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Abstract

Transfer learning is focused on the reuse of supervised learning models in a new
context. Prominent applications can be found in robotics, image processing or
web mining. In these fields, the learning scenarios are naturally changing but
often remain related to each other motivating the reuse of existing supervised
models. Current transfer learning models are neither sparse nor interpretable.
Sparsity is very desirable if the methods have to be used in technically limited
environments and interpretability is getting more critical due to privacy regula-
tions. In this work, we propose two transfer learning extensions integrated into
the sparse and interpretable probabilistic classification vector machine. They
are compared to standard benchmarks in the field and show their relevance
either by sparsity or performance improvements.

Keywords: Transfer Learning, Probabilistic Classification Vector Machine,
Transfer Kernel Learning, Nyström Approximation, Basis Transfer, Sparsity

1. Introduction

Supervised learning and in particular classification is an important task in
machine learning with a broad range of applications. The obtained models are
used to predict the label of unseen test samples. In general, it is assumed that
the underlying domain of interest is not changing between training and test
samples. If the domain is changing from one task to a related but different
task, one would like to reuse the available learning model. Domain differences
are quite common in real-world scenarios and eventually lead to substantial
performance drops [1].
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A transfer learning example is the classification of web pages: A classifier is
trained in the domain of university web pages with a word distribution according
to universities and in the test scenario, the domain has changed to non-university
web pages, where the word distribution may not be similar to training distribu-
tion. Figure 1 shows a toy example of a traditional and a transfer classification
task with clearly visible domain differences.

More formally, let Z = {z1, . . . , zn} be source data sampled from the source
domain distribution p(z) and let X = {x1, . . . ,xm} be target data from the
target domain distribution p(x). Traditional machine learning assumes similar
distributions, i.e. p(z) ∼ p(x), but transfer learning assumes different distribu-
tions, i.e. p(z) 6= p(x), and appears in the web page example where Z could be
features of university websites and X are features of non-university websites.

In general, transfer learning aims to solve the divergence between domain
distributions by reusing information in one domain to help to learn a target
prediction function in a different domain of interest [2]. However, despite the
definition, the proposed solutions implicitly solve differences by linear trans-
formations, detailed in section 4.1 and 4.2. Multiple transfer learning methods
have been already proposed, following different strategies and improving predic-
tion performance of underlying classification algorithms in test scenarios [1][2].
In this paper, we focus on sparse models, which are not yet covered sufficiently
by transfer learning approaches.

The Probabilistic Classification Vector Machine (PCVM) [3] is a sparse prob-
abilistic kernel classifier pruning unused basis functions during training, found
to be very effective [3][4] with competitive performance to Support Vector Ma-
chine (SVM) [5]. The PCVM is naturally sparse and creates interpretable mod-
els as needed in many application domains of transfer learning. The original
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(b) Transfer Problem

Figure 1: Toy example showing a comparison of a traditional classification task with two
classes shown in red and blue. Left figure shows a traditional classification task with one
domain and right side shows transfer learning classification task with two domains, which are
indicated as shapes. Transfer learning aims to extract common information in one domain to
help a model in another domain.
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PCVM is not well suited for transfer learning due to their focus on station-
ary Gaussian distribution and is equipped within this work with two transfer
learning approaches.

The contributions are detailed in the following:
We integrate Transfer Kernel Learning (TKL) [6] into the PCVM to retain its
sparsity. Inspired by the Basis-Transfer (BT) [7], a subspace transfer learning
approach is proposed and is also combined with PCVM, boosting prediction per-
formance significantly compared to the baseline. This is enhanced by Nyström
techniques, which reduces computational complexity compared to BT. Finally,
a data augmentation strategy is proposed, making the approach independent of
a certain domain adaptation task, which is a drawback of BT. The proposed
solutions are tested against other commonly used transfer learning approaches
on common datasets in the field.

The rest of the paper is organized as follows: An overview of related work
is given in section 2. The mathematical preliminaries of PCVM and Nyström
approximation are introduced in section 3. The proposed transfer learning ex-
tensions following in section 4. An experimental part is given in section 5,
addressing the classification performance, the sparsity and the computational
time of the approaches. A summary and a discussion of open issues are provided
in the conclusion.

2. Related Work

The area of transfer learning provides a broad range of transfer strategies
with many competitive approaches [1][2]. In the following, we briefly name these
strategies and discuss the key approaches used herein.

The instance transfer methods try to align the distribution by re-weighting
some source data, which can directly be used with target data in the training
phase [1].

Approaches implementing the symmetric feature transfer [1] are trying to
find a common latent subspace for source and target domain with the goal to
reduce distribution differences, such that the underlying structure of the data is
preserved in the subspace. An example of a symmetric feature transfer method
is the Transfer Component Analysis (TCA) [8].

The asymmetric feature transfer approaches try to transform source domain
data in the target (subspace) domain. This should be done in a way that the
transformed source data will match the target distribution. In comparison to
the symmetric feature transfer approaches, there is no shared subspace avail-
able, but only the target space [1]. An example is given by the Joint Distri-
bution Adaptation (JDA) [9], which solves divergences in distributions similar
to TCA, but aligning conditional distributions with pseudo-labeling techniques.
Pseudo-labeling is performed by assigning labels to unlabeled target data by
a baseline classifier, e.g. SVM, resulting in a target conditional distribution,
followed by matching it to the source conditional distribution of the ground
truth source label [9]. The Subspace Alignment (SA) [10] algorithm is another
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asymmetric transfer learning approach. It computes a target subspace repre-
sentation where source and target data are aligned but is only evaluated on
image domain adaptation data. We included SA in the experimental study also
containing non-image data.

The relational-knowledge transfer aims to find some relationship between
source and target data [1]. Transfer Kernel Learning (TKL) [6] is a recent ap-
proach, which approximates a kernel of training data K(Z) with kernel of test
data K(X) via the Nyström kernel approximation. It only considers discrepan-
cies in distributions and further claims it is sufficient to approximate a training
kernel via test kernel, i.e. K(Z) ≈ K(X), for effective knowledge transfer [6].
Note that the restriction to kernels does not apply to the Nyström transfer
learning extension (section 4.2) because it is completely in Euclidean space.

All the considered methods have approximately a complexity of O(n2) where
n is the most significant number of samples concerning test or training [11,
9, 6, 8]. According to the definition of transfer learning [2], these algorithms
do transductive transfer learning, because some unlabeled test data must be
available at training time. These transfer-solutions cannot be directly used as
predictors, but instead are wrappers for classification algorithms. The baseline
classifier is most often the SVM. Note that discussed approaches are only tested
with a classification task and may limited to this task.

3. Preliminaries

3.1. Probabilistic Classification Vector Machine

The Probabilistic Classification Vector Machine (PCVM) [3] uses a proba-
bilistic kernel model

f(x; w, b) = Ψ

(
n∑

i=1

wiφi(x) + b

)
= Ψ

(
Φ(x)>w + b

)
∈ R (1)

with a link function Ψ(·), wi being the weights of the basis functions φi(x) and
b as bias term. The class assignment c(x) of given data x is given by [3]

c(x) =

{
1 Φ(x)>w + b ≥ 0

−1 else.
(2)

In PCVM the basis functions φi are defined explicitly as part of the model
design. In (1) the standard kernel trick can be applied [12]. The probabilistic
output of PCVM [3] is calculated by using the probit link function, i.e.

Ψ(x) =

∫ x

−∞
N (t|0, 1)dt, (3)

where Ψ(x) is the cumulative distribution of the normal distribution N (0, 1).
The PCVM [3] uses the Expectation-Maximization algorithm for learning the
model. However, the PCVM is not restricted to EM and other optimization
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approaches like Monte Carlo techniques are also possible [13]. The underly-
ing sparsity framework within the optimization prunes unused basis functions,
independent of the optimization approach, and is, therefore, a sparse probabilis-
tic learning machine. In PCVM we will use the standard RBF -kernel with a
Gaussian width θ.

In [4] a PCVM with linear costs was suggested, which makes use of the
Nyström approximation and could be additionally used to improve the run-time
and memory complexity. Further details can be found in [3] and [4].

3.2. Nyström Approximation

The computational complexity of calculating kernels or eigensystems scales
with O(n3) where n is the sample size [14]. Therefore, low-rank approximations
and dimensionality reductions of data matrices are popular methods to speed
up computational processes [15]. The Nyström approximation [15] is a reliable
technique to approximate a kernel matrix K by a low-rank representation, with-
out computing the eigendecomposition of the whole matrix:
By the Mercer theorem, kernels k(x,x′) can be expanded by orthonormal eigen-
functions fi and non-negative eigenvalues λi in the form

k(x,x′) =

∞∑
i=1

λifi(x)fi(x
′). (4)

The eigenfunctions and eigenvalues of a kernel are defined as solutions of the
integral equation ∫

k(x′,x)fi(x)p(x)dx = λifi(x
′), (5)

where p(x) is a probability density over the input space. This integral can be
approximated based on the Nyström technique by an i.i.d. sample {xn}sk=1

from p(x)

1

s

s∑
k=1

k(x′,xn)fi(xn) ≈ λifi(x′). (6)

Using this approximation we denote with K(s) the corresponding s × s Gram
sub-matrix and get the corresponding matrix eigenproblem equation as

1

s
K(s)U(s) = U(s)Λ(s), (7)

with U(s) ∈ Rs×s is column orthonormal and Λ(s) is a diagonal matrix. Now
we can derive the approximations for the eigenfunctions and eigenvalues of the
kernel k

λi ≈
λ
(s)
i ·N
s

, fi(x
′) ≈

√
s/N

λ
(s)
i

k′,>x u
(s)
i , (8)

where u
(s)
i is the ith column of U(s). Thus, we can approximate fi at an arbi-

trary point x′ as long as we know the vector k′x = (k(x1,x
′), ..., k(xs,x

′)). For
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a given N ×N Gram matrix K one may randomly chose s rows and s columns.
The corresponding indices are called landmarks, and should be chosen such that
the data distribution is sufficiently covered. Strategies how to chose the land-
marks have recently been addressed in [16, 17, 18, 19]. The approximation is
exact if the sample size is equal to the rank of the original matrix and the rows
of the sample matrix are linear independent.

3.3. Nyström Matrix Form

The technique just introduced can be simplified by rewriting it in matrix
form [20], where scaling factors like in equation (8) are neglected. We will use
the matrix formulation throughout the remaining paper. Again, given a Gram
matrix K ∈ Rn×n, it can be decomposed to

K =

[
A B
C D

]
, (9)

with A ∈ Rs×s, B ∈ Rs×(n−s), C ∈ R(n−s)×s and D ∈ R(n−s)×(n−s). The
submatrix A is called the landmark matrix containing s randomly chosen rows
and columns from K and has the Eigen Value Decomposition (EVD) A =
UΛU−1 as in equation (7), where eigenvectors are U ∈ Rs×s and eigenvalues

are on the diagonal of Λ ∈ Rs×s. The remaining approximated eigenvectors Û
of K, i.e. C or BT , are obtained by the Nyström method with ÛΛ = CU as in
equation (8). Combining U and Û the full approximated eigenvectors of K are

Ũ =

[
U

Û

]
=

[
U

CUΛ−1

]
∈ Rn×s. (10)

The eigenvectors of K can be inverted by computing (Note C = BT ):

Ṽ =
[
U−1 Λ−1U−1B

]
. (11)

Combining equation (10), equation (11) and Λ, the matrix K is approximated
by

K̃ = ŨΛṼ =

[
U

CUΛ−1

]
Λ
[
U−1 Λ−1U−1B

]
. (12)

The Nyström approximation error is given by the Frobenius Norm between

ground truth and reconstructed matrices, i.e. errorny =
∥∥∥K̃−K

∥∥∥
F

.

3.4. Kernel Approximation

The Nyström approximation [15] speeds up kernel computations, because
kernel evaluation must not be done over all points, but only a fraction of it. Let
K ∈ Rn×n be a Mercer kernel matrix with decomposition as in equation (9).
Again we pick s samples with s � n, leading to A as defined before. An
approximated kernel is constructed by combining equation (12) and (9).

K̃ =

[
A B
C CA−1B

]
=

[
A
C

]
A−1

[
AB

]
= Kn,sK

−1
s,sKs,n, (13)
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with Kn,s being a sub-matrix of K incorporating all n rows and s landmark
columns and Ks,s, as landmarks matrix. Based on the definition of kernel
matrices, Ks,n = KT

n,s is valid and, therefore, only Kn,s and Ks,s must be
computed. Note that the kernel approximation is used in section 4.1.

3.5. General Matrix Approximation

Despite its initial restriction to kernel matrices, recent research expanded
the Nyström technique to approximate a Singular Value Decomposition (SVD)
[20].
Nyström-SVD generalizes the concept of matrix decomposition with the conse-
quence that respective matrices must not be square.
Let G ∈ Rn×d be a rectangular matrix with decomposition as in equation (9).
The SVD of the landmark matrix is given by A = LSRT where L are left and
R are right singular vectors. S are positive singular values. The decomposition
matrices have the same size as in section 3.2. Similarly to EVD in section 3.2 the
left and right singular vectors for the non-symmetric part C and B are obtained
via Nyström techniques [20] and are defined as L̂ = CRS−1 and R̂ = BTLS−1

respectively.
Applying the same principals as for Nyström-EVD, G is approximated by

G̃ = L̃SR̃T =

[
L

L̂

]
S
[
R R̂

]
=

[
L

CRS−1

]
S
[
R S−1LTB

]
. (14)

Note that for non-gram matrices like G, C = BT is no longer valid. The matrix
approximation (equation (14)), which is described in this section, is used in the
performance extension in section 4.2.

4. Nyström Transfer Learning

4.1. Transfer Kernel Sparsity-Extension

The domain invariant TKL [6] technique is part of the first transfer learn-
ing extension. Based on experimental results shown in section 5 the use of
TKL retains model sparsity of PCVM. Given the categories of transfer learning
[1] introduced in section 2, the approach can be seen as relational-knowledge-
transfer. It approximates the source kernel by the target kernel via the Nyström
method. It aims to find a source kernel close to target distribution and simul-
taneously searches an eigensystem of the source kernel, which minimizes the
squared Frobenius norm between ground truth and approximated kernel [6].

Let Z = {zi}ni=1 ∈ Rd be training data sampled from p(z) with labels YZ =
{yi}ni=1 ∈ Y = {1, 2, .., C} and X = {xj}mj=1 ∈ Rd be test data sampled from
p(x) with labels YX = {yj}mj=1 ∈ Y. Note that we assume p(z) 6= p(x). We
obtain the associated kernel matrices KZ for training and KX for testing by
evaluating an appropriate kernel function (e.g. the RBF-kernel). For clarity, we
rewrite equation (9) in kernel notation

KA =

[
KX KZX

KXZ KZ

]
, (15)
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with KZ as train-, KX as test- and KZX = KT
XZ as cross-domain-kernel be-

tween domains. Revisiting the original Nystrom approach, it uses randomly
chosen columns and rows from KA, however, in TKL, the target kernel KX is
seen as a landmark matrix and is used for approximating the training kernel
KZ . Hence, landmarks are not randomly picked from KA, but KX is used as
landmark matrix and is the complete target set, therefore the approximation
uses m landmarks. KZ is not used in the landmark selection. This differs from
the original Nyström approach.
The TKL approach assumes that the distributions differences are sufficiently
aligned if KZ ' KX , which also leads to p(K(Z)) ' p(K(X)) [6].
Rewriting equation (13), we can create an approximated training kernel by

KZ = UZΛXUT
Z = KZXK−1X KXZ , (16)

where UZ are eigenvalues from source kernel and Λ are eigenvalues from target
kernel. This new kernel is not based on the eigensystem of KX and should
therefore not reduce distribution differences sufficiently. Hence, the eigenvectors
of KZ are constructed by the target eigensystem

ŪZ = KZXUXΛ−1X . (17)

To fully approximate the eigensystem of the training kernel, the eigenvalues
Λ = {λi}mi=1 are defined as model parameters of TKL, leading to approximated
kernel K̄Z = ŪZΛŪT

Z . These new parameters must be well-chosen to reduce do-
main differences and while keeping original training information. The following
optimization problem was suggested in [6] to solve this issue

min
Λ
||K̄Z −KZ ||2F = ||ŪZΛŪT

Z −KZ ||2F

λi ≥ ζλi+1, i = 1, . . . ,m− 1 λi ≥ 0, i = 0, . . . ,m
(18)

with ζ ≥ 1 as eigenspectrum dumping factor. The obtained kernel is domain
invariant [6] and can be used in any kernel machine. The complexity of the TKL
algorithm can be given with O((d + r)(n + m)2), where r denotes the number
of used eigenvectors and d refers to the dimensionality of data [6]. TKL in
combination with PCVM is called Probabilistic Classification Transfer Kernel
Vector Machine (PCTKVM).

4.1.1. Properties of PCTKVM algorithm

The TKL kernel K̄Z = ŪZΛŪT
Z is used to train the PCVM. In general,

an RBF-kernel with in-place optimized distribution-width parameter θ is used
in PCVM. Accordingly, a simple replacement of the standard RBF-kernel by a
kernel obtained with TKL will be inefficient. In PCVM the kernel is recalcu-
lated in each iteration, based on the optimized θ from the previous iteration.
Consequently, we would have to recalculate the entire transfer kernel too. The
complexity of the standard PCVM is O(l3) where l is the number of basis
functions and l = n at the beginning of the training and before pruning basis
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functions. The complexity of TKL is O((d+ r)(n+m)2). Combining them, we
would end up with a computational complexity of O(n3(d+ r)(n+m)2).

However, the performance of PCTKVM strongly depends on the quality of
θ. Hence, some reasonable θ must be obtained via grid search, because in-place
optimization is infeasible. The PCTKVM using a fixed θ has the complexity of
O(n3 + m2). Note that TKL and PCTKVM are restricted to kernels, but are
independent of the kernel type.

Predictions are made with the PCVM prediction function, but by employing
K̄XZ = UXΛŪT

Z as kernel for test data [6]. However, in case of the SVM as
baseline classifier, the kernel with size n × m is used and restricted to the
respective support vectors. The prediction function for the SVM has the form
ŷ = K̄ZX(α · yZ) + b, where α are the Lagrange multipliers [6].

Because of the sparsity of the PCVM the number of basis functions used in
the decision function is typically small2. If we consider that our model has l
non-zero weight vectors with l � n and because the PCVM uses only kernel
rows/columns corresponding to the non-zero weight vector index, our final kernel
K̄LX for prediction has size (l ×m). Therefore, the prediction function of the
PCTKVM has the form: ŷ = K̄LXw + b. The probabilistic output is calculated
with the probit link function used in the PCVM. Pseudo code of sparsity
extension is shown in algorithm 1. However, the sparsity extension performs

Algorithm 1 Probabilistic Classification Transfer Kernel Vector Machine

Require: K = [Z; X] as N sized training and M sized test set; Y as N sized
training label vector; kernel(-type) ker ; eigenspectrum dumping factor ζ; θ
as kernel parameter.

Ensure: Weight Vector w; bias b, kernel parameter θ; transfer kernel K̄A.
1: D = calculate dissimilarity matrix(K);
2: K̄A = transfer kernel Learning(D,ker,θ,ζ); . According to equation (18)
3: [w,b] = pcvm training(K̄Z); . According to section 3.1

similar to common approaches shown in the experiments in section 5, but to
fully capture the advantages of Nyström and PCVM the following section shows
a transfer learning approach focused on performance.

4.2. Nyström Basis Transfer Performance-Extension

It is a reasonable strategy in TKL to align kernel matrices rather than kernel
distributions in Reproducing Kernel Hilbert Space (RKHS), since distributions
alignments are non-trivial in RKHS [6]. Hence, TKL modifies the kernel explic-
itly to reduce the difference between two kernel matrices. Similar source and
target kernels must be obtained, because the underlying classifier is kernel-based
and has no transfer learning.

2The decision function may only be constructed by 10 samples.
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In [21] is shown that if source and target datasets are similar, they follow
similar distributions, i.e. if Z ' X then p(z) ' p(x), and further have simi-
lar kernel distributions and similar kernels. Therefore, we propose a transfer
learning approach operating in Euclidean space rather than RKHS, because it
does not limit approaches to kernel classifiers. Further, the obtained kernels
after transfer of data also follow similar distributions. A recent study [7] al-
ready showed great transfer capabilities and performance, by aligning X and Z
with a small error in terms of the Frobenius norm. However, this requires same
samples sizes of Z and X and is assumed in the following with size m× d. The
study considered the following optimization problem

min
M,T
‖MZT−X‖2F (19)

where M ∈ Rm×m and T ∈ Rd×d are transformation matrices drawing the
data closer together. A solution is found analytically, summarized in three
steps [7]: First, normalize data to standard mean and variance. This will align
marginal distributions in Euclidean space without considering label information
[7]. Second, compute an SVD of source and target data, i.e. Z = LZSZRT

Z and
X = LXSXRT

X . Next, the approach assumes SZ ∼ SX in terms of Frobenius
norm due to normalization with zero mean and variance one, reducing the scal-
ing factor of singular values to the same range. Finally, compute a solution for
equation (19) by solving the linear equations. One obtains M = LXL−1Z and
T = R−1Z RT

X . Note that LZL−1Z = RZR−1Z = I. Apply the transfer operation
and approximate the source matrix by using target basis information

Z̃ = MZT = LXL−1Z LZSZRZR−1Z RT
X = LXSZRT

X , (20)

with Z̃ ∈ Rm×d as approximated source data, used for training. The three-step
process is shown in figure 2 as geometrical interpretation demonstrated with a
toy example created by Gaussian random sampling.

In the following, the work [7] is continued, and we propose a Nyström based
version with three main improvements: Reduction of computational complex-
ity via Nyström, implicit dimensionality reduction and neglecting sample size
requirements of BT. Further, we introduce a data augmentation strategy that
eliminates the restriction [7] to the task of text transfer learning.

Recap equation (19) and consider a slightly changed optimization problem

min
M
||MZ−X||2F , (21)

where Z,X ∈ Rm×d, a transformation matrix M ∈ Rm×m must be found, which
is again obtained analytically. Because we apply a dimensionality reduction
technique, just the left-sided transformation matrix must be determined, which
is derived in the following: Based on the relationship between SVD and EVD,
the Principal Component Analysis (PCA) can be rewritten in terms of SVD.
Consider the target matrix with SVD

XTX = (RXSXLT
X)(LXSXRT

X) = RXS2
XRT

X , (22)
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Figure 2: Process of Basis-Transfer with samples from two domains. Class information is
given by color (red/blue) and domain is indicated by shape (domain one - o, domain two - ∗).
First (a), the non-normalized data with a knowledge gap. Second (b), a normalized feature
space. Third (c), Basis-Transfer approximation is applied, correcting the samples, i.e. shapes
with same color are aligned, and training data is usable for learning a classification model.
Best viewed in color.
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where RX ∈ Rd×s as eigenvectors and S2
X ∈ Rs×s as eigenvalues of XTX.

By choosing only the biggest s eigenvalues and corresponding eigenvectors the
dimensionality of X is reduced by

Xs = XRs = LsSsR
T
s Rs = LsSs, (23)

where Ls ∈ Rm×s, Ss ∈ Rs×s and Xs ∈ Rm×s is the reduced target matrix.
Hence, only a left sided transformation in equation (21) is required, because
right sided transformation is omitted in equation (23).

The computational complexity of BT and PCA is decreased by applying
Nyström-SVD: Let Z and X have a decomposition given as in equation (9).
Note for clarity the Nyström notation is used as in section 3.5. For a Nyström-
SVD we chose from both matrices s columns/rows obtaining landmarks matrices
AZ = LZSZRT

Z ∈ Rs×s and AX = LXSXRT
X ∈ Rs×s. Based on Nyström-SVD

in equation (14), the dimensionality is reduced as in equation (23) keeping only
most relevant data structures

Xs = L̃XSX =

[
LX

L̂X

]
SX =

[
LX

CXRXS−1X

]
SX ∈ Rm×s, (24)

Hence, it is sufficient to compute an SVD of AX instead of X with s� {m, d}
and therefore is considerably lower in computational complexity. Analogy, we
approximate source data by Zs = L̃ZSZ ∈ Rn×s. Since we again assume SZ ∼
SZ due to data normalization, solving the linear equation as a possible solution
for equation (21), leads to M = L̃X L̃−1Z . Plugging it back we obtain

Zs = L̃X L̃−1Z L̃ZSZ = L̃XSZ ∈ Rm×s (25)

where again the basis of target data transfers structural information into the
training domain. The matrix Zs is used for training and Xs is used for testing.
According to [1], it is an asymmetric transfer approach. Further, it is transduc-
tive [2] and does not need labeled target data. For further references, we call
the approach Nyström Basis Transfer (NBT) and in combination with PCVM,
Nyström Transfer Vector Machine (NTVM).

4.2.1. Properties of Nyström Basis Transfer

We showed that NBT is a valid PCA approximation by equation (23). It
follows by definition of SVD that L̃ZL̃T

Z = L̃X L̃−1X = I and L̃X is an orthogonal
basis. Therefore, equation (24) and equation (25) are orthogonal transforma-
tions. In particular equation (25) transforms the source data into the target
subspace and projects it onto the principal components of X. If data matrices
X and Z are standard normalized3, the geometric interpretation is a rotation
of source data w.r.t to angles of the target basis, already shown in figure 2.

3Experimental data are standard normalized to mean zero and variance one in the prepro-
cessing.
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The computational complexity of NBT is given by the complexity of Nyström-
SVD and the calculation of the respective landmark matrices AZ and AX with
complexity O(s2). The matrix inversion of diagonal matrix S−1X in equation (24)
can be neglected. Remaining matrix multiplications are O(ns2), contributing
to an overall complexity of NBT, which is O(s2) with s� {n,m}. This makes
NBT the fastest transfer learning solution in terms of computational complexity
in comparison to the discussed methods in section 2.
The approximation error is similar to the original Basis-Transfer [7] error:

errornbt = ‖Xs − Zs‖F =
∥∥∥L̃XSX − L̃XSZ

∥∥∥
F

= ‖SX − SZ‖F (26)

4.2.2. Data Augmentation

In BT [7], sample sizes of data matrices must be aligned. This is not required
in NBT as seen in equation (24) and equation (25), because differences in size
are aligned during transformation. However, the original dataset Z has an
n× 1 sized label vector with n 6= m, which does not correspond to Zs and this
label-vector should not be transformed into the new size because semantic label
information does not correspond with transformed data. Hence, sample sizes
must still be the same, i.e. m = n, but is not required by definition of NBT. We
propose a data augmentation strategy for solving different sample sizes, applied
before doing knowledge transfer. Data augmentation is common in machine or
deep learning and has a variety of applications [22, 23]. However, source and
target data should have a reasonable size to proper encode domain knowledge.

In general, there are two cases, first n < m, meaning there is not enough
source data. This is augmented via sampling from a class-wise multivariate
Gaussian distribution Nd harmonizing the number of samples per class of source
data. The other case is n > m and is solved by uniform random removal of
source data from the largest class, i.e. U(1, |cmax|) with |cmax| as number of
class samples and cmax = {ci | ∀ci max(|ci|)} as label with most samples, in
the source set (Z,YZ). The approach reduces source data to size m. This is
somewhat counter-intuitive because one does not want to reduce the source set.
However, we have no class information of the target set at training time, and we
would be guessing class labels of target data when adding new artificial samples.
The data augmentation strategy is summarized as

{Z,YZ} =

{
{Z,YZ} ∪ {z = Nd(µci ,σci), y = {ci | ∀ci min(|ci|)}} n < m

{Z,YZ} \ {z, y|z ∈ Z ∩ p(z) = 1
|cmax| ∩ y(zi) = cmax} m < n

(27)
where µci = 1

|ci|
∑

y(zi)=ci
zi is class-wise mean, σci = 1

|ci|
∑

y(zi)=ci
(zi − µci)

2

is class-wise variance. The function y(·) maps a training sample to the ground
truth label ci ∈ Y and |ci| is the number of class sample occurrences.

Pseudo code of Data Augmentation, NBT and PCVM summarized as NTVM
is shown in algorithm 2.
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Algorithm 2 Nyström Transfer Vector Machine (NTVM)

Require: Z as n sized training; X asm sized test set; Y as n sized training label
vector; s as number of landmarks parameter; θ as RBF-kernel parameter.

Ensure: Weight Vector w; bias b;
1: [Zn,Xn]=standard normalization(Z,X) . Similar as in Fig. 2b
2: Za,Ya = data augmentation(Zn,Y) . According to equation (27)
3: AZ = matrix decomposition(Za,s) . According to equation (9)
4: AX ,CX = matrix decomposition(Xn,s) . According to equation (9)
5: SZ = SV D(AZ); . Singular Values of landmark matrix of Z
6: LX ,SX ,RX = SV D(AX); . SVD of landmark matrix of X

7: L̃X =
[
LX CXRXS−1X

]T
. According to equation (24)

8: Xs = L̃XSX . According to equation (24)
9: Zs = L̃XSZ . According to equation (25) and similar to Fig 2c

10: [w,b] = pcvm training(Zs,Y,θ); . According to [3]

5. Experiments

We follow the experimental design typical for transfer learning algorithms
[6, 24, 9, 2, 8]. A crucial characteristic of datasets for transfer learning is that
domains for training and testing are different but related. This relation exists
because the train and test classes have the same top category or source. The
classes themselves are subcategories or subsets. The parameters for respective
methods4 are determined for best performance in terms of accuracy via grid
search evaluated on source data.

5.1. Dataset Description

The study consists of 24 benchmark datasets and are already preprocessed.
Reuters from [25], 20-Newsgroup from [26] and Caltech-Office from [24]. A
summary of image and text datasets is shown in table 1 and table 2. Respective
datasets are detailed in the following.

5.1.1. Image Datatsets

Caltech-2565- Office: The first, Caltech (C ) is an extensive dataset of
images and initially contains of 30607 images within 257 categories. However,
in this setting, only 1123 images are used to be related to the Office dataset.
We adopt the sampling scheme from [24]. The Office dataset is a collection of
images drawn from three sources, which are from Amazon (A), digital SLR cam-
era DSLR (D) and webcam (W). They vary regarding camera, light situation
and size, but having 31 object categories, e.g. computer or printer, in common.

4Source code, parameters and datasets obtainable via https://github.com/

ChristophRaab/ntvm
5https://people.eecs.berkeley.edu/~jhoffman/domainadapt/#datasets_code
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Dataset Subsets #Samples #Features #Classes

Caltech-256 Caltech (C) 1123

800 10
Office Amazon (A) 958

DSLR (D) 295
Webcam(W) 157

Table 1: Dataset characteristics of image domain adaptation datasets containing datasets and
corresponding subsets, numbers of samples, features and classes.

Duplicates are removed, as well as images, which have more than 15 similar
Scale Invariant Feature Transform (SIFT) in common.
To get an overall collection of the four image sets, which are considered as do-
mains, categories with the same description are taken. From the Caltech and
Office dataset, ten similar categories are extracted: backpack, touring-bike, cal-
culator, head-phones, computer-keyboard, laptop-101, computer-monitor, com-
puter mouse, coffee-mug, and projector. They are the class labels from one to
ten.
With this, a classifier should be trained in the training domain, e.g. on projector
images (Class One) from amazon (Domain A), and should be able to classify
the test image to the corresponding image category, e.g. projector (Class One)
images from Caltech (Domain C) against other image types like head-phones
(Class Two). The final feature extraction is done with Speeded Up Robust Fea-
tures Extraction (SURF) and encoded with 800-bin histograms. Finally, the
twelve combination of domain datasets are designed to be trained and tested
against each other by the ten labels [24]. An overview of the image dataset is
given in table 1.

5.1.2. Text Datasets

In the following, the text datasets are discussed. The arranging of the text
domain adaption datasets is different from the image datasets. The text datasets
are structured into top categories and subcategories. These top categories are
regarded as labels and the subcategories are used for training and testing. The
variation of subcategories between training and testing creates a transfer prob-
lem. The difference to image datasets is that at the image datasets the (sub)
-categories are labels and the difference in the top category (source of images)
between training and testing, e.g Caltech to Amazon, creates the transfer prob-
lem. An overview of the text datasets is given in table 2.

Reuters-215786: A collection of Reuters news-wire articles collected in
1987 with a hierarchical structure given as top-categories and subcategories to
organize the articles. The three top categories Organization (Orgs), Places and
People are used in our experiments. The category Orgs has 56 subcategories,

6http://www.daviddlewis.com/resources/testcollections/reuters21578
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Places has 176 and People has 269. In the category Places, all articles about
USA are removed making the three nearly even distributed in terms of articles.

We follow the sampling scheme from [25], which will be discussed in the
following. Note that the top categories, which are just mentioned, are the labels
of the datasets.

All subcategories of a top category are randomly divided into two parts of
subcategories with about the same number of articles. This selection is fixed
for all experiments. For a top category O this creates two parts o1 and o2 of
subcategories and for another top category P this creates the parts p1 and p2.
The top category O is regarded as a class and P as another one.

The transfer problem is created by using o1 and p1 for training and o2 and
p2 is used for testing. This is a two class problem, because of the two top
categories O and P . Such a configuration is called O vs P . If the second part is
used for training, i.e. o2 and p2, and the first part for testing, i.e. o1 and p1, it
is regarded as P vs O. The individual subcategories have different distribution
but are related by the top category, creating a change in distribution between
training and testing.

Based on this six datasets are generated: Orgs vs. Places, Orgs vs. People,
People vs. Places, Places vs. Orgs, People vs. Places and Places vs. People.
The articles are converted to lower case, words are stemmed and stopwords are
removed. With the Document Frequency (DF)-Threshold of 3, the numbers
of features are cut down. The features are generated with Term-Frequency
Inverse-Document-Frequency (TFIDF). For a detailed choice of subcategories
see [25].

20-Newsgroup7: The original collection has approximately 20000 text doc-
uments from 20 newsgroups. The four top categories are comp, rec, talk and
sci and containing four subcategories each. We follow a data sampling scheme
introduced by [6] and generate 216 cross domain datasets based on subcate-
gories: Again the top categories are the labels and the sub categories are varied
between training and testing to create a transfer problem.

Let C be a top category and C1, C2, C3, C4 are subcategories of C and
another top category with K and K1,K2,K3,K4 are subcategories of K. A
dataset is constructed by selecting two subcategories for each top-category, e.g.
C1, C2, K1, and K2, for training and select another four, e.g. C3, C4, K3, and
K4 for testing. The top categories C and K are respective classes.

For two top categories every permutation is used and therefore C2
4 ·K2

4 = 36
datasets are generated. By combining each top category with each other there
are 216 dataset combinations. The datasets are summarized as mean per top
category combination, e.g. C vs K, which are comp vs rec, comp vs talk, comp
vs sci, rec vs sci, rec vs talk and sci vs talk. The transfer problem is created by
training and testing on different subcategories analogy to Reuters. This version
of 20-Newsgroup has 25804 TF-IDF features within 15033 documents [6].

Note to reproduce the results below, one should use the linked version of

7http://qwone.com/~jason/20Newsgroups/
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Top Category (Names) Subcategory #Samples #Features #Classes

Comp comp.graphics 970

25804 2

comp.os.ms-windows.misc 963
comp.sys.ibm.pc.hardware 979

comp.sys.mac.hardware 958
Rec rec.autos 987

rec.motorcycles 993
rec.sport.baseball 991
rec.sport.hokey 997

Sci sci.crypt 989
sci.electronics 984

sci.med 987
sci.space 985

Talk talk.politics.guns 909
talk.politics.mideast 940

talk.politics.misc 774
talk.religion.misc 627

Orgs 56 subcategories 1237
4771 2People 269 subcategories 1208

Places 176 subcategories 1016

Table 2: Dataset characteristics of text domain adaptation datasets containing top-categories
and corresponding subcategories, numbers of samples, features and labels. Horizontal line
separates dataset in 20-Newsgroup (upper half) and Reuters (lower half) [6]. At reuters there
are many subcategories, therefore we only show the number of subcategories.

datasets with same choice of subcategories. Regardless of dataset, features have
been normalized to standard mean and variance. The samples for training and
testing the classifiers are drawn with 5 × 2-fold sampling scheme suggested by
[27], with a transfer learning adapted data sampling scheme as suggested in [24].

5.2. Comparison of Prediction Performance

The results of the experiments are summarized in table 3 and showing mean
errors of the cross-validation study per dataset. To determine statistically sig-
nificant differences, we follow [3], using the Friedman Test [28] with a confidence
level of 5% and Bonferroni-Dunn Post-Hoc correction. The ∗ marks statistical
significance against NTVM. The PCTKVM and NTVM are compared to base-
line classifier to standard transfer learning methods and non-transfer learning
baseline methods, i.e. SVM and PCVM. The PCTKVM has overall compara-
ble performance to PCVM, however, is worse at Newsgroup, showing negative
transfer [1]. This should be investigated in future work.

The NTVM method has excellent performance and outperforms every other
algorithm by far. In the overall comparison, the NTVM is significantly better
compared to the other approaches, except SA.

Especially at Reuters, NTVM convinces with stable and best performance
over multiple datasets. Table 3 shows that NTVM is significantly better in
terms of mean at Reuters except TKL and SA.
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Dataset SVM PCVM TCA JDA TKL SA
PCTKVM
Our Work

NTVM
Our Work

Orgs vs People 23.0 31.1 23.8 25.7 18.6 6.3 20.7 3.1
People vs Orgs 21.1 28.1 20.3 24.9 13.0 5.7 23.2 3.1
Orgs vs Place 30.8 33.4 28.7 27.4 22.7 6.4 33.9 2.6
Place vs Orgs 35.8 35.7 34.1 34.1 17.5 6.6 40.6 2.4

People vs Place 38.8 41.3 37.2 41.3 30.6 8.3 36.3 2.6
Place vs People 41.3 41.2 43.4 43.3 34.0 11.5 39.7 2.5

Reuters Mean 31.8 ∗ 35.1 ∗ 31.3 ∗ 32.8 ∗ 22.7 7.5 32.4 ∗ 2.7

Comp vs Rec 12.7 17.9 8.1 7.8 3.0 1.8 37.3 0.5
Comp vs Sci 24.5 29.1 26.3 27.1 9.5 4.8 33.7 0.8

Comp vs Talk 5.1 6.2 2.9 4.2 2.4 0.9 14.9 7.2
Rec vs Sci 23.7 36.6 17.3 23.9 5.1 1.6 29.3 0.3

Rec vs Talk 18.7 27.8 13.6 15.2 5.6 1.8 33.4 3.1
Sci vs Talk 21.7 30.9 20.1 26.1 14.6 2.9 30.2 6.9

Newsgroup Mean 17.8 ∗ 24.7 ∗ 14.7 17.4 ∗ 6.7 2.3 29.8 ∗ 3.1

C vs A 48.0 55.9 49.7 49.0 49.1 38.0 52.8 19.9
C vs W 53.8 57.0 55.1 53.5 53.1 68.1 55.2 59.5
C vs D 62.2 65.9 65.2 58.9 59.4 68.3 60.9 47.4
A vs C 54.8 59.5 53.8 54.6 53.9 42.4 56.6 37.5
A vs W 61.0 66.1 58.6 58.8 57.2 67.5 59.7 55.6
A vs D 62.6 64.8 66.5 59.2 59.2 64.9 61.6 48.9
D vs C 68.6 72.5 62.4 61.1 65.2 66.1 68.7 19.9
D vs A 69.0 72.4 65.5 65.8 64.6 66.2 67.0 35.6
D vs W 40.6 62.5 28.2 30.1 27.4 30.7 45.8 47.9
W vs C 65.9 67.8 62.1 65.3 63.2 59.4 63.9 16.1
W vs A 67.6 69.0 63.3 67.0 63.0 64.7 68.4 38.5
W vs C 23.1 41.1 21.6 22.1 27.4 32.5 45.5 59.8

Image Mean 56.4 ∗ 62.9 ∗ 54.3 53.8 53.6 55.7 ∗ 58.8 ∗ 40.6

Overall Mean 35.3 ∗ 40.9 ∗ 33.4 ∗ 34.6 ∗ 27.7 ∗ 21.8 40.4 ∗ 15.5

Table 3: Result of cross-validation test shown in mean error per dataset. Mean over dataset
group at the end of each section. Bold marks winner. ∗ marks statistical differences with
significance level of 0.05 against NTVM. The study shows that none of the listed algorithms
is statistically significantly better as NTVM.

The NTVM also outperforms most of the time at image datasets, showing
the capability to tackle multi-class problems and their independence from a
certain domain adaptation task, unlike previous work [7]. Further, in terms of
mean error on image, the NTVM outperforms SVM, PCVM, PCTKVM and
SA with statistical significant differences.

The NTVM is also very good at Newsgroup, but not that outstanding. It
is overall little worse than SA, but not statistically significant. Further, it is
best at half of the datasets and convinces with error performances under one
percent.

Note that the standard deviation is not shown, because it will not provide
more insights into the performance. It is overall very similar and small, because
the underlying classifier is the same.

The sensitivity of the number of landmarks on prediction error as the only
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(b) Reuters

Figure 3: Relationship between number of landmarks and classification error as mean over all
Office vs Caltech datasets, shown in left figure, and mean over all Reuters datasets, shown in
right figure. Number of landmarks for datasets smaller as maximum rank are determined via
min(n, d).

parameter of NBT is demonstrated in figure 3. It shows a comparison of the
number of landmarks and the mean of classification error over Reuters and
Office - Caltech datasets. The plot indicates that the error decreases to a global
minimum with an increasing number of landmarks, which supports the Nyström
error expectation. However, further increasing to the maximum number of
landmarks, i.e. all samples, the error starts to increase. We assume this indicates
that only a subset of features is relevant for classification and remaining features
are noise. Further, this subset is drawn randomly, hence by choosing various
landmark matrices, other features becoming relevant or non-relevant, as features
correlate with certain features and again other features correlate with others.

5.3. Comparison of Model Complexity

We measured the model complexity with the number of model vectors, e.g.
support vectors. The result of our experiment is shown as mean summarizing
a dataset group in table 4. We see that the transfer learning models of the
PCTKVM provide very sparse models while having good performance. The
sparsity of NTVM is also very competitive. However, the overall sparsity is
worse in comparison to PCTKVM and PCVM. In comparison to all non-PCVM
methods, the PCTKVM outperforms the respective methods by far.

Dataset PCVM SVM TCA JDA SA TKL PCTKVM NTVM

Reuters(1153.66) 49.07 441.78 168.51 201.87 100.87 351.21 1.97 329.51
Image(633.25) 62.87 284.37 231.65 264.38 238.44 262.64 46.63 27.59

20 Newsgroup(3758.30) 74.23 1247.10 269.75 252.49 211.57 1046.26 92.89 74.70

Overall Mean 62.06 640.17 223.30 245.31 183.60 553.27 47.16 143.93

Table 4: Average mean number of model vectors of a classifier for Reuters, Image and News-
group datasets. The average number of examples in the datasets are shown on the right side
of the dataset name in brackets.
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Figure 4: Sample run on Orgs vs People (Text dataset). Red colors for the class Orgs and
blue for the class People. This plot includes training and testing data. Model complexity of
PCTKVM on the left and SVM on the right. The PCTKVM uses three vectors and achieves
an error of 21%. The TKL-SVM needs 339 vectors and has an error of 19%. The black circled
points are used model vectors. Reduced with t-SNE [29]. Best viewed in color.

The difference in model complexity is exemplarily shown in figure 4. It shows
a sample result of classification of PCTKVM and TKL-SVM on the text dataset
Orgs vs People with the settings from above. The PCTKVM error is 21% with
three model vectors and the error of TKL-SVM is 19% with 339 support vectors.
PCTKVM achieves sustain performance by a small model complexity and pro-
vides a way to interpret the model. Note that the algorithms are trained in
the original feature space and the models are plotted in a reduced space, us-
ing the t-distributed stochastic neighbor embedding algorithm [29]. Note that
the Kullback-Leibler divergence of the data shown in figure 4 between input
distribution (original space) and output distribution (reduced space) is 0.92.

5.4. Time Comparison

The mean time results in seconds of the cross validation study per data set
group are shown in table 5. Note that SVM and PCVM are underlying classifier
for compared approaches and are presented for the baseline and not marked as
winners in the table. They are also included in the time measurement of trans-
fer learning approaches. Overall the SVM is the fastest algorithm, because it
is baseline and uses the LibSVM implementation. The overall fastest transfer
learning approach is TKL, but JDA is also promising and fastest at Reuters
and Newsgroup.
The PCVM is overall by far the slowest classifier. By integration of TKL and
NBT the time performance of resulting PCTKVM and NTVM are a big magni-
tude faster. We assume that the PCVM converges faster with transfer learning
resulting in less computational time. Overall NTVM is slightly faster and lower
in time at Reuters and Newsgroup in comparison to PCTKVM, which supports
the discussion about computational complexity in section 4.2.1. In comparison
to other transfer learning approaches, both approaches are slower than other
transfer learning approaches. But the reason for this should be the PCVM as
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Dataset
SVM

Baseline
TCA JDA TKL SA

PCVM
Baseline

PCTKVM NTVM

Reuters 0.06 0.86 0.36 0.40 0.87 543.71 16.20 8.78
Newsgroup 1.35 21.39 4.79 2.80 59.70 1501.7 5.06 25.29
Image 0.02 0.29 0.16 0.44 0.08 258.78 17.69 3.41

Overall 0.48 7.51 1.77 1.21 20.22 768.06 12.98 12.49

Table 5: Result of cross-validation test shown in mean time in seconds per dataset group.
The baseline classifiers are SVM is underlying classifier of TCA, JDA, TKL and SA and the
PCVM is underlying classifier of PCTKVM and NTVM. Note that the SVM time is naturally
lower to transfer learning approaches.

underlying classifier, because TKL is the fastest transfer approach with SVM.
Further work should aim to measure the time with same classifier to make results
more comparable.

6. Conclusion

Summarizing, we proposed two transfer learning extensions for the PCVM,
resulting in PCTKVM and NTVM. The first shows the best overall sparsity
and comparable performance to common transfer learning approaches. The
NTVM has an outstanding performance, both in absolute values and statistical
significance. It has competitive sparsity and lowest computational complexity
compared to discussed solutions. NBT is an enhancement of previous versions
of Basis Transfer via Nyström methods and is no longer limited to specific do-
main adaptation tasks. The dimensionality reduction paired with projection of
source data into the target subspace via NBT showed its reliability and robust-
ness in this study. Proposed solutions are tested against standard benchmarks
in the field in terms of algorithms and datasets. In future work, deep transfer
learning, different baseline classifiers and real-world or different domain adap-
tation datasets should be integrated. Further, smart sampling techniques for
landmark selection should be tackled.
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