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Abstract6

This paper analyzes the minimization of α-divergences in the context of

multi-class Gaussian process classification. For this task, several methods

are explored, including memory and computationally efficient variants of the

Power Expectation Propagation algorithm, which allow for efficient training

using stochastic gradients and mini-batches. When these methods are used for

training, very large datasets (several millions of instances) can be considered.

The proposed methods are also very general as they can interpolate between

other popular approaches for approximate inference based on Expectation

Propagation (EP) (α → 1) and Variational Bayes (VB) (α → 0) simply by

varying the α parameter. An exhaustive empirical evaluation analyzes the

generalization properties of each of the proposed methods for different values

of the α parameter. The results obtained show that one can do better than

EP and VB by considering intermediate values of α.
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1. Introduction9

Gaussian Processes (GPs) are non-parametric models that can be used10

to address machine learning problems, including multi-class classification11

[1]. In these models, the expressiveness grows with the training set size12

N . Furthermore, they are probabilistic models in which prior knowledge13

can be easily specified, and they readily provide a predictive distribution14

which accounts for prediction uncertainty. In spite of these advantages, using15

Gaussian process in practice is difficult because often the likelihood is not16

Gaussian. Therefore, exact inference in these models is usually intractable17

and approximate methods need to be employed. A challenging example is18

multi-class classification because in this case there is one latent function19

(GP) per class, and the likelihood factors are more complicated than, for20

example, in binary classification models. An extra difficulty is that standard21

approaches for multi-class GP classification require, at least, the inversion22

of one N × N matrix per class. This is an expensive operation that limits23

the applicability of these models to large problems. Notwithstanding, there24

are several methods that have been proposed for multi-class GP classification25

[2, 3, 4, 5, 6]. Most of them, however, do not scale well with the size of the26

training set.27

The use of sparse approximations allows to scale-up GPs. These techniques28

introduceM ≪ N inducing points, whose location is learnt during the training29

process. These points lead to an approximate prior with a low-rank covariance30

structure [7], reducing the training cost to O(NM2). This improved cost has31

been pushed forward by Hensman et al. [8, 9], which employs a variational32

Bayes (VB) approximation combined with stochastic optimization techniques33
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that allows to address datasets with millions of instances. Recent work in the34

literature also combines stochastic optimization techniques with alternative35

methods for approximate inference based on expectation propagation (EP)36

[10, 11]. The results obtained indicate that EP and VB have similar training37

costs, but EP may provide better predictive distributions in terms of the test38

log-likelihood.39

While VB minimizes the Kullback-Leibler (KL) divergence between the40

approximate and the target distribution, EP minimizes (approximately) the41

KL-divergence in the reversed way. Recently, Bui et al. [12] suggested a42

framework for binary GP classification that, by means of the minimization43

of α-divergences with Power Expectation Propagation (PEP) [13], unifies44

previous approaches based on VB and EP. The α-divergence generalizes the45

KL-divergence and different values of the α parameter interpolate (α → 046

and α = 1) between the two versions of the KL-divergence described above47

[14]. Importantly, Bui et al. [12] show that, in the case of binary classification,48

one can do better than VB and EP by considering an intermediate version of49

the two KL-divergences.50

Here, we extend the minimization of α-divergences for approximate in-51

ference of Bui et al. [12] to address multi-class GP classification problems.52

For this, we describe a multi-class extension of the PEP algorithm for binary53

GP classification. This extension is not trivial due to the more complicated54

likelihood factors that appear in the multi-class setting. Furthermore, instead55

of considering a single latent function, in the multi-class case we have one56

latent function per class. Besides this, we address here some of the drawbacks57

of standard PEP, which include the difficulty of using standard optimization58
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techniques and a high memory consumption. More precisely, standard PEP59

combines gradient-based updates of the model hyper-parameters with closed-60

form updates to refine the approximate likelihood factors. These approximate61

factors have to be stored in memory, which is memory expensive. The variants62

of PEP considered are based on using ideas from approximate EP [15, 16]63

and from the approximate minimization of α-divergences in the context of64

Bayesian neural networks [17]. The results obtained in our experiments show65

that the (approximate) minimization of an intermediate divergence between66

the ones considered by VB and EP, i.e., setting α = 0.5, may work better in67

terms of the prediction error and the test log-likelihood.68

2. Multi-Class Gaussian Processes69

Consider a dataset of N labelled examples in the form of a matrix X =70

(x1, . . . ,xN)
T and a vector of labels y = (y1, . . . , yN)

T, where yi ∈ {1 . . . C}71

with C > 2 the total number of classes. The goal is to predict the label of72

an unseen instance x∗. In multi-class Gaussian process classification it is73

usual to use the softmax function. However, it is not the only alternative.74

Here, we will follow [3] assume that the label yi of xi is generated by the rule75

yi = argmaxk f
k(xi), where each fk(·) is a latent function associated to a76

class k ∈ {1 . . . C}. Based on this, the likelihood is a product of N factors77

such as:78

p(y|f) =
N∏
i=1

p(yi|fi) =
N∏
i=1

∏
k ̸=yi

Θ
(
f yi(xi)− fk(xi)

)
, (1)

where Θ(·) is the Heaviside function and we have defined79

fk = (fk(x1), · · · , fk(xN))
T ∈ RN , fi = (f 1(xi), · · · , fC(xi))

T ∈ RC and80
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f = (f1, . . . , fC) ∈ RN×C . The likelihood in (1) can be made more robust81

to possible labelling errors by adding a parameter ϵ which represents the82

probability of choosing at random yi from the set of labels [18]. Then, each83

factors is:84

p(yi|fi) = (1− ϵ)
∏
k ̸=yi

Θ
(
f yi(xi)− fk(xi)

)
+

ϵ

C
. (2)

We assume a GP prior for each fk(·) [1]. Particularly, p(fk) ∼ GP(0, c(·, ·; ξk))85

where c(·, ·; ξk) is a covariance function with hyper-parameters ξk. Moreover,86

we assume these priors to be independent. That is, p(f) =
∏c

k=1 p(f
k), where87

every p(fk) is a multivariate Gaussian distribution. In this model, one can88

easily include Gaussian additive noise around each latent function. In that89

case, the labeling rule described is equivalent to the Gumbel-max trick (which90

leads to a soft-max function), but adding independent Gaussian noise instead91

of Gumbel noise [19]. The task of interest is to compute a posterior distribution92

for f using Bayes rule: p(f |y) = p(y|f)p(f)/p(y). We can then maximize93

the marginal likelihood p(y) to find good values for the hyper-parameters94

ξk. Nevertheless, as the likelihood factors in (1) and (2) are not Gaussian,95

we will be unable to compute analytically p(f |y) and approximate inference96

will be needed: the Laplace approximation [2], EP [3] or VB [20]. These97

methods result in a cost of O(CN3), where N is the number of instances and98

C the number of classes, assuming independent GPs per each class (this is99

the hypothesis made in the rest of paper).100

2.1. Sparse Gaussian Processes101

To speed up calculations, a typical approach is to use sparse approxima-102

tions. These approximations rely on introducing a different set of points of103
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size M ≪ N called inducing points X̄k = (x̄k
1, . . . , x̄

k
M )T for each class k, with104

associated latent values f̄k = (fk(x̄k
1), . . . , f

k(x̄k
M))T [21]. Now, by setting105

a GP prior on the latent functions associated with the inducing points we106

can obtain an approximate prior for fk as p(fk) =
∫
p(fk|f̄k)p(f̄k|X̄k)df̄k ≈107 ∫

[
∏N

i=1 p(f
k(xi)|f̄k)]p(f̄k|X̄k)df̄k = pFITC(f

k|X̄k), where we have assumed that108

p(f̄) =
∏C

k=1 p(f̄
k|X̄k) and that the conditional distribution p(fk|f̄k) factorizes109

like
∏N

i=1 p(f
k(xi)|f̄k). In other words, marginalizing over the latent values110

associated with the inducing points f̄k will effectively result in an approximate111

covariance function for the prior on the latent values fk [22]. This approxima-112

tion is known as the Fully Independent Training Conditional (FITC) [7] and113

gives an approximate inference cost of O(NM2).114

2.2. Scalable Gaussian Processes: EP115

A method for approximate inference in multi-class GP classification is116

Expectation Propagation (EP) [23]. In EP the latent variables, f , of the117

process at the training points X are marginalized out. The task of inter-118

est is to approximate the posterior of the process values at the inducing119

points f̄ = (f̄1, . . . , f̄K)T: p(f̄ |y) ∝
∏N

i=1 ϕi(f̄)p(f), where ϕi(f̄) is a likelihood120

factor defined as ϕi(f̄) =
∫
p(yi|fi)p(fi|f̄)dfi and p(f) =

∏C
k=1 p(f̄

k) is the121

prior distribution over the inducing values. In this last expression p(fi|f̄)122

is a conditional Gaussian distribution that factorizes across classes, i.e.,123

p(fi|f̄) =
∏C

k=1 p(f
k(xi)|f̄k). EP approximates each non-Gaussian factor of124

the likelihood ϕi with a Gaussian factor ϕ̃i [10]. More precisely, it refines125

at each iteration a factor ϕ̃i of the approximate posterior q(f̄) ∝
∏N

i=1 ϕ̃ip(f̄)126

by computing the cavity distribution q\i ∝ q/ϕ̃i and then minimizing locally127

the Kullback-Leibler divergence between Z−1
i ϕiq

\i and q with respect to q,128
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i.e, KL[Z−1
i ϕiq

\i ∥ q] where Zi is the normalization constant of ϕiq
\i. The129

updated factor is simply ϕ̃new
i = Ziq

new/q\i. The KL-divergence minimization130

is done using the derivatives of logZi w.r.t. the parameters of q\i [24] and131

Zi can be computed using a one-dimensional quadrature. Note that q is132

Gaussian because the prior and each ϕ̃i are Gaussian. The approximation to133

the marginal likelihood p(y), denoted Zq, is simply the normalization constant134

of
∏N

i=1 ϕ̃i(f̄)p(f̄). The gradient of logZq w.r.t. a hyper-parameter ξkj of the135

k-th covariance function can be easily obtained since the parameters of each136

ϕ̃i can be considered fixed after running EP [24].137

Recent work in the literature shows that it is possible to scale to large138

datasets the previous EP approach [11, 10]. One only has to jointly update139

the approximate factors ϕ̃i and the model hyper-parameters ξk. Furthermore,140

because logZq contains a sum across the data points, stochastic optimization141

techniques can be used to update the model hyper-parameters. This allows142

to scale to very large datasets with millions of instances.143

A limitation of EP is that the parameters of each ϕi have to be stored144

in memory. A further approximation to EP called Stochastic Expectation145

Propagation (SEP) [15] assumes that all the approximate factors are tied and146

only keeps in memory the product of all of them instead of their individual147

parameters. This reduces the memory cost to O(CM2).148

Interestingly, the previous derivation of the EP algorithm for approx-149

imate inference in multi-class GPC is equivalent to the one that is ob-150

tained when one approximates the posterior distribution of f and f , i.e.,151

p(f , f |y) ∝
∏N

i=1 p(yi|fi)p(fi|f)p(f), under the constraint that the approxi-152

mate distribution is q(f , f) ∝ p(f |f)
∏

i=1 ϕ̃ip(f), where p(f |f) =
∏C

k=1 p(f
k|fk).153
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That is, each likelihood factor p(yi|fi) has been approximated by the corre-154

sponding factor ϕ̃i which depends on f . Specifically, the conditional distribu-155

tion p(f |f) in q is fixed and we can only update the part of q that depends156

on the inducing values f . In this we case, there is no need to use the FITC157

approximation. See [12] for further details and the specific equivalence in the158

regression case.159

2.3. Scalable Gaussian Processes: VB160

Another approach for approximate inference is Variational Bayes (VB)

[25, 26, 27, 9]. In this section we will follow the derivation of the lower

bound in [9]. VB uses the same likelihood function as EP. The approximate

distribution q is the same as the one considered at the end of the previous

section. Namely, q(f , f) = p(f |f̄)q(f), where q(f) is Gaussian and p(f |f̄) is

fixed. The distribution q is found by minimizing the KL-divergence between q

and the exact posterior p(f , f |y). It is possible to show that this minimization

is equivalent to the maximization of a lower bound on the log-marginal

likelihood log p(y). This lower bound is obtained by first applying Jensen’s

inequality to obtain a lower bound to the log conditional log p(y|f̄):

log p(y|f̄) = log

∫
p(y|f)p(f |f̄)df ≥ Ep(f |f̄)[log p(y|f)] . (3)

Then, a lower bound to the log-marginal likelihood is derived in the same

way:

log p(y) = log

∫
q(f̄)p(y|f̄)p(f̄)/q(f̄)df̄

≥ Eq(f̄)[log p(y|f̄)]−KL[q(f̄) ∥ p(f̄)] ,

(4)
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where q(f̄) is approximate Gaussian distribution. By substituting (3) in (4)

we obtain the final lower bound:

log p(y) ≥ Eq(f̄)[log p(y|f̄)]−KL[q(f̄) ∥ p(f̄)]

≥ Eq(f̄)[Ep(f |f̄)[log p(y|f)]]−KL[q(f̄) ∥ p(f̄)]

≥ Eq(f)[log p(y|f)]−KL[q(f̄) ∥ p(f̄)]

≥
N∑
i=1

Eq(fi)[log p(yi|fi)]−KL[q(f̄) ∥ p(f̄)] , (5)

where q(f) =
∫
p(f |f̄)q(f̄)df̄ and each marginal over fi = (f 1(xi), . . . , f

C(xi))
T

161

is a product of C Gaussian conditional distributions with mean m̂k
i and162

variance ŝki , for k = 1, . . . , C. Namely, q(fi) =
∏C

k=1N (fk(xi)|m̂k
i , ŝ

k
i ).163

The lower bound contains a sum over the training examples, so stochas-164

tic optimization techniques can be used for its optimization. As in EP,165

one-dimensional quadratures must be used to approximate the required ex-166

pectations in (5). Last, this formulation minimizes the global KL-divergence167

between the approximate distribution q and the posterior, and can be shown168

to be equivalent to minimizing KL[q ∥ Ziϕ̃iq
\i] (the reversed divergence) in169

EP [14, 28].170

3. Alpha-Divergence Minimization171

We introduce the α-divergence [29, 30], a divergence measure that general-

izes the KL divergence [14], as well as the different approaches proposed for its

minimization in the context of Gaussian processes for multi-class classification.

The α-divergence between two probability distributions p and q of a random
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variable θ is:

Dα[p||q] =
1−

∫
p(θ)αq(θ)1−αdθ

α(1− α)
, (6)

where α ∈ R \ {0, 1}.172

The case α = 0.5 is called the Hellinger distance the only member of the173

family of α-divergences that is symmetric in p and q [31]. More precisely,174

D 1
2
[p ∥ q] = 2

∫
θ
(
√

p(θ)−
√
q(θ))2dθ. Furthermore, D0[p ∥ q] = lim

α→0
Dα[p ∥175

q] = KL[q ∥ p] is used in VB and D1[p ∥ q] = lim
α→1

Dα[p ∥ q] = KL[p ∥ q] is176

used in EP, so the α-divergence minimization can easily interpolate between177

these two methods by changing the value of α.178

3.1. Power Expectation Propagation (PEP)179

Power Expectation Propagation (PEP) is an extension of EP that instead

of minimizing the KL-divergence at each step, minimizes an α-divergence [13].

Importantly, this α-divergence minimization is done by simply minimizing the

KL-divergence between some modified distribution and q. Specifically, when

computing the cavity distribution q\αi, the approximate factor ϕ̃i to the power

of α is removed. That is, q\αi ∝ q/ϕ̃α
i . Next, the KL divergence between

Z−1
i ϕα

i q
\αi and q, KL[Z−1

i ϕα
i q

\αi ∥ q], is minimized with respect to q, where

Zi is the normalization constant of ϕα
i q

\αi. Note that the factor ϕi is raised to

the power of α. The updated factor is simply ϕ̃new
i = (Ziq

new/q\αi)
1
α , since the

exact factor ϕi had been raised to the power of α. Importantly, it is possible

to show that this minimization is equivalent to minimizing Dα[Ziϕiq
\i||q] [14].

More precisely, let λq be the parameters of q. For a distribution p and q in
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the exponential family:

∇λqDα[p||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)])

∝ ∇λqKL[p̃||q] , (7)

where p̃ ∝ pαq1−α and s(θ) is the vector of sufficient statistics of q. At the180

minimum both gradients must be equal to zero and the moments of q and181

p̃ must match. If we let p ∝ ϕiq
\i, as in EP, the corresponding distribution182

p̃ ∝ ϕα
i q

\αi, as in PEP. Therefore, at convergence, when the approximate183

factors do not change any more and (7) is equal to zero for each approximate184

factor, PEP minimizes the α-divergences between the tilted distributions185

defined as ϕiq
\i, ∀i, and q. Importantly, this local divergence minimization186

becomes a global divergence minimization (between the target posterior and187

q) only when α → 0 [14]. In all the other cases the global α-divergence188

minimization is approximate, but accurate as shown in [14].189

The PEP algorithm consists in applying the following steps to every190

approximate factor ϕ̃i and repeat them until it has converged:191

Remove an approximate factor to the power of α from the posterior q to

compute the cavity distribution q\αi.

q\αi =
q

(ϕ̃i)α

Include the true factor ϕi to the power of α to compute the tilted distri-

bution p̂.

p̂ = (ϕi)
αq\αi

Project onto the approximating family by matching moments.

qnew = argmin
q∗

KL[p̂ ∥ q∗]
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Update the approximate factor.

(ϕ̃i)
α =

qnew

q\αi

To apply PEP to the model described in this manuscript, we consider

the approximation described at the end of Section 2.2. Namely, q(f , f) ∝

p(f |f)
∏N

i=1 ϕ̃ip(f), where ϕ̃i are Gaussian factors depending only on f . The

marginal likelihood approximation of PEP, Zq, is the normalization constant

of the previous expression:

logZq = g(θpost)− g(θprior) +
1

α

N∑
i=1

log Z̃i ,

log Z̃i = logEq(fi)[(ϕi/ϕ̃i)
α] , (8)

where each ϕi = p(yi|fi); g(·) is the log-normalizer of a distribution in the192

exponential family of q; and θpost and θprior are the natural parameters of193

q(f) and the prior, respectively. When α = 1, (8) is equivalent to the EP194

approximation of the log-marginal likelihood. In the limit when α → 0, one195

can show that (8) tends to the lower bound optimized in VB. See [14] for196

further details. The expectation in (8) can be computed using one-dimensional197

quadrature methods. In particular, it is simply related to the probability198

that one Gaussian random variable is larger than several others (one per each199

other class label) [18].200

As in EP, the gradient of logZq w.r.t. the model hyper-parameters201

(inducing points locations and parameters of the covariance functions) involves202

a sum across the data instances. Therefore, mini-batches and stochastic203

optimization methods can also be used here to maximize logZq. This allows204

to scale-up to very large datasets. Usually, one has to wait until PEP has205
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converged to compute the gradient and update the model hyper-parameters.206

Nevertheless, it is possible to follow the same approach as in [10] and jointly207

optimize the approximate factors and the model hyper-parameters.208

3.2. Approximate Power EP (APEP)209

A limitation of the PEP algorithm described in Section 3.1 is that it needs210

to keep in memory the parameters of all the approximate factors, which are211

optimized through PEP updates by moment matching. To overcome this,212

a first approximation to the PEP method considers stochastic expectation213

propagation [15], which ties all the approximate factors and only keeps in214

memory their product, i.e, ϕ̃ =
∏N

i=1 ϕ̃i. Note that this only affects the215

way of computing the cavity distribution q\αi. Under this approximation216

q\αi is computed in an approximate way. Namely, q\αi ∝ q/ϕ̃
α
N , where N is217

the number of factors (and also data points). Besides this, we optimize the218

global factor ϕ̃ by maximizing logZq, the approximation to the log-marginal219

likelihood, w.r.t. the parameters of ϕ̃, instead of using the PEP updates. This220

is supported by the fact that these updates also find a stationary point of this221

energy function [14]. This allows the use of standard optimization techniques222

to find the posterior approximation q, which is defined as q ∝ ϕ̃p(f̄).223

3.3. Approximate Reparameterized PEP (ARPEP)224

As another way to approximately optimize the PEP evidence or energy

function, we consider the approach described by Li and Gal [17] for Bayesian

neural networks. In that work it is described a reparameterization of the

PEP energy function that is compatible with an approximate distribution q

that need not belong to the exponential family, although we will also assume
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a Gaussian form here. In the large data limit, i.e., when α/N → 0, the

reparameterized objective is simply approximated by:

logZq ≈
1

α

∑N
i=1 logEq(fi)[p(yi|fi)α]

−KL[q(f̄) ∥ p(f̄)] . (9)

This objective is a combination of the terms appearing in the PEP estimate225

of the log-marginal likelihood (8) and the lower bound of VB (5). The KL-226

divergence term in (9) can be understood as a regularization term enforcing q227

to look similar to the prior. Because this objective also involves a sum across228

the data points, it can be efficiently optimized both w.r.t. the parameters of229

q and the model hyper-parameters using stochastic optimization techniques.230

3.4. Refined Prior Approximate PEP (RPAPEP)231

Some of the solutions obtained by VB can not be retrieved by the methods232

from Sections 3.2 and 3.1 due to the parameterization resulting in a non233

positive definite covariance matrix. A last method accounts for this. It is234

the same method as the one described in Section 3.2, but where we let q235

be an arbitrary Gaussian distribution and eliminate the assumption that q236

is proportional to a Gaussian times the prior. Namely, q ∝ ϕ̃p(f̄). This is237

precisely the same hypothesis made by VB or the method described in Section238

3.3. For this, we simply let the prior be another extra factor to be refined239

by PEP. Thus, instead of considering N factors, one per each point, we will240

have N + 1 factors, the extra factor corresponding to the prior. Under this241

setting, the PEP approximate log-marginal likelihood is:242

logZq = g(θpost) +
1

α

∑N+1
i=1 log Z̃i . (10)
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In this method we also retrieve the approximate EP energy objective when243

α = 1 and VB’s lower bound as α → 0. Stochastic optimization is also244

possible.245

3.5. Summary of Approximate Inference Methods246

In the previous sections we have described four methods that deal with247

the minimization of α-divergences in Gaussian process models for multi-class248

classification. In this section we will summarize the characteristics of each of249

the methods with the aim of giving a better understanding of them. Table 3.5250

shows, for each method, a summary of what we think are the most relevant251

features: the ability to use standard optimization techniques, the use of252

stochastic EP to make the method memory efficient and whether q has a free253

Gaussian form.254

The first method, PEP, was first introduced in [13] as a generalization of255

the EP algorithm. In [12] they successfully apply the algorithm to minimize256

α-divergences with sparse GPs and perform extensive experiments in the257

regression and binary classification cases. This method is precisely the one in258

[12], but applied to multi-class classification problems. It follows the general259

PEP scheme where one has to alternate between updating the approximate260

factors by moment matching and gradient based optimization of the model261

hyper-parameters. However, in the original PEP formulation [13], one has262

to wait until convergence before updating the hyper-parameters and here,263

we follow [10] and jointly optimize the approximate factors and the hyper-264

parameters. This method is not memory efficient due to the need of keeping265

in memory all the approximate factors.266

The second method, APEP, was described in [31] as a black-box method267
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that can be applied to general probabilistic models. They propose a simplified268

objective by tying the approximate factors following [15], and directly optimize269

the posterior approximation q using the gradients of the simplified objective.270

This makes the method memory efficient and allows for standard optimization271

techniques instead of having to rely on the PEP update step to optimize the272

approximate factors. In this work, we use the APEP method in the specific273

case of GP models applied to multi-class classification problems.274

The third method, ARPEP, was proposed in [17] for the specific case of275

Bayesian neural networks as an approximate way to minimize α-divergences.276

We have apply the same idea to the case of multi-class GP classification. This277

method is also memory efficient, can be used with standard optimization278

techniques. Also, in this case the posterior approximation q takes the form279

of a free Gaussian, meaning that it is no longer proportional to a Gaussian280

times the prior.281

The last method, RPAPEP, has been considered because the parameter-282

ization used in both PEP and APEP prevents them to reach some of the283

solutions that can be obtained by VB. To account for this, this method is284

based on APEP but where we let q be a free Gaussian, instead of a Gaussian285

times the prior. This method is memory efficient as well and can be used286

with standard optimization techniques.287

4. Related work288

Other works in the literature have addressed the approximate minimization

of α-divergences. In particular, [31] also approximate the Power EP objective

with a simplified energy function by tying the approximate factors. More
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PEP APEP ARPEP RPAPEP

Standard optimization ✓ ✓ ✓

Memory efficient ✓ ✓ ✓

Free Gaussian ✓ ✓

Table 1: Summary of the proposed methods

precisely, the objective considered by these authors is:

E[θprior,θ] =g(θprior)− g(θpost)

− 1

α

∑N
i=1 logEq

[(
p(yi|fi)

ϕ̃i

)α]
, (11)

where θprior and θpost are the natural parameters of the prior and the approx-289

imate posterior q respectively; g(θprior) and g(θpost) are their log-normalizers;290

θ = (θpost − θprior)/N are the parameters of the global approximate factor291

ϕ̃; and p(yi|fi) is the true likelihood factor. This method’s objective will be292

equivalent to the one obtained by the approximation in Section 3.2, but criti-293

cally, the expectations in (11), which may involve multiple random variables294

and may lack an analytic expression, are approximated via Monte Carlo. The295

result is black-box algorithm that can be used for approximate inference in296

arbitrary complicated models. In principle this method could also be used for297

approximate inference in the context of multi-class Gaussian process classifica-298

tion. Notwithstanding, in this particular case, the required expectations can299

be evaluated using one-dimensional quadrature methods, which is believed to300

be significantly more efficient than using a Monte Carlo estimate of the same301

quantity. Therefore, the approaches considered in the the present work are302

expected to be more efficient for approximately optimizing the PEP objective.303

Moreover, a Monte Carlo estimate of (11) will lead to a biased objective due304

17



to the non-linearity of the logarithm function.305

The minimization of α-divergences for binary Gaussian process classifica-306

tion has also been explored by Bui et al. [12]. These authors also use power EP307

as a unifying framework to work with GPs and α-divergences. Moreover, Bui308

[32] also compares in the binary classification case PEP with APEP, finding309

that they give similar results. However, despite the extensive experimental310

results in [12, 32], the multi-class classification case was not specifically con-311

sidered nor analyzed. Importantly, the extension from binary to multi-class312

problems is more challenging. Instead of having one single latent function, in313

the multi-class case there is one latent function per each class in the problem.314

Furthermore, the likelihood factors are also more complicated, and even lack315

an analytical expression. Our work complements that of Bui et al. [12] by316

providing a careful and exhaustive analysis of the multi-class case, which has317

been systematically overlooked by the literature on Gaussian processes. Be-318

sides this, we also consider alternative methods for approximately optimizing319

the PEP objective. These methods are memory efficient (the memory cost320

is independent of N) and can make use of standard optimization techniques321

(i.e., they do not use PEP updates of the approximate factors).322

Other methods for approximate inference in GPs with arbitrary likelihoods323

can also target the VB objective in Section 2.3 [33, 34, 35]. Instead of324

quadratures, they rely on a Monte Carlo approximation, which is expected to325

lead to higher variance in the gradients estimation and to affect negatively326

the optimization process.327
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5. Experiments328

In this section, we intend to compare the performance of the different329

values of α when using α-divergences in the multi-class setting. As we can330

retrieve VI solution by making α → 0 and the EP solution with α = 1 we331

are comparing the proposed methods to the state-of-the-art methods for332

scalable approximate inference with Gaussian processes. We compare the333

methods described in Section 3.1 to Section 3.4 (PEP, APEP, ARPEP and334

RPAPEP) in several experiments. The R code of each method is found335

in the supplementary material. All methods start with the same hyper-336

parameters (including the location of the inducing points), which are opti-337

mized by maximizing the estimate of the log-marginal likelihood. We use338

an ARD Gaussian kernel for each latent function [1], and optimize the am-339

plitude and additive noise parameter. An implementation in R of all the340

compared methods is available at http://arantxa.ii.uam.es/%7edhernan/341

alpha-mgpc/R-code_alpha_MGPC.zip. In the Appendix C there is a com-342

parison between the PEP method and some baseline methods, including label343

regression, Laplace approximation and MCMC based method, showing that344

the predictive distribution of PEP is good.345

5.1. Performance on UCI Datasets346

We compare the four methods, for different values of α, over 8 UCI-347

repository [36] multi-class problems. These problems are fairly small (see348

Appendix B for the datasets’ details), but will show how each method349

performs on standard problems. Later on, we will consider larger datasets.350

Because the datasets are small we use here batch optimization. We use 90% of351
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the data for training and 10% for testing, except for Satellite which is bigger352

(we choose 20% for training and 80% for test). In Vowel we consider only353

the points belonging to the 6 first classes. Finally, in Waveform (synthetic)354

we generate 1000 instances and split them in 30% for training and 70% for355

testing. All methods are trained for 500 iterations using l-BFGS, except for356

PEP, which uses gradient ascent with an adaptive learning rate (described in357

Appendix A.7). We consider three values for the number of inducing points358

M . Namely, 5%, 10% and 20% of the number of training data N . The values359

of α considered range from α → 0 to α = 1 with steps of size 0.1. We report360

averages over 20 repetitions.361

Figure 1 shows, for each method, the average rank for each value of α,362

in terms of the test log-likelihood. Average ranks are computed, for a fixed363

method, for each value of α, across dataset and splits and values of the number364

of inducing points M . Besides this, we analyze which method is better, given365

a particular value of α. For that, we compute the average rank of each method366

across datasets, splits and values of M , this time fixing α and varying the367

method instead of the other way around. This rank is shown using a color368

pattern with red meaning a higher average rank and blue a lower average369

rank. We observe that for PEP, the Hellinger value α = 0.5, seems to give370

better performance in terms of the negative test log-likelihood. For APEP371

and ARPEP, a value of α between 0.6 and 0.8 gives better results. Finally,372

RPAPEP gives in general worst results than the other methods for almost all373

values of α. Results for ranks computed in terms of the test error are shown374

in Appendix D. They do not differ significantly from ones shown here.375
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Figure 1: Avg. test neg. log-likelihood rank for each method and each value of α. The

color of the points indicates the average rank a method compared with the others. Best

seen in color.

5.2. Analysis of Inducing Points Location376

We also analyze, for each method, the location of the inducing points for377

different values of α. We use a synthetic two-dimensional problem with three378

classes reproduced from [10]. We consider 1, 000 training points and a fixed379

number of inducing points M = 128. The initial location of the inducing380

points is chosen at random and it is the same for all the methods. In these381

experiments we we keep fixed the other hyper-parameters to their true value382

21



[10]. PEP and APEP are trained using batch methods and ARPEP and383

RPAPEP are trained using stochastic methods to avoid sub-optimal solutions.384

In batch training we consider 2, 000 iterations and when using mini-batches385

we consider 2, 000 epochs. Additionally, we use ADAM for training (default386

settings) and 100 as the mini-batch size [37].387

α → 0 α = 0.1 α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1
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Figure 2: Decision boundaries and inducing points location for different values of α

(M = 128).

Figure 2 shows the final location of the inducing points. Blue, red and388

green points are training data, black lines are the decision boundaries and389

black border points are the inducing points. We expect that for values of α390

near zero, the inducing points would tend to place near the decision boundaries,391

since this is the behavior observed in [8, 10, 12]. Indeed, this is the case392

of ARPEP and RPAPEP, probably because they are the two formulations393

in which q has a free Gaussian form. By contrast, in PEP and APEP this394
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behavior is not observed. As we increase α, in PEP the inducing points395

overlap, which can be seen as an inducing point pruning technique, previously396

reported in [38, 10]. This behavior is not observed for the other methods,397

probably as a consequence of using either a different parameterization for q,398

or due to the approximation employed in APEP. Interestingly, for RPAPEP399

the inducing points tend to be even closer to the decision boundary as we400

approach α = 1. Finally, in APEP and ARPEP α does not have a strong401

influence in the location of the inducing points.402

5.3. Performance in Terms of Training Time403

We compare the performance of each method as a function of the training404

time on the Satellite dataset. Training is done as in Section 5.1. We consider405

M = 4, 20 and 100. We also set α → 0 and α = 0.3, 0.5, 0.8, 1. We report406

averages over 100 repetitions of the experiments. Figure 3 shows the average407

test negative log-likelihood for each method and each value of α. Similar408

plots for the test error are included in Appendix D. In general, when α → 0,409

and in the case of the method VB, we obtain the worst results. For PEP the410

best performance is obtained for α = 0.3 and α = 0.5. For the rest of the411

methods it seems that values between α = 0.8 and α = 1 tend to give good412

over-all results. RPAPEP seems to slightly over-fit the training data, which413

may explain the worse results of this method in the UCI datasets. ARPEP,414

RPAPEP give almost the same results as VB for α → 0, which is the expected415

behavior. In PEP and APEP this is not the case, probably because of the416

different parameterization of q, which is proportional to a Gaussian times the417

prior. Finally, PEP gives better results earlier, probably as a consequence of418

using PEP-updates to refine q, instead of gradient-based updates.419
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Figure 3: Neg. test log-likelihood on the Satellite dataset for different values of α and M .

Best seen in color.

5.4. Performance on MNIST420

When addressing very large datasets one can no longer rely on batch421

training, and mini-batches and stochastic gradients are required. A large422

problem is MNIST [39], with 60, 000 instances for training and 10, 000 for423

testing. We train the proposed methods on this dataset setting M = 200424

and using a mini-batch size of 200. We consider several values for α from425

α → 0 to α = 1 with a step-size of 0.1. Each method is trained using ADAM426

(except PEP which uses EP-updates to refine q) with the default parameters427

[37]. We include the results for Variational Bayes (VB) for reference. Figure428

4 shows the test negative log-likelihood for each method and each value of α.429

The same plots but for the test error are included in Appendix D. All the430

methods seem to give similar results, but APEP reaches the optimal solution431

24



first. Importantly, in each method the lower the value of α the faster the432

convergence.433
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Figure 4: Negative test log-likelihood for each method on the MNIST dataset for each α.

Best seen in color.

5.5. Performance on Airline Delays434

We consider a dataset with information about the flights within the USA435

between 01/2008 and 04/2008 1 . It has three classes: Flight on time, with436

more than 5 minutes of delay, or arrived 5 minutes before scheduled time. We437

consider 8 attributes: age of the aircraft, distance covered, airtime, departure438

time, arrival time, day of the week, day of the month and month. After439

1http://stat-computing.org/dataexpo/2009

25

http://stat-computing.org/dataexpo/2009


removing the data with missing values, 2, 127, 068 instances remain, from440

which 10, 000 are used for testing and the rest for training. We evaluate each441

method using the same setting as on the MNIST dataset. We also include442

the results obtained by VB for reference.443

Figure 5 shows the negative test log-likelihood of each method as a function444

of time. The results are similar in terms of the test error (see Appendix D).445

Regarding the negative test log-likelihood, as α approaches 0, worse results446

are obtained. This had previously been observed in [10], and is believed447

to be a consequence of the particular objective that is optimized by VB.448

As α increases, the approximation to the log-marginal likelihood of PEP449

resembles more the EP objective, which is closer to the test-log likelihood450

logEq(fi)[p(yi|fi)]. This explains the better results of α = 1. Here, α = 0.5451

also provides good results.452

5.6. Active Learning: Waveform453

As a way of measuring the quality of the predictive distribution we have454

conducted a last experiment on the waveform dataset. We consider an active455

learning approach where we will iteratively add a new data point to the456

training set. For that, we will need an initial training set, a test set to457

evaluate the performance and a validation set from which to select the new458

data points. To choose which point to select next from the validation set,459

we will use the predictive distribution of the proposed methods, by selecting460

the point in which the entropy is highest and hence adopting an explorative461

approach. We compare this selection mechanism versus selecting the next462

point at random from the validation set. We start with 100 points for training,463

500 for test and 400 for validation, and we will add 100 new points to the464
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Figure 5: Neg. test log-likelihoods on the Airline Delays dataset for each α. Best seen in

color.

training set. All methods are trained using l-BFGS the first time for 250465

iterations and then re-trained each time we add a new point for 25 more466

iterations, reusing the solution obtained so far. For the PEP algorithm, when467

adding a new point to the training set one must also add a new approximate468

factor. This made the retraining process start in a bad solution leading to469

bad results. In order to overcome this problem, we have combined both the470

PEP updates of the approximate factors and l-BFGS, by alternating between471

updating the approximate factors and optimizing the model hyper-parameters472

with l-BFGS. In this case, as we are updating the factors several times at473

each l-BFGS iteration in an internal loop the training process is more costly,474

therefore we have reduced the initial training from 250 to 50 iterations and the475
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Figure 6: Test error on the Waveform dataset as a function of the number of added points

to the training set, selected using an active learning approach (top) and selected at random

(botton). Best seen in color.

retraining from 25 to 5 iterations. We report averages over 100 repetitions.476

Figure 6 shows, for each value of α, the classification error in the test set477

as a function of the number of new added points. In the top row, each new478

point has been added by means of the active learning approach, selecting the479

point in which the entropy is highest. In the bottom row, each new point480

has been selected at random. We observe that the error is lower for values481

close to α = 1, both for the active learning approach and random selection.482

Also, the test error is always lower for the active learning approach than for483

random selection for all the methods, showing the utility of the predictive484

distribution for this type of problems.485

In Figure 7 it is shown, for each value of α, the reduction in the test error486

w.r.t. the initial error. For PEP, the reduction in the error is higher when we487

choose higher values of α, but for the other methods values of α → 0 give488
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Figure 7: Test error reduction on the Waveform dataset as a function of the number of

added points to the training set, selected using an active learning approach. Best seen in

color.

better test error reduction. This is because the initial test error as α → 0 is489

worse for all the methods but, at the end of the training process, all the values490

of α give similar values for the test error, although slightly better for values491

near α = 1. In the case of PEP, the difference in the test error between lower492

and higher values of α is bigger at the end, resulting in a better reduction for493

higher values of α.494

6. Conclusions495

The optimization of α-divergences allows to interpolate between approxi-496

mate inference methods that are closer to VB when α → 0 or EP as α → 1.497
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Previous work in the literature had already considered the optimization of498

these divergences for approximate inference [12, 31, 17]. In this work, we499

have analyzed its specific minimization in the case of multi-class classification500

using GPs. We have compared four approximate methods for this: PEP,501

APEP, ARPEP and RPAPEP. These approximations are memory efficient502

(except PEP) and can be combined with batch training methods, as well as503

with stochastic training methods. When using mini-batches and stochastic504

techniques, the training cost is O(CM3). We have done several experiments505

comparing the proposed approximations for different values of α.506

While none of the proposed methods seems to be superior to the others507

(except RPAPEP, which performs slightly worse), there are some points that508

one should keep in mind when using them in practice. First of all, PEP is not509

memory efficient as it needs to keep in memory all the approximate factors.510

This clearly a drawback with respect to the other methods, especially when511

working with big datasets. Also, these factors are optimized through PEP512

updates, which makes the implementation slightly more complicated, as we513

cannot rely on standard optimization techniques like in the other methods.514

APEP and ARPEP give very similar results and can be used indistinctly. A515

difference between those two methods is that the ARPEP objective is more516

similar to the one optimized in VB, including the fact that the posterior517

q takes the form of a free Gaussian, which is why it exhibits some of the518

properties previously reported for VB (e.g., the inducing points tend to place519

near the decision boundaries).520

The results obtained show that intermediate values of α, e.g., α = 0.5,521

can provide in general better results than standard approximate inference522
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methods based on VB or EP in some of the problems investigated. This523

agrees with previous results for the case of regression or binary classification524

problems, as indicated in [12].525
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Appendix A. Details for implementing PEP531

Appendix A.1. Introduction532

In this document we detail all the steps needed to implement the PEP533

algorithm described in the main manuscript. In particular, we describe how534

to reconstruct the posterior approximation from the approximate factors535

and how to refine these factors. We also detail the computation of the PEP536

approximation to the marginal likelihood and its gradients, as well as those537

of the proposed approximations in the main manuscript. Finally, we include538

some additional experimental results.539

Appendix A.2. Reconstruction of the posterior approximation540

In this section we show how to obtain the posterior distribution by multi-541

plying the approximate factors ϕ̃i(f) and the prior p(f). Each factor ϕi will542

be replaced by PEP for an approximate Gaussian factor ϕ̃i of the form:543
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ϕ̃i(f) = Z̃i

C∏
k=1

exp

{
−1

2
(f

k
)TṼi,kf

k
+ (f

k
)Tm̃i,k

}
, (A.1)

where Ṽi, k and m̃i,k have the following especial form (see Appendix A.4 for

the detailed derivation):

Ṽi,k = C1
i,kυ

k
i (υ

k
i )

T , (A.2)

m̃i,k = C2
i,kυ

k
i , (A.3)
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xiX
k)

T(Kk

X
k
X

k)
−1 and Kk

X
k
X

k is a M × M

matrix with the cross covariances between f
k
and C1

i,k and C2
i,k are parameters

found by PEP. We also know from the main manuscript that the prior has

the following form:

p(f) =
C∏

k=1

p(f
k|Xk

) =
C∏

k=1

N (f
k|0,Kk

X
k
X

k) , (A.4)

So the posterior approximation will have the following form

q(f) =
1

Zq

[
N∏
i=1

ϕ̃i

]
C∏

k=1

p(f
k|Xk

) . (A.5)

Given that all the factors are Gaussian, a distribution that is closed under

product and division, q(f) is also Gaussian. In particular, the posterior

approximation is defined as q(f) =
∏C

k=1 N (f |,mk,Vk). The parameters of

this distribution can be obtained by using the formulas given in the Appendix

of [40] for the product of two Gaussians, leading to

Vk =
[
(Kk

X
k
X

k)
−1 +Υk∆kΥ

T
k

]−1

,

mk = VkΥkµ̃k , (A.6)
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where Υk = (υk
1 , . . . ,υ

k
N ) is a M ×N matrix, ∆k is a diagonal N ×N matrix544

with diagonal entries equal to C1
i,k and µ̃k is a vector where each component545

is equal to C2
i,k.546

Appendix A.3. Computation of the cavity distribution547

Here we will obtain the expressions for the parameters of the cavity

distribution q\αi. This distribution is computed by dividing the posterior

approximation by the corresponding approximate factor to the power of α:

q(f)\αi ∝ q(f)

ϕ̃i(f)α
. (A.7)

Given that all factors are Gaussian, the resulting distribution will also be

Gaussian. The parameters can be obtained by using again the formulas in

the Appendix of [40]. However, because ϕ̃i only depends on f
k
, only these

components of q(f) will change. The corresponding parameters of q(f)\αi are:

V
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where we have used the Woodbury matrix identity and υk
i , C

1
i,k and C2

i,k are548

the parameters specified in Appendix A.2.549
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Appendix A.4. Update of the approximate factors550

In this section we show how to find the approximate factors ϕ̃i once the

cavity distribution q\αi has already been computed. We can compute the

moments of ϕiq
\αi by getting the derivatives of logZi with respect to the

parameters of q\αi, as indicated in the Appendix of [40]. For that, note that:

mk = υk
i m

\αi (A.10)

Vk = κk
xixi

− (υk
i )

T(Kk

X
k
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−1υk
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i (A.11)

The derivatives are:

∂ logZi

∂m
\αi
k

=
∂ logZi

∂mk

∂mk

∂m
\αi
k

=
∂ logZi

∂mk

υk
i , (A.12)

∂ logZi

∂V
\αi
k

=
∂ logZi

∂Vk

∂Vk

∂V
\αi
k

=
∂ logZi

∂Vk

υk
i (υ

k
i )

T , (A.13)

where υk
i is the parameter specified in Appendix A.2. By following the

Appendix of [40] we can obtain the moments of ϕiq
\αi (mean m̂c and covariance

V̂c) from the derivatives of logZi with respect to the parameters of q\αi.

Namely:
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Now we can find the parameters of the approximate factor ϕ̃i, which is
obtained as ϕ̃i = Ziq

new/q\αi, where qnew is a Gaussian distribution with the
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parameters of ϕiq
\αi just computed. By following the equations given in the

Appendix of [40] we obtain the precision matrices of the approximate factor:
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where we have used the Woodbury matrix identity to compute (V̂i,k)
−1. Let

us define C1
i,k as:
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where we divide by α because we retrieve α times the approximate factor551

from PEP. The precision matrix of the approximate factors will be then:552

Ṽi,k = C1
i,kυ

k
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T . (A.18)
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For the first natural parameter we proceed in a similar way553
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(A.19)

where we have used that (Vnew
yi

)−1 = V−1
yi

+ Ṽyi
i,k. If we define C2

i,k as:

C2
i,k =

1

α

[
∂ logZi

∂mk
+ C1

i,k(υ
k
i )

Tm
\αi
k +

∂ logZi

∂mk
C1

i,k(υ
k
i )

TV
\αi
k υk

i

]
, (A.20)

we obtain the following expressions for the first natural parameter:

m̃i,k = C2
i,kυ

k
i . (A.21)

Once we have these parameters we can compute the value of the normal-554

ization constant Z̃i, which guarantees that the approximate factor integrates555

the same as the exact factor with respect to q\αi. The log of this constant is:556

log Z̃i = logEq(fi)

[(
ϕi

ϕ̃i

)α]
= logEq(fi)

[(
p(yi|fi)

ϕ̃i

)α]
+ g(θ\αi)− g(θ) . (A.22)

As we are using the robust likelihood p(yi|fi) = (1−ϵ)
∏

k ̸=yi
Θ
(
f yi(xi)− fk(xi)

)
557

+ ϵ
C
we will need to use one-dimensional quadrature techniques to compute558
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the expectation Eq(fi)

[(
p(yi|fi)/ϕ̃i

)α]
. This expectation is simply related to559

the probability that a Gaussian random variable is larger than several others560

(one per each other class label) [18].561

Appendix A.5. Parallel EP updates and damping562

We update all approximate factors in parallel. This means that we compute563

all the quantities required for updating each of the approximate factors at564

once (in particular the quantities derived for the cavity distribution q\αi).565

Parallel updates are faster than sequential EP updates because there is no566

need to introduce a loop over the data. All computations can be carried out567

in terms of matrix vector multiplications that are often more efficient. A568

disadvantage of parallel updates is, however, that they may lead to unstable569

PEP updates. To prevent unstable PEP updates we used damped PEP570

updates. These simply replace the PEP updates of each approximate factor571

with a linear combination of old and new parameters. For example, we set572

C̃1
i,k = (C̃1

i,k)
newρ + (C̃1

i,k)
old(1 − ρ) in the case of the C̃i,k parameter of the573

approximate factor (we do this with all the parameters). In the previous574

expression ρ ∈ [0, 1] a value that specifies the amount of damping. If ρ = 0575

no update happens. If ρ = 1 we obtain the original EP update. Importantly,576

damping does not change the EP convergence points so it does not affect to577

the quality of the solution.578
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Appendix A.6. Estimate of the marginal likelihood579

As we have seen in the main manuscript, the estimate of the log marginal

likelihood is:

logZq = g(θ)− g(θprior) +
1

α

N∑
i=1

log Z̃i (A.23)

log Z̃i = logEq(fi)

[(
p(yi|fi)

ϕ̃i

)α]
+ g(θ\αi)− g(θ) (A.24)

where θ, θ\αi and θprior are the natural parameters of q, q\αi and p(f) re-580

spectively and g(θ′) is the log-normalizer of a multivariate Gaussian with581

natural parameters θ′. If µ and Σ are the mean and covariance matrix of582

that Gaussian distribution over D dimensions, then583

g(θ′) =
D

2
log 2π +

1

2
log |Σ|+ 1

2
µTΣ−1µ , (A.25)

which leads to584

logZq =
C∑

k=1

1

2
log |Vk|+

1

2
mT

kV
−1
k mk −

1

2
|Kk

X
k
X
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N∑
i=1

log Z̃i , (A.26)

with585

log Z̃i = logEq(fi)

[(
p(yi|fi)

ϕ̃i

)α]
+

1

2
log
∣∣V\αi

yi
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+

1
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(A.27)

This expression can be evaluated very efficiently using the Woodbury586

matrix identity; the matrix determinant lemma; that (V
\αi
k )−1 = V−1

k − Ṽi,k;587

that m
\αi
k = V

\αi
k (V−1

k mk − m̃i,k); and the special form of the parameters of588

the approximate factors Ṽi,k and m̃i,k.589
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Appendix A.7. Gradient of log Zq after convergence and learning rate590

We derive the expression for the gradient of logZq after PEP has converged.591

Let ξkj be one hyper-parameter of the model (i.e., a parameter of one of the592

covariance functions or a component of the inducing points) and θ and θprior to593

the natural parameters of q and p(f) respectively. When PEP has converged,594

the approximate factors can be considered to be fixed (it does not change595

with the model hyper-parameters) [24]. In this case, it is only necessary to596

consider the direct dependency of logZi on ξkj [24]. But in our case, we update597

the hyper-parameters at each PEP iteration, so we will need to consider the598

indirect dependency too. The gradient is given by:599

∂ logZq
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=

(
∂g(θ)

∂θ

)T
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(A.28)

where we have used the chain rule of matrix derivatives [41], the especial form600

of the derivatives when using inducing points [42] and that θ = θprior+
∑N

i=1 θi,601

with θi the natural parameters of the approximate factor ϕ̃i. Furthermore, η602
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and ηprior are expected sufficient statistics under the posterior approximation603

q and the prior, respectively. This gradient coincides with the one in the main604

manuscript.605

It is important to note that one has to use the chain rule of matrix deriva-

tives when trying to use the previous expression to compute the gradient. In

particular, natural parameters and expected sufficient statistics are expressed

in the form of matrices. Thus, one has to use in practice the chain rule of

matrix derivatives, as indicated in [41]. For example:

(η − ηprior)
T∂θprior

∂ξkj
= −1

2
trace

(
MT

k

∂Kk

X
k
X

k

∂ξkj

)
, (A.29)

where
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)−1
−
(
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mkm
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X
k
X
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)−1
, (A.30)

where Vk and mk are the covariance matrix and mean vector of the k-606

th component of q. Furthermore, several standard properties of the trace607

can be employed to simplify the computations. In particular, the trace is608

invariant to cyclic rotations. Namely, trace(ABCD) = trace(DABC). The609

derivatives with respect to each logEq(fi)

[(
p(yi|fi)/ϕ̃i

)α]
can be computed610

using quadrature techniques.611

In our experiments we use an adaptive learning rate for the batch PEP612

methods. This learning rate is different for each hyper-parameter. The613

rule that we use is to increase the learning rate by 2% if the sign of the614

estimate of the gradient for that hyper-parameter does not change between615

two consecutive iterations. If a change is observed, we multiply the learning616

rate by 1/2. When applying stochastic optimization methods, we use the617

ADAM method with the default settings to estimate the learning rate [37].618

40



Appendix A.8. Predictive distribution619

Once the training has completed, we can use the posterior approximation to

make predictions for new instances. For that, we first compute an approximate

posterior evaluated at the location of the new instance x⋆, denoted by f⋆ =

(f 1(x⋆), . . . , fC(x⋆))T:

p(f⋆|y) =
∫

p(f⋆|f)p(f |y)df =
∫

p(f⋆|f)q(f)df ≈
C∏

k=1

N (fk(x⋆)|m⋆
k, v

⋆
k) , (A.31)

where:
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T(Kk

X
k
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k )
−1mk (A.32)
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k )

T(Kk

X
k
X

k )
−1Vk(K

k

X
k
X

k )
−1kk

x⋆,X
k . (A.33)

This approximate posterior can be used to obtain an approximate predictive620

distribution for the class label y⋆:621

p(y⋆|x⋆,y) =

∫
p(y⋆|x⋆, f⋆)p(f⋆|y)df⋆

=

∫
p(y⋆|x⋆, f⋆)

C∏
k=1

N (fk(x⋆)|m⋆
k,V

⋆
k)df

⋆

=

∫ [
(1− ϵ)

∏
k ̸=y⋆

Θ
(
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)
+

ϵ

C

]
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k=1

N (fk(x⋆)|m⋆
k, v

⋆
k)df

⋆
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Θ
(
f y⋆(x⋆)− fk(x⋆)

)
+

ϵ

C

]
∏
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⋆
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⋆
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=
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Φ
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(A.34)
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where Φ(·) is the cumulative distribution function of a Gaussian distribu-622

tion. This is an integral in one dimension and can easily be approximated by623

quadrature techniques.624

Appendix B. Details of the UCI Datasets625

Table B.2 shows the characteristics of the datasets considered from the626

UCI repository in the main document. This table shows, for each problem,627

the number of samples, the number of attributes and the number of class628

labels.629

Table B.2: Characteristics of the datasets from the UCI Repository.

Dataset #Instances #Attributes #Classes

Glass 214 9 6

New-thyroid 215 5 3

Satellite 6435 36 6

Svmguide2 391 20 3

Vehicle 846 18 4

Vowel 540 10 6

Waveform 1000 21 3

Wine 178 13 3

Appendix C. Comparison to Baseline Methods630

In this section we compare the PEP algorithm (α → 0, α = 0.5 and631

α = 1) with three baseline methods: label regression, Laplace approximation632

and a MCMC method that uses Gibbs sampling. We have performed these633
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experiments on the 8 UCI repository datasets that are summarized in Table634

B.2.635

Label regression implementation uses the inducing point approximation636

and EP algorithm. Note that in the regression case, EP results in exact637

inference, as the likelihood factors are Gaussian [1]. The approximate factors638

are updated via regular EP updates, and the model hyper-parameters are639

optimized by gradient ascent with an adaptive learning rate (described in640

Appendix A.7). We consider three values for the number of inducing points641

M . Namely, 5%, 10% and 20% of the number of training data N . We report642

averages over 100 repetitions.643

In the case of Laplace and MCMC, we first obtain the model hyper-644

parameters using EP (PEP with α = 1) and then we train the methods645

to optimize the approximation. This is done because learning the hyper-646

parameters with these two methods is not scalable.647

For Laplace, the gradients of the approximation to the marginal likelihood648

w.r.t. to the hyper-parameters cannot be computed efficiently using sparse ap-649

proximations, since they have an explicit dependence on the hyper-parameters650

and an indirect dependence through the mode [43]. This is precisely why651

there are no works in the literature that use Laplace approximation with652

sparse GPs. The Laplace approximation uses the softmax likelihood function.653

The MCMC method that we have considered used Gibbs sampling. Gibbs654

sampling generates samples from the joint target distribution by replacing655

the value of one of the variables by a value drawn from the distribution of656

that variable conditioned on the values of the remaining variables [43]. This657

method is asymptotically unbiased.658
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In Table C.3 it is shown the test error and in Table C.4 we report the659

test log-likelihood. By looking at the results, we observe that performance of660

PEP is similar to the one of MCMC, so the predictive distribution of PEP is661

fairly good.662

In conclusion, PEP gives good predictive distributions with the chosen663

likelihood function, and better than using the softmax. The softmax likelihood664

can be more robust than considering Gaussian noise like this work, but it665

makes inference more complicated, and the lack of robustness can be partially666

compensated by using the robust-max likelihood, where we introduce some667

noise in the labels by considering possible labelling errors with probability ϵ,668

even if ϵ is small.669

Appendix D. Additional Experimental Results670

In this section we add some extra experimental results that did not fit in671

the main manuscript. In Figure D.8 we show the mean test error rank for672

each of the proposed methods and several values of α. We report averages673

over 8 datasets from the UCI repository and 20 splits. Results for PEP and674

APEP are similar to the ones in the main manuscript in terms of the negative675

test log likelihood. However, ARPEP seems to give better results in terms of676

the test error with α = 0.8 or α = 0.9.677
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Problem MCMC Laplace
Label

Regression

PEP

(α → 0)

PEP

(α = 0.5)

PEP

(α = 1)

M
=

5
%

glass 0.32 ± 0.01 0.26 ±0.01 0.44 ± 0.01 0.36 ± 0.01 0.33 ± 0.01 0.36 ± 0.01

new-thyroid 0.05 ± 0 0.05 ± 0 0.15 ± 0.01 0.03 ± 0 0.04 ± 0 0.12 ± 0.01

satellite 0.11 ± 0 0.12 ± 0 0.26 ± 0 0.11 ± 0 0.11 ± 0 0.11 ± 0

svmguide2 0.18 ± 0.01 0.18 ± 0.01 0.21 ± 0.01 0.19 ± 0.01 0.17 ±0.01 0.24 ± 0.01

vehicle 0.19 ± 0 0.22 ± 0.01 0.25 ± 0 0.18 ± 0.01 0.18 ± 0 0.19 ± 0

vowel 0.08 ± 0 0.15 ± 0.01 0.29 ± 0.01 0.06 ± 0 0.05 ± 0 0.09 ± 0.01

waveform 0.16± 0 0.16 ± 0 0.26 ± 0 0.18 ± 0 0.16 ± 0 0.22 ± 0

wine 0.03 ± 0 0.04 ± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.05 ± 0.01

Avg. Time 5.02 ± 0.18 62.64 ± 3.77 131.61± 9.78 1684.83±56.14 1625.81±59.68 1495.37± 71.49

M
=

1
0
%

glass 0.32 ± 0.01 0.25 ±0.01 0.43 ± 0.01 0.36 ± 0.01 0.31 ± 0.01 0.33 ± 0.01

new-thyroid 0.04 ± 0 0.04 ± 0 0.12 ± 0.01 0.03 ± 0 0.03 ± 0 0.08 ± 0.01

satellite 0.11± 0 0.12 ± 0 0.24 ± 0 0.11 ± 0 0.11 ± 0 0.11 ± 0

svmguide2 0.18 ± 0.01 0.18 ±0.01 0.22 ± 0.01 0.2 ± 0.01 0.18 ± 0.01 0.19 ± 0.01

vehicle 0.19 ± 0 0.22 ± 0.01 0.23 ± 0 0.17 ± 0 0.17 ± 0 0.18 ± 0

vowel 0.05 ± 0 0.19 ± 0.01 0.21 ± 0.01 0.04 ± 0 0.03 ± 0 0.05 ± 0

waveform 0.16± 0 0.16 ± 0 0.26 ± 0 0.18 ± 0 0.17 ± 0 0.19 ± 0

wine 0.02± 0 0.03 ± 0 0.03 ± 0 0.03 ± 0 0.02 ± 0 0.03 ± 0

Avg. Time 9.87 ± 0.36 202.17±14.77153.83± 9.79 1865.4 ± 68.1 1814.39±78.13 1724.34± 82.62

M
=

2
0
%

glass 0.32 ± 0.01 0.24 ±0.01 0.39 ± 0.01 0.36 ± 0.01 0.31 ± 0.01 0.32 ± 0.01

new-thyroid 0.04 ± 0 0.04 ± 0 0.1 ± 0.01 0.04 ± 0.01 0.03 ± 0 0.06 ± 0.01

satellite 0.11± 0 0.12 ± 0 0.23 ± 0 0.11 ± 0 0.11 ± 0 0.11 ± 0

svmguide2 0.18 ± 0.01 0.18 ± 0.01 0.23 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.18 ± 0.01

vehicle 0.17 ± 0 0.22 ± 0 0.22 ± 0 0.17 ± 0.01 0.16 ± 0 0.17 ± 0

vowel 0.03 ± 0 0.23 ± 0.01 0.11 ± 0 0.03 ± 0 0.02 ± 0 0.03 ± 0

waveform 0.16 ± 0 0.16 ± 0 0.26 ± 0 0.18 ± 0 0.17 ± 0 0.16 ± 0

wine 0.03 ± 0 0.03 ± 0 0.04 ± 0 0.02 ± 0 0.02 ± 0 0.02 ± 0

Avg. Time22.89± 0.71 766.85±58.39224.41± 11.01 2169.13±93.34 2138.39±82.94 2073.18±108.69

Table C.3: Average test error for each method and average training time in seconds.
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Problem MCMC Laplace
Label

Regression

PEP

(α → 0)

PEP

(α = 0.5)

PEP

(α = 1)

M
=

5
%

glass 0.8 ± 0.02 0.8 ±0.01 1.1 ± 0.03 2.05 ± 0.07 0.81 ± 0.02 0.9 ± 0.02

new-thyroid 0.12 ± 0.01 0.26 ± 0.01 0.38 ± 0.02 0.11 ± 0.01 0.09 ±0.01 0.35 ± 0.01

satellite 0.3 ± 0 0.5 ± 0.01 0.74 ± 0 0.51 ± 0 0.31 ± 0 0.3 ± 0

svmguide2 0.53±0.02 0.54 ± 0.01 0.7 ± 0.02 0.9 ± 0.06 0.57 ± 0.02 0.65 ± 0.02

vehicle 0.37 ± 0.01 0.6 ± 0.01 0.58 ± 0.01 0.57 ± 0.04 0.36 ±0.01 0.37 ± 0.01

vowel 0.27 ± 0.01 0.62 ± 0.01 0.7 ± 0.01 0.38 ± 0.02 0.17 ±0.01 0.29 ± 0.01

waveform 0.37± 0 0.39 ± 0 0.59 ± 0 0.67 ± 0.01 0.4 ± 0 0.69 ± 0.01

wine 0.08±0.01 0.14 ± 0.01 0.09 ± 0 0.1 ± 0.01 0.08 ± 0.01 0.49 ± 0.01

Avg. Time 5.02 ± 0.19 62.64 ± 3.87 131.61± 10.43 1684.83±49.43 1625.81±58.99 1495.37± 67.77

M
=

1
0
%

glass 0.79 ± 0.02 0.78 ±0.01 1.05 ± 0.03 1.97 ± 0.07 0.8 ± 0.02 0.8 ± 0.02

new-thyroid 0.09 ± 0.01 0.15 ± 0 0.33 ± 0.02 0.1 ± 0.01 0.08 ±0.01 0.31 ± 0.01

satellite 0.3 ± 0 0.36 ± 0 0.71 ± 0 0.5 ± 0 0.32 ± 0 0.29 ± 0

svmguide2 0.54 ± 0.02 0.52 ±0.01 0.73 ± 0.03 0.88 ± 0.05 0.6 ± 0.03 0.56 ± 0.02

vehicle 0.36± 0 0.59 ± 0.01 0.55 ± 0.01 0.54 ± 0.02 0.36 ± 0.01 0.36 ± 0.01

vowel 0.21 ± 0 0.8 ± 0.02 0.55 ± 0.01 0.26 ± 0.02 0.14 ± 0 0.22 ± 0.01

waveform 0.37± 0 0.38 ± 0 0.59 ± 0 0.69 ± 0.01 0.43 ± 0 0.62 ± 0.01

wine 0.07 ± 0.01 0.13 ± 0.01 0.1 ± 0.01 0.08 ± 0.01 0.07 ±0.01 0.39 ± 0.01

Avg. Time 9.87 ± 0.36 202.17±12.79153.83± 11.07 1865.4 ±73.57 1814.39±70.72 1724.34± 89.06

M
=

2
0
%

glass 0.78 ± 0.02 0.77 ±0.01 1 ± 0.02 1.94 ± 0.07 0.8 ± 0.02 0.79 ± 0.02

new-thyroid 0.09±0.01 0.15 ± 0.01 0.28 ± 0.03 0.16 ± 0.04 0.1 ± 0.01 0.27 ± 0.01

satellite 0.29 ± 0 0.4 ± 0.01 0.69 ± 0 0.48 ± 0 0.32 ± 0 0.29 ± 0

svmguide2 0.55 ± 0.02 0.53 ±0.01 0.77 ± 0.03 0.78 ± 0.04 0.59 ± 0.03 0.55 ± 0.02

vehicle 0.35±0.01 0.6 ± 0.01 0.53 ± 0.01 0.53 ± 0.02 0.36 ± 0.01 0.35 ± 0.01

vowel 0.2 ± 0 1.09 ± 0.02 0.37 ± 0.01 0.16 ± 0.02 0.13 ± 0 0.19 ± 0

waveform 0.38 ± 0 0.38 ± 0 0.61 ± 0 0.7 ± 0.01 0.46 ± 0.01 0.53 ± 0.01

wine 0.07±0.01 0.18 ± 0.01 0.1 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.32 ± 0.01

Avg. Time22.89± 0.86 766.85± 49.9 224.41± 12.44 2169.13±82.92 2138.39±90.18 2073.18±106.53

Table C.4: Average negative test log likelihood for each method and average training time

in seconds.
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Figure D.8: Mean test error rank for different methods and different values of α. The

color of the points indicates the average rank of the method compared with the others.

Best seen in color.

The next result is from the Satellite dataset of the UCI repository. We678

show the performance as a function of the time in terms of the test error. It679

gives similar results as for the negative test log likelihood (shown in the main680

manuscript).681
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Figure D.9: Mean test error rank for different methods and different values of α. Best

seen in color.

In Figure D.10 we show the results for the MNIST dataset in terms of682

the test error. Here we see that for the test error, values near α → 0 do not683

converge first, but instead intermediate values such as α = 0.5 tend to arrive684

faster to the good solution.685

48



0.020

0.134

0.248

0.362

0.476

0.590

1e+02 1e+03 1e+04 1e+05

Training Time in Seconds in a Log10 Scale

T
e
s
t 

E
rr

o
r

PEP

0.02

0.18

0.34

0.50

0.66

0.82

1e+02 1e+03 1e+04 1e+05

Training Time in Seconds in a Log10 Scale

T
e
s
t 

E
rr

o
r

APEP

0.020

0.134

0.248

0.362

0.476

0.590

1e+02 1e+03 1e+04 1e+05

Training Time in Seconds in a Log10 Scale

T
e
s
t 

E
rr

o
r

ARPEP

0.020

0.188

0.356

0.524

0.692

0.860

1e+02 1e+03 1e+04 1e+05

Training Time in Seconds in a Log10 Scale

T
e
s
t 

E
rr

o
r

RPAPEP

Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

Figure D.10: Mean test error rank for different methods and different values of α for

MNIST dataset. Best seen in color.

Regarding the Airline Delays dataset, we observe similar results when686

talking of the test error as in MNIST. The results are shown in Figure D.11687
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Figure D.11: Mean test error rank for different methods and different values of α for

Airline Delays dataset. Best seen in color.
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