training
samples.

With the trained linear mapping network Ff (·), a prelimi-
nary reconstructed image x̂i could be obtained for any given
CS measurement yi. We denote the procedure of generating
the preliminary reconstructed image as

x̂i = Ff (yi,W
f ). (4)

B. Residual Learning

The linear mapping network is trained to chase an approx-
imate solution to the source signal xi, because it is hard to
get an accurate solution for Eq. (1). To further narrow down
the gap between x̂i and xi, the residual learning network is
introduced to estimate the gap between the two signals. In

other words, the next step is to infer the residual di based on
x̂i, i.e.,

di = xi − x̂i. (5)

Residual learning block is introduced in this part to estimate
the residual di from x̂i. As illustrated in Fig. 1(b), the output
of residual learning is fused with the output of linear mapping
as the final image construction result.

We firstly give a brief introduction to residual learning.
Given an input X , we denote its desired underlying mapping
performed by a few stacked layers in neural network as
H(X ). Most traditional methods expect to directly learn the
mapping H(·), e.g., using several convolutional operations to
fit H(·) [26]. If the output H(X ) is similar to X , we expect
the H(·) is an identity mapping. However, it is difficult to
optimizeH(·) as the identity mapping in practice. On the other
hand, for the case that the H(X ) is similar to X , the residuals
between H(X ) and X would be closed to zero. As the weights
of convolutional layers are always initialized to have zero-
means, the convolutional layers could be easily trained to
approximate the residual F(X ) in Eq. (6). Therefore, rather
than expect stacked layers to approximate H(·), we explicitly
let these layers approximate the residual function in Eq. (6).
More details of residual learning can be found in [25].

F(X ) := H(X )−X . (6)

As a consequence, the convolutional layers initialised with
zero-means could be trained to estimate the residual di in
Eq. (5). We implement the residual learning with residual
learning blocks shown in Fig. 1(a). Each block contains three
convolution layers to simulate the complicated non-linear
mappings. The residual network Fr(·) consists of several
residual learning blocks.

Specifically, with x̂i as input, residual network Fr(x̂i,W
r)

generates an estimated residual d̂i, where Wr is the parame-
ters for residual network. We denote this procedure as

d̂i = Fr(x̂i,W
r). (7)

The DR2-Net takes the CS measurement yi as input, first
obtains the preliminary reconstructed image x̂i, then fuses it
with the estimated residual d̂i from residual network as the
final result, i.e.,

x∗
i = x̂i + d̂i. (8)

By replacing the x̂i and d̂i with Eq. (4) and Eq. (7), the
final x∗

i is obtained by two networks, i.e.,

x∗
i = Ff (yi,W

f ) + Fr(Ff (yi,W
f ),Wr). (9)

The DR2-Net is trained with SGD according to the loss
function in Eq. (10). The training procedure obtains the
optimal parameters Wf and Wr, respectively.

L({Wf ,Wr}) =
1

N

N∑
i=1

||xi − x∗
i ||22. (10)
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C. DR2-Net Architecture

DR2-Net processes the CS measurement computed from a
33×33 sized image block. The linear mapping network Ff (·)
takes the CS measurement y ∈ Rm×1 as input, where m is
various with Measurement Rates (MRs), e.g., m =272, 109,
43, and 10 corresponding to MR = 0.25, 0.10, 0.04, and 0.01,
respectively. The linear mapping network consists of one fully-
connected layer with 1089 neurons. We reshape its 1089-dim
output to the size of 33× 33 as the preliminary reconstructed
image.

As shown in Fig. 1(a), the residual network Fr(·) takes
preliminary result as input, and outputs one image with size
33× 33. The residual network contains four residual learning
blocks and each block contains three convolutional layers. In
each block, the first convolution layer uses kernel of size 11×
11 and generates 64 feature maps. The second layer produces
32 features maps with 1× 1 kernel. The third layer generates
1 feature map with 7× 7 kernel. To generate the feature map
with size 33 × 33, we add corresponding padding on each
layer. Inspired by previous work [25], we further add batch
normalization [28] to the first two convolutional layers of each
block. Each convolutional layer is followed by a ReLU layer
except the last convolutional layer.

D. Reconstruction Procedure

Given an image, we firstly divide it into 33 × 33 image
patches with no overlap, and extract the CS measurement on
each patch. Next, DR2-Net takes the CS measurements as
input and outputs the reconstructed patches. The reconstructed
patches compose an intermediate reconstructed image, which
is finally processed with BM3D [29] to remove the artifacts
caused by block-wise processing.

IV. DR2-NET TRAINING

A. Training Data Generation

We use the same set of 91 images used in [9] to generate
the training data for DR2-Net. We first resize the original
images to three scales i.e., 0.75, 1, and 1.5, to construct a
scale space. Then, on each scale, we extract 33 × 33 sized
image patches with stride 14. This process finally samples
86,656 image patches from 273 images. For each image
patch, we firstly extract its luminance component, denoting
the luminance component as xi and then compute its CS
measurement yi = Φxi, where Φ is a random Gaussian
matrix. (yi,xi) is thus an input-output pair for DR2-Net
training, where yi is the network input and xi is its ground
truth label.

B. Training Strategy

The training procedure of DR2-Net consists of two steps
for two sub-networks Ff (·) and Fr(·), respectively. The first
step uses a relatively large learning rate with step strategy to
train the network Ff (·). Parameters like maximum number
of iterations, learning rate, stepsize, and gamma are set as
1,000,000, 0.001, 200,000, and 0.5, respectively. With the

trained Wf , the second step trains DR2-Net in an end-to-
end manner in up to 100,000 iterations with a smaller fixed
learning rate set as 0.00001. Note that, the second step updates
both the Wf and Wr.

V. EXPERIMENTS

In this section, we conduct a series of experiments to test the
reconstruction performance of Deep Residual Reconstruction
Network (DR2-Net).

A. Implementation Details

We use Caffe [32] to implement and train the DR2-Net. The
weights for Ff (·) are initialised using gaussian distribution
with standard variance 0.01. The weights of convolutional
layers in DR2-Net are initialised using gaussian distribution
with standard variance 0.001. The batch-size is set as 128.

The experiments in Sect V-G are conducted on the ImageNet
Val dataset [33]. The other experiments are conducted on the
standard training and testing images described in [9].

B. Comparison with Existing Methods

Firstly, we compare our DR2-Net with five existing meth-
ods, i.e., TVAL3 [2], NLR-CS [30], D-AMP [31], SDA [10],
and ReconNet [9]. The first three are iterative-based meth-
ods, and the last two are deep learning-based methods. The
results are summarized in Table I, where the best results are
highlighted in bold.

As shown in Table I, the proposed DR2-Net obtains the
highest mean PSNR values at four Measurement Rates (MRs).
Compared with the existing methods, DR2-Net has following
advantages:

1) Different from the existing deep learning-based methods,
i.e., SDA [10] and ReconNet [9], DR2-Net is more robust for
the CS measurement at higher MRs. From Table I, we could
observe that the existing deep learning-based methods do not
perform as good as DR2-Net at higher MRs. For example at
MR 0.25, the highest PSNR for deep learning-based methods
is 25.92dB [9], which is obviously lower than 28.19dB [30]
of iterative-based method. Our DR2-Net outperforms both
the other deep learning-based methods and iterative-based
methods. For instance, at MR 0.25, the DR2-Net outperforms
NLP-CS and ReconNet by 0.87dB and 3.14dB, respectively
on PSNR.

2) Similar to the existing deep learning-based methods,
DR2-Net is robust for the CS measurement at smaller MRs.
As shown in Table I, the iterative-based methods do not work
well at smaller MRs, e.g., at MR 0.01 and 0.04. While the
deep learning-based methods, e.g., SDA and ReconNet, both
achieve higher mean PSNR values. However, DR2-Net also
constantly outperforms the other deep learning-based methods
at lower MRs.

C. Evaluation on Linear Mapping

To verify that the linear mapping is able to reconstruct a
high-quality preliminary image, we compare linear mapping
with ReconNet [9] from two aspects: PSNR value and testing
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TABLE I
PSNR VALUES IN DB FOR TESTING IMAGES BY DIFFERENT ALGORITHMS AT DIFFERENT MEASUREMENT RATES. FOR TVAL3, NLR-CS, D-AMP, AND

SDA, WE USE THE RESULTS REPORTED IN [9]. THE RECONSTRUCTION RESULTS FOR THOSE IMAGES ARE SHOWN IN FIG. 8. “W/O BM3D” MEANS
WITHOUT APPLYING BM3D, AND “W/ BM3D” DENOTES USING BM3D. “MEAN PSNR” IS THE MEAN PSNR VALUE AMONG ALL 11 TESTING IMAGES.

Image Name Methods MR=0.25 MR=0.10 MR=0.04 MR=0.01
w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

TVAL3 [2] 24.19 24.20 21.88 22.21 18.98 18.98 11.94 11.96
NLR-CS [30] 28.01 28.00 14.80 14.84 11.08 11.56 5.50 5.86

Barbara D-AMP [31] 25.08 25.96 21.23 21.23 16.37 16.37 5.48 5.48
SDA [10] 23.19 23.20 22.07 22.39 20.49 20.86 18.59 18.76

ReconNet [9] 23.25 23.52 21.89 22.50 20.38 21.02 18.61 19.08
DR2-Net 25.77 25.99 22.69 22.82 20.70 21.30 18.65 19.10
TVAL3 22.70 22.71 18.69 18.70 16.04 16.05 10.35 10.37

NLR-CS 23.52 23.52 12.81 12.83 9.66 10.10 4.85 5.18
Fingerprint D-AMP 25.17 23.87 17.15 16.88 13.82 14.00 4.66 4.73

SDA 24.28 23.45 20.29 20.31 16.87 16.83 14.83 14.82
ReconNet 25.57 25.13 20.75 20.97 16.91 16.96 14.82 14.88
DR2-Net 27.65 27.75 22.03 22.45 17.40 17.47 14.73 14.95
TVAL3 24.05 24.07 18.88 18.92 14.88 14.91 9.75 9.77

NLR-CS 22.43 22.56 12.18 12.21 8.96 9.29 4.45 4.77
Flinstones D-AMP 25.02 24.45 16.94 16.82 12.93 13.09 4.33 4.34

SDA 20.88 20.21 18.40 18.21 16.19 16.18 13.90 13.95
ReconNet 22.45 22.59 18.92 19.18 16.30 16.56 13.96 14.08
DR2-Net 26.19 26.77 21.09 21.46 16.93 17.05 14.01 14.18
TVAL3 28.67 28.71 24.16 24.18 19.46 19.47 11.87 11.89

NLR-CS 29.39 29.67 15.30 15.33 11.61 11.99 5.95 6.27
Lena D-AMP 28.00 27.41 22.51 22.47 16.52 16.86 5.73 5.96

SDA 25.89 25.70 23.81 24.15 21.18 21.55 17.84 17.95
ReconNet 26.54 26.53 23.83 24.47 21.28 21.82 17.87 18.05
DR2-Net 29.42 29.63 25.39 25.77 22.13 22.73 17.97 18.40

TVAL3 [2] 27.77 27.77 21.16 21.16 16.73 16.73 11.09 11.11
NLR-CS [30] 25.91 26.06 14.59 14.67 11.62 11.97 6.38 6.71

Monarch D-AMP [31] 26.39 26.55 19.00 19.00 14.57 14.57 6.20 6.20
SDA [10] 23.54 23.32 20.95 21.04 18.09 18.19 15.31 15.38

ReconNet [9] 24.31 25.06 21.10 21.51 18.19 18.32 15.39 15.49
DR2-Net 27.95 28.31 23.10 23.56 18.93 19.23 15.33 15.50
TVAL3 27.17 27.24 23.13 23.16 18.88 18.90 11.44 11.46

NLR-CS 26.53 26.72 14.14 14.16 10.59 10.92 5.11 5.44
Parrot D-AMP 26.86 26.99 21.64 21.64 15.78 15.78 5.09 5.09

SDA 24.48 24.36 22.13 22.35 20.37 20.67 17.70 17.88
ReconNet 25.59 26.22 22.63 23.23 20.27 21.06 17.63 18.30
DR2-Net 28.73 29.10 23.94 24.30 21.16 21.85 18.01 18.41
TVAL3 28.81 28.81 23.86 23.86 19.20 19.20 11.86 11.88

NLR-CS 29.11 29.27 14.82 14.86 10.76 11.21 5.38 5.72
Boats D-AMP 29.26 29.26 21.95 21.95 16.01 16.01 5.34 5.34

SDA 26.56 26.25 24.03 24.18 21.29 21.54 18.54 18.68
ReconNet 27.30 27.35 24.15 24.10 21.36 21.62 18.49 18.83
DR2-Net 30.09 30.30 25.58 25.90 22.11 22.50 18.67 18.95
TVAL3 25.69 25.70 21.91 21.92 18.30 18.33 11.97 12.00

NLR-CS 24.88 24.96 14.18 14.22 11.04 11.43 5.98 6.31
Cameraman D-AMP 24.41 24.54 20.35 20.35 15.11 15.11 5.64 5.64

SDA 22.77 22.64 21.15 21.30 19.32 19.55 17.06 17.19
ReconNet 23.15 23.59 21.28 21.66 19.26 19.72 17.11 17.49
DR2-Net 25.62 25.90 22.46 22.74 19.84 20.30 17.08 17.34
TVAL3 35.42 35.54 28.69 28.74 20.63 20.65 10.97 11.01

NLR-CS 35.73 35.90 13.54 13.56 9.06 9.44 3.91 4.25
Foreman D-AMP 35.45 34.04 25.51 25.58 16.27 16.78 3.84 3.83

SDA 28.39 28.89 26.43 27.16 23.62 24.09 20.07 20.23
ReconNet 29.47 30.78 27.09 28.59 23.72 24.60 20.04 20.33
DR2-Net 33.53 34.28 29.20 30.18 25.34 26.33 20.59 21.08
TVAL3 32.08 32.13 26.29 26.32 20.94 20.96 11.86 11.90

NLR-CS 34.19 34.19 14.77 14.80 10.66 11.09 4.96 5.29
House D-AMP 33.64 32.68 24.84 24.71 16.91 17.37 5.00 5.02

SDA 27.65 27.86 25.40 26.07 22.51 22.94 19.45 19.59
ReconNet 28.46 29.19 26.69 26.66 22.58 23.18 19.31 19.52
DR2-Net 31.83 32.52 27.53 28.40 23.92 24.70 19.61 19.99
TVAL3 29.62 29.65 22.64 22.65 18.21 18.22 11.35 11.36

NLR-CS 28.89 29.25 14.93 14.99 11.39 11.80 5.77 6.10
Peppers D-AMP 29.84 28.58 21.39 21.37 16.13 16.46 5.79 5.85

SDA 24.30 24.22 22.09 22.34 19.63 19.89 16.93 17.02
ReconNet 24.77 25.16 22.15 22.67 19.56 20.00 16.82 16.96
DR2-Net 28.49 29.10 23.73 24.28 20.32 20.78 16.90 17.11
TVAL3 27.84 27.87 22.84 22.86 18.39 18.40 11.31 11.34

NLR-CS 28.05 28.19 14.19 14.22 10.58 10.98 5.30 5.62
Mean PSNR D-AMP 28.17 27.67 21.14 21.09 15.49 15.67 5.19 5.23

SDA 24.72 24.55 22.43 22.68 19.96 20.21 17.29 17.40
ReconNet 25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55
DR2-Net 28.66 29.06 24.32 24.71 20.80 21.29 17.44 17.80
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TABLE II
COMPARISON OF LOSS AND PSNR BETWEEN DR2-NET AND RECONNET [9]. fc1089 DENOTES THE LINEAR MAPPING NETWORK WITH ONE

FULLY-CONNECTED LAYER CONTAINING 1089 NEURONS. Resn DENOTES THAT FURTHER ADDING n RESIDUAL LEARNING BLOCKS TO THE LINEAR
MAPPING NETWORK. “MR” DENOTES MEASUREMENT RATE.

Models MR=0.01 MR=0.04 MR=0.10 MR=0.25
Loss PSNR/BM3D Loss PSNR/BM3D Loss PSNR/BM3D Loss PSNR/BM3D

ReconNet 5.307 17.27/17.55 2.34 19.98/20.44 1.139 22.6793/23.23 0.517 25.53/25.92
fc1089 5.42 17.26/17.60 2.25 20.05/20.46 1.01 23.10/23.39 0.398 26.81/27.33
fc1089-Res1 5.2066 17.37/17.71 1.9946 20.59/21.03 0.7991 24.08/24.55 0.2880 28.41/28.81
fc1089-Res2 5.1831 17.40/17.79 1.9586 20.68/21.05 0.7756 24.28/24.71 0.2814 28.62/29.01
fc1089-Res3 5.1896 17.44/17.80 1,9638 20.75/20.93 0.7696 24.32/24.71 0.2801 28.64/29.09
fc1089-Res4 5.1983 17.41/17.75 1.9452 20.80/21.29 0.7650 24.25/24.71 0.2788 28.66/29.06

Fig. 2. Histogram of the activation values for residual learning.

loss. Note that, the ReconNet contains one fully-connected
layer and six convolutional layers, and our linear mapping
network Ff (·) only contains one fully-connected layer with
1089 neurons, denoted by fc1089. The related results are
summarized in Table II.

From Table II, we could see that the linear mapping network
fc1089 outperforms ReconNet both for PSNR and testing loss
at MRs 0.25, 0.10, and 0.04, respectively. At MR 0.01, the
testing loss for network fc1089 is 5.42, which is larger than
the 5.307 of ReconNet. However, the network fc1089 achieves
a comparable PSNR value with ReconNet, i.e., 17.26dB vs
17.27dB of ReconNet. We further compare the time complex-
ity between fc1089 and ReconNet. As shown in Table III, the
network fc1089 is ten times faster than ReconNet. Therefore,
we could conclude that the linear mapping could generate a
reasonably good preliminary reconstruction image with fast
speed.

D. Evaluation on Residual Learning

As the linear mapping network has produced a preliminary
reconstruction, the residual estimated by the residual learning
should be small. As shown in Fig. 2, we could observe
that residual learning network reasonably infers many small
residual values, e.g., more than 95% of the activation values
are within the range of -0.05 to 0.05.

The linear mapping network is first trained. Then, DR2-Net
is trained in an end-to-end manner. To show the validity of this
training strategy, we analyze the network loss on the validation
set during training, and summarize results in Fig. 3. As shown
in Fig. 3, the loss for linear mapping network, i.e., the blue
solid lines, keeps stable during training. We also observe that
DR2-Net loss, i.e., the red lines, decreases as the iteration
number increases. Note that, the DR2-Net loss is composed of

Fig. 3. The network losses on validation set during training procedure. The
blue line and red line denote the loss of linear mapping network and DR2-Net,
respectively.

the linear mapping network loss and residual learning network
loss. As the DR2-Net loss keeps decreasing and linear mapping
network loss is stable, it is easy to infer that the residual
learning network is effectively optimized during the network
training procedure.

Next, we show the effect of residual learning on reconstruc-
tion quality. As shown in Table II, adding residual block sub-
stantially reduces the testing loss and improve the reconstruc-
tion quality. For example, compared to linear mapping network
fc1089, the deep residual network fc1089-Res1 achieves 0.09
dB, 0.54dB, 0.92dB, 1.6dB improvement for MR 0.01, 0.04,
0.10, 0.25, respectively.

We finally evaluate the performance of DR2-Net with differ-
ent number of residual learning blocks. As shown in Table II,
we could observe that introducing more residual learning
blocks increases the PSNR performance and reduces the loss
for most cases, e.g., using four residual blocks achieves the
highest performance at MR 0.04, 0.10, 0.25. It is also clear that
the improvement becomes relatively smaller as more residual
blocks are added to DR2-Net. For example, when MR = 0.25,
fc1089-Res4 only shows 0.25dB improvement over fc1089-
Res1, which is smaller than 1.6dB improvement achieved
by fc1089-Res1 over fc1089. Therefore, residual learning is
important for improving the reconstruction quality of DR2-
Net. However, it is not necessary to add too many residual
blocks into the DR2-Net. We add four residual blocks in DR2-
Net and use the network fc1089-Res4 as DR2-Net.
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TABLE III
TIME (IN SECONDS) FOR RECONSTRUCTING A SINGLE 256× 256 IMAGE.

Models MR=0.01 MR=0.04 MR=0.10 MR=0.25
SDA 0.0045 0.0025 0.0029 0.0042
ReconNet 0.0326 0.0301 0.0309 0.0461
fc1089 0.0028 0.0032 0.0037 0.0041
fc1089-Res1 0.0190 0.0200 0.0198 0.0185
fc1089-Res2 0.0344 0.0315 0.0349 0.0365
fc1089-Res3 0.0508 0.0480 0.0433 0.0505
fc1089-Res4 0.0600 0.0576 0.0565 0.0557

E. Time Complexity

As the time complexity is a key factor for image compres-
sive sensing, we analysis the time complexity of DR2-Net.
The related results are summarized in Table III. As the deep
learning-based methods have been sped up 100 times over
traditional iterative algorithms [9], we only compare the time
complexity between DR2-Net and other deep-learning based
methods.

Firstly, we show the time complexity of DR2-Net with
different structures. From Table III, we could observe that
the time complexity is linearity correlated with the depth of
network, i.e., deeper DR2-Net requires more running time.
Among the five networks, the network fc1089 contains only
one fully-connected layer, thus shows the fastest speed, e.g.,
only needs 3-4ms to reconstruct a 256 × 256 image. The
deepest network fc1089-Res4 contains one fully-connected
layer and 12 convolutional layers, and is about 30 times slower
than fc1089.

Next, we make comparison with other deep learning-based
methods: SDA[10] and ReconNet[9]. Compared with SDA and
ReconNet, the linear mapping network fc1089 spends less time
to achieve a comparable performance. Therefore, when the
running time is an important concern, simply using network
fc1089 could be a good choice. From Table III and Table II,
we could observe that DR2-Net with structure fc1089-Res1
not only achieves a faster speed, but also obtains a higher
performance than ReconNet. As the other three DR2-Nets
contain more layers, they are slower than ReconNet.

F. Robustness to Noise

To show the robustness of DR2-Net to noise, we investigate
the reconstruction performance under the presence of measure-
ment noise. We firstly add the standard Gaussian noise to the
CS measurements of testing set, i.e., we add five levels of noise
corresponding to σ = 0.01, 0.05, 0.1, 0.25 and 0.5, where σ is
the standard variance for the Gaussian noise. Then, the DR2-
Net trained on the noiseless CS measurements takes the noisy
CS measurements as input, and outputs the reconstruction
images. Aiming to make a fair comparison, we do not use
BM3D [29] to denoise the reconstruction images. The results
are summarized in Fig. 4.

It could be observed that the DR2-Net outperforms the
ReconNet for the σ = 0.01, 0.05, 0.1 at four MRs. For the
cases that σ = 0.25 and 0.5, DR2-Net and ReconNet both do
not work well because intense noises generated by large σ
significantly distract the original CS measurements.

Fig. 4. Comparison of robustness to Gaussian noise between ReconNet and
DR2-Net.

Fig. 5. Comparison between DR2-Net and ReconNet on ImageNet Val dataset
at four MRs.

G. Scalability on Large-scale Dataset

To verify the scalability of DR2-Net, we conduct experi-
ments to compare DR2-Net with ReconNet on the large-scale
ImageNet Val dataset [33], which contains 50,000 images from
1,000 classes. Note that, DR2-Net and ReconNet are both
trained based on the standard 91 images in [9].

As shown in Fig. 5, DR2-Net gets better performance
than ReconNet at four MRs. Especially for cases at higher
MRs, DR2-Net substantially outperforms ReconNet by large
margins, e.g., DR2-Net achieves nearly 3dB improvement over
ReconNet at MR 0.25.

Fig. 6 shows several testing images and the quality of
their reconstruction by DR2-Net and ReconNet, respectively
at MR 0.10. It is clearly that DR2-Net constantly outperforms
ReconNet. We notice that images with higher reconstruction
quality are generally smooth while those with lower recon-
struction quality contain richer textures. Therefore, the texture
complexity affects the construction quality of both DR2-Net
and ReconNet.

VI. CONCLUSION

Inspired by the existing works that deep learning-based
methods could dramatically reduce the time complexity than
iterative reconstruction algorithms. We propose a Deep Resid-
ual Reconstruction Network to reconstruct the image from
its Compressively Sensed (CS) measurements. The proposed
network is composed of a linear mapping network and several
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ReconNet: 39.32dB   
DR2-Net : 42.19dB

ReconNet: 38.30dB   
DR2-Net : 41.90dB

ReconNet: 37.19dB   
DR2-Net : 40.31dB

ReconNet: 38.06dB   
DR2-Net : 40.91dB

(a) Images with high quality reconstruction.

ReconNet: 25.28dB   
DR2 : 26.67dB

ReconNet: 23.67dB   
DR2 : 25.30dB

ReconNet: 25.43dB   
DR2 : 26.77dB

ReconNet: 26.27dB  
DR2 : 27.25dB

(b) Images with middle quality reconstruction.

ReconNet: 11.90dB   
DR2-Net : 12.28dB

ReconNet: 12.20dB   
DR2-Net : 12.74dB

ReconNet: 12.50dB   
DR2-Net : 13.07dB

ReconNet: 12.96dB   
DR2-Net : 13.40dB

(c) Images with low quality reconstruction.

Fig. 6. Images with different reconstruction quality. The results show the
texture complexity affects the reconstruction quality of both DR2-Net and
ReconNet. The PSNR values are reported at MR 0.10.

residual learning blocks. The fully-connected layer in neu-
ral network is taken as the linear mapping to produce the
preliminary reconstruction. The residual learning blocks are
trained to boost the preliminary result by inferring the resid-
ual between preliminary reconstruction and the groudtruth.
Extensive experiments show that DR2-Net outperforms the
traditional iterative-based and deep learning-based methods by
large margins in the aspects of both speed and quality.
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