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Abstract. Recently, it has been shown that in super-resolution, there
exists a tradeoff relationship between the quantitative and perceptual
quality of super-resolved images, which correspond to the similarity to
the ground-truth images and the naturalness, respectively. In this pa-
per, we propose a novel super-resolution method that can improve the
perceptual quality of the upscaled images while preserving the conven-
tional quantitative performance. The proposed method employs a deep
network for multi-pass upscaling in company with a discriminator net-
work and two quantitative score predictor networks. Experimental results
demonstrate that the proposed method achieves a good balance of the
quantitative and perceptual quality, showing more satisfactory results
than existing methods.

Keywords: Perceptual super-resolution, deep learning, aesthetics, im-
age quality

1 Introduction

Single-image super-resolution, which is a task to increase the spatial resolution
of low-resolution images, has been widely studied in recent decades. One of
the simple solutions for the task is to employ interpolation methods such as
nearest-neighbor and bicubic upsampling. However, their outputs are largely
blurry because fine details of the images cannot be recovered. Therefore, many
researchers have investigated how to effectively restore high-frequency details.
Nevertheless, it is still highly challenging due to the lack of information in the
low-resolution images, i.e., an ill-posed problem [17].

Until the mid-2010s, feature extraction-based methods have been proposed,
including sparse coding [38], neighbor embedding [18], and Bayes forest [29].
After that, the emergence of deep learning for visual representation [7], which
is triggered by an image classification challenge (i.e., ImageNet) [16], has also
flowed into the field of super-resolution [39]. For instance, the super-resolution
convolutional neural network (SRCNN) model proposed by Dong et al. [5] in-
troduced convolutional layers and showed better performance than the previous
methods.

To build a deep learning-based super-resolution model, it is required to define
loss functions that are the objectives of the model to be trained. Loss functions
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(a) (b) (c) (d)

Fig. 1. Example results obtained for an image of the PIRM dataset [3]. (a) Ground-
truth (b) Upscaled by bicubic interpolation (c) Upscaled without perceptual consider-
ation (d) Upscaled with perceptual consideration

measuring pixel-by-pixel differences of the ground-truth and upscaled images
are frequently considered, including mean squared error and mean absolute er-
ror [39]. They mainly aim at guaranteeing quantitative conditions of the ob-
tained images, which can be evaluated by quantitative quality measures such as
peak signal-to-noise ratio (PSNR), root mean squared error (RMSE), and struc-
tural similarity (SSIM) [37]. Fig. 1 (c) shows an example image generated by a
deep learning-based super-resolution model, enhanced upscaling super-resolution
(EUSR) [14], from the downscaled version of Fig. 1 (a). Compared to the image
upscaled by bicubic interpolation shown in Fig. 1 (b), the image generated by
the deep learning-based method follows the overall appearance of the original
image with sharper boundaries of the objects and scenery.

Although existing methods based on minimizing pixel-by-pixel differences
achieve great performance in a quantitative viewpoint, they do not ensure nat-
uralness of the output images. For example, fine details of trees and houses
are not sufficiently recovered in Fig. 1 (c). To improve the naturalness of the
images, two approaches have been proposed in the literature: using generative
adversarial networks (GANs) [6] and employing intermediate features of the
common image classification network models. For example, Ledig et al. [17] pro-
posed a super-resolution model named SRGAN, which employs a discriminator
network and trains the model to minimize differences of the intermediate fea-
tures of VGG19 [31] when the ground-truth and upscaled images are inputted.
It is known that these methods enhance perceptual performance significantly
[4]. Here, the perceptual performance can be measured by the metrics for visual
quality assessment such as blind/referenceless image spatial quality evaluator
(BRISQUE) [24] and naturalness image quality evaluator (NIQE) [25].

However, two issues still remain unresolved in these approaches. First, al-
though these approaches improve naturalness of the images, perceptual quality
is only indirectly considered and thus the improvement may be limited. The
network models for extracting intermediate features are for image classification
tasks, thus forcing the features to be similar does not guarantee perceptually im-
proved results. In addition, it is possible that the discriminator network learns
the criteria that can differentiate generated images from the real ones but are
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not related to the perceptual aspects. For instance, when the trained discrimina-
tor relies on just finding high-frequency components, the super-resolution model
may add some unexpected textures in low-frequency regions such as ground and
sky.

Second, these approaches tend to sacrifice a large amount of the quantita-
tive quality. For example, the SRGAN-based models achieve better perceptual
performance than the other models in terms of BRISQUE and NIQE, but they
record worse quantitative quality, showing larger RMSE values [4]. Since the
primary objective of the super-resolution task is to make the upscaled images
identical to the ground-truth high-resolution images, it is necessary to prop-
erly regularize the upscaling modules to keep balance of the quantitative and
qualitative quality.

In this paper, we propose a novel super-resolution method named “Four-
pass perceptual super-resolution with enhanced upscaling (4PP-EUSR),” which
is based on the recently proposed EUSR model [14]. Our model aims at resolv-
ing the aforementioned issues via two innovative ways. First, our model employs
so-called “multi-pass upscaling” during the training phase, where multiple up-
scaled images produced by passing the given low-resolution image through the
multiple upscaling paths in our model are used in order to consider various
possible characteristics of upscaled images. Second, we employ qualitative score
predictors, which directly evaluate the aesthetic and subjective quality scores
of the upscaled images. This architecture ensures high perceptual quality with
preserving the quantitative performance of the upscaled images, as exemplified
in Fig. 1 (d).

The rest of the paper is organized as follows. First, we provide a brief review
of the related work in Section 2. Then, an overview of the proposed method is
given in Section 3, including the base deep learning model, multi-pass upscaling
for training, structure of the discriminator, and structures of the qualitative score
predictors. We explain training procedures of our model with the employed loss
functions in Section 4. In-depth experimental analysis of our results is shown in
Section 5. Finally, we conclude our work in Section 6.

2 Related work

In this section, we review the related work of deep learning-based super-resolution
in two branches: super-resolution models without and with consideration of nat-
uralness.

2.1 Deep learning-based super-resolution

One of the earliest super-resolution models based on deep learning is SRCNN,
which was proposed by Dong et al. [5]. The model takes an image upscaled by
the bicubic interpolation and enhances it via two convolutional layers. Kim et al.
proposed the very deep super-resolution (VDSR) model [13], which consists of 20
convolutional layers. In recent days, residual blocks having shortcut connections
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[9] are commonly used in the super-resolution models. For example, Ledig et al.
[17] proposed a model named SRResNet, which contains 16 residual blocks with
batch normalization [11] and parametric ReLU activation [8]. Lim et al. [19]
developed two super-resolution models for the NTIRE 2017 single-image super-
resolution challenge [34]: the enhanced deep super-resolution (EDSR) model for
single-scale super-resolution and the multi-scale deep super-resolution (MDSR)
model for multi-scale super-resolution. They found that removing batch normal-
ization and blending outputs generated from geometrically transformed inputs
help improving the overall quantitative quality. Recently, Kim and Lee [14] sug-
gested a multi-scale super-resolution method named EUSR, which consists of
so-called “enhanced upscaling modules” and performed well in the NTIRE 2018
single-image super-resolution challenge [35]. Zhang et al. [42] proposed a super-
resolution model based on residual dense network (RDN), which extends the
residual network to have densely-connected layers. Zhang et al. [41] proposed a
residual channel attention networks (RCAN), which brings an attention mecha-
nism into the super-resolution task and achieves better quantitative performance
than EDSR.

2.2 Super-resolution considering naturalness

Along with ensuring high quantitative quality in terms of PSNR, RMSE, or
SSIM, naturalness of the upscaled images, which can be measured by quality
metrics such as BRISQUE and NIQE, has been also considered in some studies.
There exist two common approaches: employing GANs [6] and employing im-
age classifiers. In the former approach, the discriminator network tries to distin-
guish the ground-truth images from the upscaled images and the super-resolution
model is trained to fool the discriminator so that it cannot distinguish the up-
scaled images properly. When an image classifier is used, the super-resolution
model is trained to minimize the difference of the features obtained at the in-
termediate layers of the classifier for the ground-truth and upscaled images.
For example, Johnson et al. [12] used the trained VGG16 network to extract
the intermediate features and regarded the squared Euclidean distance between
them as the loss function. Ledig et al. [17] employed an adversarial network and
differences of the features obtained from the trained VGG19 network for calcu-
lating losses of their super-resolution model (i.e., SRResNet), which is named
as SRGAN. Mechrez et al. [22] defined the so-called “contextual loss,” which
compares the statistical distribution of the intermediate features obtained from
the trained VGG19 model, to train their super-resolution model. These models
focus on ensuring naturalness of the upscaled images but tend to sacrifice a large
amount of the quantitative quality [4].

3 Overview of the proposed method

The architecture of the proposed method can be disassembled into four compo-
nents (Fig. 2): a multi-scale upscaling model, employing the model in a multi-pass
manner, a discriminator, and qualitative score predictors.
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Fig. 2. Overview of the proposed method. First, our super-resolution model (Sec-
tion 3.1) generates three upscaled images via multi-pass upscaling (Section 3.2). The
discriminator tries to differentiate the upscaled images from the ground-truth (Sec-
tion 3.3). The two qualitative score predictors measure the aesthetic and subjective
quality scores, respectively (Section 3.4). The outputs of the discriminator and the
score predictors are used to update the super-resolution model.

3.1 Enhanced upscaling super-resolution

The basic structure of our model is from the EUSR model [14], which is shown in
Fig. 3. It mainly consists of three parts: scale-aware feature extraction, shared
feature extraction, and enhanced upscaling. First, the scale-aware feature ex-
traction part extracts low-level features from the input image by using so-called
“local residual blocks.” Then, a residual module in the shared feature extraction
part, which consists of local residual blocks and a convolutional layer, extracts
higher-level features regardless of the scale factor. Finally, the proceeded features
are upscaled via “enhanced upscaling modules,” where each module increases the
spatial resolution of the input by a factor of 2. Thus, the ×2, ×4, and ×8 upscal-
ing paths have one, two, and three enhanced upscaling modules, respectively. The
configurable parameters of the EUSR model are the number of output channels
of the first convolutional layer, the number of local residual blocks in the shared
feature extraction part, and the number of local residual blocks in the enhanced
upscaling modules. We consider EUSR as our base upscaling model because it
is one of the state-of-the-art approaches supporting multi-scale super-resolution,
which enables generating multiple upscaled images from a single model.

3.2 Multi-pass upscaling

The original EUSR model supports multi-scale super-resolution by factors of 2,
4, and 8. During the training phase, our model utilizes all these upscaling paths
to produce three output images, where we make the output images have the
same upscaling factor of 4 for a given image as follows (Fig. 4). The first one
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Fig. 3. Structure of the EUSR model [14].
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Fig. 4. Multi-pass upscaling process, which produces three upscaled images by a factor
of 4 from a shared pre-trained EUSR model.

is directly generated from the ×4 path. The second one is generated by passing
the given image through the ×2 path two times. The third one is generated via
bicubic downscaling of the image obtained from the ×8 path by a factor of 2.
Thus, the model is employed four times for each input image.

The original purpose of multi-scale models such as MDSR [19] and EUSR [14]
is to support variable scaling factors on a single model. On the other hand, our
multi-pass upscaling extends it with a different objective, which is to improve the
quality of the upscaled images for a fixed scaling factor. Since all three images
obtained from different upscaling paths are used for training, the model has
to learn reducing artifacts that may occur during direct upscaling via the ×4
path, two-pass upscaling via the ×2 path, and upscaling via the ×8 path and
downscaling. This prevents the model to overfit towards specific patterns, thus
it enables the model to handle various upscaling scenarios.
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Fig. 5. Structure of the discriminator network.

3.3 Discriminator network

Our method employs a discriminator network during the training phase, which is
designed to distinguish generated images from the ground-truth images. While
the discriminator tries to do its best for identifying the upscaled images, the
super-resolution model is trained to make the discriminator difficult to differ-
entiate them from the ground-truth images. This helps our upscaling model
generating more natural images [17,22]. Inspired by SRGAN [17], our discrim-
inator network consists of several convolutional layers followed by LeakyReLU
activations with α = 0.2 and two fully-connected layers, as shown in Fig. 5.
The final sigmoid activation determines the probability that the input image is
real or fake. Note that our discriminator network does not employ the batch
normalization [11], because the batch size is too small to use that optimization.
In addition, it contains two more convolutional layers than the original SRGAN
model due to the different size of the input image patches.

3.4 Qualitative score predictors

One of our main ideas for perceptually improved super-resolution is to utilize
deep learning models classifying perceptual quality of images, instead of general
image classifiers. For this, we employ two deep networks that predict aesthetic
and subjective quality scores of images, respectively. To build the networks,
we utilize the neural image assessment (NIMA) approach [33], which predicts
the quality score of a given image. This approach replaces the last layer of a
well-known image classifier such as VGG [31] or Inception-v3 [32] with a fully-
connected layer with the softmax activation, which produces probabilities of 10
score classes. In our implementation, MobileNetV2 [30] is used as the base image
classifier, because it is much faster than the other image classifiers and supports
various sizes of input images.

We build two score predictors: one for predicting aesthetic scores and the
other for predicting subjective scores. For the aesthetic score predictor, we em-
ploy the AVA dataset [26], which contains aesthetic user ratings of the images
shared in DPChallenge1. For the subjective score predictor, we use the TID2013
dataset [27], which consists of the subjective quality evaluation results for the
test images degraded by various distortion types (e.g., compression, noise, and
blurring). While the AVA dataset provides exact score distributions, the TID2013

1 http://www.dpchallenge.com

http://www.dpchallenge.com
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dataset only provides the mean and standard deviation of the scores. Therefore,
we approximate a Gaussian distribution with the mean and standard deviation
to train the network based on TID2013. In addition, we adjust the score range of
the TID2013 dataset from [0, 9] to [1, 10] to match the range of the AVA dataset
(i.e., [1, 10]). After training the predictors, we use only the mean values of the
predicted score distributions to enhance the perceptual quality of the upscaled
images.

3.5 Discussion

The proposed model extends two existing networks: EUSR [14] as an upscaling
model and SRGAN [17] as a discriminator. However, the two networks aim at dif-
ferent objectives: EUSR is for better quantitative quality and SRGAN is for bet-
ter perceptual quality. Our proposed model combines them to ensure both quan-
titative and perceptual quality, with two newly proposed components: multi-pass
upscaling and qualitative score predictors. In summary, our 4PP-EUSR model
achieves the following benefits with the aforementioned components:

– Our model can upscale the input images with considering both the quan-
titative and perceptual quality. While the base EUSR model tries to make
the upscaled images similar to the ground-truth ones, the discriminator re-
inforces it to focus on fine details. Therefore, our model can achieve better
quantitative quality than the other methods concentrating on perceptual
quality while keeping the perceptual quality similar to theirs. We will thor-
oughly investigate this in Section 5.1.

– Thanks to the multi-pass upscaling, the proposed model can learn various
upscaling patterns, which will be further discussed in Sections 5.2 and 5.3.

– Employing the qualitative score predictors help our model generate perceptu-
ally improved images, since they are trained on the dataset that are obtained
directly from human raters. We will discuss their benefits in Sections 5.4 and
5.5.

4 Training details

We train our model in three phases: pre-training the EUSR model, building qual-
itative score predictors, and training the EUSR model in a perceptual manner.
Our method is implemented on the TensorFlow framework [1].

4.1 Pre-training multi-scale super-resolution model

In our method, we employ 32 and one local residual blocks in the residual module
and the upscaling part of the EUSR model, respectively. The EUSR model is
first pre-trained with the training set of the DIV2K dataset [35] (i.e., 800 images)



Super-Resolution Considering Quantitative and Perceptual Quality 9

using the L1 reconstruction loss as in [14]. For each training step, 16 image
patches having a size of 48×48 pixels are obtained by randomly cropping the
training images. Then, one of the upscaling paths (i.e., ×2, ×4, and ×8) is
randomly selected and trained at that step. For instance, when the ×2 path is
selected, the parameters of the path of the model are trained to generate the
upscaled images having a size of 96×96 pixels. The Adam optimization method
[15] with β1 = 0.9, β2 = 0.999, and ε̂ = 10−8 is used to update the parameters.
A total of 1,000,000 training steps are executed with an initial learning rate of
10−4 and reducing the learning rate by a half for every 200,000 steps.

4.2 Training qualitative score predictors

Along with pre-training EUSR, we also train the qualitative score predictors
explained in Section 3.4. As the base image classifier, we employ MobileNetV2
[30] pre-trained on the ImageNet dataset [28] with a width multiplier of 1. In
the original procedure of training NIMA [33], the input image is rescaled to
256×256 pixels without considering the aspect ratio and then randomly cropped
to 224×224 pixels, which is the input size of VGG19 [31] and Inception-v3 [32].
However, these rescaling and cropping processes are not considered in our case
because the MobileNetV2 model does not limit the size of an input image. In-
stead, we set the input resolution of MobileNetV2 to 192×192 pixels, which is the
output size of the 4PP-EUSR model for input patches having a size of 48×48
pixels. In addition, we do not employ the rescaling step and only employ the
cropping step to make the input image have a size of 192×192 pixels, because
the objective of our score predictors is to evaluate the quality of patches, not
the whole given image.

As the loss function for training the qualitative score predictors, we employ
the squared Earth mover’s distance defined in [10] as

E(QI , QĨ) =
∑
i

(
Fi(Q

I)− Fi(QĨ)
)2

(1)

where I and Ĩ are the ground-truth and upscaled images, respectively, QI and

QĨ are the probability distributions of the qualitative scores obtained from the
predictor for the two images, respectively, and Fi(·) is the i-th element of the
cumulative distribution function of the input. The Adam optimization method
[15] with β1 = 0.9, β2 = 0.999, and ε = 10−7 is used to train the parameters.

For the aesthetic score predictor, we use about 5,000 images of the AVA
dataset [26] for validation and the remaining 250,000 images for training. We
first train the new last fully-connected layer for five epochs with a batch size
of 128 and a learning rate of 10−3, while freezing all other layers. Then, all the
layers are fine-tuned for five epochs with a batch size of 32 and a learning rate
of 10−5. For the validation images cropped in the center parts, the predictor
achieves an average squared Earth mover’s distance of 0.079.

For the subjective score predictor, we consider the first three reference images
and their degraded versions in the TID2013 dataset [27] (corresponding to 360
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score distributions) for validation and the remaining 22 reference images and
their degraded versions (corresponding to 2,640 score distributions) for training.
Similarly to the aesthetic score predictor, we first train the subjective score
predictor with freezing all the layers except the new last fully-connected layer
for 100 epochs with a batch size of 128 and a learning rate of 10−3. Then, the
whole network is fine-tuned for 100 epochs with a batch size of 32 and a learning
rate of 10−5. For the validation images cropped in the center parts, the predictor
achieves a Spearman’s rank correlation coefficient (SROCC) of 0.780.

4.3 Training super-resolution model

Finally, we fine-tune the pre-trained EUSR model together with the discrimina-
tor network using the two trained qualitative score predictors. At each training
step, the 4PP-EUSR model outputs three upscaled images by a factor of 4. Then,
the discriminator is trained to differentiate the ground-truth and upscaled images
based on the sigmoid cross entropy loss as in [17]. After updating parameters
of the discriminator, the 4PP-EUSR model is trained with six losses defined as
follows.

– Reconstruction loss (lr). The reconstruction loss represents the main ob-
jective of the super-resolution task: each pixel value of the super-resolved
image must be as close as possible to that of the ground-truth image. In
our model, this loss is measured by the pixel-by-pixel L1 loss between the
ground-truth and generated images, i.e.,

lr =
1

W ×H
∑
w

∑
h

∣∣∣Iw,h − Ĩw,h∣∣∣ (2)

where W and H are the width and height of the images, respectively, and
Iw,h and Ĩw,h are the pixel values at (w, h) of the ground-truth and upscaled
images, respectively.

– Adversarial loss (lg). The output of the discriminator network is used
to train the super-resolution model towards enhancing perceptual quality,
which is denoted as the adversarial loss. It is calculated by the sigmoid cross
entropy of the logits obtained from the discriminator for the upscaled images
[17]:

lg = − log(DĨ) (3)

where DĨ is the output of the discriminator for the upscaled image Ĩ, which
represents the probability that the given image is a real one.

– Aesthetic score loss (las). We obtain the aesthetic scores of both the
ground-truth and upscaled images from the trained aesthetic score predictor.
Then, we define the aesthetic score loss as the weighted difference between
the scores, i.e.,

las = max
(
0, (Sa,max − S Ĩa)− αas(Sa,max − SIa)

)
(4)
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where SIa and S Ĩa are the predicted aesthetic scores of the ground-truth and
upscaled images, respectively. Sa,max is the maximum aesthetic score, which
is 10 in our case. The term αas plays a role to control the expected level
of aesthetic quality of the upscaled image. For example, αas < 1.0 enforces
the model to generate an image that is even perceptually better than the
ground-truth image. In our experiments, we set αas to 0.8.

– Aesthetic representation loss (lar). Inspired by [17], we also define the
aesthetic representation loss, which is the L2 loss between the intermediate
outputs of the “global average pooling” layer in the aesthetic score predictor
for both the ground-truth and upscaled images:

lar =
∑
i

(
P Ia,i − P Ĩa,i

)2
(5)

where P Ia,i and P Ĩa,i are the i-th values of the intermediate outputs for the
ground-truth and upscaled images, respectively. The length of each interme-
diate output is 1,280 [30].

– Subjective score loss (lss). In the same manner as the aesthetic score
loss, we calculate the subjective score loss using the trained subjective score
predictor, i.e.,

lss = max
(
0, (Ss,max − S Ĩs )− αss(Ss,max − SIs )

)
(6)

where SIs and S Ĩs are the predicted subjective scores of the ground-truth and
upscaled images, respectively. Ss,max is the maximum subjective score, which
is 10 in our case. Similarly to αas, the term αss controls the contribution of
SIs , which is set to 0.8 in our experiments.

– Subjective representation loss (lsr). In the same manner as the aesthetic
representation loss, we calculate the subjective representation loss using the
subjective score predictor as

lsr =
∑
i

(
P Is,i − P Ĩs,i

)2
(7)

where P Is,i and P Ĩs,i are the i-th values of the intermediate outputs at the
“global average pooling” layer for the ground-truth and upscaled images,
respectively.

The losses are calculated for all the three upscaled images and then averaged.
We use the 800 training images of the DIV2K dataset as in the pre-training

phase. The Adam optimization method [15] with β1 = 0.9, β2 = 0.999, and
ε̂ = 10−8 is used to train both the 4PP-EUSR and discriminator. At every train-
ing step, two input image patches are selected, which results in generating six
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upscaled images. Thus, the effective batch sizes of the upscaling and discrimina-
tive models are six and eight (i.e., two ground-truth and six upscaled images),
respectively. A total of 4 × 105 steps are executed with learning rates of 10−5

and 2× 10−5 for the 4PP-EUSR and discriminator, respectively.

5 Results

In this section, we report the results of five experiments: comparing the perfor-
mance of our method and other state-of-the-art super-resolution models, com-
paring the outputs obtained from different upscaling paths, comparing the per-
formance of our method trained with and without multi-pass upscaling, inves-
tigating the roles of loss functions, and comparing the results obtained from
different combinations of the loss weights. For the first four experiments, we
train our model with the following weighted sum of the six losses defined in
Section 4.3:

l = 0.05lr + 0.1lg + 0.01las + 0.1lar + 0.01lss + 0.1lsr (8)

which is empirically determined to ensure high perceptual improvement with
minimizing degradation of quantitative performance.

We evaluate the super-resolution performance on the Set5 [2], Set14 [40], and
BSD100 [21] datasets. Each dataset contains 4, 14, and 100 images, respectively.
We employ five performance metrics that are widely used in the literature, in-
cluding PSNR, SSIM [37], NIQE [25], a no-reference super-resolution (SR) score
proposed by Ma et al. [20], and perceptual index (PI) [3]. PSNR and SSIM are
for measuring the quantitative quality, and higher values mean better quality.
NIQE, the SR score, and PI are for measuring the perceptual quality, and PI is
obtained from the combination of NIQE and the SR score, i.e.,

PI(Ĩ) =
1

2

(
(10− SR(Ĩ)) + NIQE(Ĩ)

)
(9)

where Ĩ is a given upscaled image, and NIQE(·) and SR(·) are the measured
NIQE value and the SR score, respectively. For NIQE and PI, lower values mean
better quality. For the SR score, higher values mean better quality. All qual-
ity metrics are calculated on the Y channel of the YCbCr channels converted
from the RGB channels with cropping 4 pixels of each border, as in many ex-
isting studies [17,14,19]. In addition, we conduct a subjective test to assess the
performance of our method in the perspective of real human observers.

5.1 Comparison with existing models

We first compare the result images obtained from the ×4 path of our model with
those by the following existing super-resolution models.

– Bicubic interpolation. It is a traditional upscaling method, which inter-
polates pixel values based on values of their adjacent pixels.
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– SRResNet [17]. This is for single-scale super-resolution, which consists
of several residual blocks. Its two variants are considered: The SRResNet-
MSE model is trained with the mean-squared loss and the SRResNet-VGG22
model is trained with the Euclidean distance-based loss for the output of the
second conv3-128 layer of VGG19. Their results are retrieved from the au-
thors’ supplementary material2.

– EDSR [19]. This model also consists of residual blocks similarly to SRRes-
Net, but does not employ batch normalization to improve the performance.
In addition, the upscaled results are obtained by a so-called “geometric self-
ensemble” strategy, which obtains eight geometrically transformed versions
of the input image via flipping and rotation and blends the model outputs
for them. The compared results are obtained from a model trained on the
DIV2K dataset, which is provided by the authors3.

– MDSR [19]. It is an extended version of EDSR, which supports multiple
factors of upscaling. We obtain the upscaled images from the ×4 path of
the MDSR model trained on the DIV2K dataset [35]. The trained model is
provided by the authors4.

– EUSR [14]. This is the base model of 4PP-EUSR, which supports multi-
scale super-resolution and consists of optimized residual modules as ex-
plained in Section 3.1. We consider the pre-trained EUSR model described
in Section 4.1 as a baseline.

– RCAN [41]. The RCAN model employs a channel attention mechanism
along with the residual-in-residual structure, which contributes to output
better super-resolved images than EDSR in terms of PSNR. In addition,
RCAN employs the self-ensemble strategy to improve the performance as
in the EDSR model. We obtain the output images from the trained model
provided by the authors5.

– SRGAN [17]. The SRGAN model is an extended version of the SRResNet
model, where a discriminator network is added to improve the perceptual
quality of the upscaled outputs. We consider three SRGAN models, which
use different loss functions to train the discriminator: SRGAN-MSE (the
mean-squared loss), SRGAN-VGG22 (the Euclidean distance-based loss for
the output of the second conv3-128 layer of VGG19), and SRGAN-VGG54
(the Euclidean distance-based loss for the output of the fourth conv3-512
layer of VGG19). The compared results are retrieved from the authors’ sup-

2 https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
3 https://cv.snu.ac.kr/research/EDSR/model_pytorch.tar
4 https://cv.snu.ac.kr/research/EDSR/model_pytorch.tar
5 https://github.com/yulunzhang/RCAN

https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
https://cv.snu.ac.kr/research/EDSR/model_pytorch.tar
https://cv.snu.ac.kr/research/EDSR/model_pytorch.tar
https://github.com/yulunzhang/RCAN
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Table 1. Properties of the baseline and our models with respect to the number of
parameters, multi-scale structure, and loss functions.

Models
#

parameters
Multi-scale
structure

Using
reconstruc-

tion
loss

Using
adversarial

loss

Using
feature-
based
loss

Using
perceptual

loss

SRResNet-MSE 1.5M No Yes No No No
SRResNet-VGG22 1.5M No No No Yes No
EDSR 43.1M No Yes No No No
MDSR 8.0M Yes Yes No No No
EUSR 6.3M Yes Yes No No No
RCAN 15.6M No Yes No No No
SRGAN-MSE 1.5M No Yes Yes No No
SRGAN-VGG22 1.5M No Yes† Yes Yes No

SRGAN-VGG54 1.5M No Yes† Yes Yes No
CX 1.5M No Yes Yes Yes No
4PP-EUSR (Ours) 6.3M Yes Yes Yes Yes Yes
† For pre-training

plementary material6.

– CX [22]. This model is based on SRGAN but employs an additional loss
function, the contextual loss [23], which measures the cosine distance be-
tween the VGG19 features for the ground-truth and upscaled images. The
compared results are retrived from the authors’ website7.

Table 1 compares properties of the baselines and ours, including the num-
ber of model parameters, the existence of a multi-scale structure, whether to
use the reconstruction loss, whether to employ the discriminator, whether to
compare features obtained from well-known image classifiers (e.g., VGG19), and
whether to use perceptual scores. First, the EDSR model consists of the largest
number of parameters than the other models, while the SRResNet, SRGAN,
and CX models have the smallest number of parameters. Our model contains a
smaller number of parameters than the MDSR and RCAN models. In terms of
the multi-scale structure, MDSR, EUSR, and our model utilize multiple scaling
factors, while the other models are based on single-scale super-resolution. Al-
though all the models except SRResNet-VGG22 employ the reconstruction loss,
the SRGAN-VGG22 and SRGAN-VGG54 models use it only for pre-training. In
addition, SRGANs, CX, and our model employ discriminator networks and use
them for adversarial losses. SRResNet-MSE, SRGAN-VGG22, SRGAN-VGG54,
and CX employ VGG19 as an additional network to use its intermediate outputs
as feature-based losses. Our model employs the MobileNetV2-based networks
instead of VGG19. Finally, ours estimates the aesthetic and subjective quality
scores of the ground-truth and upscaled images for calculating perceptual losses.

Table 2 shows the performance comparison of the baselines and ours eval-
uated on the three datasets. First of all, the bicubic interpolation introduces

6 https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
7 http://cgm.technion.ac.il/people/Roey/index.html

https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
http://cgm.technion.ac.il/people/Roey/index.html
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Table 2. Performance comparison of the baselines and our model evaluated on the
Set5 [2], Set14 [40], and BSD100 [21] datasets. The models are sorted by PSNR (dB)
in an ascending order.

Set5 PSNR (dB) SSIM NIQE SR score PI

Bicubic 28.418 0.810 8.540 3.770 7.385
CX 29.102 0.830 4.546 7.957 3.295
SRGAN-VGG54 29.410 0.834 4.651 7.940 3.355
SRGAN-VGG22 29.871 0.835 4.919 7.534 3.692
SRResNet-VGG22 30.501 0.869 6.905 6.336 5.285
SRGAN-MSE 30.666 0.859 4.997 7.308 3.844
4PP-EUSR (Ours) 31.369 0.870 5.366 6.890 4.238
SRResNet-MSE 32.058 0.892 7.194 5.411 5.891
EUSR 32.352 0.896 7.070 5.173 5.949
MDSR 32.533 0.898 7.111 5.109 6.001
EDSR 32.630 0.899 7.235 5.211 6.012
RCAN 32.713 0.899 7.229 5.277 5.976

Set14 PSNR (dB) SSIM NIQE SR score PI

CX 26.011 0.700 3.460 7.942 2.759
Bicubic 26.091 0.705 7.764 3.661 7.051
SRGAN-VGG54 26.114 0.696 3.875 8.111 2.882
SRGAN-VGG22 26.529 0.712 4.221 7.983 3.119
SRGAN-MSE 27.006 0.719 4.005 7.877 3.064
SRResNet-VGG22 27.272 0.742 7.023 7.093 4.965
4PP-EUSR (Ours) 27.969 0.751 4.147 7.457 3.345
SRResNet-MSE 28.590 0.782 6.075 5.648 5.213
EUSR 28.750 0.786 6.168 5.467 5.351
MDSR 28.895 0.789 6.267 5.311 5.478
RCAN 28.951 0.790 6.343 5.451 5.446
EDSR 28.953 0.790 6.305 5.379 5.463

BSD100 PSNR (dB) SSIM NIQE SR score PI

CX 24.581 0.644 3.301 8.801 2.250
SRGAN-VGG54 25.176 0.641 3.407 8.705 2.351
SRGAN-VGG22 25.697 0.660 3.750 8.488 2.631
Bicubic 25.957 0.669 7.712 3.723 6.995
SRGAN-MSE 25.981 0.643 4.032 8.428 2.802
SRResNet-VGG22 26.322 0.694 7.805 7.439 5.183
4PP-EUSR (Ours) 26.904 0.701 3.820 7.907 2.956
SRResNet-MSE 27.601 0.737 6.240 5.807 5.217
EUSR 27.674 0.740 6.423 5.808 5.307
MDSR 27.771 0.743 6.538 5.690 5.424
EDSR 27.796 0.744 6.432 5.779 5.326
RCAN 27.821 0.745 6.451 5.868 5.292

a large amount of distortion, which results in low PSNR values, and the up-
scaled images have poor perceptual quality, according to the high PI values.
The models that do not employ a discriminator network (i.e., SRResNet, EDSR,
MDSR, EUSR, and RCAN) achieve better quantitative quality than the others,
showing higher PSNR values, but their perceptual quality is worse except the
bicubic interpolation, showing higher PI values. The models considering percep-
tual quality (i.e., SRGAN and CX) have similar or only slightly higher PSNR
values in comparison to the bicubic interpolation, but their perceptual quality
is far better than that of the bicubic interpolation, according to the much lower
PI values. Our model (i.e., 4PP-EUSR) always records PSNR values higher than
those of the other discriminator-based models, which means that ours generates
quantitatively better upscaled outputs. At the same time, our model achieves



16 Choi et al.

Bicubic

EDSR

MDSR
EUSR

SRResNet-MSE

SRResNet-VGG22

SRGAN-MSE
SRGAN-VGG22

SRGAN-VGG54

CX

4PP-EUSR (Ours)

2

3

4

5

6

7

24 25 26 27 28

P
I

PSNR (dB)

Fig. 6. PSNR and PI values of the baselines and our model for the BSD100 dataset
[21].

perceptual quality similar to that of SRGAN-MSE in terms of the PI value. For
instance, for the BSD100 dataset, the PI values of our model and SRGAN-MSE
are 2.956 and 2.802, respectively. This appears more clearly in Fig. 6, which com-
pares the baselines and our model with respect to PSNR and PI values measured
for the BSD100 dataset. It confirms that our model achieves proper balances of
the quantitative and qualitative quality of the upscaled images.

Fig. 7 shows example images upscaled by different methods. Enlarged images
of the regions marked by red rectangles are also shown, where high-frequency tex-
tures are expected. First, the bicubic interpolation fails to resolve the textures,
producing a highly blurred output. The SRResNet-based, EDSR, MDSR, EUSR,
and RCAN models produce richer textures in that region, but still largely blurry.
The output of SRResNet-VGG22 shows distinctive textures, which is due to the
employment of a different loss function (i.e., differences of VGG19 features).
Thanks to the adversarial loss, the other models, including SRGANs, CX, and
4PP-EUSR, generate much better outputs in terms of perceptual quality with
sacrificing quantitative quality. Among them, SRGAN-VGG54 and CX recover
the most detailed textures, while SRGAN-MSE produces blurry textures. Our
model, 4PP-EUSR, restores the textures more clearly than SRGAN-VGG22 and
less distinctly than SRGAN-VGG54. Nevertheless, ours achieves better quanti-
tative quality than all the SRGANs in terms of PSNR in Table 2.

Another comparison shown in Fig. 8 further supports the importance of con-
sidering both the quantitative and perceptual quality. Similarly to Fig. 7, the
bicubic interpolation shows the worst output than the others, the models em-
ploying only the reconstruction loss (i.e., SRResNets, EDSR, MDSR, EUSR, and
RCAN) flatten most of the textured areas, and the rest (i.e., SRGANs, CX, and
ours) produce outputs having detailed textures. However, the SRGAN and CX
models tend to exaggerate the indistinct textures on the ground and airplane re-
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Bicubic SRResNet-MSE SRResNet-VGG22 EDSR

MDSR EUSR RCAN SRGAN-MSE

SRGAN-VGG22 SRGAN-VGG54 CX 4PP-EUSR (Ours)

Fig. 7. Images reconstructed by the baselines and our model. The input images are
from the Set14 dataset [40].
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Bicubic SRResNet-MSE SRResNet-VGG22 EDSR

MDSR EUSR RCAN SRGAN-MSE

SRGAN-VGG22 SRGAN-VGG54 CX 4PP-EUSR (Ours)

Fig. 8. Images reconstructed by the baselines and our model. The input images are
from the BSD100 dataset [21].
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Fig. 9. Subjective test results for 10 images of the BSD100 dataset [21].

gions, introducing sizzling artifacts. For example, the SRGAN-MSE model adds
a considerable amount of undesirable noises over the whole image. On the other
hand, thanks to the cooperation of the loss functions, our model successfully
recovers much of the textures without any prominent artifacts.

In addition, we conduct a subjective test to examine the perceptual per-
formance of the super-resolution methods. We compare the performance of the
12 super-resolution methods for selected ten images in the BSD100 dataset. We
employ 15 participants, which meets the required number of participants for sub-
jective tests in the recommendation ITU-R BT.500-13 [36]. As for the evaluation
method, we follow the same procedure used in [3]: For a given test image, each
participant is asked to rate each of the 120 images on a four-point scale raging
among 1 (definitely fake), 2 (probably fake), 3 (probably real), and 4 (definitely
real).

Fig. 9 summarizes the result of the subjective test. It demonstrates that our
model outperforms the other methods in terms of the mean opinion score. Our
model gets a mean opinion score of 3.07, which means that people regard the
output images of ours as “probably real” ones. SRGAN-MSE and SRResNet-
VGG22 get the lowest opinion scores among the compared methods. As shown
in Fig. 8, it is due to the excessive amount of undesirable artifact introduced in
the super-resolved images. The result supports that considering both quantita-
tive and perceptual quality in our model is helpful to obtain visually pleasant
upscaled images.

5.2 Comparing upscaling paths

As described in Section 3.2 and shown in Fig. 4, our model produces three
upscaled images by utilizing all the upscaling paths: by passing through the ×4
path, by passing two times through the ×2 path, and by passing through the
×8 path and then downscaling via bicubic interpolation. Here, we compare the
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Ground-truth ×4 path ×2 path – ×2 path ×8 path – downscale

Fig. 10. Images reconstructed by different upscaling paths of our model. The input
and ground-truth images are from the BSD100 dataset [21].

Table 3. Performance comparison of the outputs obtained from different three upscal-
ing paths of the 4PP-EUSR model. The results are for the Set5 [2], Set14 [40], and
BSD100 [21] datasets.

Set5 PSNR (dB) SSIM NIQE SR score PI

×4 31.369 0.870 5.366 6.890 4.238
×2 – ×2 31.491 0.875 6.500 6.887 4.806
×8 – downscale 31.255 0.867 6.044 7.008 4.518

Set14 PSNR (dB) SSIM NIQE SR score PI

×4 27.969 0.751 4.147 7.457 3.345
×2 – ×2 28.096 0.759 4.858 7.429 3.714
×8 – downscale 27.906 0.750 4.631 7.684 3.474

BSD100 PSNR (dB) SSIM NIQE SR score PI

×4 26.904 0.701 3.820 7.907 2.956
×2 – ×2 27.080 0.710 4.951 7.812 3.570
×8 – downscale 26.844 0.699 4.584 8.156 3.214

results obtained from the different upscaling paths to examine what aspects our
model considers to learn.

Table 3 compares the performance of the three upscaling paths of our model.
While the PSNR and SSIM values are very similar among the three cases, the
×4 path shows the best performance in terms of the NIQE and PI values. This
implies that upscaling using the ×2 path or ×8 path is more difficult than the
×4 path.

Fig. 10 shows an example result showing large differences between the three
cases. The appearances of the textures in the enlarged regions are different de-
pending on the upscaling paths, although the overall patterns of the textures
follow that of the ground-truth image. First, the output obtained by the two-
pass upscaling using the ×2 path contains grid-like textures. One possible rea-
son is due to the uncertainty in the order of passing: the model does not know
whether the current input image is firstly or secondly inputted between the two
passes, thus the two-pass upscaling is not fully optimized. Second, the output
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Table 4. Performance comparison of the 4PP-EUSR models trained with and without
multi-pass upscaling for the Set5 [2], Set14 [40], and BSD100 [21] datasets.

Set5 PSNR (dB) SSIM NIQE SR score PI

With multi-pass 31.369 0.870 5.366 6.890 4.238
Without multi-pass 31.320 0.869 5.917 6.835 4.541

Set14 PSNR (dB) SSIM NIQE SR score PI

With multi-pass 27.969 0.751 4.147 7.457 3.345
Without multi-pass 27.699 0.742 4.221 7.594 3.313

BSD100 PSNR (dB) SSIM NIQE SR score PI

With multi-pass 26.904 0.701 3.820 7.907 2.956
Without multi-pass 26.614 0.688 4.327 8.140 3.093

obtained from the ×8 path with downscaling has unexpected white and black
pixels, which are similar to the salt-and-pepper noise. It seems that since such
noise tends to be removed by downscaling, inclusion of the noise in the out-
put is not necessarily avoided during the training of the ×8 path. These results
show that each upscaling path of our model learns a different strategy for super-
resolution and thus the model is trained to cope with various types of textures
via the shared part of the upscaling paths (i.e., the intermediate residual module
shown in Fig. 3).

5.3 Effectiveness of multi-pass upscaling

The 4PP-EUSR model employs multi-pass upscaling as aforementioned in Sec-
tion 3.2. To investigate its effectiveness, we compare the performance of the
models trained with and without multi-pass upscaling.

Table 4 shows the performance measures of the models in terms of the PSNR,
SSIM, NIQE, SR score, and PI values. It demonstrates that employing multi-
pass upscaling is beneficial to enhance both the quantitative and perceptual
quality. The model trained with multi-pass upscaling shows larger PSNR and
SSIM values and smaller NIQE values for all the three datasets, and smaller PI
values for the datasets except Set14. This confirms that the multi-pass upscaling
can improve the overall quality of the upscaled images.

5.4 Roles of loss functions

Our model employs multiple types of loss functions as described in Section 4.3.
To analyze the role of each loss function, we conduct an experiment where our
model is trained with excluding specific loss functions. In detail, we obtain the
models trained without lr, without lg, without las and lar, and without lss and
lsr.

Table 5 shows the PSNR, SSIM, NIQE, SR score, and PI values of the trained
models. First, excluding lr deteriorates the quantitative quality of the upscaled
images, showing smaller PSNR values, and improves the perceptual quality,
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Ground-truth With all losses Without lr Without lg Without las, lar Without lss, lsr

Fig. 11. Images reconstructed by our models trained with excluding specific loss func-
tions. The input and ground-truth images are from the Set14 dataset [40].

Table 5. Performance comparison of the 4PP-EUSR models trained by excluding
specific loss functions. The models are evaluated on the Set5 [2], Set14 [40], and BSD100
[21] datasets.

Set5 PSNR (dB) SSIM NIQE SR score PI

With all losses 31.369 0.870 5.366 6.890 4.238
Without lr 29.252 0.834 5.121 8.434 3.344
Without lg 32.145 0.891 6.665 5.687 5.489
Without las, lar 30.974 0.862 5.503 7.432 4.035
Without lss, lsr 31.389 0.873 5.406 6.807 4.300

Set14 PSNR (dB) SSIM NIQE SR score PI

With all losses 27.969 0.751 4.147 7.457 3.345
Without lr 26.137 0.705 4.187 8.132 3.028
Without lg 28.589 0.779 5.287 6.153 4.567
Without las, lar 27.601 0.738 3.976 7.804 3.086
Without lss, lsr 27.853 0.752 4.026 7.571 3.228

BSD100 PSNR (dB) SSIM NIQE SR score PI

With all losses 26.904 0.701 3.820 7.907 2.956
Without lr 25.142 0.649 4.118 8.773 2.673
Without lg 27.546 0.734 5.362 6.403 4.480
Without las, lar 26.540 0.684 4.016 8.343 2.837
Without lss, lsr 26.870 0.703 3.780 7.989 2.895

showing smaller PI values, in comparison to the model trained with all losses.
Excluding lg results in the opposite outcomes: it increases the quantitative qual-
ity (i.e., larger PSNR values) and decreases the perceptual quality (i.e., larger
PI values). Excluding the aesthetic losses (i.e., las and lar) or subjective losses
(i.e., lss and lsr) also affects to the performance in terms of PSNR.

Fig. 11 shows example output images, where more evident differences of the
roles of the loss functions can be observed. First, the image obtained from the
model trained without the reconstruction loss (i.e., lr) contains the most distinct
textures than the others, but the overall color distribution is slightly different
from that of the ground-truth image. On the other hand, the result generated
by the model trained without the adversarial loss (i.e., lg) preserves the overall
structure of the ground-truth image, while its details are more blurry than those
of the others. The output of the model trained without the subjective loss func-



Super-Resolution Considering Quantitative and Perceptual Quality 23

Table 6. Performance comparison of our models trained with different combinations
of the loss weights. The models are evaluated on the Set5 [2], Set14 [40], and BSD100
[21] datasets.

Set5 PSNR (dB) SSIM NIQE SR score PI

αp= 0, αr= 0.5 31.891 0.881 6.386 5.637 5.375
αp= 0, αr= 0.05 31.748 0.880 5.739 6.073 4.833
αp= 0, αr= 0.005 30.504 0.854 5.730 7.633 4.048
αp= 1, αr= 0.5 31.839 0.881 6.242 5.956 5.143
αp= 1, αr= 0.05 31.369 0.870 5.366 6.890 4.238
αp= 1, αr= 0.005 30.753 0.857 5.234 7.685 3.775

Set14 PSNR (dB) SSIM NIQE SR score PI

αp= 0, αr= 0.5 28.348 0.765 4.597 6.852 3.872
αp= 0, αr= 0.05 28.218 0.764 4.154 7.099 3.527
αp= 0, αr= 0.005 26.864 0.715 4.644 7.897 3.374
αp= 1, αr= 0.5 28.316 0.763 4.766 6.843 3.961
αp= 1, αr= 0.05 27.969 0.751 4.147 7.457 3.345
αp= 1, αr= 0.005 27.020 0.726 4.017 7.970 3.023

BSD100 PSNR (dB) SSIM NIQE SR score PI

αp= 0, αr= 0.5 27.332 0.717 4.633 6.932 3.850
αp= 0, αr= 0.05 27.162 0.715 3.987 7.478 3.254
αp= 0, αr= 0.005 25.833 0.659 5.374 8.548 3.413
αp= 1, αr= 0.5 27.271 0.714 4.498 7.042 3.728
αp= 1, αr= 0.05 26.904 0.701 3.820 7.907 2.956
αp= 1, αr= 0.005 26.176 0.678 3.867 8.552 2.657

tions contains more lattice-like textures than that of the model trained without
the aesthetic loss functions. This implies that the aesthetic losses contribute to
the restoration of highly structured textures, while the subjective losses are help-
ful to construct dispersed high-frequency textures. Finally, the image obtained
by training with all the proposed loss functions is the most reliable and natural.

5.5 Comparing different loss weights

Finally, we train our model with different weights of the loss functions. Specifi-
cally, we alter the weight of the reconstruction loss in (8) as

l = αrlr + 0.1lg + αp(0.01las + 0.1lar + 0.01lss + 0.1lsr) (10)

with αr ∈ {0.5, 0.05, 0.005} and αp ∈ {0, 1}. We can expect that a larger αr
value leads the model to be trained towards producing outputs having better
quantitative quality. The term αp determines whether to use the score predictors
or not.

Table 6 presents the performance of our model trained with different weight
values. As expected, decreasing the level of contribution of the reconstruction
loss with a smaller αr results in lower PSNR values. On the other hand, the PI
values are also decreased, which indicates improved qualitative quality. These
observations emerge as the visual differences of the upscaled images shown in
Fig. 12. When we examine the enlarged regions where high-frequency textures
are expected, a decreased αr value affects the clearness of the output images, due
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Ground-truth αp = 1, αr = 0.5 αp = 1, αr = 0.05 αp = 1, αr = 0.005

Fig. 12. Images reconstructed by our models trained with different combinations of the
loss weights. The input and ground-truth images are from the BSD100 dataset [21].

to relatively larger contributions of the adversarial and perceptual losses. These
confirm that there is a tradeoff between quantitative and perceptual quality as
mentioned in [4], and our model has a capability to deal with the priorities of
these quality measures by adjusting the weights of the loss functions. In addition,
the result shows that employing the score predictors (i.e., with αp = 1) is helpful
to improve the perceptual quality of the upscaled images, which can be observed
as decreased PI values in Table 6.

6 Conclusion

In this paper, we proposed a perceptually improved super-resolution method,
which employs multi-pass image restoration via a multi-scale super-resolution
model and trains the model with a discriminator network and two qualitative
score predictors. The results showed that our model successfully recovers the
original textures in a perceptual manner while preventing quantitative quality
degradation.
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