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Abstract

This paper proposes a selective ensemble of multiple local model learning for

modeling and identification of nonlinear and nonstationary systems, in which the

set of local linear models are self adapted to capture the newly emerging process

characteristics and the prediction of the process output is also self adapted based

on an optimally selected ensemble of subset linear local models. Specifically,

our selective ensemble of multiple local model learning approach performs the

model adaptation at two levels. At the level of local model adaptation, a newly

emerging process state in the incoming data is automatically identified and

a new local linear model is fitted to this newly emerged process state. At

the level of online prediction, a subset of candidate local linear models are

optimally selected and the prediction of the process output is computed as an

optimal linear combiner of the selected subset local linear models. Two case

studies involving chaotic time series prediction and modeling of a real-world

industrial microwave heating process are used to demonstrate the effectiveness of

our proposed approach, in comparison with other existing methods for modeling

and identification of nonlinear and time-varying systems.
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1. Introduction

Real-world systems often exhibit both nonlinear and nonstationary charac-

teristics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. For these time-varying nonlinear

systems, batch global nonlinear modeling approaches [14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26] become ineffective. Adaptive global nonlinear modeling of5

nonstationary processes is a challenging task, since both the model parameter

values and the model structure must be adapted sufficiently fast in order to

timely capture the changing nonlinear characteristics of the underlying process.

However, most of the existing adaptive nonlinear modeling approaches do not

perform online nonlinear model structure updating and they only use some re-10

cursive estimators, such as the recursive least squares (RLS) algorithm, to adapt

the model parameter values [27, 28, 29, 30, 31, 32, 33, 34]. In particular, if the

system’s input space or operating region is known a priori, by covering the input

space with sufficiently dense fixed nodes, the extreme learning machine (ELM)

for single-hidden-layer neural networks [30, 31, 32] only needs to sequentially15

update the model weights using the RLS algorithm. Because the size of the

nonlinear model has to be very large for ELM, online adaptation of the model

weights is computationally costly and, moreover, it takes time to sufficiently

change the model weights to match the changing nonlinear characteristics of

the underlying process. Therefore, the online sequential ELM (OS-ELM) only20

works well for relatively slow time varying nonlinear processes with the known

operating regions. In an attempt to improve the performance of OS-ELM in

nonstationary environment, the work [35] proposed a time-varying OS-ELM

(OS-ELM-TV), whose weights are function of time. Specifically, each weight of

the OS-ELM-TV is a linear combination of a set of basis functions.25

However, during the online operation of a time-varying industrial process,

the process dynamics can vary significantly and the process may enter a new

operating region which is completely outside the initial modeling space. This
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will degrade the performance of the fixed-structure nonlinear modeling methods,

such as the OS-ELM and OS-ELM-TV. In order to capture the newly emerging30

process’s dynamics, the classical resource-allocating network (RAN) technique

[36, 37] adapts the nonlinear model structure by growing the set of radial basis

function (RBF) nodes, starting from an empty set of RBF nodes. By contrast,

starting from an initial set of RBF nodes, the fast tunable RBF method [38]

adjust RBF nodes as well as the model weights online to adaptively model35

nonstationary systems. The experimental results of [38] show that this fast

tunable RBF method typically outperforms the RAN.

A well-known alternative to nonlinear modeling with a single global model

is to adopt the multiple local models, which are capable of capture severe non-

linearity too [39, 40, 41, 42, 43]. The essence of multiple local modeling is40

to ‘partition’ the model input space into multiple ‘regions’, each covered by a

local model. With a sufficiently fine partitioning, the characteristics of the pro-

cess in each local region can be accurately modeled with a simple linear model.

Moreover, in order to capture the newly emerging nonlinear characteristics of a

time-varying system, an adaptive local modeling method must be able to grow45

its local models. The multiple local modeling framework of [42, 43] however

does not have this capability, as it employs a fixed set of local RBF models.

In the online soft sensor design, this capability of adaptively growing the set of

local models has been demonstrated to be vital to achieve excellent performance

in online soft sensing [44, 45]. This motivates our current work.50

Against the above background, in this paper, we propose a selective ensem-

ble of multiple local model learning approach for nonlinear and time-varying

systems, in which the set of local linear models are self adapted to capture the

newly emerging process state, and the prediction of the process output is also

adapted based on an optimally selected ensemble of subset linear local mod-55

els. Similar to the works of [44, 45], which consider a very different application

of soft sensor design, our proposed selective ensemble of multiple local model

learning approach performs the model adaptation at two levels. At the level of

local model adaptation, a newly emerging process state in the incoming data
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is automatically identified and a new local linear model is fitted to this newly60

emerged process state. At the level of online prediction or modeling, a subset

of candidate local linear models are optimally selected and the prediction of

the process output is computed as an optimal linear combiner of the selected

subset local linear models. Noted that different from the work [43] which em-

ploys a fixed set of sub-models and only computes the weights of the ensemble65

online, the proposed method continuously learns newly emerging process states

and identifies new sub-models accordingly. To our best knowledge, this work is

the first to apply selective ensemble of multiple local linear model learning for

modeling and identification of nonlinear and nonstationary systems.

The remainder of the paper is organized as follows. Section 2 is entirely70

dedicated to our selective ensemble of multiple local model learning approach,

which includes adaptation of the local linear models and selective ensemble of

local linear models for online prediction. Extensive experimental results are

presented in Section 3, which includes the two case studies of online time series

prediction involving Lorenz chaotic time series [46] and modeling of a real-world75

industrial microwave heating process (MHP) [47, 48, 49]. Our conclusions and

future research directions are provided in Section 4.

2. Selective Ensemble of Multiple Local Model Learning Approach

To effectively model nonlinear and nonstationary systems, the proposed se-

lective ensemble of multiple local model learning carries out two levels of model80

adaptation: (1) adaptation of the local linear model set, and (2) online adapta-

tion of model prediction. We now detail these two components.

2.1. Adaptation of local linear model set

Consider the data sample set {x(t), y(t)}N
t=1 drawn from a process, where

x(t) ∈ Rm and y(t) ∈ R are the system’s input vector and output, respectively.85

Assume that the nonlinear characteristics of the system over {x(t), y(t)}N
t=1 can

be represented by the L local process states. Then the task is to automatically
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construct the local linear models {fl}L
l=1 that are valid in their corresponding

process states represented by their respective sub-datasets {Xl, yl}L
l=1, where

each Xl contains W consecutive time samples of the input x(t) and yl consists90

of the corresponding output samples.

Without loss of generality, let a data window Wini =
{
Xini ∈ RW×m,yini ∈

RW
}

with W consecutive time samples {x(t), y(t)}tini+W
t=tini

be initially set, and a

local linear model fini is built on it as

ŷini =fini

(
Xini

)
= Φβ (1)

where Φ =
[
1W Xini

]
∈ RW×(1+m) and 1W denotes the W -dimensional vector

whose elements are all one, while the model parameter vector β ∈ R(1+m) is

readily given by the least square (LS) estimate as

β =
(
ΦTΦ

)−1
ΦTyini. (2)

The prediction error or residual vector of this local model over Wini is given by

eini =yini − fini

(
Xini

)
∈ RW . (3)

After an initial local model fini is built, a shifted window Wsft =
{
Xsft, ysft

}
is sequentially obtained by moving the window one step ahead, that is, Wsft

contains the samples {x(t), y(t)}tini+1+W
t=tini+1 . If the two local regions Wini and Wsft

are not significantly different, it can be considered that the process data within95

Wsft follow the same distribution as in Wini and the window is continued to

be shifted forward. Otherwise, Wsft is considered to represent a new operating

mode different from the previous mode, and a new local linear model fnew

should be developed based on Wsft. Determining whether Wini and Wsft are

significantly different or not can be naturally casted as statistical hypothesis100

testing [51].

Specifically, let the estimation error vector produced by fini on Wsft be de-
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fined as

esft =ysft − fini

(
Xsft

)
. (4)

Then whether Wini and Wsft are similar or not can then be turned into the

equivalent hypothesis testing that tests whether eini and esft are significantly

different or not. Since fini is a linear model, eini and esft are considered not

significantly different when both their means, µini and µsft, as well as variances,

σ2
ini and σ2

sft, are the same. Therefore, the two null hypotheses can be set to

Hµ
0 : µini = µsft, (5)

Hσ2

0 : σ2
sft = σ2

ini. (6)

The mean µini and variance σ2
ini are estimated based on eini, while µsft and σ2

sft

are estimated based on esft. Since fini is an unbiased estimator, we have µini = 0

and σ2
ini = 1

W−1eT
inieini. Assuming that eini and esft follow normal distribution,

the T and χ2 statistics can be constructed as [51]

T =
√

W
(
µsft − µini

)/
σsft, (7)

χ2 =(W − 1)σ2
sft

/
σ2

ini. (8)

According to the statistical theory [51], if the hypotheses Hµ
0 and Hσ2

0 are both

valid, the T statistic (7) and χ2 statistic (8) follow the t distribution and χ2

distribution with the degree of freedom W − 1, respectively. Thus, the t-test

and χ2-test can be utilized to test the above two hypotheses. Specifically, the

conditions of accepting Hµ
0 and Hσ2

0 are

|T | < λt and χ2 < λχ, (9)

where λt is the threshold of the T statistic for the given significance level αt

which satisfies Pr{|T | < λt} = 1−αt, while λχ is the threshold of the χ2 statistic

for the given significance level αχ, which satisfies Pr{χ2 < λχ} = 1 − αχ.
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Let the local model set contain L > 1 independent local linear models

{fl}L
l=1, and fini = fL. When one or both conditions of (9) are violated, Wini

and Wsft are significantly different, and the new local linear model fnew = fsft is

identified, which is different from fL. We need to test whether fnew is different

from the other models fl for 1 ≤ l ≤ L− 1. This task can also be fulfilled based

on the statistical hypothesis testing. Let the predicted errors of
{
Xsft, ysft

}
based on fnew and fl be defined respectively by

enew =ysft − fnew

(
Xsft

)
, (10)

el =ysft − fl

(
Xsft

)
, 1 ≤ l ≤ L − 1. (11)

With the assumption that enew and el follow normal distribution, the T and χ2

statistics are constructed according to

Tl =
√

W
(
µl − µnew

)/
σl, (12)

χ2
l =(W − 1)σ2

l

/
σ2

new, (13)

where µnew and σ2
new are the mean and variance of enew, which can be estimated

using enew, while µl and σ2
l are the mean and variance of el, which can be

estimated in the same way. Based on the statistical theory [51], if the null

hypotheses

Hµ
l : µl = µnew, (14)

Hσ2

l : σ2
l = σ2

new, (15)

are both valid, the Tl statistic in (12) and χ2
l statistic in (13) follow the t

distribution and χ2 distribution with the degree of freedom W −1, respectively.

Therefore, if there exist an l ∈ {1, 2 . . . L − 1} such that

|Tl| < λt and χ2
l < λχ, (16)

7



the hypotheses (14) and (15) are both valid, and enew and el are regarded105

to be identical. Consequently, fnew and fl are the same model, and one of

them should be removed. Since fl is ‘older’ than fnew, we keep the local model

fnew and delete fl. On the other hand, if one or both conditions are violated

∀l ∈ {1, 2 . . . L − 1}, fnew is different from fl for 1 ≤ l ≤ L. Thus, we have

identified a new process state, and we add fnew to the local model set by setting110

L = L + 1 and fL = fnew.

Remark 1. Although the aforementioned procedure seems to describe offline

training, this local learning strategy can readily operate online. Specifically, dur-

ing online operation, when the newest data sample {x(t), y(t)} is available, the

data window Wsft can be shifted one sample ahead, and the corresponding learn-115

ing procedure can then be carried out.

The proposed online adaptive local model set development procedure is sum-

marized in Algorithm 1. The significance levels in the statistical testings are

typically set to αt = 0.05 and αχ = 0.05 [51]. The window size is a key al-

gorithmic parameter of Algorithm 1. A small W may lead to large number of120

local models, which will increase online operating time, but it may result in

better nonstationary adaptation capability. A large W has the opposite efforts.

The effects of the window size W to the achievable performance will be further

investigated in the simulation study.

2.2. Adaptation of model prediction125

After the online operation at time sample t, Algorithm 1 produces the local

model set of {fl}L
l=1. At the next time sample of tnext = t+1, the task of online

modeling update is to produce the model prediction ŷ(tnext) for the process’s

true output y(tnext), given the process input x(tnext) and the available local

model set {fl}L
l=1. One way of generating this online prediction is to produce a130

mixture of experts by combining all the local linear models [52, 53, 54]. However,

there exist evidence in literature that combining part of the ensemble models

rather than all of them may achieve better performance [55, 56]. Therefore,
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Algorithm 1 Adaptation of local linear model set
1: Initialization
2: Collect Wini with W consecutive samples from historical data, and construct

the LS linear model fini on Wini.
3: Calculate eini, and estimate µini and σ2

ini.
4: Set L = 1, {WL, fL} = {Wini, fini} and Wsft = WL.
5: Step 1: New local model detection
6: When a new data sample is available, shift Wsft one sample ahead.
7: Calculate esft, and estimate µsft and σ2

sft.
8: Construct T and χ2 statistics using (7) and (8).
9: If both conditions of (9) are satisfied

10: Go to Step 1.
11: End if
12: Construct the LS linear model fsft on Wsft.
13: Set Wnew = Wsft and fnew = fsft.
14: Calculate enew, and estimate µnew and σ2

new.
15: Step 2: Redundant local model deletion
16: For l = 1, 2, . . . , L − 1
17: Compute el, and estimate µl and σ2

l .
18: Construct Tl and χ2

l statistics using (12) and (13).
19: If both conditions of (16) are satisfied
20: Delete fl, set fi = fi+1 for i = l, l + 1, · · · , L − 1,

set L = L − 1, then go to Step 3.
21: End if
22: End for
23: Step 3: Add new local model
24: Set L = L + 1, WL = Wnew and fL = fnew.
25: Return to Step 1.
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we adopt a selective ensemble of local linear models from the local model set

{fl}L
l=1 and compute the selective-ensemble based online prediction using the135

p(> 1) latest labeled data {x(t − i), y(t − i)}p−1
i=0 .

Let el(t) = [el(t) el(t − 1) · · · el(t − p + 1)]T be the modeling error vector of

the lth local linear model fl on the available data set {x(t − i), y(t − i)}p−1
i=0 ,

which is given by

el(t − i) =y(t − i) − fl(x(t − i)), 0 ≤ i ≤ p − 1. (17)

The performance metric of the lth local model is defined as

Jl(t) = ∥el(t)∥2
. (18)

By further defining

Jlmax(t) = max
1≤l≤L

Jl(t), (19)

we can normalize the performance metrics of (18) to

J̄l(t) =
Jl(t)

Jlmax(t)
, 1 ≤ l ≤ L. (20)

Obviously, J̄l(t) ∈ (0, 1]. Clearly, the best local model, whose index l1 = lmin

is given by

lmin = arg min
1≤l≤L

J̄l(t), (21)

should be selected. Moreover, other local models whose performance metrics

(20) are below a given threshold 0 < ε ≤ 1 are also selected. Note that if we set

ε = 1, all the L local models are selected, while if the threshold is chosen to be

ε ≤ Jlmin(t), only the best local model fl1 is selected.140

Assume that M(≥ 1) local models are selected at time t for predicting the

system output at tnext, and the indexes of the selected local models are given in
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the index set Γ as

Γ ={l1, lm|2 ≤ m ≤ M, Jlm(t) ≤ ε, 1 ≤ lm ≤ L}. (22)

This selection procedure yields the M local model outputs

ŷlm(t − i) =flm(x(t − i)), 1 ≤ m ≤ M, (23)

for 0 ≤ i ≤ p − 1. The estimate ŷ(t − i) of the process output y(t − i) is given

as the weighted sum of the M selected subset models, which is computed by

ŷ(t − i) =
∑M

m=1
θm(t)ŷlm(t − i), 0 ≤ i ≤ p − 1, (24)

where nonnegative θm(t) is the combining coefficient for the mth selected local

model, and the combining coefficients must satisfy the constraint of

∑M

m=1
θm(t) =1. (25)

The estimation errors

e(t − i) =y(t − i) − ŷ(t − i), 0 ≤ i ≤ p − 1, (26)

are utilized to determine the combining coefficients.

Specifically, the optimal combining coefficients can be obtained by minimiz-

ing the LS cost function

V (t) =
1
2

∑p−1

i=0
e2(t − i), (27)
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subject to the constraint (25). Because of
∑M

m=1 θm(t) = 1,

V (t) =
1
2

∑p−1

i=0

(
y(t − i) −

∑M

m=1
θm(t)ŷlm(t − i)

)2

=
1
2

∑p−1

i=0

( ∑M

m=1
θm(t)y(t − i) −

∑M

m=1
θm(t)ŷlm(t − i)

)2

=
1
2

∑p−1

i=0

( ∑M

m=1
θm(t)elm(t − i)

)2

=
1
2
θT(t)Ē(t)θ(t), (28)

where θ(t) =
[
θ1(t) · · ·θM (t)

]T and Ē(t) is the estimated error covariance ma-

trix which is given as

Ē(t) =
p−1∑
i=0


e2
l1

(t − i) · · · el1(t − i)elM (t − i)
...

. . .
...

el1(t − i)eLM (t − i) · · · e2
lM

(t − i)

. (29)

The problem of determining the optimal θ(t) can then be formulated as the

following optimization

min
θ

1
2θT(t)Ē(t)θ(t),

s.t.
∑M

m=1 θm(t) = 1.
(30)

The Lagrangian function for the optimization (30) is given by

L
(
θ(t); γ

)
=

1
2
θT(t)Ē(t)θ(t) + γ

(
1T

Mθ(t) − 1
)
, (31)

where γ > 0 is Lagrange multiplier. Letting ∂
∂θ(t)L = 0M yields

Ē(t)θ(t) + γ1M = 0M , (32)

where 0M = [0 · · · 0]T ∈ RM . This suggests that the optimal combining vector

θ̂ can be obtained as follows. First, calculate

θ̃(t) = Ē−1(t)1M , (33)
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which is followed by the normalization

θ̂m(t) =
1∑M

j=1 θ̃j(t)
θ̃m(t), 1 ≤ m ≤ M. (34)

The prediction ŷ(tnext) for the process’s true output y(tnext) is produced as

the selected ensemble

ŷ(tnext) =
∑M

m=1
θ̂m(t)flm

(
x(tnext)

)
(35)

Algorithm 2 summarizes the online prediction and adaptive modeling opera-

tions. The choice of p trades off the computational complexity and the ro-

bustness against noise. The threshold ε is another algorithmic parameter of

Algorithm 2 that trades off performance with computational complexity. How145

p and ε influence the achievable performance will be further investigated in the

simulation study.

Algorithm 2 Online prediction and adaptive modeling
1: Initialization
2: At the beginning of online operation, the local model set {Wl, fl}L

l=1 has
been constructed.

3: Set {WL, fL} = {Wini, fini} and Wsft = WL.
4: Step 1: Online prediction
5: Give input x(tnext) at new sample time tnext = t + 1.
6: Calculate the performance metrics J̄l(t) using (20) for 1 ≤ l ≤ L on past p

data points.
7: Select the subset models with the index set Γ of (22).
8: Calculate the error covariance matrix Ē(t) using (29).
9: Calculate the optimal combining coefficients θ̂(t) using (33) and (34).

10: Predict true process output y(tnext) with the selective ensemble (35).
11: Carry out other unrelated online operations.
12: Step 2: Online model adaptation
13: When the observation y(tnext) is available, add {x(tnext), y(tnext)} to the

dataset with t = t + 1.
14: Shift Wsft one sample ahead, and perform relavent local model set adapta-

tion.
15: Set tnext = tnext + 1, and go to Step 1.

13



3. Two Case Studies

Two case studies involving chaotic time series prediction and modeling of a

real-world industrial MHP are used to evaluate the proposed selective ensemble

of multiple local model learning approach. The well-known online modeling al-

gorithms, the RAN [37], the OS-ELM with sigmoid nodes (OS-ELM (sigmoid)),

the OS-ELM with RBF nodes (OS-ELM (RBF)) [30, 31, 32], and the OS-ELM-

TV [35] as well as the fast tunable RBF [38], are employed as the benchmarks.

The two performance indexes, the mean square error (MSE)

MSE(t) =
1
t

∑t

i=1

(
y(i) − ŷ(i)

)2
, (36)

and the mean absolute error (MAE)

MAE(t) =
1
t

∑t

i=1

∣∣y(i) − ŷ(i)
∣∣, (37)

are utilized to evaluate the online prediction performance, where ŷ(i) denotes

the model prediction for y(i). The computational complexity of an online mod-150

eling method is measured by its online average computational time per sample

(ACTpS), which is defined as ACTpS = Total time
Total number of samples . The experi-

ments are carried out on Matlab 2017a, running on a PC with i7-3770 3.40 GHz

processor of 4 cores and 16GB of RAM.

3.1. Online time series prediction155

We first consider the prediction of Lorenz chaotic time series. Lorzen chaotic

time series [46] is governed by the three differential equations as
d x(t)

d t = a(y(t) − x(t)),
d y(t)
d t = cx(t) − x(t)z(t) − y(t),

d z(t)
d t = x(t)y(t) − bz(t),

(38)

where a, b and c are the parameters that control the behaviour of Lorzen sys-

tem. The fourth-order Runge-Kutta method with a step size of 0.01 is used
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to generate the samples, and only Y -dimension samples {y(t)} are used for

the time-series prediction. The 60-steps ahead prediction is considered, which

predicts y(t) with the past samples

x(t) =
[
y(t − 60) y(t − 66) y(t − 72) y(t − 78)

]T
. (39)

In all the simulations, after removing a large number of initial samples, 4,000

data samples are generated. The first 1,000 samples are employed for initial

model training and the last 3,000 samples are used for online prediction and

adaptive modeling. Note that our proposed learning approach does not really

need a large number of training samples, as it can start online operation with160

just L = 1 local linear model. But the OS-ELM needs a large number of training

samples, as the ELM model must contain a large number of hidden nodes.

The OS-ELM-TV employs the polynomial function pf (x) = x2 + x as the

hidden layer activation function and the 3-order Legendre function as the output

weight basis function [35], while the training data are used for weight initial-165

ization. For the fast tunable RBF, the training is done by the orthogonal least

squares algorithm [16] to construct an initial small RBF model. During online

operation, the node replacement threshold and the number of data points for

weight adaptation are empirically chosen as 10−6 and 5, respectively. The step

size and the maximum iterations are empirically set to 0.01 and 5, respectively.170

3.1.1. Fixed Parameters a, b and c

First Lorzen time series parameters are fixed to a = 10, b = 8/3 and c =

28. We start by investigating the impact of window size W on adaptive local

modeling as well as the influence of W , the number of the latest data samples

p and the threshold ε on selective ensemble. The dashed curve in Fig. 1 (a)175

shows the number of local linear models obtained as the function of W on the

training dataset. As expected, small W leads to large number of local models

identified, and vice versa. Starting with the set of local models identified in

training, Algorithm 1 is also applied to the testing dataset, and the number of

15



local linear models obtained as the function of W is depicted in Fig. 1 (a) as180

the solid curve. Obviously, the number of local models increases during online

adaptation, as the newly emerging process states in the testing data have been

identified. Given the threshold ε = 0.01, Fig. 1 (b) depicts the prediction MSE

as the function of W with p = 5 and p = 10, respectively. In general, small W

yields better prediction accuracy at the expense of high ACTpS and vice versa.185

Taking into account both prediction accuracy and computational complexity, it

can be seen from Fig. 1 (b) that W = 37 to 39 are appropriate. With ε = 0.01,

Fig. 1 (c) shows the impact of the number of latest labeled data samples p on

the achievable prediction performance for W = 37 and W = 39, respectively.

It can be seen that the test MSE first decreases as p increases. After reaching190

the minimum value, the test MSE begins increasing as p increases further. In

this case, p = 7 to 10 are appropriate in terms of prediction accuracy. Fig. 1 (d)

demonstrates how the threshold ε impacts on online prediction and adaptive

modeling, in terms of trade off between prediction accuracy and computational

complexity, given p = 10 and two values of W = 37 and 39. It can be seen that195

when ε is smaller than certain value, only the single best local linear model is

selected, which results in the lowest computational complexity but the poorest

test MSE. Beyond this certain value, increasing ε improves the test MSE while

increasing the number of local linear models selected in ensemble prediction.

Fig. 1 (d) indicates that the best prediction MSEs can be achieved with ε = 0.010200

for W = 37 and ε = 1 for W = 39, respectively.

Table 1 compares the online prediction and adaptive modeling performance

of the proposed selective ensemble of multiple local model learning with those

achieved by the OS-ELM, the OS-ELM-TV, the RAN and the fast tunable RBF.

Not surprisingly, the OS-ELM has very poor online prediction accuracy with the205

highest ACTpS. This agrees with the experimental results of [38]. Observe that

the OS-ELM-TV can attain the lowest ACTpS but its online prediction accuracy

is the worst. It can also be seen that adding more hidden nodes to the OS-ELM-

TV may degrade its online performance. The RAN is significantly better than

the OS-ELM, in terms of both achievable MSE and ACTpS. The MSE of the210
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Figure 1: Lorenz time series with fixed parameters: (a) influence of window size W on number
of local models, (b) influence of W on prediction accuracy given ε = 0.01 and two values of
p, (c) influence of number of latest labeled data p on prediction accuracy given ε = 0.01 and
two values of W , and (d) influence of threshold ε on prediction accuracy and average number
of local models in selective ensemble given p = 10 and two values of W .

Table 1: Lorenz time series with fixed parameters: comparison of online prediction and adap-
tive modeling performance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the
proposed selective ensemble of multiple local model learning

Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes
Initial Final

OS-ELM (Sigmoid) 16.7853 4.8137 6.35 500 500
15.7036 4.1841 41.75 1000 1000

OS-ELM (RBF) 16.9318 4.5486 6.11 500 500
17.3510 4.7206 35.36 1000 1000

OS-ELM-TV 19.8955 7.7182 0.15 10 10
20.1744 7.9257 0.42 50 50

RAN 5.0932 0.8375 1.49 0 142

Tunable RBF -5.2476 0.0557 0.19 10 10
-20.2228 0.0437 0.37 30 30

Proposed (W = 39, ε = 1, p = 7) -22.4413 0.0181 0.62 23 31
Proposed (W = 37, ε = 0.001, p = 9) -23.2790 0.0179 1.20 49 83
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Figure 2: Lorenz time series with fixed parameters: test MSE learning curves for various
modeling methods.

tunable RBF is much better than that of the RAN, and it has the second lowest

ACTpS. Our proposed approach achieves the best online prediction accuracy

and its ACTpS is significantly lower than that of the OS-ELM. Fig. 2 depicts

the online MSE learning curves of various models, which again demonstrates

the superior prediction accuracy performance of our proposed approach.215

3.1.2. Time-Varying Parameters b and c

In this simulation, we set a = 10, and let b and c vary with time according

to

b =
4 + 3(1 + sin(0.1t))

3
, (40)

c =25 + 3
(
1 + cos

(
20.001t

))
. (41)

Fig. 3 investigates the impacts of the key algorithmic parameters, W , p and ε,

on online prediction and adaptive modeling for our proposed method. Similar

to the case of fixed parameters, we can draw the same/similar conclusions from

Fig. 3 (a) to Fig. 3 (d). Table 2 compares the online prediction and adaptive220

modeling performance of various modeling methods, while Fig. 4 illustrates their

online MSE learning curves. It can be seen again that our proposed method

achieves the best online prediction accuracy with relatively low ACTpS, and the
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Figure 3: Lorenz time series with time-varying parameters: (a) influence of window size W
on number of local models, (b) influence of W on prediction accuracy given ε = 0.01 and
two values of p, (c) influence of number of latest labeled data p on prediction accuracy given
ε = 0.01 and two values of W , and (d) influence of threshold ε on prediction accuracy and
average number of local models in selective ensemble given p = 5 and two values of W .

fast tunable RBF has the second best MSE performance with the second lowest

ACTpS, while the ELM has the worst performance. In particular, although the225

OS-ELM-TV can attain the lowest ACTpS, its online prediction accuracy is the

worst, which is about 40 dB higher than our proposed approach.

3.1.3. Lorzen Time Series with Time-Based Drift

The parameters of Lorenz system are fixed to a = 10, b = 8/3 and c = 28 but

the samples {y(t)} are weighted by an exponential time-based drift to obtain

the new series
{
ỹ(t)

}
according to

ỹ(t)(t) = 1.10.01ty(t). (42)
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Table 2: Lorenz time series with time-varying parameters: comparison of online prediction
and adaptive modeling performance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF
and the proposed selective ensemble of multiple local model learning

Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes
Initial Final

OS-ELM (Sigmoid) 11.0689 2.5390 6.65 500 500
10.7813 2.4533 42.75 1000 1000

OS-ELM (RBF) 10.8456 2.4077 6.23 500 500
10.4071 2.3092 35.55 1000 1000

OS-ELM-TV 12.8957 3.2010 0.15 10 10
17.9352 6.0364 0.42 50 50

RAN 3.5611 0.9198 0.56 0 79

Tunable RBF -20.9151 0.0440 0.18 10 10
-22.7813 0.0409 0.38 30 30

Proposed (W = 53, ε = 1, p = 6) -26.6323 0.0132 0.72 13 47
Proposed (W = 41, ε = 0.01, p = 4) -28.4732 0.0106 4.19 67 218
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Figure 4: Lorenz time series with time-varying parameters: test MSE learning curves for
various modeling methods.

The new time series
{
ỹ(t)

}
is used for the time series prediction. In this case,{

ỹ(t)
}

is even more nonstationary than the dataset in the previous simulation230

with time-varying parameters. In particular, the dynamic range of ỹ(t) changes

from [−20, 20] initially to [−2000, 2000] in the end.

How the algorithmic parameters, W , p and ε, influence the performance of

our selective ensemble of multiple local model learning approach is illustrated

in Fig. 5. Furthermore, Table. 3 compares the online prediction and adaptive235

modeling performance of various modeling methods, while Fig. 6 depicts their

online MSE learning curves. Again, the same/similar observations as the pre-
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Figure 5: Lorenz time series with time-based drift: (a) influence of window size W on number
of local models, (b) influence of W on prediction accuracy given ε = 0.01 and two values of
p, (c) influence of number of latest labeled data p on prediction accuracy given ε = 0.01 and
two values of W , and (d) influence of threshold ε on prediction accuracy and average number
of local models in selective ensemble given p = 5 and two values of W .

Table 3: Lorenz time series with time-based drift: comparison of online prediction and adap-
tive modeling performance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the
proposed selective ensemble of multiple local model learning

Model MSE (dB) MAE ACTpS (ms) Models/Nodes
Initial Final

OS-ELM (Sigmoid) 52.7165 262.6718 6.15 500 500
52.7175 262.0425 41.75 1000 1000

OS-ELM (RBF) 52.7802 250.2566 5.68 500 500
52.7402 248.4557 32.55 1000 1000

OS-ELM-TV 54.1309 268.0022 0.15 10 10
73.1339 1993.3448 0.41 50 50

RAN 48.3101 29.8495 0.45 0 155

Tunable RBF 36.9557 45.2908 0.18 10 10
36.6295 42.6192 0.28 30 30

Proposed (W = 36, ε = 0.01, p = 5) 14.1114 1.3605 0.34 28 46
Proposed (W = 31, ε = 10−7, p = 5) 6.9794 0.7076 0.51 65 120
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Figure 6: Lorenz series with time-based drift: test MSE learning curves for various modeling
methods.

vious two cases can be observed. In particular, it can be seen from Fig. 6 that

our proposed method is the most effective in tracking this highly nonstationary

and nonlinear Lorenz time series.240

3.2. Real-world industrial microwave heating system

Microwave heating technology has found wide-ranging applications in in-

dustry due to its many advantages over conventional heating methods, which

include selective and volumetric heating, rapid heat transfer and pollution-free

environment [11]. However, a major drawback associated with microwave heat-245

ing is the temperature runaway, caused by properties of material and the in-

ner electromagnetic field distribution [10], which may lead to unwanted com-

bustion and destruction in industrial processes. To improve the safety and

efficiency of microwave heating technology in industrial applications, an accu-

rate model is required for the purpose of temperature prediction and control250

[47, 48, 49, 57, 50]. This is a challenging task, because MHP is a complex ther-

mal process with nonlinear dynamics and nonstationary characteristics. Unlike

conventional heat transfer and heat radiation, microwave heating not only in-

volves thermal dynamic variation but also coupled with conversion of microwave

energy [58]. Temperature of heated material is a crucial measurement during255

MHP, as thermal runaway often occurs due to the time-varying physicochem-
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ical properties of material. With the increase of the material temperature, its

dielectric loss increases dramatically, which conversely poses a positive feedback

to temperature increase [59]. Therefore, accurate online temperature estimation

is vital to detect thermal runaway in advance.260

3.2.1. Description of System

A real-world industrial microwave heating system [49], as illustrated in Fig. 7,

is used in this case study, which consists of five microwave generators and waveg-

uides, temperature measurement sensors and the control system hosted in pro-

grammable logic controller (PLC). Microwave generated by each microwave gen-265

erator is transmitted through the corresponding waveguide, fed into the cavity

and absorbed by the heated material. Each microwave generator has a maximum

power supply of 3 kW at 2.45GHz. The material is continuously transported

through cavity by the conveyor belt, whose speed can be adjusted by a motor

driver. Three fiber optical sensors (FOSs), denoted as FOS1 to FOS3, are placed270

at three different locations using microwave transparent taps to online record

multiple-points of temperature.

During the real-time operation of this MHP, the control center receives the

measured temperature values from the FOSs, and sends control commends,

Microwave generator

Waveguides

Temperature sensors

Multimode cavity

Conveyor belt

PLC Host computer

Figure 7: An industrial microwave heating system.
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which include the five microwave powers upi
(t), 1 ≤ i ≤ 5, for the five microwave

generators as well as the conveyor speed v(t) to the cavity. Thus, the control

inputs to this MHP are given by

u(t) =
[
up1(t) up2(t) up3(t) up4(t) up5(t) v(t)

]T
. (43)

Each FOS measures the temperature, which is the MHP’s output ysj (t) at the

FOS’s location, where 1 ≤ j ≤ 3. Because of near instantaneous response

of MHP, the temperature ysj (t) at the jth FOS’s location can be adequately

represented by [47, 49, 59]

ysj (t) = fnl−ns,j(xj(t); t), (44)

where fnl−ns,j(·; t) represents the corresponding unknown nonlinear and time-

varying system mapping with the input

xj(t) =
[
ysj

(t − 1) uT(t − 1)
]T ∈ R7. (45)

From large amount of data collected from this industrial microwave heating

system [47, 49], we use three datasets from the three FOSs, and each data set
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Figure 8: Influence of window size W on number of local models obtained for three training
datasets of MHP.
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contains 3,000 data samples. We first normalize the five microwave power inputs

and the temperature measurements according to

ūpi(t) =
upi(t)
1000

, 1 ≤ i ≤ 5, (46)

ȳsj (t) =
ysj (t) − ymin,sj

ymax,sj − ymin,sj

, 1 ≤ j ≤ 3, (47)

where ymin,sj and ymax,sj are the minimum and maximum temperature mea-

surements of the jth FOS, respectively. For each FOS’s dataset, we use the

first 1,000 samples for model training, and the last 2,000 samples for online275

prediction and adaptive modeling.

3.2.2. Experimental Results

We investigate the influence of the algorithmic parameters, the window size

W , the number of latest data samples p and the threshold ε, on our selective

ensemble learning approach. First we apply Algorithm 1 to the training datasets280

of the three FOSs, and Fig. 8 shows the numbers of local linear models obtained

as the functions of W . As expected, small W leads to large number of local

models identified and vice versa. With the initial local model sets identified in

training, we then apply Algorithm 2 to the three testing datasets. Fig. 9 (a)

shows the number of total local linear model identified as the function of W ,285

while Fig. 9 (b) shows the influence of W on online prediction accuracy given p =
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Figure 9: Influence of window size W on: (a) number of total local models obtained, and
(b) online prediction accuracy given p = 25 and ε = 0.01, for three testing datasets of MHP.
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Figure 10: Influence of number of latest labeled data samples p on: (a) online average com-
putational time per sample, and (b) online prediction accuracy, both obtained given W = 15
and ε = 0.01 for three testing datasets of MHP.

25 and ε = 0.01. As expected, small W results in better prediction accuracy but

leads to large local model set which has adverse effort on online computational

complexity. It can be seen from Fig. 9 (b) that W = 15 for FOS1 and FOS2,

and W = 14 for FOS3 are appropriate.290

Next, given W = 15 and ε = 0.01, Fig. 10 (a) and (b) show the impacts of

the number of of latest labeled data samples p on online computational complex-

ity and prediction accuracy, respectively. Not surprisingly, the online ACTpS

increases with p, while the test MSE first decreases rapidly as p increases and

it approaches some minimum value for large p. It can be seen from Fig. 10 (b)295

that the prediction MSEs reach the minimum values when p ≥ 25 for FOS1 and

FOS2 and when p ≥ 20 for FOS3.
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Figure 11: Influence of threshold ε on: (a) average selected ensemble size, and (b) online
prediction accuracy, given p = 25, W = 15 for FOS1 and FOS2 and W = 14 for FOS3 of
MHP.
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Then, given p = 25, W = 15 for FOS1 and FOS2 as well as W = 14 for

FOS3, Fig. 11 (a) and (b) illustrate how the threshold ε impacts on online com-

putational complexity, in terms of average selected ensemble size, and prediction300

accuracy, respectively. Observe from Fig. 11 (a) that when ε is smaller than cer-

tain value, only the single best local linear model is selected. When ε is larger

than this value, the average size of selected ensemble increases with ε. Also

when ε = 1, all the local models are selected and the size of selected ensemble

reaches the maximum value. Fig. 11 (b) indicates that the best online prediction305

MSEs are achieved with ε = 0.01 for all the three testing datasets of this MHP.

Finally, we compare the online prediction and adaptive modeling perfor-

mance of the OS-ELM, the OS-ELM-TV, the RAN, the fast tunable RBF and

our proposed selective ensemble of multiple local model learning in Table 4.

The model construction and the choice of the algorithmic parameters for each310

method are similar to the previous cases. Furthermore, the online MSE learning

curves of these modeling methods are depicted in in Fig. 12 (a) to (c), for the

Table 4: Real-world industrial MHP: comparison of online prediction and adaptive model-
ing performance for the OS-ELM, OS-ELM-TV, RAN, fast tunable RBF and the proposed
selective ensemble of multiple local model learning

Sensor Model MSE (dB) MAE Online ACTpS (ms) Models/Nodes
Initial Final

FOS1

OS-ELM (Sigmoid) 18.7159 0.3275 0.17 100 100
-13.3432 0.1230 1.26 300 300

OS-ELM (RBF) 2.1618 0.1993 0.46 100 100
-1.5694 0.1836 1.85 300 300

OS-ELM-TV 4.8825 1.2540 0.16 10 10
RAN 0.2035 0.3238 0.39 0 39
Tunable RBF -11.6108 0.1075 0.34 10 10
Proposed (W = 15, ε = 0.01, p = 25) -14.0782 0.1335 0.65 14 61

FOS2

OS-ELM (Sigmoid) 13.1016 0.2450 0.18 100 100
-13.1594 0.1414 1.33 300 300

OS-ELM (RBF) 16.2024 0.4114 0.43 100 100
-4.0463 0.1747 1.89 300 300

OS-ELM-TV 7.7808 1.8379 0.16 10 10
RAN 5.9574 0.6522 0.45 0 50
Tunable RBF -13.5971 0.1375 0.37 10 10
Proposed (W = 15, ε = 0.01, p = 25) -14.1107 0.1323 0.71 22 56

FOS3

OS-ELM (Sigmoid) -1.7993 0.1889 0.17 100 100
-12.1990 0.1690 1.34 300 300

OS-ELM (RBF) 9.1531 0.2936 0.45 100 100
-2.4284 0.2110 1.89 300 300

OS-ELM-TV 7.1171 1.6951 0.16 10 10
RAN 5.8149 0.6819 0.31 0 37
Tunable RBF -13.1200 0.1207 0.34 10 10
Proposed (W = 14, ε = 0.01, p = 20) -14.2038 0.1168 0.76 16 40

27



0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample (t)

-20

-15

-10

-5

0

5

10

15

20

T
es

t M
S

E
 (

dB
) RAN

OS-ELM (Sigmoid nodes=300)
Tunable RBF (nodes=10)

Proposed (models=61)

OS-ELM (RBF nodes=300)

OS-ELM-TV (nodes=10)

(a)

0 500 1000 1500 2000
Sample (t)

-20

-15

-10

-5

0

5

10

15

20

T
es

t M
S

E
 (

dB
)

OS-ELM (Sigmoid nodes=300)

Proposed (models=56)
Tunable RBF (nodes=10)

RAN

OS-ELM (RBF nodes=300)

OS-ELM-TV (nodes=10)

(b)

0 500 1000 1500 2000
Sample (t)

-20

-15

-10

-5

0

5

10

15

20

T
es

t M
S

E
 (

dB
)

RAN

OS-ELM (Sigmoid nodes=300)

Tunable RBF (nodes=10)  Proposed (models=40)

OS-ELM (RBF nodes=300)

OS-ELM-TV (nodes=10)

(c)

Figure 12: Test MSE learning curves for various modeling methods: (a) FOS1, (b) FOS2, and
(c) FOS3 of MHP.
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three test datasets of the real-world industrial MHP. For this MHP, again the

OS-ELM-TV achieves a very poor online prediction accuracy although it im-

poses the lowest ACTpS. The OS-ELM with 100 hidden nodes attains the worst315

online prediction accuracy while imposing a very low ACTpS. By contrast, the

OS-ELM with 300 hidden nodes significantly improves online prediction accu-

racy but imposing the highest ACTpS. The RAN considerably outperforms the

OS-ELM-TV, in terms of online prediction accuracy, and it also enjoys rela-

tively low ACTpS. In general, the fast tunable RBF achieves the second best320

test MSE performance at the cost of very low online computational complex-

ity. Our proposed method outperforms all the other models in online prediction

accuracy, and it also has a very low online computational complexity. Specif-

ically, for FOS1, our method attains the test MSE of -14.078 dB at the cost

of 0.65 ms of ACTpS, while the fast tunable RBF achieves the test MSE of -325

11.611 dB at the cost of 0.34 ms of ACTpS. For FOS2, our method attains the

test MSE of -14.111 dB and its ACTpS is 0.71 ms, while by contrast the fast

tunable RBF achieves the test MSE of -13.597 dB and its ACTpS is 0.37 ms.

For FOS3, our method achieves the online prediction MSE of -14.204 dB at the

expense of 0.76 ms of ACTpS, in comparison to the test MSE of 13.120 dB and330

the ACTpS of 0.34ms achieved by the fast tunable RBF. The results of Fig. 12

further demonstrate that our selective ensemble of multiple local model learning

approach can much better track the nonlinear and time-varying characteristics

of the underlying system.

4. Conclusions and Future Research335

In this paper, a novel selective ensemble of multiple local model learning

approach has been proposed for adaptive online modeling of nonlinear and non-

stationary systems. Our learning approach automatically identifies the newly

emerging process state during online operation and fits a local linear model to

the newly identified process state. Adaptive modeling is achieved by a selective340

ensemble strategy which selects a number of best local linear models from the

29



local model set and optimally combines them to produce the online prediction.

Extensive experimental results have demonstrated that our proposed selective

ensemble of multiple local model learning is capable of fast tracking the non-

linear and time-varying characteristics of the underlying system. In particular,345

it has been shown that our proposed method not only achieves the best online

prediction accuracy, in comparison with some state-of-the-art online modeling

methods, but also offers acceptably low online computational complexity.

Although our approach has been shown to outperform the fast tunable RBF

method, the latter offers lower online computational complexity. A key property350

of our method is its ability to identifying newly emerging characteristics of the

underlying system and grows the local linear model set online. Online modeling

is carried by an ensemble of small subset local linear models selected from this

local model set. For a highly nonlinear and time-varying system, during online

operation, the local linear model set is inevitably growing large. In order to355

reduce online computational complexity, it is desired to remove some ‘oldest’

local models from the local model set. However, this is not as simple as it

appears. A local model exists in the local model set because it has appeared in

the system’s past history. The fact that it is not used in the most recent selective

ensemble does not imply that it will not be needed in the future. Further360

research is warranted to develop reliable mechanism of removing ‘unwanted’

past local linear model online. This is expected to be challenging.
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