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Abstract

This work presents PESMOC, Predictive Entropy Search for Multi-objective

Bayesian Optimization with Constraints, an information-based strategy for

the simultaneous optimization of multiple expensive-to-evaluate black-box

functions under the presence of several constraints. Iteratively, PESMOC

chooses an input location on which to evaluate the objective functions and

the constraints so as to maximally reduce the entropy of the Pareto set

of the corresponding optimization problem. The constraints considered in

PESMOC are assumed to have similar properties to those of the objectives in

typical Bayesian optimization problems. That is, they do not have a known

expression (which prevents any gradient computation), their evaluation is
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considered to be very expensive, and the resulting observations may be

corrupted by noise. Importantly, in PESMOC the acquisition function is

decomposed as a sum of objective and constraint specific acquisition functions.

This enables the use of the algorithm in decoupled evaluation scenarios in

which objectives and constraints can be evaluated separately and perhaps with

different costs. Therefore, PESMOC not only makes intelligent decisions about

where to evaluate next the problem objectives and constraints, but also about

which objective or constraint to evaluate next. We present strong empirical

evidence in the form of synthetic, benchmark and real-world experiments

that illustrate the effectiveness of PESMOC. In these experiments PESMOC

outperforms other state-of-the-art methods for constrained multi-objective

Bayesian optimization based on a generalization of the expected improvement.

The results obtained also show that a decoupled evaluation scenario can

lead to significant improvements over a coupled one in which objectives and

constraints are evaluated at the same input.

Keywords: Bayesian Optimization, constrained multi-objective scenario,
information theory.

1. Introduction

Many practical problems involve the simultaneous optimization of several

objectives subject to a set of constraints being simultaneously satisfied. Fur-

thermore, often these functions are black-boxes, meaning that we will not have

access to their analytical form, and the time needed for their evaluation can

be fairly large. An example is tuning the control system of a four-legged robot.

We may be interested in finding the optimal control parameters to minimize

the robot’s energy consumption and maximize locomotion speed [2], under
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the constraint that the amount of weight placed on a leg of the robot does

not exceed a specific value, or similarly, that the maximum angle between the

legs of the robot is below some other value for safety reasons. Measuring the

objectives and the constraints in this case may involve an expensive computer

simulation or doing some actual experiment with the robot. There is no

analytical expression to describe the output of that process which can take

a significant amount of time. Another example can be found in the design

of a new type of low-calorie cookie [19]. In this case, the parameter space is

the space of possible recipes and baking times. Here we may be interested

in minimizing the number of calories per cookie and maximizing tastiness.

Moreover, we may also want to keep production costs below a particular level

or we may want that the cookie is considered to be crispy for at least 90%

of the population. A last example considers finding the architecture of a

deep neural network and training parameters to simultaneously maximize

prediction accuracy on some task and minimize prediction time. We may

also be interested in codifying such network in a chip so that the energy

consumption or its area is below a particular value.

Bayesian Optimization (BO) has been proved to be a good technique to

tackle optimization problems with the characteristics described above [35].

Namely, problems in which one does not have access to the analytic expression

of the objectives or the constraints, and can only obtain (potentially noisy

corrupted) values for some input by running some expensive process. In

BO methods an input location on which the objectives and constraints are

evaluated is iteratively suggested in an intelligent way. The aim is finding

the solution of the problem with the smallest possible number of evaluations
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of the objectives and constraints [5, 43]. At each iteration, the observations

collected so far are carefully used for this task. Moreover, because evaluating

each black-box function is expected to be very expensive, the time needed to

suggest a candidate point is considered negligible.

In the literature, there are several BO methods that have been proposed

to efficiently address multi-objective problems [31, 38, 14, 37, 21] and also

constraint optimization problems [19, 25, 24]. However, the problem of

considering several objectives and several constraints at the same time has

received significantly less attention from the BO community, with a few

exceptions [16]. In this paper we provide a practical BO method based on

information theory that can address this type of problems.

More precisely, in this work, we consider the problem of simultaneously

minimizing K functions f1(x), ..., fK(x) which we define as objectives, subject

to the non-negativity of C constraints c1(x), ...., cC(x), over some bounded

domain X ∈ Rd, where d is the dimensionality of the input space. The

problem considered is:

min
x∈X

f1(x), . . . , fK(x) s.t. c1(x) ≥ 0, . . . , cC(x) ≥ 0 . (1)

We say that a point x ∈ X is feasible if cj(x) ≥ 0, ∀j, that is, it satisfies all

the constraints. This leads to the concept of feasible space F ⊂ X , that is the

set of points that are feasible. In this scenario, only the solutions contained

in F are considered valid.

Focusing in the multi-objective optimization part of the problem, most of

the times is impossible to optimize all the objective functions at the same

time, as they may be conflicting. For example, in the control system of the

robot described before, most probably maximizing locomotion speed will lead
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to an increase in the energy consumption. Similarly, in the low-calorie cookie

example, minimizing the number of calories will also decrease tastiness, and

in the neural network example minimizing the prediction error will involve

using bigger networks, increasing the prediction time. In spite of this, it

is still possible to find a set of optimal points X ? known as the Pareto set

[45]. More formally, we define that the point x dominates the point x′ if

fk(x) ≤ fk(x
′) ∀k, with at least one inequality being strict. Then, the Pareto

set is the subset of non-dominated points in F , the feasible space, which

is equivalent to this expression ∀x? ∈ X ? ⊂ F ,∀x ∈ F ∃ k ∈ 1, ..., K such

that fk(x
?) < fk(x). The Pareto set is considered to be optimal because for

each point in that set one cannot improve in one of the objectives without

deteriorating some other objective. Given X ?, a final user may then choose a

point from this set according to their preferences, e.g., locomotion speed vs.

energy consumption.

To solve efficiently the previous problems, i.e., find the Pareto set in F

with a small number of evaluations, BO methods fit a probabilistic model,

typically, a Gaussian process (GP) to the observed data of each black-box

function (objective or constraint). The uncertainty about the potential values

of these functions given by the predictive distribution of the GPs is then used

to build an acquisition function. The maximum of this function indicates

the most promising location on which to evaluate next the objectives and

the constraints to solve the optimization problem. After enough observations

have been collected like this, the probabilistic models can be optimized to

provide an estimate of the Pareto set of the original problem. Importantly,

the acquisition function only depends on the uncertainty provided by the
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probabilistic models and not on the actual objectives or constraints. This

means that it can be evaluated and optimized very quickly to identify the

next evaluation point. By carefully choosing the points on which to evaluate

the objectives and the constraints, BO methods find a good estimate of

the solution of the original optimization problem with a small number of

evaluations [5, 43].

In this work, we describe a strategy for constrained multi-objective opti-

mization. For this, we extend previous work that uses information theory to

optimize several objectives [22] or a single objective with several constraints

[25]. The result is a strategy that can handle several objectives and several

constraints at the same time. The proposed strategy chooses the next point

on which to evaluate the objectives and the constraints as the one that is

expected to reduce the most the uncertainty about the Pareto set in the

feasible space, measured in terms of Shannon’s differential entropy. Intuitively,

a smaller entropy implies that the Pareto set is better-identified [50, 20, 27].

The proposed approach is called Predictive Entropy Search for Multi-objective

Bayesian Optimization with Constraints (PESMOC).

Importantly, in PESMOC the acquisition function is expressed as a sum

of acquisition functions, one for each objective and constraint. This enables

the use of PESMOC in decoupled scenarios in which one can choose to only

evaluate a subset of objectives and constraints at any given location, each time.

More precisely, PESMOC not only gives information about what input location

gives more information about the problem, but also about what objective

or constraint or subset of these to evaluate next. This may have important

applications in practice. Consider the robot’s example described before. One
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might be able to decouple the problems by estimating energy consumption

from a simulator, even if the locomotion speed and the constraints could

only be evaluated by running a real experiment with the robot. In the low-

calorie cookie, calories can be a simple function of the ingredients. However,

measuring crispness could require human trials. Therefore, their evaluation

could be decoupled. Similarly, in the neural network example measuring

prediction error could require training the network. However, measuring

power consumption may only require running an expensive simulation. The

benefit of decoupled evaluations in the context of BO has been already

observed in the case of a single objective and several constraints [24], and in

the case of several objectives and no constraints [21]. In this paper we show

that PESMOC can give significantly better results in decoupled evaluation

scenarios in problems involving several objectives and several constraints at

the same time.

The rest of the paper is organized as follows: Section 2 describes the pro-

posed approach, PESMOC, and how to compute an approximate acquisition

function based on the expected reduction of the entropy. Section 3 reviews

important work related to the problem or techniques employed to solve multi-

objective optimization problems under the presence of constraints and also

previous approaches that also allow for decoupled evaluations. Section 4

describes several experiments where, using multiple synthetic, benchmark

and real-world problems, we show that the proposed approach has significant

advantages over current state-of-the-art methods. Finally, Section 5 gives the

conclusions of this work.
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mean and a covariance function k(x,x′), that is, f(x) ∼ GP(0, k(x,x′)). The

particular characteristics assumed for f(·) (e.g., level of smoothness, additive

noise, etc.) are specified by the covariance function k(x,x′), which receives

as an input two points, x and x′ at which the covariance between f(x) and

f(x′) has to be evaluated. A typical covariance function employed for BO is

the Matérn function [48].

Given some observations D = (xi, yi)
N
i=1 of the black-box function, where

yi = f(xi) + εi with εi some additive Gaussian noise, a GP builds a predictive

distribution for the potential values of f(·) at a new input point x?. This dis-

tribution is Gaussian. Namely, p(f(x?)|y) = N (f(x?),m(x?), v(x?)), where

the mean and variance are respectively given by

m(x?) = kT? (K + σ2I)−1y , (2)

v(x?) = k(x,x)− kT? (K + σ2I)−1k? , (3)

where y = (y1, . . . , yN)T is a vector with the observations collected so far; σ2

is the variance of the additive Gaussian noise; k? is a N -dimensional vector

with the prior covariances between f(x?) and each f(xi); and K is a N ×N

matrix with the prior covariances among each f(xi), for i = 1, . . . , N . See

[39] for further details.

In practice, however, a GP has some hyper-parameters that need to be

adjusted. These include the variance of the additive Gaussian noise σ2, but

also any potential hyper-parameter of the covariance function k(·, ·). These

can be, e.g., the amplitude and the length-scales. Instead of finding point

estimates for these hyper-parameters, an approach that has shown good

empirical results is to compute an approximate posterior distribution for them

using slice sampling [48]. The previous predictive distribution is then simply

10



averaged over the generated samples of the hyper-parameters. The process

of generating these samples and computing the final predictive distribution

takes only a few seconds at most. This time can be considered negligible

compared to the cost of evaluating the actual black-box function.

2.2. Specification of the Acquisition Function

Let the K black-box objectives of the optimization problem {f1, . . . , fK}

be denoted with f and the C black-box constraints {c1, . . . , cC} with c. We

will assume a GP model for each of these functions, as described in the

previous section. For simplicity, we will consider first a coupled setting, in

which all functions are evaluated at the same candidate input location at each

iteration. Later on, we will describe the extension to a decoupled evaluation

setting in which only a subset of the objectives or constraints need to be

evaluated each time.

Let D = {(xn,yn)}Nn=1 denote all the observations collected up to step

N of the optimization process, where yn is a K + C-dimensional vector

with the values resulting from the evaluation of the K objectives and the C

constraints at step n, and xn is a vector in the input space representing the

corresponding input location. In PESMOC, the next point xN+1 on which

the objectives and constraints should be evaluated is chosen as the one that

maximizes the expected reduction, after the corresponding evaluation, of the

differential entropy H(·) of the posterior distribution over the Pareto set X ?

in the feasible space F , p(X ?|D). More precisely, the acquisition function

α(·) of PESMOC is

α(x) = H(X ?|D)− Ey[H(X ?|D ∪ {(x,y)})] , (4)
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where H(X ?|D) is the entropy of X ? given by the current probabilistic models;

H(X ?|D∪{(x,y)}) is the entropy of X ? after including the observation (x,y)

in D; and the expectation is taken with respect to the potential values of

y at x, given by the predictive distribution of the GP models. Namely, the

posterior distribution of the potentially noisy evaluations of the objectives f

and constraints c, at x. This distribution is

p(y|D,x) =
K∏
k=1

p(yk|D,x)
C∏
j=1

p(yK+j|D,x) , (5)

under the assumption of independence among objectives and constraints.

This assumption is maintained in the rest of the paper. Each p(yk|D,x) and

p(yK+j|D,x) in the previous expression is simply given by the predictive

distribution described in Section 2.2, in which the variance of the additive

Gaussian noise σ2 is added to the predictive variance v(x). The next point at

which the objectives and constraints should be evaluated is hence chosen by

PESMOC simply as xN+1 = arg max
x∈X

α(x).

Choosing the next point on which to perform the evaluation of the ob-

jectives and constraints as the one that reduces the most the entropy of

the solution of the optimization problem is known in the BO literature as

entropy search [20, 50]. Nevertheless, the practical evaluation of (4) is very

challenging since it involves the entropy of a set of points, the Pareto set

X ?, of potentially infinite size. Thus, in general, the exact evaluation of this

expression is infeasible and it must be approximated. For this, we perform a

reformulation of the previous acquisition function that significantly simplifies

its evaluation. Following [28] and [27], we note that (4) is simply the mutual

information between X ? and y, I(X ?;y). Since the mutual information is
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symmetric, i.e., I(X ?;y) = I(y;X ?), the roles of X ? and y can be swapped,

leading to the following simplified but equivalent expression to (4). Namely,

α(x) = H(y|D,x)− EX ? [H(y|D,x,X ?)] , (6)

where the expectation is now with respect to the posterior distribution of the

Pareto set, X ? in the feasible space, given the observed data, D; H(y|D,x,X ?)

measures the entropy of p(y|D,x), i.e., the predictive distribution for the

objectives and the constraints at x given D; and H(y|D,x,X ?) measures the

entropy of p(y|D,x,X ?), i.e., the same predictive distribution conditioned

to X ? being the solution of the optimization problem. This alternative

formulation significantly simplifies the evaluation of the acquisition function

α(·) because we no longer have to evaluate the entropy of X ?, which can

be very complicated. Importantly, the acquisition function obtained in (6)

favors the evaluation in regions of the input space in which X ? (the solution

of the optimization problem) is more informative about y. These are also the

regions in which y is more informative about X ?. We refer to the expression

in (6) as Predictive Entropy Search for Multi-objective Optimization with

Constraints (PESMOC).

We now give the details about how to evaluate (6), approximately. Note

that the first term in the r.h.s. of (6) is simply the entropy of the predictive

distribution of the GP models, p(y|D,x), which is a factorizing K + C-

dimensional Gaussian distribution. Therefore,

H(y|D,x) =
K + C

2
log(2πe) +

K∑
k=1

0.5 log(vPD
k ) +

C∑
j=1

log(sPD
j ) , (7)

where vPD
k and sPD

j are the predictive variances of the objectives and the

constraints at x, respectively. The difficulty comes from the evaluation of the
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second term in the r.h.s. (6), which is intractable and has to be approximated.

For this, we follow [27, 22] and use a Monte Carlo estimate of the expectation.

This estimate is obtained by drawing samples of the Pareto set X ? given D.

This involves sampling several times the objectives and the constraints from

their posterior distributions given by the GP models. This is done following

the approach based on random features described in [27, 22]. Given a sample

of the objectives and the constraints, we solve the corresponding optimization

problem to generate a sample of X ?. For this, we use a grid search approach,

although more efficient methods based on evolutionary strategies may be

used in the case of high dimensional spaces. X ? needs to be located in the

feasible space F . Thus, we discard all input grid locations in which the

sampled constraints are strictly negative. X ? is simply obtained by returning

all the non-dominated grid locations. Note that unlike the true objectives

and constraints, the sampled functions can be evaluated very fast. Given

a sample of X ?, the differential entropy of p(y|D,x,X ?) is estimated using

expectation propagation as described next.

2.3. EP Approximation of the Conditional Predictive Distribution

We employ expectation propagation (EP) to approximate the entropy of

the conditional predictive distribution (CPD) p(y|D,x,X ?) [34]. Consider

the deterministic distribution p(X ?|f, c) of the Pareto set in the feasible space

given specific values for the objectives and the constraints. The value of

p(X ?|f, c) should be zero for any set of points that is different from the actual

Pareto set for the specific values of f and c. X ? is the Pareto set in the feasible

space F if and only if ∀x? ∈ X ?, ∀x′ ∈ X , cj(x
?) ≥ 0 ∀j, and if cj(x

′) ≥ 0,

∀j, then ∃k s.t. fk(x
?) < fk(x

′) assuming minimization. In other words, each
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point of the Pareto set has to be better or equal to any other feasible point in

at least one of the objectives. These conditions can be informally summarized

as the following unnormalized distribution:

p(X ?|f, c) ∝
∏

x?∈X ?

([
C∏
j=1

Φj(x
?)

][∏
x′∈X

Ω(x′,x?)

])
, (8)

where Φj(x
?) = Θ(cj(x

?)) with Θ(·) the Heaviside step function (using the

convention that Θ(0) = 1) and the factor Ω(x′,x?) is defined as:

Ω(x′,x?) =

[
C∏
j=1

Θ(cj(x
′))

]
ψ(x′,x?) +

[
1−

C∏
j=1

Θ(cj(x
′))

]
· 1 , (9)

ψ(x′,x?) = 1−
K∏
k=1

Θ(fk(x
?)− fk(x′)) . (10)

Note that
∏C

j=1 Φj(x
?) in (8) guarantees that every point in the Pareto set X ?

belongs to the feasible space F . Otherwise, p(X ?|f , c) is equal to zero. The

factors Ω(x′,x?) in (8) are explained as follows: The product
∏C

j=1 Θ(cj(x
′))

checks that the input location x′ belongs to the feasible space F . If the point

x′ is not feasible, we do not really care about x′, i.e., we simply multiply

everything by one. Otherwise, the input location x′ has to be dominated

by the Pareto point x?. That is, x? has to be better than x′ in at least one

objective. That is precisely checked by (10). In summary, the r.h.s. of (8)

takes value one if X ? is a valid Pareto set and zero otherwise.

We now show how to approximate the conditional predictive distribu-

tion p(y|D,x,X ?). For simplicity, we consider a noiseless case in which we

observe the actual objectives and constraints: p(y|x, f, c) =
∏K

k=1 δ(yk −

fk(x))
∏C

j=1 δ(yK+j−cj(x)), where δ(·) is a Dirac’s delta function. In the case

of noisy observations, one simply has to replace the Dirac’s delta function with
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a Gaussian with the corresponding noise variance (we assume i.i.d Gaussian

noise). The unnormalized version of p(y|D,x,X ?) is:

p(y|D,x,X ?) ∝
∫
p(y|x, f, c)p(X ?|f, c)p(f|D)p(c|D)dfdc ∝∫ K∏
k=1

δ(yk − fk(x))
C∏
j=1

δ(yK+j − cj(x))×

∏
x?∈X ?

C∏
j=1

Φj(x
?)×

∏
x?∈X ?

Ω(x,x?)
∏

x′∈X\{x}

Ω(x′,x?)

×
p(f|D)p(c|D)dfdc , (11)

where we have separated out the factors Ω(·, ·) that do not depend on x, i.e.,

the point on which the acquisition function is going to be evaluated.

In (11) the posterior distribution of each objective and constraint (i.e.,

p(f|D) and p(c|D)) and the delta functions are all Gaussian. The other factors

are not. Furthermore, X can potentially be of infinite size. All this makes

the evaluation of (11) intractable in practice. To overcome this limitation we

provide an efficient approximation based on two steps. First, X , the set of all

potential input locations, is approximated as X̂ = {xn}Nn=1 ∪X ? ∪{x}, where

{xn}Nn=1 are the input locations where the objectives and constraints have

been evaluated so far. Second, all non-Gaussian factors in (11), i.e., Φj(·) and

Ω(·, ·) are replaced with corresponding approximate Gaussian factors, Φ̃j(·)

and Ω̃(·, ·). This last step is carried out using the expectation propagation

(EP) algorithm [34]. More precisely, each Φj(·) factor is approximated by a

one-dimensional un-normalized Gaussian over cj(x
?):

Φj(x
?) ≈ Φ̃j(x

?) ∝ exp{−0.5 · cj(x?)2ṽx
?

j + cj(x
?)m̃x?

j } , (12)
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where ṽx
?

j and m̃x?

j are natural parameters adjusted by EP. Similarly, each

Ω(x′,x?) factor is approximated by a product of C one-dimensional and K

two-dimensional un-normalized Gaussians:

Ω(x′,x?) ≈ Ω̃(x′,x?) ∝
K∏
k=1

exp{−0.5 · υT
k Ṽ

Ω
k υk + (m̃Ω

k )Tυk}×

C∏
j=1

exp{−0.5 · cj(x?)2ṽΩ
j + cj(x

?)m̃Ω
j } , (13)

where υk = (fk(x
′), fk(x

?))T and ṼΩ
k , m̃Ω

k , ṽΩ
j and m̃Ω

j are natural parameters

adjusted by EP. Note that ṼΩ
k is a 2× 2 matrix and m̃Ω

k is a two-dimensional

vector.

EP refines all these approximate factors iteratively until their parameters

do not change any more. This ensures that they look similar to the corre-

sponding exact factors. The factors, that do not depend on x are reused each

time that the acquisition function has to be computed at a new input location

x. The other factors that depend on x need to be computed relatively fast

to guarantee that the acquisition function is not very expensive to evaluate.

Therefore, these factors are only updated once by EP in practice.

2.4. The PESMOC’s Acquisition Function

Once EP has finished, the conditional predictive distribution p(y|D,x,X ?)

is approximated by the distribution that results from replacing in (11) each

non-Gaussian factor by the corresponding EP Gaussian approximation. Be-

cause the Gaussian distribution is closed under the product operation, the

resulting distribution is Gaussian. That is:

p(y|D,x,X ?) ≈
K∏
k=1

N (fk(x)|mCPD
k , vCPD

k )
C∏
j=1

N (cj(x)|mCPD
j , sCPD

j ) , (14)
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where the parameters mCPD
k , vCPD

k ,mCPD
j , sCPD

j can be obtained from the

product of the approximate factors, p(f |D) and p(c|D), and the delta functions.

Then, PESMOC’s acquisition function is simply given by the sum of the

differences between the entropies before and after conditioning on the Pareto

set. This, in combination with the expression shown in (7) gives:

α(x) ≈
C∑
j=1

log sPD
j (x) +

K∑
k=1

log vPD
k (x)−

1

M

M∑
m=1

[ C∑
j=1

log sCPD
j (x|X ?

(m)) +
K∑
k=1

log vCPD
k (x|X ?

(m))
]
, (15)

where M is the number of Monte Carlo samples of the Pareto set {X ?
(m)}Mm=1

used to approximate the expectation in the r.h.s. of (6); and vPD
k (x), sPD

j (x),

vCPD
k (x|X ?

(m)) and sCPD
j (x|X ?

(m)) are the variances of the predictive distribution

before and after conditioning on the Pareto set X ?
(m). In the case of noisy

observations around each objective or constraint we simply increase the

predictive variances by adding the corresponding variance of the Gaussian

additive noise. The next point at which to evaluate the objectives and the

constraints is the one that maximizes (15).

We note that the acquisition function in (15) can be expressed as a sum

across the objectives and the constraints. That is,

α(x) =
K∑
k=1

αobj
k (x) +

C∑
j=1

αconst
j (x) , (16)

where

αobj
k (x) = log vPD

k (x)− 1

M

K∑
k=1

log vCPD
k (x|X ?

(m)) , (17)
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αconst
c (x) = log sPD

j (x)− 1

M

C∑
j=1

log sCPD
j (x|X ?

(m)) . (18)

Intuitively each of these functions measures the reduction in the entropy of

the Pareto set after an evaluation of the corresponding objective or constraint.

Therefore PESMOC can be used to identify not only where to perform the

next evaluation, but also which black-box function (objective or constraint)

or subset of these should be evaluated next. This allows for a decoupled

evaluation scenario. In the simplest case in which we consider an acquisition

function per black-box function, we only have to maximize independently each

of these K +C acquisition functions to identify the most promising black-box

function to evaluate next. We expect that this approach is more effective for

reducing the entropy of the Pareto set in the feasible space, leading to better

optimization results with a smaller number of black-box evaluations.

An illustrative example of the computation of PESMOC’s acquisition

functions is shown in Figure 1 for a simple one-dimensional problem with two

objectives and one constraint. The first column displays the data collected

so far. Each black-box function is modelled using a GP, whose predictive

distribution is shown in terms of the mean prediction and one standard

deviation. The second column of the figure displays a function sampled from

the predictive distribution of each black-box function. These samples are then

optimized to obtain a sample of the Pareto set X ?
(m), which is displayed in the

figure using blue crosses. These points dominate all other points for which

the corresponding values of the constraint are positive. The third column

of this figure shows the predictive distribution of each black-box function

conditioned to X ?
(m) being the solution to the optimization problem. This
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predictive distribution is approximated using EP. Note that the predictive

variance is reduced significantly in some locations of the input space. These are

the locations that are expected to be most informative about the actual Pareto

set X ?. Finally, the last column shows the corresponding acquisition function

for each black-box function, alongside with the corresponding maximizer. The

acquisition is simply given by the difference in the logarithm of the predictive

variance before and after the conditioning. Note that those regions of the

input space in which the acquisition is high correspond to those regions in

which the predictive variance is significantly reduced.

The acquisition function obtained for a coupled evaluation setting is shown

also in Figure 2 for reference. A comparison between Figure 1 and Figure

2 shows the potential benefits of a decoupled evaluation approach. The

acquisition function obtained in the coupled scenario is simply the sum of all

the previous acquisition functions. Furthermore, note that the maximizer of

this function need not be equal to the maximizers of any of the individual

acquisition functions. Therefore, the sum of the individual maximums of each

of the three different acquisition functions displayed in Figure 1 is expected to

be larger than the maximum of the acquisition function displayed in Figure

2. A decoupled evaluation setting is hence expected to be more useful for

decreasing the entropy of the Pareto set in the feasible space, and to give

better results with a smaller number of black-box evaluations.
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Figure 1: Different steps needed to compute PESMOC’s acquisition function in a decoupled

evaluation scenario. (first column) Predictive distribution for each black-box function

conditioned on the observed data given by a GP. (second column) Sample from the

posterior distribution of each GP alongside with the corresponding Pareto set X ?
(m) in the

feasible space displayed using blue crosses. (third column) Predictive distribution of each

black-box function conditioned to the sampled Pareto set X ?
(m) being the solution to the

optimization problem. (fourth column) Acquisition function obtained by the difference

in the entropy of the predictive distribution before and after the conditioning.
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Figure 2: Acquisition function of PESMOC for the coupled setting. In this case α(·) is

simply the sum of the acquisition functions of the three black boxes shown in Figure 1, in

which the decoupled approach was displayed.

2.5. Computational Cost of PESMOC’s Acquisition Function

The cost of running EP and evaluating the acquisition function is O((K +

C)q3), where q = N + |X ?
(m)|, and N is the number of observations collected

so far, K is the number of objectives and C is the number of constraints. In

practice EP is run only once per sample of the Pareto set X ?
(m) because it is

possible to re-use the factors that are independent of the candidate location x

at which the acquisition function has to be evaluated. Thus, the complexity

of computing the predictive variance is O((K+C)|X ?
(m)|3). In practice, we set

the size of the Pareto set sample X ?
(m) to be equal to 50, making q just a few

hundreds at most. We provide more details in the supplementary material

about how to the conditional predictive distribution p(y|D,x,X ?) is obtained

after running EP.
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3. Related Work

In this section we review important related work to multi-objective opti-

mization under the presence of several constraints, when both the objectives

and the constraints can be regarded as black-boxes. We also describe related

methods for Bayesian optimization and previous approaches that also allow

for decoupled evaluations.

3.1. Evolutionary Strategies and Meta-heuristics

The problem of constrained multiobjective optimization where the analyt-

ical form of the objectives or the constraints is unknown has been already

tackled in the literature. In order to solve these problems one can employ

evolutionary strategies such as the ones described in [17, 7]. Similarly, other

techniques adapted to this scenario include particle swarm optimization [10]

or ant colony optimization [1]. These techniques perform a search in the target

space guided by some criterion that tries to find the best trade-off between

exploration of good solutions far away from the regions already explored, and

exploitation of the best known solutions. The problem of these techniques,

also known as meta-heuristics, is that they usually require a large number

of evaluations in order to achieve good results. This is un-affordable in our

scenario in which the black-box functions are expected to be very expensive

to evaluate. BO methods, which exploit the information provided by the

probabilistic models to make intelligent decisions about where to evaluate

next these functions, will perform much better in a scenario that includes a

limited evaluation budget (a few hundred evaluations at most). Empirical

evidence supporting this is found, for example, in [26, 3].
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3.2. Related Bayesian Optimization Methods

In the literature most BO methods have traditionally focused on the un-

constrained single objective scenario. A comprehensive summary of different

works targeting this type of problems can be found in [5, 43]. The first BO

methods based on entropy search were proposed to address these simple

optimization problems [20, 50]. The corresponding re-formulation based

on predictive entropy search in such a setting is described in [27]. This

reformulation provides an approximation of the acquisition function of entropy

search that is more accurate, as the required computations are simplified

significantly, and that also leads to better optimization results in practice.

In any case, all these works can only optimize a single objective under no

constraints.

The multi-objective case in which several objectives need to be simultane-

ously optimized in an un-constrained scenario has also received the attention

of the BO community. In particular, several BO methods have been pro-

posed to address these problems, including ParEGO, SMS-EGO, expected

hyper-volume improvement (EHI) and sequential uncertainty reduction (SUR)

[31, 38, 15, 37]. A multi-objective BO method based on using entropy search

and the corresponding re-formulation based on predictive entropy search is

described in [21]. However, such a method cannot consider constraints. The

work described here is a natural extension that allows to incorporate several

constraints to the multi-objective problem. Importantly, this extension is not

trivial since it involves the use of more complicated factors in the computa-

tion of the conditional predictive distribution. Furthermore, the EP update

operations required to compute the approximation of the acquisition function
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are also more arduous.

The problem of optimizing a single objective under several constraints has

also been considered by the BO community. The methods proposed with this

goal include variants of the expected improvement (EI) acquisition function

in which one simply chooses the point that is expected to improve the most

the best observed result so far. For example, the expected improvement with

constraints (EIC) [40, 36, 47, 18, 19]. A method that is able to tackle this

type of problems and that is based on entropy search and the corresponding

reformulation using predictive entropy search has also been proposed in [25, 24].

Such a method, however, cannot optimize several objectives at the same time,

unlike PESMOC, the method described in this paper. Optimizing several

objectives at the same time is a significantly more complicated problem. In

particular, when the objectives are conflictive, the solution to the optimization

problem is a set of points, the Pareto set in the feasible space, of potentially

infinite size.

3.3. Bayesian Multi-Objective Optimization

A BO method proposed in the literature to optimize several objectives

under several constraints is Bayesian Multi-objective optimization (BMOO)

[16]. Such a method is based on the expected hyper-volume improvement

acquisition function (EHI) [15], in which the expected increase in the hyper-

volume is computed after performing an evaluation of the black-box functions

at a particular input location. The hyper-volume is simply the volume of

points in functional space above the Pareto front (i.e., the function values

associated to the Pareto set), which is maximized by the actual Pareto set.

It is hence a natural measure of quality or utility of the current solution of
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the multi-objective problem. When several constraints are introduced in the

problem, this criterion boils down to the product of a modified EHI criterion

(where only feasible points are considered) and the probability of feasibility,

as indicated by the probabilistic models. Importantly, the utility function

of this acquisition function (the acquisition is simply the expectation of the

utility function under the predictive distribution of the probabilistic models)

is constant (equal to zero) as long as no feasible point has been observed.

Therefore, it is not an appropriate utility function for heavily constrained

problems, where finding feasible points is sometimes the main difficulty. As

indicated by [16], not all unfeasible points are equivalent. A point that does

not satisfy a constraint by a small amount has probably more value than one

that does not satisfy the constraint by a large amount, and should therefore

contribute more to the utility.

With the goal of overcoming the limitations described before, [16] propose

an extended domination rule to handle objectives and constraints in a unified

way. This domination rule considers both objectives f(x) = (f1(x), . . . , fn(x))

and constraints c(x) = (c1(x), . . . , cm(x)). For this, the space of potential

objective values f(x) ∈ Yo ⊂ RK and the space of potential constraint values

c(x) ∈ Yc ⊂ RC are joined, giving as a result the extended space Yo × Yc.

Define yox = f(x) and ycx = c(x). That is yox is a vector with the objective

values associated to x and ycx is a vector with the constraint values. The

extended domination rule states that a point x dominates another one x′, if

Ψ(yox,y
c
x) dominates Ψ(yox′ ,ycx′), using the classical Pareto domination rule.

That is, Ψ(yox,y
c
x) ≺ Ψ(yox′ ,ycx′) i.f.f Ψ(yox,y

c
x) is better than Ψ(yox′ ,ycx′) in

at least one component. Let R be the extended real line. The transformation
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Ψ(·, ·) : Yo × Yc → R
K ×RC is defined as:

Ψ(yox,y
c
x) =

 (yox,0) if ycx ≥ 0,

(+∞,min (ycx,0)) otherwise.
(19)

That is, if the point is feasible (i.e., all the constraints are positive or equal

to zero), only the objective values are considered. Conversely, if the point is

infeasible, the constraint values will play a role. More precisely, under this

rule a solution that is infeasible but close to being feasible will dominate other

infeasible solutions that are further away from being feasible. As described

by [16], the previous rule has these properties:

1. For unconstrained problems the extended domination rule boils down

to the classical Pareto domination rule.

2. Feasible solutions (corresponding to ycx ≥ 0) are compared using the

Pareto domination rule applied in the objective space.

3. Non-feasible solutions (corresponding to ycx � 0) are compared using

the Pareto domination rule applied to the vector of constraint violations.

4. Feasible solutions always dominate non-feasible solutions.

The extended domination rule presented above makes it possible to define

a notion of expected hyper-volume improvement in the extended space. This

is the acquisition function considered by [16]. A problem is, however, that

evaluating this quantity can be expensive if the number of objectives and

constraints is large. To overcome this limitation an efficient approximate

computation method is proposed by those authors. This approximation is

obtained by noticing that the proposed acquisition function at a candidate

point x is given by the expected value of the probability that Ψ(yox,y
c
x)
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dominates a point y belonging to the set of non-dominated points in the

extended output space, when y is chosen uniformly at random from that set.

In particular,

αBMOO(x) = Eyo
x,y

c
x

[∫
GN
I(Ψ(yox,y

c
x) ≺ y)dy

]
=

∫
GN
p(Ψ(yox,y

c
x) ≺ y)dy

≈ 1

M

M∑
m=1

p(Ψ(yox,y
c
x) ≺ ym) , (20)

where GN is the set of non-dominated points (up to the current iteration N)

in the extended output space; I(·) is an indicator function; the expectation

is given by the predictive distribution of the probabilistic models fitting

each objective and constraint; p(Ψ(yox,y
c
x) ≺ y) is the probability that

Ψ(yox,y
c
x) dominates y and M is the number of samples for y ∈ Gn used

in the approximation. Importantly, there is a closed form expression for

p(Ψ(yox,y
c
x) ≺ y) when the probabilistic models are Gaussian processes. The

only problem is hence how to generate uniform variables over the set GN .

To generate the samples required in (20) [16] propose a Monte Carlo

method based on the Metropolis-Hastings algorithm targeting the uniform

distribution in GN . At each iteration of this algorithm the current samples

(particles) are slightly perturbed. This step is only accepted if the new particle

falls in GN . Of course, when a new observation is obtained, improving the

current solution, the set GN+1 has a smaller size than GN . Therefore, some

particles may have to be removed. [16] describe an intelligent method to

avoid the elimination of a large number of particles at each iteration, which

will reduce the quality of the generated samples and the approximation.
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In our experiments we have compared the proposed approach, PESMOC,

with the BMOO method just described. We have observed that BMOO

suffers from the limitations of traditional methods based on the expected

improvement (EI). In particular, it often is too greedy and tends to explore

the limits of the input space too much. In high dimensions this can be a

problem since there are a lot of these corners. An extra difficulty of BMOO

is that, in practice, one has to bound the space of potential output values for

the objectives and the constraints, and this information may not be available

before hand.

3.4. Existing Methods for Decoupled Evaluations

Decoupled evaluations in a BO setting were first considered by [19] for

a single objective and several constraints. In that work it is shown that the

standard acquisition function known as expected improvement (EI) leads to

a pathology that prevents decoupled evaluations. The reason for that is that

no-improvement over the current best solution (this is the utility function of

EI) can occur if we observe only the objective or the constraints, separately.

More precisely, two conditions are required to produce positive values of the

utility: (i) the evaluation for the objective must achieve a lower value than

the best observed feasible solution so far and, (ii), the evaluations for the

constraints must produce non-negative values. These two conditions cannot

be simultaneously satisfied by a single observation (objective or constraint).

Therefore, standard EI cannot be used for decoupled evaluations. The problem

described is solved by using a two stage process in which standard EI is used

to pick-up a candidate point xN+1, and then, entropy search is used to choose

the black-box function to evaluate next [50]. This approach is sub-optimal
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and a joint selection of xN+1 and the black-box is expected to perform better.

The limitations of the previous method are circumvented in [24]. In

particular, PESC, the strategy described in that paper for single-objective

constrained Bayesian optimization, allows to perform decoupled evaluations

that can simultaneously choose xN+1 and the black-box function to evaluate

next. This strategy is also based on predictive entropy search and expectation

propagation. A comprehensive analysis of the decoupled evaluation setting in

this type of optimization problems is carried out in that work. Importantly,

two different decoupled configurations are evaluated: (i) competitive decou-

pling, in which the black-boxes compete for a single resource available; and

(ii) non-competitive decoupling, in which the black-boxes can be evaluated in

parallel at different input locations. Only competitive decoupling is found to

perform significantly better than a coupled evaluation setting.

A decoupled evaluation method for un-constrained multi-objective Bayesian

optimization is described in [21]. PESMO, the technique described by those

authors, also uses predictive entropy search and expectation propagation to

choose which black-box function and which input location xN+1 to evaluate

next. These authors only consider competitive decoupled evaluations. The

results obtained show that such a setting can significantly outperform coupled

evaluations in the multi-objective case.

The method we propose here, PESMOC, can be seen a natural extension

of the two works described above, PESC, and PESMO. PESMOC also allows

for decoupled evaluations and combines the possibility of considering several

objectives and several constraints at the same time. Our results also indicate

that a decoupled evaluation setting may have important benefits in the
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constrained multi-objective case. The method we compare with, BMOO,

is based on a generalization of EI for constrained multi-objective problems.

Therefore, this method suffers from the same limitations as standard EI

for the single-objective constrained setting and cannot be used to perform

decoupled evaluations.

PESMOC is significantly different from PESC. In particular, PESC can

only provide solutions to single-objective constrained optimization probems.

PESMOC, on the other hand, can be used to find the solution of multi-objetive

optimization problems under several constraints. When the objectives are

conflictive, the solution is a set of points, the Pareto set in the feasible space,

of potentially infinite size. This makes multi-objective problems significantly

more challenging.

PESMOC also differs from PESMO. In PESMO there are no constraints

in the optimizaton problem. Incorporating constraints in the multi-objective

problem is challenging and requires to add extra factors to compute the

conditional predictive distribution described in (11). These extra factors

have to be approximated by expectation propagation (EP), which results in

different EP updates from those of PESMO. Furthermore, when computing

the acquisition funciton one has to take into account the predictive variances

of the latent functions corresponding to the constraints. In PESMO there

are no constraints, so they can be ignored. Importantly, when sampling X ?

in PESMOC one also needs to consdier the feasible space F by sampling

also the constraints, which must be taken into account when solving the

corresponding optimization problem. This makes the process of sampling

X ? more complicated in PESMOC. PESMO does not have to consider the
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possibility of having constraints. Finally, when doing a recommendation,

PESMOC has to take into account that the provided solution must be feasible

with high probability, as indicated in Section 4. PESMO does not have to

worry about this. Summing up, PESMOC can be used to solve a collection

of problems that PESMO cannot address.

4. Experiments

We carry out several experiments to evaluate the performance of PESMOC,

the proposed method for constrained multi-objective Bayesian optimization.

In these experiments we compare coupled evaluations and competitive de-

coupled evaluations. In the second case, we not only choose which is the

next input location but also which black-box function should be evaluated

next. We compare the results of PESMOC with those of the BMOO method

of [16] and a base-line strategy that explores the input space uniformly at

random (Random). Note that this strategy is expected to perform worse than

either PESMOC or BMOO because it does not use the probabilistic models to

identify the next point on which to do the next evaluation. All these methods

have been implemented in the software for Bayesian optimization Spearmint

(https://github.com/HIPS/Spearmint). In each experiment carried out

in this section we report average results and the corresponding standard

deviations. The results reported are averages over 100 repetitions of the

corresponding experiment. Means and standard deviations are estimated

using 200 bootstrap samples. In the synthetic problems we consider two

scenarios. Namely, noiseless and noisy observations, and report results for

both of them.
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In each method, i.e., PESMOC and BMOO, a Matérn covariance function

is used for the GPs that model the objectives and the constraints. The

hyper-parameters of each GP (length-scales, level of noise and amplitude) are

approximately sampled from their posterior distribution using slice sampling as

in [48]. We generate 10 samples for each hyper-parameter, and the acquisition

function of each method is averaged over these samples. In PESMOC the

parameter M which specifies the number of Monte Carlo samples of X ?

in (15) is set to 10. This is the value used by previous approaches based

on predictive entropy search for single objective and un-constrained multi-

objective optimization [24, 21]. Furthermore, the supplementary material

includes some experiments showing that setting M to this value gives a good

trade-off between performance and computational cost. For each method,

at each iteration of the optimization process, we output a recommendation

obtained by optimizing the GPs mean functions. For this, we use a uniform

grid of 1000 × d points, where d is the dimensionality of the problem. We

also approximate the Pareto set with 50 points.

To guarantee that only points that are feasible with high probability are

recommended, we consider that a constraint cj(·) is satisfied at an input

location x if the probability that the constraint is larger than zero is above

1− δ where δ is 0.05. That is, p(cj(x ≥ 0) ≥ 1− δ. When no feasible solution

is found, we simply return the points that are most likely to be feasible by

iteratively increasing δ in 0.05 units. This is the approach followed by [19] and

[24] for single-objective constrained optimization, and we have observed that

it provides good empirical results in our experiments. Under the assumption

that the constraints have generated from a GP prior, this approach will
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guarantee that the provided solutions are feasible with high probability. Note

that this approach to provide recommendations is not specific of PESMOC.

It is shared by all the methods considered for constrained multi-objective

optimization. Namely, PESMOC, BMOO and the random search strategy.

The acquisition function of each method is maximized using L-BFGS (a

grid of size 1, 000× d, where d is the input dimension, is used to find a good

starting point). The gradients of the acquisition function are approximated by

differences. In BMOO we set the number of samples used to approximate the

evaluation of the acquisition function to 1, 000. These samples are perturbed

at each iteration as described in [16].

The experiments contained in this section are organized as follows: A first

set of experiments evaluate the quality of PESMOC’s approximation to target

acquisition function described in (6). Then, we compare the performance of

PESMOC and BMOO on synthetic experiments where the objectives and

constraints are sampled from a GP prior. This comparison is then carried

out using 7 well-known benchmark problems for multi-objective optimization

with constraints. In this case, the objectives and constraints have not been

sampled from GP prior and model bias can be important. Finally, we consider

two real optimization problems: finding an optimal ensemble of decision trees

on the dataset German IDA and finding an optimal deep neural network for

the MNIST dataset.

4.1. Quality of the Approximation to the Acquisition Function

As described previously, the acquisition function of the proposed method,

PESMOC, is intractable and needs to be approximated. The exact evalu-

ation requires computing an expectation that has no closed form solution
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and computing the conditional predictive distribution of the probabilistic

models given some Pareto set X ?. In Section 2 we propose to approximate

these quantities using Monte Carlo samples and expectation propagation,

respectively. In this section we check the accuracy of this approximation

to see if it resembles the actual acquisition function. For this, we consider

a simple one dimensional problem with two objectives and one constraint

generated from a GP prior. In this simple setting, it is possible to compute a

more accurate estimate of the acquisition function using a more expensive

sampling technique, combined with a non-parametric estimator of entropy

[46]. More precisely, we discretize the input space and generate a sample of

the Pareto set X ? by optimizing a sample of the black-box functions. This

sample is generated as in the PESMOC approximation. We then generate

samples of the black-box functions and keep only those that are compatible

with X ? being the solution to the optimization problem. This process is

repeated 10, 000 times. Then, a non-parametric method is used to estimate

the entropy of the predictive distribution at each region of the input space

before and after the conditioning. The difference in the entropy at each

input location gives a more accurate estimate of the acquisition function of

PESMOC. Of course, this approach is too expensive to be used in practice

for solving optimization problems.

We consider first a coupled evaluation setting. Figure 3 (top) shows

the posterior distribution (mean and one standard deviation) of the three

black-box functions at a particular step of the optimization process. The

bottom of this figure shows a comparison between the two estimates of the

exact acquisition function. The one described above (exact) and the one
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suggested in Section 2. We observe that both estimates of the acquisition

function take higher values in regions with high uncertainty and promising

predictions. Similarly, both estimates take lower values in regions with low

uncertainty. Importantly, both acquisition functions are pretty similar in the

sense that they take high and low values in the same regions of the input

space. Therefore, both acquisition functions are extremely correlated. This

empirical result supports that the approximation proposed in this paper is an

accurate estimate of the actual acquisition function.

We repeat these experiments in a decoupled scenario in which the different

black-boxes need not be evaluated at the same input location. The results are

displayed in Figure 4. In this case, we show the estimates of the acquisition

function corresponding to each black-box function. Therefore, there are

three different acquisition functions displayed. The plots show again that the

PESMOC’s approximation is accurate w.r.t the exact acquisition function, as

estimated by the more expensive process described above. Again, each pair of

estimates of the acquisition function for each black-box are heavily correlated,

suggesting similar maximizers and often similar acquisition values. We believe

that this results provides empirical evidence of the quality of the acquisition

approximation carried out in the proposed method, PESMOC. The accuracy

of this approximation is also validated by the good results obtained in the

rest of the experiments described in this paper.

4.2. Synthetic Experiments

We compare the performance of PESMOC and BMOO with that of a

random search strategy when the objectives and constraints are sampled from

a GP prior. For this, we generate 100 optimization problems involving 2

36
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Figure 3: (top) Posterior distribution of each black-box function (mean and standard

deviation). (bottom) Acquisition function estimated by PESMOC and by a more expensive

but accurate Monte Carlo method combined with a non-parametric estimator of the entropy

(exact).

objectives and 2 constraints in a 4-dimensional input space. This experiment

is repeated to consider a more complicated setting. In this case, we generate

100 optimization problems involving 4 objectives and 2 constraints in a 6-

dimensional input space. Each strategy (PESMOC, PESMOC decoupled,

BMOO and Random) is run on each problem until 100 evaluations of each

black-box are made. We report results for a noiseless and noisy evaluation

scenario, in which we observe the evaluations are contaminated with additive
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Figure 4: (top left) Posteriors distribution of each black-box function (mean and standard

deviation). (top right to bottom right) Acquisition function for each black-box estimated

by PESMOC and by a more expensive but accurate Monte Carlo method combined with a

non-parametric estimator of the entropy (exact).

Gaussian noise with standard deviation equal to 0.1. After each iteration of

the optimization process, each strategy outputs a recommendation in the form

of a Pareto set obtained by optimizing the posterior means of the GPs, as

indicated at the beginning of this section. The performance criterion used is

the hyper-volume of the corresponding solution. Recall that the hyper-volume

is the volume of points in functional space above the optimal points contained

in the recommendation. This quantity is maximized by the actual Pareto set

[51]. In the case that the recommendation produced contains an infeasible

point, we simply set the hyper-volume of the recommendation equal to zero.

For each method evaluated we report the logarithm of the relative difference

between the hyper-volume of the actual Pareto set and the hyper-volume of

the recommendation.
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Figure 5: Logarithm of the relative difference between the hyper-volume of the

recommendation obtained by each method and the hyper-volume of the actual

solution. We report results after each evaluation of the black-box functions. (left

column) Two objectives and two constraints. Input space of four dimensions (d = 4).

(right column) Four objectives and two constraints. Input space of six dimensions

(d = 6). (top row) Noiseless evaluation scenario. (bottom row) Noisy evaluation

scenario. Best seen in color.

Figure 5 shows the average results obtained for each method and the cor-

responding error bars. We observe that the PESMOC approaches outperform

both BMOO and the random search approach in the two settings considered.

In particular, PESMOC is able to find better solutions to the optimization

problems considered, which are more accurate than those obtained by the

other methods. These solutions have a hyper-volume that is closer to the

hyper-volume of the actual Pareto set. The random search method is also

outperformed by BMOO in the two settings considered. However, BMOO
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gives worse results in the noisy scenario, as it tends to provide results that

are closer to this method. Importantly, the decoupled version of PESMOC

is similar or even better than the corresponding coupled counterpart. When

the input dimension d grows the improvements become evident. These re-

sults confirm the benefits of a decoupled evaluation setting. In particular,

the decoupled version of PESMOC is the best overall method, significantly

outperforming all other approach in the 6-dimensional setting.

We also compare here the average time used by each strategy to choose

the next evaluation. For this, we consider the synthetic experiments that

involves 2 objectives and 2 constraints, in a 4-dimensional input space, with

noisy evaluations, and the experiment that involves 4 objectives, 2 constraints

and a 6-dimensional input space, not considering noise. For each method

and each iteration, we measure the average time spent in the computation

and maximization of the acquisition function. In the case of PESMOC this

time includes the time required to run EP until convergence, and the time

required to optimize the acquisition function. In the case of BMOO this

time includes the time required to generate the Monte Carlo samples used in

(20) to approximate the acquisition function, and the time required for its

optimization. The results obtained are shown in Table 1. We do not include

in this table the random search strategy, since the time it requires to choose

the next evaluation is negligible.

Table 1 shows that the fastest strategy is PESMOC, followed by the

decoupled version of PESMOC and BMOO. BMOO is significantly slower

than PESMOC, due to the need of running the Metropolis-Hastings algorithm.

By constrast, in PESMOC, EP converges in just a few iterations. Note that the
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Table 1: Average time in seconds spent on each iteration by each method. First row

corresponds to the 4-dimensional input space experiment and the second row corresponds

to the 6-dimensional input space experiment.

Experiment PESMOC coupled PESMOC decoupled BMOO

First 41.40± 1.48 49.63± 1.02 67.41± 4.29

Second 112.94± 3.25 264.60± 3.36 307.90± 34.00

decoupled version of PESMOC is slightly slower than the coupled counterpart

per iteration. The reason is that it requires the optimization of one acquisition

function per each black-box function, to determine the next evaluation, instead

of just one as in the PESMOC case. Note that this only represents a small

fraction of the total time per iteration of PESMOC in the decoupled setting

(the time of fitting the GPs and running the EP algorithm to approximate the

factors that do not depend on the candidate point x is similar for the coupled

and the decoupled setting). Importantly, however, the decoupled version will

need as many more iterations as black boxes are present in the problem. For

example, in the first problem, which has 4 black-box functions, to perform 400

evaluations of the black-boxes, the coupled version of PESMOC will require

100 iterations, while the decoupled version will require 400. The results shown

in the table are expected to generalize to other problems involving a different

number of black-boxes or input dimensions.

We also illustrate here the shape of the acquisition function of PESMOC

on a toy 2-dimensional optimization problem with input domain X given by

the box [−10, 10]× [−10, 10]:

min
x∈X

f1(x, y) = xy, f2(x, y) = −yx s.t. x ≥ 0, y ≥ 0 .
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In this experiment the feasible space F is given by the box [0, 10]× [0, 10].

Figure 6 shows the location of the first 20 evaluations made by each method

(blue crosses) and the level curves of the acquisition function of PESMOC and

BMOO. We observe that PESMOC and BMOO quickly identify the feasible

space F , and focus on evaluating the black-box functions in that region. By

contrast, the random search strategy explores the space more uniformly and

evaluates the black-boxes more frequently in regions of the input space that

are infeasible. We observe that the acquisition functions of PESMOC and

BMOO take high values inside F and low values outside F .
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Figure 6: Location in input space (denoted with a blue cross) of each of the

evaluations made by PESMOC (left), random search (middle) and BMOO (right).

In the case of PESMOC and BMOO, we also plot the level curves of the acquisition

function. The feasible region is the the box [0, 10]× [0, 10]. Best seen in color.

4.3. Benchmark Experiments

In the previous experiments the black-boxes are sampled from a GP

prior, which is the underlying model assumed by the different BO methods

compared. This hypothesis need not be satisfied in practice. Therefore, model

misspecification may have an impact in the performance of BO methods. In

this section we carry out extra experiments with the goal of comparing the
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different methods under such a scenario. For this, we consider 7 classical

benchmark problems used to assess multi-objective optimization methods

with constraints [8, 11]. A summary of these problems is displayed in Table

2 and 3. All problems contain several input variables, multiple objectives

and several constraints. Importantly, in these experiments we transform

each constraint cj(x) so that the corresponding optimization problem can be

expressed as in (1). Furthermore, we also consider a noiseless and a noisy

setting, in which the evaluations of the black-boxes are contaminated with

additive Gaussian noise. The variance of the noise is set to 1% of the range

of potential values of the corresponding black-box. This range of values is

found by evaluating each black-box function on a grid. These experiments are

repeated 100 times for each method and each dataset and we report average

results. The metric used to assess the performance of each method is the

same as the one employed in the previous section.
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Table 2: Summary of BNH, SRN, TNK and OSY problems used in the benchmark

experiments.

Benchmark Experiments

Problem Name Input Space Objectives fk(x) and Constraints cj(x)

BNH
x1 ∈ [0, 5]

x2 ∈ [0, 3]

f1(x) = 4x2
1 + 4x2

2

f2(x) = (x1 − 5)2 + (x2 − 5)2

c1(x) ≡ (x1 − 5)2 + x2
2 ≤ 25

c2(x) ≡ (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

SRN
x1 ∈ [−20, 20]

x2 ∈ [−20, 20]

f1(x) = 2 + (x1 − 2)2 + (x2 − 2)2

f2(x) = 9x1 − (x2 − 1)2

c1(x) ≡ x2
1 + x2

2 ≤ 225

c2(x) ≡ x1 − 3x2 + 10 ≤ 0

TNK
x1 ∈ [0, π]

x2 ∈ [0, π]

f1(x) = x1

f2(x) = x2

c1(x) ≡ x2
1 + x2

2 − 1− 0.1cos(16arctanx1x2 ) ≥ 0

c2(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

OSY

x1 ∈ [0, 10]

x2 ∈ [0, 10]

x3 ∈ [1, 5]

x4 ∈ [0, 6]

x5 ∈ [1, 5]

x6 ∈ [0, 10]

f1(x) = −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

c1(x) ≡ x1 + x2 − 2 ≥ 0

c2(x) ≡ 6− x1 − x2 ≥ 0

c3(x) ≡ 2− x2 + x1 ≥ 0

c4(x) ≡ 2− x1 + 3x2 ≥ 0

c5(x) ≡ 4− (x3 − 3)2 − x4 ≥ 0

c6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0
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Table 3: Summary of CONSTR, Two-bar Truss and Welded Beam problems used in the

benchmark experiments.

Benchmark Experiments

Problem Name Input Space Objectives fk(x) and Constraints cj(x)

CONSTR
x1 ∈ [0.1, 10]

x2 ∈ [0, 5]

f1(x) = x1

f2(x) = (1+x2)
x1

c1(x) ≡ x2 + 9x1 ≥ 6

c2(x) ≡ −x2 + 9x1 ≥ 1

Two-bar

Truss

Design

x1 ∈ [0, 0.01]

x2 ∈ [0, 0.01]

x3 ∈ [1, 3]

f1(x) = x1

√
16 + x2

3 + x2

√
1 + x2

3

f2(x) = max(20
√

16+x3
x1x3

,
80
√

1+x23
x2x3

)

c1(x) ≡ max(20
√

16+x3
x1x3

,
80
√

1+x23
x2x3

) ≤ 105

Welded

Beam

Design

h ∈ [0.125, 5]

b ∈ [0.125, 5]

l ∈ [0.1, 10]

t ∈ [0.1, 10]

f1(x) = 1.10471h2l + 0.04811tb(14 + l)

f2(x) = 2.1952
t3b

c1(x) ≡ 13600− τ(x) ≥ 0

c2(x) ≡ 30000− 504000
t2b

≥ 0

c3(x) ≡ b− h ≥ 0

c4(x) ≡ 64746.022(1− 0.0282346t)tb3 − 6000 ≥ 0

τ(x) =

√
γ(x)2 + ε(x)2 + lγ(x)ε(x)√

0.25(l2+(h+t)2)

γ(x) = 6000√
2hl

ε(x) =
6000(14+0.5l)

√
0.25(l2+(h+t)2)

2
√

2hl( l2

12+0.25(h+t)2
)

Figure 7 and 8 show the average results of each method on these exper-

iments with the corresponding error bars. In these experiments, when a

particular method outputs an infeasible solution, (i.e., a solution that does

not fulfil at least one of the constraints), that result is ignored. To guarantee a

fair comparison, we have also recorded the fraction of times that an infeasible
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solution is returned by each method. If the performance of two methods

is similar, it will be preferred the method that gives a lower percentage of

infeasible solutions. In practice, we have observed that all the BO methods

compared tend to provide a similar fraction of infeasible points. An excep-

tion is the random search strategy that systematically tends to recommend

infeasible solutions. The complete results are found in the supplementary

material.
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SRN. Noisy Observations.
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TNK. Noiseless Observations.

●
●

●
●●●●●●●

●

●

●

●

●
●●

●
●●●

●
●

●
●

●●●
●

●

●●

●●●
●

●●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●●

●

●
●

●

●

●

●
●●

●●●●

●●●●

●

●
●

●

●

●
●

●
●●

●●●●●●●●
●

●●●
●

●●●●●
●●

●●●●●●
●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●
●

●●
●●

●●●
●

●●●
●●

●

●●
●

●●●●●
●

●●●●

●
●

●●●●●●●
●

●

●

●

●
●

●●

●●
●●●●●

●
●

●

●●●
●

●●
●

●

●
●

●●●●
●

●
●

●
●●

●●●
●

●

●

●●
●●●●

●
●

●●
●●●●

●●
●

●

●●●

●

●

●●●●●

●●
●

●●
●

●
●●●●●●

●●●●●●

●●
●●●●●●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●●●

●
●●

●●●●
●●●●●●●●●●●

●
●●●●●

●●
●●●●●●

●●●●
●

●
●

●
●●●●●●●

●●●
●●

●
●●●●●−12.20

−11.06

−9.92

−8.78

−7.64

−6.50

0 25 50 75 100
Number of Function EvaluationsLo

g 
di

ffe
re

nc
e 

op
tim

um
 H

yp
er

vo
lu

m
e

Methods
●

●

●

●

PESMOC
Random
BMOO
PESMOC DECOUPLED

TNK. Noisy Observations.
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OSY. Noiseless Observations.
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OSY. Noisy Observations.

Figure 7: Results for the problems BNH, SRN, TNK and OSY. Noiseless and noisy settings.

The plots show the average log difference w.r.t to the optimal hyper-volume.
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CONSTR. Noiseless Observations.
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CONSTR. Noisy Observations.
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TwoBarTruss. Noiseless Observations.
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TwoBarTruss. Noisy Observations.
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WeldedBeam. Noiseless Observations.
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Figure 8: Results for CONSTR, TwoBarTruss and WeldedBeam. Noiseless and noisy

settings. The plots show the average log difference w.r.t to the optimal hyper-volume.

We observe that, on average, PESMOC in the coupled and decoupled

setting, outperforms the other methods for multi-objective constrained opti-

mization. BNH is solved pretty fast by all methods, but PESMOC, under a

decoupled evaluation setting, obtains better results with a smaller number of

evaluations. These differences are also notable in the noisy setting. In this

case, PESMOC clearly outperforms BMOO and the random search strategy.

In the SRN, TNK and OSY problems, results are more or less the same but
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with bigger differences among the methods. BMOO tends to systematically

perform worse in the presence of noise. Importantly, PESMOC decoupled

performs significantly better on TNK. This is because this strategy is able

to focus on the evaluation of the most difficult black-box functions. More

precisely, in this problem one of the constraints plays a critical role in the

identification of the Pareto optimal set and PESMOC decoupled is able to

focus on its evaluation. This is a clear example of the benefits of a decoupled

evaluation setting. The OSY problem has a higher dimensionality and hence,

due to the greedy nature of BMOO that tends to explore too much, PESMOC

approaches clearly do better.

The problem CONSTR is very easy to solve so BMOO does a good job

on it, leaving PESMOC behind but resulting in the same performance as

PESMOC decoupled. TwoBarTruss has the same nature as TNK, with the

optimum lying in the frontier of the feasible and infeasible space. Again,

PESMOC decoupled explores massively the constraints, solving the problem

and giving better results that the other methods with a smaller number of

evaluations. In the noise scenario, however, both PESMOC approaches tie.

The last problem reported is WeldedBeam, where both PESMOC approaches

outperform the other methods. In the noisy scenario PESMOC under a

coupled evaluation setting wins. We believe that model misspecification and

the influence of noise may affect negatively the decoupled approach in certain

scenarios.

4.4. Finding an Optimal Ensemble of Decision Trees

We compare the different methods on a practical problem in which the

optimal hyper-parameters of an ensemble of decision trees are optimized.
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We consider two objectives: the prediction error of the ensemble and its

size. These two objectives are conflictive since smaller ensembles will have

in general higher error rates and the other way around. The ensemble size

is related to the storage requirements and also to the speed of classification,

which can play a critical role in real-time prediction systems. The dataset

considered is the German Credit dataset, which is extracted from the UCI

repository [12]. This is a binary classification dataset with 1, 000 instances

and 20 attributes. The prediction error is measured using a 10-fold-cross

validation procedure that is repeated 5 times to reduce the variance of the

estimates. We measure the ensemble size in terms of the logarithm of the

sum of the total number of nodes in each of trees of the ensemble.

To get ensembles of decision trees with good prediction properties it is

essential to enforce diversity among the ensemble classifiers [13]. In particular,

if all the decision trees of the ensemble are equal, there is no expected gain

from aggregating their predictions. However, too much diversity in the

ensemble can also lead to a poor prediction performance. For example, if the

predictions made are completely random, one cannot obtain improved results

by aggregating the individual classifiers. Therefore, we consider here several

mechanisms to encourage diversity in the ensemble, and let the amount of

diversity be specified in terms of adjustable parameters.

To build the ensemble we employ decision trees in which the best split

at each node corresponds to the attribute that decreases the most the data

impurity among a randomly chosen set of attributes (we use the DecisionTree

implementation provided in the python package scikit-learn), and the number

of random attributes is an adjustable parameter. This is the approach followed
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in random forest [4]. Each tree is trained on a random subset of the training

data of a particular size, which is another adjustable parameter. This approach

is known in the literature as subbagging [6]. We consider also an extra method

to introduce diversity known as class-switching [33]. In class-switching, the

labels of a random fraction of the training data are changed to a different

class. The final ensemble prediction is computed by majority voting.

More precisely, the adjustable parameters of the ensemble are: the number

of decision trees built (between 1 and 1, 000), the number of random chosen

attributes considered at each split in the building process of each tree (between

1 and 20), the minimum number of samples required to split a node (between

2 and 200), the fraction of randomly selected training data used to build each

tree (between 0.5 and 1.0), and the fraction of training instances whose labels

are changed after the sub-sampling process (between 0.0 and 0.7).

A problem of classification ensembles is that computing predictions can

take much longer than using a single classifier. The reason for this is that

one has to query all the ensemble classifiers about the class label of each test

instance. A potential way of accelerating predictions is to use a dynamic

ensemble pruning technique [23]. Assume that for a test instance we have

queried only a fraction of the ensemble classifiers. It is possible to estimate the

probability that the majority vote decision of the ensemble is not changed by

the votes of the remaining classifiers. If this probability exceeds a particular

threshold (e.g., 99%), the querying process can be early stopped and the

current majority class can be returned as the final ensemble prediction.

Therefore, we introduce as a constraint of the optimization problem, that the

average speed up factor of the classification process given by the previous
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dynamic ensemble pruning technique is at least 25%. We have carefully chosen

this value to guarantee that the constraint is active at the optimal solution.

In practice, the methods compared rarely provide infeasible solutions. If this

is the case, we simply ignore those recommendations.

Note that the setting described is suited for the decoupled version of

PESMOC since both objectives and the constraint can be evaluated separately.

In particular, the total number of nodes is estimated by building only once

the ensemble without leaving any data aside for validation, as opposed to

the cross-validation approach used to estimate the ensemble error, which

requires to build several ensembles on subsets of the data, to then estimate

the prediction error on the data left out for validation. Similarly, evaluating

the constraint involves building a lookup table whose entries indicate, for

each different number of classifiers queried so far, how many votes of the most

common class are needed to early stop the prediction process. This table is

expensive to build and is different for each ensemble size. See [23] for further

details.

We report in Figure 9 the results obtained for each method after 100

and 200 evaluations of the corresponding black-box functions. This figure

shows the average Pareto front obtained by each method across the 100

different repetitions of the experiments. The Pareto front is simply given

by the objective values associated to the recommendation made by each

method. In general, and assuming minimization, the higher the volume of

points that is above this set of points in the objective values space the better

the performance of a method, as estimated by the hyper-volume metric. We

observe that PESMOC outperforms BMOO and the random search strategy.
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Furthermore, PESMOC decoupled obtains better results that PESMOC. More

precisely, PESMOC and PESMOC decoupled find better solutions in the

sense that the ensembles obtained have a lower size and a smaller prediction

error. Last, we note that BMOO is able to find the ensembles of the smallest

size, but with higher levels of error, in a smaller number of evaluations.

We also show in Table 4 the average hyper volume of the solutions

provided by each method. In general, a higher hyper-volume implies that

the method gives better results. The values obtained agree with the previous

figure. Namely, PESMOC decoupled outperforms the other methods, followed

closely by PESMOC in a coupled setting, BMOO and the random search

strategy. After 200 evaluations the differences in the hyper-volume between

PESMOC decoupled and the other methods become bigger. This is probably

a consequence of PESMOC decoupled performing more evaluations of the

most complicated black-box function.
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Figure 9: Results of each method on the problem of finding an optimal ensemble of

classification trees. The Pareto frontier is shown for each method. The volume of points

above the frontier (hyper-volume) represents the quality of the solution. A wider volume is

always better.

In the problem described, we expect the prediction error to be the black-

box function with the most important role in solving the optimization problem.

Probably, it is more difficult to model than the the ensemble size or the speed-
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Table 4: Average hyper-volume of each method on the task of finding an optimal classifica-

tion ensemble. Larger hyper-volumes means better quality. PESMOC c. means PESMOC

coupled and PESMOC d. means PESMOC decoupled.

# Eval. PESMOC c. PESMOC d. BMOO Random

100 0.309± 0.001 0.311± 0.002 0.293± 0.001 0.265± 0.002

200 0.325± 0.001 0.338± 0.001 0.309± 0.001 0.279± 0.001

up factor due to the dynamic pruning technique. To check this hypothesis

we record for PESMOC decoupled the number of times that each black-box

function is evaluated. The average results obtained are shown in Figure 10.

This figure shows, for each iteration of the optimization process, the average

number of evaluations of each black-box function performed by PESMOC

decoupled. We can see that the previous hypothesis is validated by the plot.

Namely, the prediction error is evaluated more frequently than the other black-

box functions. This also explains the better results obtained by PESMOC

decoupled. In particular, this technique is able to focus on the evaluation

of the most important black-box function. Of course, the prediction error

takes more time to evaluate than the other black-box functions, so PESMOC

decoupled also takes a bit more time than the other techniques. In any case,

this result illustrates the potential benefits of a decoupled evaluation strategy,

which chooses not only at which point to perform the evaluation, but also

which black-box function should be evaluated each time.

4.5. Finding an Optimal Deep Neural Network

In this section we evaluate the performance of the different methods on

the task of finding an optimal deep neural network on the MNIST dataset
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Figure 10: Evaluations of each black-box function made by PESMOC decoupled in the

problem of finding an optimal ensemble of decision tree classifiers. The error objective is

black-box function chosen most frequently for evaluation.

[32]. This dataset contains a training set of 60,000 instances. The objectives

that we consider for this problem include minimizing the prediction error of

the neural network on a validation dataset of 10,000 instances (extracted from

the original training set) and minimizing the time that such a neural network

will take for making predictions on such a set. Note that these are conflictive

objectives in the sense that most probably minimizing the prediction error on

the validation set will require bigger neural networks with a larger number

of hidden units and layers. Of course, these neural networks will require

longer prediction times. Conversely, the minimization of the prediction time

will probably involve using neural networks of smaller size whose prediction

performance will be worse.

Besides this, we also consider that we may be interested in codifying such
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a neural network into a chip. This can be interesting for example if we would

like to use that neural network in an electronic device such as an smart-phone.

Motivated by this scenario we propose to constrain the optimization problem

in such a way that the area of the resulting deep neural network, after being

codified into a chip, is below one squared millimeter. We have carefully chosen

this value to guarantee that the constraint is active at the optimal solution.

To measure this area we use the hardware simulator Aladdin [44], which

given a computer program describing the operations carried out by the deep

neural network, outputs an estimate of the area of a chip implementing those

operations.

In practice, the methods compared rarely provide infeasible solutions. If

this is the case, we simply ignore those recommendations. To train the deep

neural network we use the Keras library [9]. Prediction time is measured

on the validation set of 10, 000 training instances. The prediction time is

normalized by the smallest possible prediction time, which corresponds to a

neural network of a single layer with 5 hidden units.

Importantly, the different black-box functions involved in the optimization

problem just described can be evaluated separately in a decoupled way. The

reason for this is that the prediction time and the chip area does not need

specific values for the neural network weights and biases. These can simply

be initialized randomly. These two black-box functions only depend on the

particular architecture of the neural network (the number of layers and the

number of hidden units on each layer). Therefore, the problem described is

adequate for PESMOC decoupled. The specific steps involved in measuring

the different black-boxes are displayed in Figure 11.
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Figure 11: Diagram showing the architecture of systems that we have used for the deep

neural network experiments. The different steps involved in the evaluation of each black-box

function are displayed here.

The input parameters that we consider for optimization in this problem are:

The logarithm of the `1 and `2 weight regularizers; the dropout probability;

the logarithm of the initial learning rate; the number of hidden units per

layer; and the number of hidden layers. We have also considered two variables

that have an impact in the hardware implementation of the neural network.

Namely, the logarithm (in base 2) of the array partition factor and the loop

unrolling factor. See [44] for further details. A summary of the parameters

considered, their potential values, and their impact in each black-box function

(prediction error, time and chip area) is displayed in Table 5.
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Table 5: Parameter space of the deep neural network experiments. PE = Prediction error.

T = Time. CA = Chip area.

Parameter Min Max Step Black-box

Hidden Layers 1 3 1 PE/T/CA

Neurons per Layer 5 300 1 PE/T/CA

Learning rate e−20 1 ε PE

Dropout rate 0 0.9 ε PE

`1 penalty e−20 1 ε PE

`2 penalty e−20 1 ε PE

Memory partition 1 32 2x CA

Loop unrolling 1 32 2x CA

In these experiments we evaluated the performance of each method after

50 and 100 evaluations of the black-boxes. Furthermore, the training of the

deep neural networks is carried out using ADAM with the default parameter

values [30]. The loss function is the categorical cross-entropy. The last layer

of the neural network contains 10 units and a soft-max activation function.

All other layers use Re-Lu as the activation function. Finally, each neural

network is trained during a total of 150 epochs using mini-batches of size

4, 000 instances.

The average results obtained across 100 repetitions of the experiments can

be shown in Figure 12 after 50 and 100 evaluations of the black-boxes. This

figure shows the average Pareto frontier obtained by each method. As in the

previous experiments PESMOC decoupled outperforms the others methods.

PESMOC is the second best method, giving solutions with a best trade-off
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between prediction error and time ratio (prediction time normalized with

respect to the smallest possible prediction time), under the constraint that the

chip area is below the specified value. BMOO also gives better results than

the random search strategy which is the worst performing method. These

experiments show strong empirical evidence supporting that PESMOC is a

competitive strategy for constrained multi-objective optimization. We also

provide the average hyper-volume of the solutions found by each method after

50 and 100 evaluations of the black-boxes. These results are displayed in

Table 6. We observe that PESMOC decoupled outperforms the rest of the

methods. This strategy finds solutions that, on average, have a significantly

higher hyper-volume than any of the other methods. Furthermore, PESMOC

is able to find solutions that are slightly better than those obtained by BMOO.
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Figure 12: Results of each method on the problem of finding an optimal neural network on

the MNIST dataset. The Pareto frontier is shown for each method. The volume of points

above the frontier (hyper-volume) represents the quality of the solution. A wider volume is

always better.

We also analyze in these experiments which black-box function is evaluated

more frequently by PESMOC decoupled. For this, we record the number of

evaluations of each black-box made by this strategy as a function of the total
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Table 6: Average hyper-volume of each method on the task of finding an optimal neural

network on the MNIST dataset. Larger hyper-volumes means better quality. PESMOC c.

means PESMOC coupled and PESMOC d. means PESMOC decoupled.

# Eval. PESMOC c. PESMOC d. BMOO Random

50 47.230± 0.079 47.608± 0.056 46.104± 0.267 44.886± 0.135

100 47.621± 0.054 48.069± 0.039 47.304± 0.083 45.714± 0.093

evaluations made. The average results obtained across the 100 repetitions of

the experiments are shown in Figure 13. We observe that PESMOC decoupled

tends to evaluate a significantly higher number of times the prediction error

of the neural network. This also explains the better results obtained by this

strategy which is able to focus on the evaluation of the black-box function

that is most difficult to model or that plays a critical role in the optimization

problem. Of course, the prediction error takes more time to evaluate than the

other black-box functions, so PESMOC decoupled also takes a bit more time

than the other techniques in this problem. In any case, this result illustrates

again the potential benefits of a decoupled evaluation strategy, which can

be used to choose in an intelligent way which black-box function should be

evaluated next at each iteration of the optimization process.

5. Conclusions

We have described an information-based approach that can be used to

address a wide range of Bayesian optimization problems, including multiple

objectives and several constraints. Motivated by the lack of methods that are

available to solve these problems with an adequate exploration-exploitation

balance, PESMOC has been presented. At each iteration, PESMOC evaluates
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Figure 13: Evaluations of each black-box function made by PESMOC decoupled in the

problem of finding an optimal neural network on the MNIST dataset. The error is black-box

function that is chosen most frequently for evaluation by PESMOC decoupled.

the objective functions and the constraints at an input location that is

expected to reduce the entropy of the posterior distribution of the Pareto set

in the feasible space the most. The computation of the expected reduction

of the entropy of such a random variable is intractable. Nevertheless, we

have described how the required computations can be approximated using

expectation propagation [34].

Importantly, in the proposed approach the acquisition function can be

expressed as a sum of a different acquisition per black-box function (objective

or constraint). This means that PESMOC allows for a decoupled evaluation

setting. In this scenario one is not only interested in finding which is the

next point at which the black-boxes should be evaluated, but also in finding

what black-box function or subset of these should be evaluated next. For this,
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one simply has to optimize the individual acquisition functions and compare

their corresponding values. Other related methods from the literature do

not allow for such a setting since the utility function they are based on (the

improvement of the hyper-volume metric) requires the evaluation of all the

black-box functions.

We have illustrated in a wide range of experiments, including synthetic,

benchmark and real-world problems the benefits of PESMOC. Furthermore,

we have compared results in these experiments with a state-of-the-art method

for constrained multi-objective Bayesian optimization, BMOO [16], which

is based on the expected improvement of the hyper-volume, and with a

baseline method that explores the input space uniformly at random. These

experiments show that PESMOC is able to obtain better results in terms of

the hyper-volume of the recommendations made. More precisely, it provides

estimates of the Pareto set in the feasible space that are more accurate with a

smaller number of evaluations. Furthermore, PESMOC in a decoupled setting

is able to provide significantly better results in several of these problems.

This is very useful in practical situations in which the objectives and the

constraints are very expensive to evaluate.
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