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Abstract

Recent years have witnessed the breakthrough success
of deep convolutional neural networks (DCNNs) in image
classification and other vision applications. Although free-
ing users from the troublesome handcrafted feature extrac-
tion by providing a uniform feature extraction-classification
framework, DCNNs still require a handcrafted design of
their architectures. In this paper, we propose the genetic
DCNN designer, an autonomous learning algorithm can
generate a DCNN architecture automatically based on the
data available for a specific image classification problem.
We first partition a DCNN into multiple stacked meta con-
volutional blocks and fully connected blocks, each contain-
ing the operations of convolution, pooling, fully connection,
batch normalization, activation and drop out, and thus con-
vert the architecture into an integer vector. Then, we use re-
fined evolutionary operations, including selection, mutation
and crossover to evolve a population of DCNN architec-
tures. Our results on the MNIST, Fashion-MNIST, EMNIST-
Digit, EMNIST-Letter, CIFAR10 and CIFAR100 datasets
suggest that the proposed genetic DCNN designer is able
to produce automatically DCNN architectures, whose per-
formance is comparable to, if not better than, that of state-
of-the-art DCNN models.

1. Introduction
Deep convolutional neural networks (DCNNs), such as

AlexNet [20], VGGNet [27], GoogLeNet [32], ResNet
[13] and DenseNet [15], have significantly improved the
baselines of most computer version tasks. Despite their dis-
tinct advantages over traditional approaches, DCNNs are
still specialist systems that leverage a myriad amount of
human expertise and data. They provide a uniform fea-
ture extraction-classification framework to free human from
troublesome handcrafted feature extraction at the expense
of handcrafted network design. Designing the architec-
ture of DCNN automatically can not only bypass this issue
but also take a fundamental step towards the long-standing

Figure 1: Diagram of the proposed genetic DCNN designer

ambition of artificial intelligence i.e. creating autonomous
learning systems that require lest human intervention [26].

Automated design of DCNN architectures has drawn
more and more research attentions in recent years, resulting
in a number of algorithms in the literature, which can be
roughly divided into four categories: (1) DCNN architec-
ture selection from a group of candidates, (2) DCNN archi-
tecture optimization using deep learning, (3) reinforcement
learning-based DCNN architecture optimization, and (4)
evolutionary optimization of DCNN architectures. Among
them, evolutionary optimization approaches have a long
history and seem to be very promising due to their multi-
point global search ability, which enable them to quickly
locate the areas of high quality solutions even in case of
a very complex search space [29]. Despite their success,
most evolutionary approaches pose restrictions either on the
obtained DCNN architectures, such as the fixed depth, fixed
filter size, fixed activation, fixed pooling operation [34] and
skipping out the pooling operation [5], or on the employed
genetic operations, such as abandoning the crossover [24].
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These restrictions may reduce the computational complex-
ity, but also lead to lower performance. Alternatively, other
evolutionary approaches may require hundreds even thou-
sands of computers to perform parallel optimization [5, 24].

In this paper, we propose a genetic DCNN designer to
automatically generate the architecture of a DCNN for each
given image classification problem. To reduce the complex-
ity of representing a DCNN architecture, we develop a sim-
ple but effective encoding scheme, in which almost all the
operations in a DCNN, such as the convolution, pooling,
batch normalization, activation, fully connection, drop out
and optimizer, are encoded as an integer vector. We start
with a population of randomly initialized DCNN architec-
tures and iteratively evolve this population on a generation-
by-generation basis to create better architectures using the
redefined genetic operations, including selection, crossover
and mutation. We have evaluated our approach on six im-
age classification tasks using the MNIST [21], EMNIST-
Digits [3], EMNIST-Letters [3], Fashion-MNIST [33],
CIFAR10 [19] and CIFAR100 [19] datasets. Our results
indicate that the proposed genetic DCNN designer is able to
generate automatically a DCNN architecture for each given
image classification task, whose performance is comparable
to the state of the art.

2. Related Work
Many research efforts for automated design of DCNN ar-

chitectures have been devoted to searching and selecting the
most effective DCNN architecture from a group of candi-
dates. Jin et al. [16] introduced the sub-modular and super-
modular optimization to the construction of DCNNs and es-
tablished the guidelines to set the width and depth of DC-
NNs. Fernando et al. [7] proposed the PathNet algorithm,
which samples a sub-network from a super DCNN that has
a much larger architecture, and demonstrated that this algo-
rithm is capable of sustaining transfer learning on multiple
tasks in both the supervised and reinforcement learning set-
tings.

Alternatively, the architecture and / or weights of a
DCNN can be optimized by using another deep neural net-
work. Ha et al. [11] used a hyper network and the discrete
cosine transform (DCT) to evolve the weights of a DCNN,
which has a fixed architecture. To generate the filters in a
DCNN, Brabandere [4] proposed a dynamic filter network,
which can be separated into a filter-generating network and
a dynamic filtering layer. The former generates dynamically
sample-specific filter parameters conditioned on the input,
and the later applies those filters to the input.

Recently, reinforcement learning has been applied to the
design of DCNN architectures. Zoph and Le [36] em-
ployed a recurrent neural network trained by reinforcement
learning to maximize the expected accuracy of the gener-
ated DCNN architecture on a validation set of images. This

method, however, creates a DCNN with fixed-depth on a
layer-by-layer basis, where each layer has a pre-determined
number of filters and a pre-determined filter size. This
method used distributed training and asynchronous param-
eters updated with 800 graphs processing units (GPUs).
Barker et al. [1] proposed the MetaQNN method to gen-
erate DCNN architectures based on reinforcement learning.
In this method, a Q-learning agent explores and exploits the
space of model architectures with the ε − greedy-strategy
and experience replay.

Various evolutionary algorithms have long been applied
to the design of neural networks even before they became
deep. Evolutionary optimization of neural network archi-
tectures can be traced back to NEAT, a seminal work done
by Stanley and Miikkulainen [29], which stores every neu-
ron and connection in the DNA and generates architectures
by mutation which can be divided into three kinds: (1)
modifying a weight, (2) adding a connection between ex-
isting connections, and (3) inserting a neuron while split-
ting an existing connection. Based on this, Miikkulainen et
al. [23] proposed the CoDeepNEAT algorithm, in which
a population of chromosomes with minimal complexity is
created and the structure is added to the graph incremen-
tally through mutation over generations. Suganuma et al.
[30] proposed an approach to design DCNN architecture
based on genetic programming. The DCNN architecture
is encoded by Cartesian genetic programming as directed
acyclic graphs with a two-dimensional grid defined on the
computational neurons.

As one of the most prevalent evolutionary algorithms,
the genetic algorithm (GA) [14] uses heuristics-guided
search that simulates the process of natural selection and
survival of the fittest. Xie et al. [34] encoded the archi-
tecture of each DCNN into a fixed-length binary string, and
thus proposed a genetic DCNN (GDCNN) method to gener-
ate DCNN architectures automatically. In this method, the
coding of DCNN architecture only contains the operation
between pooling layers and the fully connected layers are
not encoded. The DCNNs generated by this method, how-
ever, have a limited number of layers, fixed filter size and
fixed filter number. Real et al. [24] evolved DCNN archi-
tectures on the CIFAR-10 and CIFAR-100 datasets using
GA with the DNA based coding scheme, which is same as
that in NEAT. DCNN architectures evolve through mutation
operations and the conflicts in filter sizes are handled by
reshaping non-primary edges with zeroth order interpola-
tion. All DCNN architectures generated by this method are
fully trained. This method uses a distributed algorithm with
more than 250 computers. Desell [5] proposed the EXACT
method, which can evolve DCNNs with flexible connection
and filter size based on GA with an asynchronous evolution
strategy. The EXACT method used over 4,500 volunteered
computers and trained over 120,000 DCNNs on the MNIST



dataset.

3. Method
The proposed genetic DCNN designer evolves and im-

proves a population of individuals, each encoding an ad-
missible DCNN architecture. The population is randomly
initialized. The fitness of each individual is evaluated as the
performance of the DCNN encoded by that individual in a
specific image classification problem. Based on the current
generation, a new generation is produced by performing a
combination of redefined genetic operators, including se-
lection, crossover and mutation, to improve the overall fit-
ness of individuals. The evolution is performed iteratively
on a generation-by-generation basis until meting a stopping
criterion is fulfilled or the number of generations attains a
pre-defined number.The diagram that summarizes this algo-
rithm is shown in Figure 1.

3.1. Encoding scheme

Our DCNN architecture encoding scheme is inspired by
the representation of locus on a chromosome. A chromo-
some can be divided into two components: p-arm and q-
arm. The ordered list of loci known for a particular genome
is called a gene map. Intuitively, various operations in a
DCNN can be viewed as the loci on a chromosome, and
thus the architecture of a DCNN can be encoded as a gene
map, where convolutional blocks compose a convolutional
arm and fully connected blocks compose a fully connected
arm.

A convolutional block contains five operations: convolu-
tion, batch normalization, pooling, activation and drop out.
The convolutional operation has two parameters: the num-
ber of filters ‘N’ and the size of filters ‘S’. The operations
of batch normalization, pooling, activation and dropout are
denoted by ‘B’, ‘P’, ‘A’ and ‘D’, respectively. Thus, a con-
volutional block contains lc = 6 loci in sequence and can be
encoded as [NSPBAD]. Similarly, a fully connected block
contains lf = 4 loci in sequence and can be encoded as
[NBAD], where ‘N’ is the number of neurons in a fully con-
nected layer, ‘B’ represents the operation of batch normal-
ization, ‘A’ represents the activation , ‘D’ represents the op-
eration of drop out. Besides, the optimizer also has an im-
pact on the DCNN architecture, and is represented as ‘O’.

Table 1 shows the value range at each locus of a network
code: (1) the number of filters ‘N’ ranges from 16 to 512;
(2) the alternative sizes of filters are 3x3, 5x5 or 7x7; (3) the
pooling operation P may take a value of 0 (without pooling),
1 (max pooling) or 2 (average pooling), all using the same
stride of 2; (4) the batch normalization operation B takes a
value from 0,1 to indicate whether adopting this operation
or not; (5) the value of the activation ‘A’ ranges from 0 to
5, representing the TReLU [18], ELU [2], PReLU [12],
LeakyReLU [22], ReLU [8] and Softmax, respectively; (6)

Table 1: Value range of each at each locus of a network code

Code Value scale
N [16, 512]
S 3, 5, 7
P 0, 1, 2
B 0, 1
A 0, 1, 2, 3, 4
D [0, 0.5]
O 0, 1, 2, 3, 4, 5, 6

the dropout operation D takes a value from [0, 0.5] which
indicates the probability of the randomly drop; and (7) the
value of optimizer ‘O’ ranges from 0 to 6, representing the
SGD [6], RMSprop [35], Adagrad [35], Adadelta [17],
Adam [31], Adamax [31] and [9], respectively.

With this coding scheme, a DCNN can be decom-
posed into a convolutional arm that contains a sequence
of convolutional blocks [NSPBAD] and a fully con-
nected arm that contains a sequence of fully connected
blocks [NBAD]. Taking the VGG-19 model shown in
Figure 2 as the case study, it can be presented as
{{[NSPBAD]i}16i=1, {[NBAD]j}3j=1,O} and be decoded as
{[64, 3, 0, 1, 4, 0], [64, 3, 2, 1, 4, 0], [128, 3, 0, 1, 4,
0], [128, 3, 2, 1, 4, 0], [256, 3, 0, 1, 4, 0], [256, 3, 0, 1, 4, 0],
[256, 3, 0, 1, 4, 0], [256, 3, 2, 1, 4, 0], [512, 3, 0, 1, 4, 0],
[512, 3, 2, 1, 4, 0], [512, 3, 0, 1, 4, 0], [512, 3, 2, 1, 4, 0],
[512, 3, 0, 1, 4, 0], [512, 3, 2, 1, 4, 0], [512, 3, 0, 1, 4, 0],
[512, 3, 2, 1, 4, 0]}, {[4096, 1, 4, 0], [4096, 1, 4, 0], [1000,
0, 5 , 0], 0 }.

3.2. Initialization

A DCNN with NC
n convolutional blocks and NF

n fully
connected blocks can be presented as

Sn = {{[NSPBAD]i}
NC

n
i=1, {[NBAD]j}

NF
n

j=1,O} (1)

whose code-length is

Ln = NC
n ∗ lc +NF

n ∗ lf (2)

At the initialization step, we set NC
n ε[1, 20] and NF

n ε[1, 3]
and randomly sampled a population of DCNN architectures,
denoted by {Sn}Tn=1.

3.3. Selection

Before producing the next generation, we evaluate each
individuals fitness. Based on the fitness ranking, we use the
elitism roulette wheel selection scheme [9] to select 0.1T of
top ranking individuals (elitist) from the current generation
to carry over to the next, unaltered, and select 0.9T of in-
dividuals for subsequent genetic operations. This selection
strategy guarantees that the highest fitness obtained by the
GA will not decrease from one generation to the next.



Figure 2: The blocks of VGGNet

3.4. Crossover

For a pair of selected DCNNs Si and Sj , we randomly
locate a cross point on each of them, which breaks the
DCNN architecture into two segments. By swapping the
segments of those two DCNN architectures, two new DC-
NNs S

′

i and S
′

j are generated, whose depths may be differ-
ent from the depths of their parents.

If the cross point ki is located within themi−th convolu-
tional blocks [NSPBAD]mi

on the convolutional arm of the
DCNN Si, its location can be expressed as (mi−1)∗ lc+x.
Then, we require that the other cross point kj is also locates
on the convolutional arm of the DCNN Sj and its location
can be expressed as (mj − 1) ∗ lc + x. After the crossover,
the code-length of two newly generated DCNNs are{

L
′

i = Li + (mi −mj) ∗ lc
L

′

j = Lj + (mj −mi) ∗ lc
(3)

A typical example is shown Figure 3, where one cross
point ki is located at 3lc + 1 in a DCNN with 8 learnable
layers and the other cross point kj is located at 5lc + 1 in
a DCNN with 11 learnable layers. After the crossover, we
obtained a DCNN with 9 learnable layers and a DCNN with
10 learnable layers. If the cross point ki is located within the
mi− th fully connected blocks [NBAD]mi

on the fully con-
nected arm of the DCNN Si, its location can be expressed
as NC

n ∗ lc + (mi − 1) ∗ lc + x. Then, we require that
the other cross point kj also locates on the fully connected
arm of the DCNN Sj and its location can be expressed as
NC

n ∗ lc + (mj − 1) ∗ lc + x. After the crossover, the code-
length of two newly generated DCNNs are{

L
′

i = Li + (mi −mj) ∗ lf
L

′

j = Lj + (mj −mi) ∗ lf
(4)

Figure 3: An example of crossover on the convolutional arm

3.4.1 Mutation

To maintain genetic diversity from one generation to the
next, the mutation operation is applied to each individual,
which alters an DCNN architecture Sn by resampling each
locus evenly and independently from the value range with
a probability of qm. To accelerate the generation of new
architectures, the value of qm is evenly sampled from the

range
[

8

Ln
, 0.5

]
for each individual Sn. An illustrative ex-

ample of mutation is shown in Figure 4, where six loci in
the code of Si were mutated. After the mutation, the ac-
tivation in the first convolutional block was changed from
PReLU to ELU, the kernel size in the third convolutional
block was changed from 3x3 to 5x5, the max-pooling layer
in the fourth convolutional block was removed, the number
of kernels in the fifth convolutional block was changed from
327 to 513, the batch normalization in the first fully con-
nected block was removed, and the optimizer was changed
from Nadam to RMSprop.



Figure 4: An example of mutation

Table 2: The summary of the datasets

# Training # Testing Classes size Color
MNIST 60,000 10,000 10 28*28 Grayscale

EMNIST-Letters 124,800 20,800 26 28*28 Grayscale
EMNIST-Digits 240,000 40,000 10 28*28 Grayscale
Fashion-MNIST 60,000 10,000 10 28*28 Grayscale

CIFAR10 50,000 10,000 10 32*32 RGB
CIFAR100 50,000 10,000 100 32*32 RGB

4. Experiments and Results

4.1. Datasets

The datasets used for this study include the MNIST
[21], EMNIST-Digits [3], EMNIST-Letters [3], Fashion-
MNIST [33], CIFAR10 [19] and CIFAR100 [19]. The
MNIST dataset defines a handwritten digit recognition task.
The EMNIST-Letters and EMNIST-Digits datasets were de-
rived from the NIST Special Database 19, which repre-
sents the final collection of handwritten characters, contain-
ing additional handwritten digits and an extensive collec-
tion of uppercase and lowercase handwritten letters. The
EMNIST-Letters dataset merges all the uppercase and low-
ercase classes and gets a dataset with 26 classes comprising
[a-z]. The CIFAR10 dataset is a subset of the 80-million
tiny image database. In this dataset, both training and test-
ing images are uniformly distributed over 10 categories. CI-
FAR100 is an extension to CIFAR10, and it contains 100
categories. Table 2 provides a brief summary of these six
datasets, including the number of training images, testing
images and classes, image size and color. For each dataset,
the proposed genetic DCNN designer was used to gener-
ate a DCNN that can solve the corresponding image clas-
sification problem with a satisfying accuracy. In each ex-
periment,In each experiment, 10% of training images were
used as a validation set, and others training images were
used for training. To enlarge the training dataset, we ap-

Table 3: Classification accuracy of seven DCNNs on MNIST(%)

Method Accuracy
AlexNet [20] 98.81
VGGNet [27] 99.32
ResNet [13] 99.37

Capsule Net [25] 99.57
GDCNN [34] 99.65
EXACT [5] 98.32
Proposed 99.72

plied the simple data augmentation method [13] to each
training image. During the training of each DCNN, we use
the cross-entropy loss for all the DCNN architectures, fixed
the maximum iteration number to 100, chose the min-batch
stochastic gradient decent with a batch size of 256, set the
learning rate as small as 0.0001 and further reduce it expo-
nentially.

4.2. DCNN Designed for MNIST

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the MNIST
dataset consists of three convolutional blocks and four fully
connected blocks (see Figure 5(a) ). The first convolutional
block contains 419 filters of size 5x5, no pooling layer,
batch normalization, ELU activation and 20% dropout. The
second convolutional block contains 403 filters of size 5x5,
no pooling layer, batch normalization, ELU activation and
0% dropout. The third convolutional block contains 288 fil-
ters of size 7x7, an average-pooling with stride of 2, batch
normalization, PReLU activation and 0% dropout. The first
fully connected block contains 194 neurons with the ReLU
activation , batch normalization and 30% dropout. The sec-
ond fully connected block contains 414 neurons with the
ELU activation , batch normalization and 45% dropout. The
third fully connected block contains 356 neurons with the
TReLU activation , batch normalization and 5% dropout.
The last fully connected block is the output layer, which
has 10 neurons with the softmax activation . The optimizer
is Adamax.

We compared the classification accuracy achieved by
this architecture to the accuracy of AlexNet [20], VGGNet
[27], ResNet [13] and Capsule Net [25] ] and the DCNNs
generated by GDCNN [34] and EXACT [5] in Table 3.
It shows that the DCNN created by our genetic DCNN de-
signer achieved the highest accuracy of 99.72%. The plot of
highest classification accuracy achieved in each generation
(see Figure 6(a)) shows that the performance of best DCNN
architecture generated by our genetic DCNN designer has
become stable.

4.3. DCNN Designed for Fashion-MNIST

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the Fashion-
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Figure 5: The DCNN architectures generated by proposed genetic DCNN designer

MNIST dataset consists of seven convolutional blocks and
four fully connected blocks (see Figure 5(b) ). The first
convolutional block contains 154 filters of size 5x5, aver-
age pooling, batch normalization, LeakyReLU activation
and 0% drop out. The second convolutional block contains
165 filters of size 3x3, no pooling , batch normalization,
ELU activation and 50% drop out. The third convolutional
block contains 442 filters of size 7x7, no pooling , batch
normalization, ReLU activation and 40% drop out. The
fourth convolutional block contains 300 filters of size 3x3,
average pooling , batch normalization, ReLU activation and
5% drop out. The fifth convolutional block contains 184
filters of size 7x7, average pooling , batch normalization,
LeakyReLU activation and 25% drop out. The sixth con-
volutional block contains 382 filters of size 5x5, average
pooling , LeakyReLU activation and 40% drop out. The
seventh convolutional block contains 153 filters of size 7x7,
max pooling , batch normalization, ELU activation and 40%
drop out. The first fully connected block contains 319 neu-
rons with the ELU activation and the 5% drop out. The
second fully connected block contains 394 neurons with the
ELU activation and 45% drop out. The third fully connected
block contains 392 neurons with ReLU activation and 50%
drop out. The last fully connected block is the output layer,
which has 10 neurons with the softmax activation . The op-
timizer is Adagrad.

The second column of Table 3 shows that, when com-
pared to AlexNet [20], VGGNet [27], ResNet ResNet
[13], Capsule Net [25], the architecture we generated

Table 4: Classification accuracy of four DCNNs on the four datasets(%)

Method MNIST Fashion-MNIST EMNIST-Letters EMNIST-Digits
AlexNet [20] 98.81 86.43 89.36 99.21
VGGNet [27] 99.32 90.45 94.62 99.62
ResNet [13] 99.37 94.39 94.44 99.63

Capsule Net [25] 99.57 90.03 91.58 99.37
Proposed 99.72 94.60 95.58 99.75

achieved the highest accuracy of 94.60%. The plot of high-
est classification accuracy obtained in each generation (see
Figure 6(b)) shows that best DCNN architecture we created
is still improving after 10 generations.

4.4. DCNN Designed for EMNIST-Letters

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the EMNIST-
Letters dataset consists of five convolutional blocks and
three fully connected blocks (see Figure 5(c)). The first
convolutional block contains 473 filters of size 3x3, av-
erage pooling , batch normalization, ReLU activation and
15% drop out. The second convolutional block contains
238 filters of size 3x3, no pooling , batch normalization,
LeakyReLU activation and 20% drop out. The third convo-
lutional block contains 133 filters of size 3x3, no pooling
, batch normalization, ReLU activation and 10% drop out.
The fourth convolutional block contains 387 filters of size
3x3, no pooling , batch normalization, TReLU activation
and 10% drop out. The fifth convolutional block contains
187 filters of size 5x5, no pooling , batch normalization,



ELU activation and 50% drop out. The first fully connected
block contains 313 neurons with ReLU activation , batch
normalization and 20% dropout. The second block contains
252 neurons with ELU activation , batch normalization and
20% drop out. The last fully connected block is the output
layer, which has 26 neurons with the softmax activation .
The optimizer is RMSprop.

The third column of Table 3 shows that, when compared
to AlexNet [20], VGGNet [27], ResNet ResNet [13], Cap-
sule Net [25], the architecture we generated achieved the
highest accuracy of 95.58%. The plot of highest classifica-
tion accuracy obtained in each generation (see Figure 6(c))
shows that best DCNN architecture we created is still im-
proving after 10 generations.

4.5. DCNN Designed for EMNIST-Digits

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the EMNIST-
Digits dataset consists of nine convolutional blocks and
three fully connected blocks (see Figure 5(d)). The first
convolutional block contains 236 filters of size 3x3, max
pooling , batch normalization, PReLU activation and 0%
drop out. The second convolutional block contains 283
filters of size 5x5, no pooling layer, batch normalization,
TReLU activation and 30% drop out. The third convo-
lutional block contains 357 filters of size 3x3, no pool-
ing , batch normalization, ReLU activation and 35% drop
out. The fourth convolutional block contains 256 filters of
size 3x3, no pooling , batch normalization, ReLU activa-
tion and 15% drop out. The fifth convolutional block con-
tains 64 filters of size 7x7, no pooling , batch normalization,
LeakyReLU activation and 30% drop out. The sixth convo-
lutional block contains 41 filters of size 5x5, max pooling ,
batch normalization, TReLU activation and 20% drop out.
The seventh convolutional block contains 34 filters of size
3x3, no pooling , batch normalization, ELU activation and
25% drop out is 0.25. The eighth convolutional block con-
tains 510 filters of size 3x3, max pooling , batch normaliza-
tion, PReLU activation and 45% drop out. The ninth convo-
lutional block contains 73 filters of size 7x7, average pool-
ing , batch normalization, ELU activation and 5% drop out.
The first fully connected block contains 414 neurons with
batch normalization, PReLU activation and 20% dropout.
The second block contains 171 neurons with batch normal-
ization, ReLU activation and 40% drop out. The last fully
connected block is the output layer, which has 10 neurons
with the softmax activation . The optimizer is Adamax.

The fourth column of Table 3 shows that, when com-
pared to AlexNet [20], VGGNet [27], ResNet ResNet
[13], Capsule Net [25], the architecture we generated
achieved the highest accuracy of 99.75%. The plot of high-
est classification accuracy obtained in each generation (see
Figure 6(d)) shows that best DCNN architecture we created

Table 5: Classification accuracy on CIFAR10 and CIFAR100 (%)

Method CIFAR10 CIFAR100
AlexNet [20] 82.53 60.53
VGGNet [27] 84.62 64.37
ResNet [13] 90.61 67.61

Highway Net [28] 89.18 67.60
Capsule Net [25] 89.40 -

Proposed 89.23 66.70

has become stable after 10 generations.

4.6. DCNN Designed for CIFAR10

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the CIFAR10
dataset consists of five convolutional blocks and four fully
connected blocks (see Figure 5(e)). The first convolutional
block contains 24 filters of size 7x7, no pooling , batch nor-
malization, ELU activation and 15% drop out. The second
convolutional block contains 68 filters of size 5x5, no pool-
ing , TReLU activation and 10% drop out. The third convo-
lutional block contains 362 filters of size 7x7, no pooling ,
batch normalization, ELU activation and 0% drop out. The
fourth convolutional block contains 156 filters of size 3x3,
average pooling, batch normalization, TReLU activation
and 0% drop out. The fifth convolutional block contains
477 filters of size 7x7, average pooling, batch normaliza-
tion, ELU activation and 0% drop out. The first fully con-
nected block contains 93 neurons with batch normalization,
LeakyReLU activation and the 5% of dropout. The second
block contains 441 neurons with batch normalization, ELU
activation and 50% drop out. The third block contains 411
neurons with batch normalization, LeakyReLU activation
and the 45% drop out. The last fully connected block is the
output , which has 10 neurons with the softmax activation .
The optimizer is Adam.

The second column of Table 4 shows that, when com-
pared to AlexNet [20], VGGNet [27], ResNet ResNet
[13], [28] and Capsule Net [25],, the architecture we gen-
erated achieved the third highest accuracy of 89.32%, lower
than the accuracy of Capsule Net (89.40%) and ResNet
(90.61%). However, the plot of highest classification ac-
curacy obtained in each generation (see Figure 6(e)) shows
that the performance of best DCNN architecture we gener-
ated has become stable after 10 generations.

4.7. DCNN Designed for CIFAR100

The best DCNN architecture generated by the proposed
genetic DCNN designer in ten generations for the CI-
FAR100 dataset consists of six convolutional blocks and
three fully connected blocks (see Figure 5(f)). The first
convolutional block contains 254 filters of size 3x3, max
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Figure 6: Highest classification accuracy achieved in each generation on
each dataset

pooling , batch normalization, ELU activation and 0% drop
out. The second convolutional block contains 187 filters of
size 3x3, no pooling , batch normalization, ELU activation
and 0% drop out. The third convolutional block contains
384 filters of size 3x3, no pooling , batch normalization,
LeakyReLU activation and 30% drop out. The fourth con-
volutional block contains 174 filters of size 3x3, max pool-
ing, batch normalization, PReLU activation and 20% drop
out. The fifth convolutional block contains 331 filters of
size 3x3, no pooling , batch normalization, LeakyReLU ac-
tivation and 40% drop out. The sixth convolutional block
contains 83 filters of size 3x3, no pooling , batch normal-
ization, LeakyReLU activation and 35% drop out. The first
fully connected block contains 427 neurons, batch normal-
ization, ReLU activation and 35% drop out. The second
fully connected block contains 301 neurons with batch nor-
malization, LeakyReLU activation and 15% drop out. The
last fully connected block is the output layer, which has
10 neurons with the softmax activation . The optimizer is

Nadam.
The third column of Table 4 shows that, when com-

pared toAlexNet [20], VGGNet [27], and ResNet [13],
the architecture we generated achieved the third highest ac-
curacy of 66.7%, lower than the accuracy of Highway Net
(67.60%) and ResNet (69.59%). However, the plot of high-
est classification accuracy obtained in each generation (see
Figure 6(f)) shows that the performance of best DCNN ar-
chitecture we generated has become stable after 10 genera-
tions.

In summary, after evolving ten generations, the pro-
posed genetic DCNN designer generated DCNNs, which
performed better than several state-of-the-art DCNNs on
three out of six datasets and achieved comparable perfor-
mance on other datasets. It should be note that our genetic
DCNN designer is prone to produce DCNNs with less lay-
ers.

5. Discussion on Complexity
Although the training of each generated DCNN is lim-

ited to 100 epochs, the proposed genetic DCNN designer
still has an extremely high computational and space com-
plexity, due to storing and evaluating a large number of
DCNN structures. It takes about 3, 5, 18, 12, 11 and 11
GPU-days on average to evolve the DCNN structure for
one generation on the MNIST, Fashion-MNIST, EMNIST-
Digits, EMNIST-Letters, CIFAR10 and CIFAR100 dataset,
respectively. The experiments were conducted using a
server with 2 Intel Xeon E5-2678 V3 2.50 GHz and 8
NVIDIA Tesla TiTanXp GPU, 512 GB Memory, 240 GB
SSD and Matlab 2017a.

6. Conclusion
In this paper, we propose the genetic DCNN designer, an

autonomous learning algorithm that can generate DCNN ar-
chitecture automatically based on the genetic algorithm and
data available for the specific image classification problem.
This designer is prone to creating DCNNs with less layers.
The experimental results on the MNIST, Fashion-MNIST,
EMNIST-Digit, EMNIST-Letter, CIFAR10 and CIFAR100
datasets suggest that the proposed algorithm is able to pro-
duce automatically DCNN architectures, which are compar-
ative or even outperform the state-of-the-art DCNN models.
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