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Abstract

Neural attention has become a key component in many deep learning appli-

cations, ranging from machine translation to time series forecasting. While

many variations of attention have been developed over recent years, all share

a common component in the application of a softmax function to normalize

the attention weights, in order to transform them into valid mixing coeffi-

cients. In this paper, we aim to improve the modeling flexibility of a generic

attention module by innovatively replacing this softmax operation with a

learnable softmax, in which the normalizing functions are also adapted from

the data. Specifically, our generalized softmax builds upon recent work in

learning activation functions for deep networks, in particular the kernel ac-

tivation function and its extensions. We describe the application of the

proposed technique for the case of time series forecasting with the dual-

stage attention-based recurrent neural network (DA-RNN), a state-of-the-art
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model for predicting time series that employs two different attention modules

for handling exogenous factors and long-term dependencies. A series of real-

world benchmarks are used to show that simply plugging-in our generalized

attention model can improve results on all datasets, even when keeping the

number of trainable parameters in the model constant. To further evaluate

the algorithm, we collect a novel dataset for the prediction of the Bitcoin

closing exchange rate, a problem of high practical significance lately. Finally,

to foster research in the topic, we also release both the dataset and our model

as an open source extensible library. Over a baseline DA-RNN, our proposed

model delivers an improvement of MAR ranging from 6% to 15% using our

newly-released dataset.

Keywords: Attention, Activation function, Softmax, Time series

forecasting

1. Introduction

Many of the advancements in deep learning over the last few years have

revolved around the concept of neural attention, first introduced in [4]. At-

tention was originally developed to alleviate one of the major drawbacks of

encoder-decoder architectures for sequence to sequence problems [31, 7, 41].

In these models, the input sequence is processed by an encoding recurrent

neural network (RNN), while a second RNN produces the desired output se-

quence (e.g., the translation of the input sequence into a different language).

However, in the basic setup the decoder has only access to the last state

of the input RNN, lacking more fine-grained control on the information to

be accessed during decoding. Attention solves this problem by allowing the
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decoder to focus at every time-step on different parts of the input sequence,

by computing dynamically a set of attention weights that determine the im-

portance of each of the parts [14, 27, 8].

Later, it was understood that this concept could be extended to a much

larger set of problems, and attention modules have been applied in fields as

diverse as sentence summarization [27], graph neural networks [33], time se-

ries forecasting [26], generative models [13, 39], combinatorial problems [34],

collaborative filtering [11], image processing [36], neural processes [18], and

many more [20]. State-of-the-art architectures for neural machine transla-

tion are now composed almost exclusively of attention layers [32], and these

models are also being extended to more generic sequence modeling tasks [9].

Roughly speaking, an attention layer is composed of three steps, explained

more in detail later on in Section 3: (a) computation of a set of weight vec-

tors to decide how much attention to provide to each element in the input

sequence; (b) normalization of these weights (typically via a softmax nonlin-

earity); and (c) construction of an aggregated vector using these normalized

weights. A lot of literature has been devoted to improving point (a), by

devising different methods of computing these coefficients, most notably the

multi-head model from [32].

In this paper, we propose to investigate whether the performance of neu-

ral attention mechanisms can be further improved by focusing on point (b),

the normalization of the coefficients. In particular, we take inspiration from

previous work which considered a similar setup in the context of gates in-

side recurrent neural networks [29], extending work on learning activation

functions [30]. The basic idea is that we can improve learning in neural net-
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works by replacing fixed nonlinearities (such as the softmax) with flexible

ones, at the same time simplifying optimization and possibly increasing the

accuracy of resulting models. Note that there is growing literature showing

that learning standard activation functions (e.g., the ReLU) can be beneficial

[21, 42, 1, 25, 30]. However, learning more structured nonlinearities, such as

the softmax, has been rarely explored as of today.

To this end, in this paper, each component of the softmax is replaced

with a generalized softmax function, whose shape can be learnt from the

data during the optimization phase. This flexibility is achieved with the

addition of a very small number of additional parameters, in the form of an

efficient kernel expansion at every component of the nonlinearity. To provide

a practical demonstration, we show that simply plugging-in our module in a

state-of-the-art model for short-term time series forecasting allows it to learn

faster and more accurately on multiple datasets.

Contributions of the paper

The main contribution of the paper is a novel, more general formulation of

neural attention, wherein the softmax function is replaced with a trainable

softmax. This trainable softmax leverages the kernel activation function

(KAF) described in [30], a non-parametric activation function where each

scalar function is modeled as a one-dimensional kernel expansion. To extend

the KAF for our problem, we modify it in an appropriate fashion in order

to preserve key properties of the softmax, most notably the positivity and

normalization of its output values.

In order to evaluate the proposal, it is applied to a use case of time

series forecasting [40]. The dual-attention RNN (DA-RNN) [26] is a state-of-
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the-art network for short-term time series forecasting that incorporates two

attention modules to, respectively, decide how much weight is required to

provide a single input and how much weight to provide a past time instant. In

our implementation, we replicate the DA-RNN by substituting two softmax

operations with the trainable version. The model is evaluated using two

datasets from [26], which show that the model can converge faster to a higher

level of accuracy. We also compare its performance on a third dataset that

we collect specifically for this paper, on the short-term forecasting of Bitcoin

closing prices, a task of significant practical interest lately, e.g., [17, 2, 3].

Finally, we release our code and Bitcoin dataset as an open-source Python

library.

Organization of the paper

Section 2 briefly describes key related works from the last few years.

Section 3 introduces in detail neural attention mechanisms and their variants.

Next, in Section 4 we describe our main contribution, i.e., the generalized

softmax mechanism. Section 5 details our use case, specifically short-term

time series forecasting, together with the DA-RNN architecture. We perform

extensive experimental evaluation in Section 6, before concluding in Section

7.

Notation

Throughout the paper, bold lowercase letters are used for vectors, e.g., x,

and bold uppercase letters for matrices, e.g., A. vi denotes the ith (scalar)

entry of vector v. When considering a temporal dependency (e.g., for RNNs),
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x(t) is used to denote the vector or scalar at time-instant t. All symbols and

parameters are explained when introduced for the first time.

2. Related works

Early works in time series forecasting using machine learning models can

be found in, e.g., [19, 38]. More recently, the explosion of interest in deep

learning techniques fostered the development of deep networks for the prob-

lem, either based on recurrent (autoregressive) models, like in our case [10],

or using convolutive networks or some variants [5]. The DA-RNN model we

consider in this paper [26] combines a recurrent component with multiple

so-called attention modules [4] to scale the model to a large set of external

(exogenous) time series, and to alleviate the problem of long-term depen-

dencies. However, their employed attention mechanism is relatively simple,

and the architecture sometimes failed to improve over a baseline neural net-

work. To overcome this, in this paper we improve on this attention mecha-

nism by increasing the flexibility of the softmax function, resulting in a novel

attention-based module which can be further extended to other architectures

(as discussed in Section 7).

The KAF, which we use as starting point to build our novel softmax

formulation, was introduced in [30]. Each activation function in a KAF net-

work is replaced with a cheap kernel expansion, allowing for a small number

of trainable parameters and a much wider flexibility. Adapting activation

functions is a topic that has received considerable interest since the intro-

duction of simple adaptable versions of the ReLU [15]. Differently from these,

the KAF is a fully non-parametric model, where the flexibility of each acti-
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Figure 1: Schematic depiction of a neural attention module. The softmax operation is

highlighted in light red.

vation can be controlled with a hyper-parameter by the user. Related works

in this field include the adaptive piecewise linear (APL) unit [1], where each

activation function is replaced by a sum of ReLU functions, or the max-

out [42], where each activation takes the maximum across multiple inde-

pendent branches of the network (see [30] for a full comparison of all these

approaches).

3. Neural attention mechanism

We start by describing a generic mechanism for neural attention, first in-

troduced in [4] for neural machine translation and later extended in a number

of papers, including [23] (dot-product attention), [32] (multi-head attention),

and others. The mechanism is also schematically summarized in Fig. 1.

Roughly speaking, attention is a way of selecting (or attending, in the

original terminology) information from a set of key/values pairs, based on

the content of one or more queries, in a differentiable fashion, where keys,

values, and queries are all represented as vectors of reals numbers. More
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in detail, suppose we have n key vectors K =
[
kT
1 , . . . ,k

T
n

]T ∈ Rn×K , each

one represented as a vector of dimensionality K, and corresponding values

V =
[
vT
1 , . . . ,v

T
n

]T ∈ Rn×V , each of dimension V . We consider the sim-

plified case where we have a single query vector q ∈ RK , but everything

extends immediately to having multiple queries stacked into a matrix. The

idea of attention is to select the most important values among all n, based

on the similarity between their corresponding keys and our query, all in a

differentiable form so that back-propagation is possible.

As shown in Fig. 1, we start with an alignment mechanism that evalu-

ates the aforementioned similarity, providing us with a set of unnormalized

alignment coefficients λi, i = 1, . . . , n. This is where most of the attention

mechanisms proposed in the literature differ. The original formulation in [4]

used what is known as additive attention, i.e., a single-hidden layer feedfor-

ward network with adaptable coefficients:

λi = align (ki,q) = wT tanh (W [ki; q]) , (1)

where we use [. . .] to denote vector concatenation, and w, W are parameters

of the model. A simplified dot-product attention was later proposed in [23],

where the alignment is computed as the dot-product between the key and

the query:

λi = align (ki,q) = kT
i q . (2)

This form of attention is simpler to implement, as all coefficients Λ =

[λ1, . . . , λn]T ∈ Rn can be obtained as Λ = Kq, but may loose expressiveness

due to the lack of adaptable coefficients.
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Irrespective of how the alignment coefficients are obtained, one needs

to normalize these in order to use them to appropriately select information

from the original set. In the majority of attention implementations, this is

obtained via the application of a softmax nonlinearity, highlighted in light

red in Fig. 1:

λ̃i = softmax(λi) =
exp (λi)∑n
j=1 exp (λj)

. (3)

Due to the properties of the softmax operation, the attention weights λ̃i lie in

the standard simplex and can be used to represent how much weight should

be assigned to each original value vector vi, i = 1, . . . , n. For example,

one can now combine all original vectors into a fixed-size representation of

dimensionality V by weighted averaging:

v̄ =
n∑

i=1

λ̃ivi . (4)

Depending on the origin of the keys, values, and queries, attention layers can

be used for a variety of tasks. For example, self-attention layers, where Q,

K, and V are all linear projections of the same input matrix, are the basic

building block of transformer architectures [32].

4. Proposed attention mechanism with generalized softmax

As stated in the introduction, our aim in this paper is to improve the

generic attention layer described in the previous section to incorporate a

more flexible softmax mechanism, to provide the model with more degrees-

of-freedom during training and simplify optimization. In this section, we first
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introduce the KAF, as originally described in [30], before moving on to our

KAF-based generalized softmax formulation.

4.1. Kernel activation function: basic formulation

The KAF is designed as a trainable activation function, whose parameters

are adapted per-neuron during the optimization process. More specifically,

a KAF is described by a one-dimensional kernel expansion:

g(s) = KAF(s) =
D∑

i=1

αiκ (s, di) , (5)

where s is an activation value and κ is a user-specified kernel function. To

simplify the implementation, the points di over which the kernel is evaluated

(the dictionary) are fixed before training by sampling D values uniformly

around 0 with a predetermined interval, while the αi coefficients are adapted

separately for every neuron. Differently from other proposals for adapting

the activation function that only introduce a fixed number of adaptable pa-

rameters (e.g. [15]), D in (5) is a hyper-parameter controlling the complexity

(and, consequently, the flexibility) of every KAF. Since the number of adapt-

able parameters is also controlled by D, we call the approach non-parametric.

One has a large variety in the choice of the kernel function, leading to a

wide range of different properties for the actual implementation. For exam-

ple, [30] uses one-dimensional Gaussian kernels given by:

κ(s, di) = exp
{
−γ (s− di)2

}
, (6)

where γ is another hyper-parameter whose choice is analyzed in detail in

[30]. In this case, each KAF is a mixture-of-Gaussians where every mixing
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coefficient αi has a limited receptive field determined by γ. Alternatively, one

can use ReLU-like kernels, leading to a scheme similar to the one proposed

independently in [1, 25]:

κ(s, di) = max (0, s− di) , (7)

More generally, it is possible to use linear combinations of base kernels whose

weights are in turn adapted independently from the data [28].

4.2. Learnable softmax functions with KAFs

The basic idea of our proposal is to replace each component of the soft-

max operation in (3) with a set of trainable scalar functions based on KAFs.

These provide the model with more flexibility in its weighting scheme. How-

ever, note that directly replacing the softmax operation in (3) with KAFs

is not feasible, since we loose two key properties of the softmax, namely

the positivity and normalization of the outputs. In addition, when using a

Gaussian kernel, the output of the KAF will quickly decrease to zero outside

the range of the dictionary. Similar problems were encountered in [29] when

tackling learnable gates in a recurrent architecture.

While both problems could be solved by introducing appropriate con-

straints on the αi coefficients, a simpler solution is to innovatively combine

KAFs and the softmax as follows:

KAFsoftmax(λi) =

exp

(
1

2
KAF(λi) +

1

2
λi

)

n∑

j=1

exp

(
1

2
KAF(λj) +

1

2
λj

) (8)
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Figure 2: Three random samples of our proposed generalized softmax function, with n = 3

and D = 10 values of the dictionary sampled uniformly between −5 and +5. In all plots

we evaluate the softmax with all three inputs set to the value on the abscissa and shown

with different colors. (a-c) Unnormalized values. (d-f) Normalized values (with the output

of a standard softmax shown with a dashed black line).

where λi are the coefficients in (3). Like in a standard softmax, exponentia-

tion guarantees the positivity of the outputs, while the denominator ensures

that the weights sum to one. Inspired by [29], we also add a set of residual

connections inside the exponential so that, when the output of the KAF is

zero, the function will converge to a classical softmax function.

We show three random samples of the proposed generalized softmax in

Fig. 2. For each column, we fix the dictionary by sampling 10 values uni-

formly around −5 and +5, and we sample randomly the mixing coefficients

from a normal distribution. All plots are shown by applying the function to
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a three-dimensional vector with all components equal to the value in the x-

axis. The first row of plots (Fig. 2 (a)-(c)) shows the unnormalized outputs,

before applying the normalization in the denominator, while the second row

(Fig. 2 (d)-(f)) shows the corresponding output after normalization. Note

that a standard softmax would simply transform the inputs to [1
3
, 1

3
, 1

3
] irre-

spective of their value (shown with a dashed black line in the second row),

while our proposed function can learn a range of potentially more expressive

shapes. These go from simply giving more weight to one feature over the

others, e.g., Fig. 2c, or giving weight in a non-uniform fashion depending on

their specific value, e.g., Fig. 2a.

5. Time series forecasting with dual-stage attention

To provide a concrete use case, we apply our proposed attention layer to

the state-of-the-art DA-RNN framework for time series forecasting [26]. We

first introduce the problem formulation and a simplified RNN architecture

in Section 5.1, before moving on to the DA-RNN and our proposed model in

Section 5.2.

5.1. Forecasting with encoder/decoder networks

Suppose that at a certain time-step T we have observed the last T −
1 values y(1), . . . , y(T − 1) of a target time series. In addition, we have

also observed the last T values (up to the current time) x(1), . . . ,x(T ) of d

exogenous inputs that we may assume correlated with the target time series,

i.e., x(t) ∈ Rd represent auxiliary information at time t for the forecasting

method (e.g., weather conditions). The task is to learn a mapping between

all the observed values and the next time-step of the target time series:
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Figure 3: Encoder/decoder formulation for forecasting of time series (with no attention).

ŷ(T ) = F (x(1), . . . ,x(T ), y(1), . . . , y(T − 1)) ≈ y(T ) . (9)

While there is a vast literature on the problem of learning F (·) [35], we

focus here on a recent class of state-of-the-art methods that are based on an

encoder/decoder architecture with RNNs [10], which have been inspired by

previous work on sequence to sequence modeling with deep networks men-

tioned in the introduction [31]. Apart from their flexibility and accuracy,

this type of models can easily handle several heterogeneous driving inputs

and, with a small modification of their training procedure, multi-step-ahead

prediction and generative applications [10].

The architecture is described in Fig. 3 and is composed of two sequential

RNN models, one for processing the driving time series, and the second for

predicting the target one. First, an encoder RNN (shown in green in Fig. 3)

is applied iteratively at every time-step t on the current observations x(t):

he(t) = RNNenc (x(t),he(t− 1)) , (10)
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where he(t − 1) is a vector containing the internal state of the RNN at the

previous time step. In practice, we implement (10) as an LSTM network

[16] following [26], but other choices are possible. One could also substitute

the recurrent encoder with an autoregressive convolutional network as in [5],

although this is out of the scope of this paper. Roughly speaking, the vector

he(t) can be interpreted as a fixed-size embedding of the past observations

of the driving inputs.

This embedding is fed as input to another RNN model for decoding, to-

gether with the past value y(t− 1) of the target time series:

hd(t) = RNNdec (y(t− 1),he(t),hd(t− 1)) , (11)

where hd(t−1) is the internal state of the decoder at the previous time step.

The decoder is implemented with a separate LSTM network with independent

parameters. Finally, one can obtain a prediction for the target time series by

feeding the new decoder state at the last time-step to a feedforward model:

ŷ(T ) = vT tanh (Whd(T ) + b) , (12)

where v, W and b are also learned. The overall architecture can be trained

end-to-end by minimizing the mean-squared error or mean-absolute error

over a set of known time series [26].

5.2. Dual-stage attention

Despite its good empirical performance, the standard encoder/decoder

formulation suffers from two drawbacks. Firstly, increasing the number of

driving inputs might damage the forecasting process, especially when the
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Figure 4: DA-RNN model. Compared to Fig. 3, DA-RNN adds two attention layers,

denoted as input attention and time attention in the diagram. The decoder is shown

operating on time-step T .

information contained in them is redundant or noisy. Secondly, at time step

t only the encoder’s hidden state at the current step is used, while the other

steps are discarded (this is a known problem in sequence to sequence models

[4]).

The DA-RNN [26] solves both problems by including two different at-

tention layers, respectively after the input and between the encoder and the

decoder, to modulate in a selective way the information flowing in the system.

This is shown schematically in Fig. 4.

The first attention layer, denoted as input attention in Fig. 4, enables

selective weighting of the input components at every time-step. This is done

by computing a set of input attention coefficients with a variation of the

additive alignment model in Eq. (1):

λk(t) = vT
e tanh (Wehe(t− 1) + Uexk) , (13)

where he(t − 1) is the previous state of the encoder, xk ∈ RT is a vector

16

                  



containing all T values of the kth driving input1, and ve, We, and Ue are

trainable parameters.

In the original formulation, these input attention coefficients are pro-

cessed with a softmax function, as described in Section 3, to obtain a set

of normalized coefficients λ̃(t) =
[
λ̃1(t), . . . , λ̃d(t)

]T
. In our proposed imple-

mentation in this paper, instead, we replace this softmax operation with a

trainable one, as described in Section 4.

Finally, this vector (regardless of how it is computed) is used to selectively

amplify a few driving inputs:

x̃(t) = λ̃(t)� x(t) , (14)

where � represents the elementwise product. x̃(t) instead of x(t) is now used

as input to the encoder RNN.

For the decoder part, the DA-RNN uses a similar mechanism (denoted

as time attention in Fig. 4) to compute a set of T attention coefficients

corresponding to all the encoder states:

σk(t) = vT
d tanh (Wdhd(t− 1) + Udhe(k)) . (15)

Like before, we can process these coefficients either with a standard softmax

function as in the original implementation, or with a trainable one, as in

the proposed implementation. Anyway, the resulting normalized coefficients

1We follow here the original derivation of the DARNN in [26]. In order to use this

model in an autoregressive fashion at every time-step, this vector can be replaced with a

sliding window of fixed length.
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σ̃1(t), . . . , σ̃T (t) are used to build a context vector c(t) as a linear combination

of all encoder’s hidden states, similar to (4):

c(t) =
T∑

i=1

σi(t)he(i) . (16)

Another projection provides an updated value for feeding the decoder:

ỹ(t− 1) = wT [y(t− 1); c(t)] + b̃ . (17)

ỹ(t− 1) is now used in place of y(t− 1) to feed the decoder in (11). The

readout is also modified to read:

ŷ(T ) = vT tanh (W [hd(T ); c(T )]) . (18)

To summarize, our proposed modification of the DA-RNN considers the

same overall structure as the original paper described here, but the two

softmax operations in the input and time attention layers are replaced with

our generalized softmax described in Section 4.

6. Experimental evaluation

Here we consider three challenging real-world time series datasets, two

of which were also considered in the original DA-RNN paper [26], while the

third one is collected especially for this experimental evaluation. The next

subsections describe the benchmark datasets, the architectures employed,

and comparative results. For the purpose of repeatability, we also release all

our source code in the form of a time series analysis open-source library in
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Python.2

6.1. Datasets

SML 2010 [37] is a dataset containing 4137 measurements of a set of 24

sensors in a house equipped with domotic capabilities. Measurements were

collected every minute and later smoothed using a 15-minute running mean.

Following [26] we use the initial 3000 points in the dataset for training, an-

other 400 for validation, and the rest for testing. The task is to perform

short-term forecasting of the room indoor temperature, following measure-

ments of the additional 23 driving time series. Some of these time series were

found to have constant values over the entire dataset and were thus excluded,

resulting in 16 inputs to the encoder RNN.

The second dataset, NASDAQ 100,3 was collected in [26] by storing

minute-by-minute stock prices of 81 corporations included in the NASDAQ

100 index, and the index itself as the target time series. In total, 391 mea-

surements are collected from July 26, 2016, to December 22, 2016, except for

November 25 and December 22. Also following [26] we use the initial 35100

points for training, 2730 for validation, and the rest for testing.

For the third dataset, we evaluate the model on a realistic task of predict-

ing the closing Bitcoin/USD price exchange, based on the closing values of

7 crypto exchange rates with Bitcoin: Ethereum, Litecoin, Monero, Stellar,

NeosCoin, and Dash. We collected data on the Poloniex website,4 with a

frequency of 30 minutes, starting from 8th August 2015 to 31st July 2018.

2https://github.com/d3sm0/ntsa
3http://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
4https://poloniex.com/

19

                  



0 2000 4000
Timestep

6000

8000

10000

C
lo

si
ng

 v
al

ue

BTC/USD

(a) Bitcoin/USD

0 2000 4000
Timestep

0.06

0.07

0.08

C
lo

si
ng

 v
al

ue

ETH/BTC

(b) Ethereum/Bitcoin

0 2000 4000
Timestep

0.00003

0.00004

0.00005

C
lo

si
ng

 v
al

ue

XLM/BTC

(c) Stellar/Bitcoin

Figure 5: Sample of our Bitcoin dataset: closing exchange prices for the last 5000 time

steps of (a) Bitcoin/USD, (b) Ethereum/Bitcoin, and (c) Stellar/Bitcoin.

Name Driving time series Training size Validation size Test size

SML 2010 16 3200 400 537

NASDAQ 100 81 35100 2730 2730

BITCOIN 7 41788 NA 10447

Table 1: Description of the datasets.

The overall dataset is composed of 52235 observations split in training and

test set with a constant proportion of 0.8. A sample of the last 500 values

of the test part for the target time series and two corresponding exogenous

time series are shown in Fig. 5. Instructions to download the dataset are

provided in our open-source library.

In all cases, features are first normalized with an affine transformation to

lie in the [0, 1] range. A summary of the datasets is provided in Table 1.
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6.2. Architectures and training

From the datasets described in the last section, all possible training se-

quences of length T = 10 are extracted. Our main strong baseline is the

original DA-RNN from [26], which was already shown to outperform several

state-of-the-art short-term forecasting models, including ARIMA [24] and an

autoregressive version of the RNN [6]. We use the same final setup from [26],

where hyper-parameters were already heavily fine-tuned to maximize perfor-

mance. Both the encoder and the decoder are built with LSTM networks

having inner dimensionality of 68 and 128 respectively. Overall, our aim is to

show that our trainable softmax can improve performance even when used as

a simple drop-in replacement of the standard softmax, in a heavily fine-tuned

model.

To this end, for the proposed version of the DA-RNN we simply replace

both softmax operations with the novel, flexible formulation described in

Section 4. For the KAFs, we use 20 dictionary elements equispaced from

−4.0 to 4.0, and initialize their mixing coefficients from a normal distribution,

similar to prior works. For completeness, we also consider another baseline

using the encoder-decoder architecture from Section 5.1 without attention

mechanisms, similar to the model described in [31].

For training, the Adam optimizer is used with mini-batches of 128 el-

ements, reducing the learning rate of a factor 1/10 from 10−3 every 10000

iterations. We optimize the mean-absolute error over the training set, repeat-

ing every experiment 5 times. Since all hyper-parameter tuning was already

done in [26], for our experiments we combine training and validation sets into

a single set.
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6.3. Results and discussion

To evaluate the algorithms in a comprehensive way, we consider five dif-

ferent error measures. Assuming we have M desired forecasts y1, . . . , yM and

M predictions ŷ1, . . . , ŷM , we compute:

• Mean-squared error (RMSE):

RMSE =
1

M

M∑

i=1

(yi − ŷi)2 . (19)

• Mean absolute error (MAE), which is the metric we optimize for

during training:

MAE =
1

M

M∑

i=1

|yi − ŷi| . (20)

• Mean absolute percentage error (MAPE):

MAE =
1

M

M∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣ . (21)

• Symmetric mean absolute percentage error, which is similar to

MAE but can be interpreted as a percentage:

MAPE =
2

M

M∑

i=1

|yi − ŷi|
|yi|+ |ŷi|

. (22)

• R-squared coefficient (R2), which can be interpreted as the propor-

tion of variance explained by the predictive method:

R2 = 1−
∑M

i=1 (yi − ŷi)2∑M
i=1 (yi − ȳ)2

, (23)

where ȳ is the empirical mean of the desired values.
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Results in term of these error measures (both mean and standard devi-

ation over the runs) are given in Table 2. It can be clearly seen that the

proposed variant of DA-RNN provides better results in practically all cases.

This is particularly pronounced for the NASDAQ-100 dataset, where we ob-

tain a 15%, 18%, 17% ans 16% improvement, respectively, in MSE, MAE,

SMAPE and MAPE. Similarly, we obtain a 6% improvement in MAE and

SMAPE for the BITCOIN dataset. On SML, we obtain a similar MAE as the

DA-RNN, but a 9% improvement in SMAPE. We note how, in all cases, DA-

RNN is significantly better than a standard encoder/decoder architecture,

highlighting again the importance of incorporating the attention modules.

0 25 50 75 100
Iteration

10−1

M
A
E

Encoder-Decoder
DA-RNN
Proposed

Figure 6: Sample evolution of the loss on BITCOIN dataset for the three models (zoomed

over the first 100 iterations). The loss is smoothed with an exponential running mean,

and standard deviation is shown with a lighter color.

Interestingly, this gain in accuracy can be obtained while simultaneously

making the optimization process faster. We show in Fig. 6 a sample evo-

lution of the loss for the three models on the BITCOIN dataset, zoomed

over the first 100 iterations. We can see that the loss decreases faster for
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Figure 7: Predictions of the trained models on 500 time-steps from the test portion of the

BITCOIN dataset.

0 500 1000
Time-step

In
pu

t a
tte

nt
io

n ETH/BTC

(a)

0 500 1000
Time-step

In
pu

t a
tte

nt
io

n LTC/BTC

(b)

0 500 1000
Time-step

In
pu

t a
tte

nt
io

n NEOS/BTC

(c)

Figure 8: Samples of the input attention weights on the BITCOIN dataset for three driving

time series.

the proposed model, with a per-iteration improvement consistent across the

entire optimization process. This behavior is in line with our previous works

[29, 30].

We also plot a sample of the predictions from the three models using

the BITCOIN dataset in Fig. 7, where the improved performance of the

proposed DA-RNN is clearly visible. For completeness, we show a sample of

the input attention weights on the same dataset in Fig. 8. Note that the

model chooses to give more importance to different driving time series in

different time-steps, further motivating the use of the attention module.
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7. Conclusions and future work

Time series forecasting with deep networks is an active area of research.

State-of-the-art solutions have explored the inclusion of attention-based mod-

ules for addressing the problem, however, less research has been devoted to

develop more flexible, advanced attention components.

In this paper we introduce a novel variant of a classical neural attention

mechanism, where the fixed softmax operation is replaced with a trainable

one. To achieve this, we leverage the kernel activation function (KAF) from

[30], appropriately modifying it, in order to preserve a number of necessary

properties. We evaluate our proposal using a model for short-term time

series forecasting, where simply plugging in our new formulation results in

an increased accuracy over three different real-world tasks. In particular, our

proposed model is shown to produce an improvement of MAE ranging from

6% to 15% on the three real-world datasets, compared to baseline networks.

For future work, we plan to evaluate the proposed model in other contexts

where attention has been found useful, most notably the transformer archi-

tecture [32]. More generally, mechanisms inspired to attention have been

used in many other neural components, such as differentiable memories [12]

and algorithms for architecture search [22]. Future research will investigate

whether these problems can also benefit from improved optimization and

accuracy delivered by our trainable softmax function.
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