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Abstract

Some optimization problems are characterized by an objective that is very

expensive, that lacks an analytical expression, and whose evaluations can be

contaminated by noise. Bayesian Optimization (BO) methods can be used

to solve these problems efficiently. BO relies on a probabilistic model of the

objective, which is typically a Gaussian process (GP). This model is used

to compute an acquisition function that estimates the expected utility (for

solving the optimization problem) of evaluating the objective at each potential

new point. A problem with GPs is, however, that they assume real-valued

input variables and cannot easily deal with categorical or integer-valued

values. Common methods to account for these variables, before evaluating the
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objective, include assuming they are real and then using a one-hot encoding,

for categorical variables, or rounding to the closest integer, for integer-valued

variables. We show that this leads to suboptimal results and introduce a

novel approach to tackle categorical or integer-valued input variables within

the context of BO with GPs. Several synthetic and real-world experiments

support our hypotheses and show that our approach outperforms the results

of standard BO using GPs on problems with categorical or integer-valued

input variables.

Keywords: Parameter tuning, Bayesian optimization, Gaussian processes,
Integer-valued variables, Categorical variables.

1. Introduction

On a daily basis, a plethora of optimization problems emerge. For many of

these problems, there is no access to the analytical expression of the objective

that needs to be optimized. Consider as an example optimizing the parameters

of the control system of a robot to maximize the robot’s locomotion speed [18].

Given specific values for these parameters, there is no analytical expression

that returns an estimate of the corresponding speed. A practical experiment

with the robot or a computer simulation will have to be carried out for this

purpose. This also means that when the objective is evaluated, a significant

amount of time can be consumed. Therefore, in practice, one can only evaluate

a small number of times the objective. Importantly, evaluations with the

same input parameters may lead to different results, which we refer to as

noisy evaluations. Noisy evaluations can arise due to non-exact measures

taken from the robot’s experiment as a consequence of, e.g., environmental

conditions. An objective function with the characteristics described before is
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referred to as a black-box function f(x) [28]. Other problems that involve

the optimization of black-box functions include tuning the hyper-parameters

of machine learning systems automatically [30], optimizing the parameters of

meta-heuristics such as genetic algorithms [4] or finding the optimal location

for weather sensor placement [6].

Bayesian Optimization (BO) methods are very successful for optimizing

black-box functions with the characteristics described above [19]. We now

formally describe the general working principle of these methods. Consider

a real-valued objective function f(x) over some bounded domain X . This

function is assumed to lack an analytical expression. This means that we can

not access its gradients. We also assume that the evaluation of the objective

is very expensive and its evaluations may be contaminated with additive noise

(i.e. we observe y = f(x) + ε, with ε some noise random variable, rather

than directly observing f(x)). The aim of BO methods is to minimize the

black-box function using the minimum number of evaluations possible. With

this goal, they iteratively suggest, in an intelligent way, an input location at

which the objective that is being optimized should be evaluated. For this, at

each iteration N = 1, 2, 3, . . . of the BO method, a probabilistic model is fitted

to the objective observations {yi}Ni=1. Typically, this model is a Gaussian

Process (GP) [24]. Specifically, a GP outputs a predictive distribution about

the potential values of the objective at each input location. This predictive

distribution summarizes the uncertainty about the objective and is used to

compute an acquisition function α(·) on X . The acquisition function measures,

at every input location, the expected utility of evaluating the objective f(·) at

that precise input location, with the goal of solving the optimization problem
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in the smallest number of iterations. The next point xN+1 at which the

objective f(·) is evaluated is simply chosen as the one that maximizes α(·).

After this new observation is collected, the sequence of operations described

before is repeated iteratively. When the budget of total potential evaluations

of the objective is reached, a solution of the optimization problem can be

computed by optimizing the GP predictive distribution (typically the mean

value), as a proxy of the actual objective.

The key feature responsible of the success of BO methods in solving

the optimization problem is that evaluating the acquisition function α(·) is

inexpensive compared to evaluating the black-box objective f(·). This is a

consequence of the one-to-one relation between the acquisition function and

the predictive distribution of the GP for f(·). More precisely, the acquisition

function only depends on the predictive distribution of the GP, and not on

the actual objective f(·), which is assumed to be very expensive. This implies

that α(·) can be maximized cheaply. Therefore, BO methods mainly work by

spending a bit of time thinking about where the black-box objective should be

evaluated next with the goal of finding the optimum using as fewer evaluations

as possible. If evaluating the actual objective f(·) is very expensive, this

extra thinking time pays off and saves a large amount of computational time.

BO hence is suited to scenarios where the cost of evaluating the black-box is

very high. Furthermore, a GP can naturally consider additive noise in the

target value to predict. Therefore, BO methods can easily address settings in

which the objective evaluations are contaminated by noise.

An issue that arises when using GPs for BO is that these models assume

that the input variables of the optimization problem are real-valued. In
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problems in which the input variables take integer or categorical values, the

BO methodology has to be modified by introducing extra approximations.

The most common approach is to consider that these variables take real

values. Then, in the case of integer-valued variables, one simply rounds to

the closest integer the corresponding integer-valued variable after optimizing

the acquisition function. In the case of categorical-valued variables, a popular

approach is to use a one-hot encoding of the variable. This involves replacing

the categorical variable with as many variables as categories. Then, after the

acquisition function is optimized, the largest extra variable is set equal to

one and all the others equal to zero. This is precisely the approach followed,

e.g., by the popular software for BO Spearmint (https://github.com/HIPS/

Spearmint).

We show in this paper that the methods described for dealing with integer-

valued and categorical variables may lead to a failure of the BO method.

More precisely, when they are used, the point of the input space at which

the evaluation is performed is different from the one that maximizes the

acquisition function (e.g., as a consequence of the rounding to the closest

integer). This can lead to a behavior of the BO method in which the objective

is always evaluated at the same input location, at each iteration. We also

show in this paper that these issues can be easily solved by performing the

rounding to the closest integer value (in the case of integer-valued variables)

or the one-hot encoding transformation (in the case of categorical variables)

inside the wrapper that evaluates the black-box objective. When this is the

case, the point of the input space at which the evaluation is performed is the

same as the one that maximizes the acquisition function. This avoids the
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aforementioned problem. Nevertheless, this makes the objective constant in

particular regions of the input space, i.e., those leading to the same value

once the one-hot encoding transformation has been computed, in the case of

categorical variables, and those that lead to the same integer value, in the

case of integer-valued variables. The GP will ignore this constant behavior of

the objective and hence will result in a poor model, providing sub-optimal

optimization results, in consequence. To overcome this, we introduce in this

paper a transformation of the input variables that leads to an alternative

covariance function for the GP. With this covariance function, the GP will

correctly describe the objective as constant in particular regions of the input

space, leading to a better modeling of the objective and, in consequence, to

better optimization results.

Some practical optimization problems involving a mix between integer-

valued, real and categorical variables include finding the optimal hyper-

parameters of a machine learning system [30]. Specifically, in a deep neural

network some parameters of interest to be adjusted may include the learning

rate, the activation function and the number of layers. These two last

variables can only take integer and categorical values, respectively. However,

the learning rate can take real values. Similarly, in a gradient boosting

ensemble of regression trees [5] we might want to tune the tree maximum

depth and the learning rate. While the first variable can take integer values

only, the second variable can take real values.

We have carried out several experiments to evaluate the proposed ap-

proach to deal with integer-valued and categorical variables in BO methods

based on GPs. These experiments show such an approach leads to improved
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optimization results over standard techniques and other alternatives for BO

from the literature. Furthermore, although not directly investigated in this

paper, the proposed approach can be potentially used in other non-standard

BO scenarios. For example, those considering the optimization of several

objectives under some constraints [7]; those involving the optimization of the

learning curves of machine learning algorithms [33]; or those involving solving

several optimization tasks simultaneously [32].

Finally, we would like to point out that in some optimization problems

the black-box objective is relatively cheap to evaluate. In this setting, instead

of using BO methods one can make use of meta-heuristics [9] like the classic

genetic algorithms [8], particle swarm optimization [15] or simulated annealing

[35] or new meta-heuristics that try to accelerate the process of finding a

solution in fewer iterations. Examples of the last ones include those based

in variable variance Gaussian distribution sampling [21]; a meta-heuristic

inspired by human society’s intelligent contests [25]; or those based on the

invasive weed algorithm of optimization by quantum computing [26]. These

meta-heuristics can be used in a scenario where the evaluation cost of the

objective is higher than in the case of genetic algorithms, but less expensive

than in the case of BO, where we may just have a budget of 20 to 200

evaluations at most. In summary, BO differs from the previous methods

by the fact that it uses a probabilistic model to make inference about the

potential values of the objective function. This model is used to make

intelligent decisions with the goal of solving the optimization problem with

a small number of evaluations. When the number of potential evaluations

is small, and the evaluations are expensive, one is expected to obtain much
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better results by using BO methods instead of these techniques [10].

We organize the rest of the paper as follows: First, section 2 gives a short

introduction to BO and Gaussian processes. Section 3 describes how the pro-

posed approach deals with integer-valued and categorical variables within the

context of GP. Section 4 reviews related methods from the literature. Section

5 describes real-world and synthetic experiments, showing the advantages of

the proposed approach over standard methods for BO with GP and other

related techniques for BO. We conclude with Section 6 that summarizes the

conclusions of the paper.

2. Background on Gaussian Processes and Bayesian Optimization

The BO methodology relies on fitting a probabilistic model to observations

of the black-box objective that is being optimized. The predictive distribution

of that model specifies the potential values of the objective at each point

of the input space. By taking into account this predictive distribution, BO

methods guide the search focusing only on those regions of the input space

that are expected to deliver the most information about the solution of the

optimization problem. Typically, the probabilistic model used for BO is a

Gaussian Process (GP) [24]. The reason for this is the ability of GPs to

easily compute a predictive distribution of the objective. Other potential

models for BO include Random Forests, encoded in the Auto-WEKA tool

[34], Student’s-T processes [27] or deep neural networks [31]. In this paper,

we will focus on BO using GPs, but the proposed methods could also be used

in the case of Student’s-T processes.

A GP is defined as a prior distribution over functions. When using a
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GP as the underlying model, the assumption made is that the black-box

objective function f(·) that is being optimized has been randomly sampled

from the GP. That is, f(·) ∼ GP(0, k(·, ·)). This distribution is fully specified

in terms of a covariance function k(x,x′) and a zero mean. The intrinsic

features of the objective, f(·), such as smoothness, level of additive noise,

amplitude, etc., are specified by the covariance function k(x,x′). The output

of this function is simply the covariance between f(x) and f(x′). Namely,

k(x,x′) = E[f(x)f(x′)]. A common covariance function used in the context

of BO is the Matérn function, in which the ν parameter is set equal to 5/2

[30]. This covariance function is:

k(x,x′) = σ2

(
1 +
√

5
r

`
+

5

3

r2

`2

)
exp

(
−
√

5
r

`

)
, (1)

where we define r as the Euclidean distance between x and x′. Namely,

|x−x′|. Note that k(·, ·) only depends on r, the Euclidean distance, assuming

that the hyper-parameters σ2 and ` are fixed. The covariance functions that

share this property are called radial basis functions (RBFs). ` is simply the

length-scale hyper-parameter, which specifies the level of smoothness of the

functions generated from the GP. Most of the times a different length scale

`j is used for each dimension j. On the other hand, σ2 is the amplitude

parameter, that specifies the range of variability (variance) of the GP samples.

Finally, ν is a hyper-parameter related to the number of times that the GP

samples can be differentiated. The larger the value of ν, the smoother the

GP samples look. In the squared exponential covariance function case, k(·, ·)

is defined by:

k(x,x′) = σ2 exp

(
− r2

2`2

)
. (2)
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This covariance function is a limiting case of the Matérn covariance function

when ν → ∞ [24]. Therefore, the squared exponential covariance function

leads to a GP prior that favors smoother functions.

Consider that the black-box objective has been evaluated at N input loca-

tions so far. We define the corresponding observed data as D = {(xi, yi)}Ni=1,

where yi = f(xi) + εi, with εi some additive Gaussian noise with variance

σ2
0. The GP model generates a predictive distribution for the potential

values of f(·) at each input space location. This distribution is Gaus-

sian and is characterized by a mean µ(x) and a variance σ2(x). Namely,

p(f(x?)|y) = N (f(x?)|m(x?), σ2(x?)), where the mean and variance are

respectively given by:

µ(x) = kT
∗ (K + σ2

0I)
−1y , (3)

σ2(x) = k(x,x)− kT
∗ (K + σ2

0I)
−1k∗ . (4)

In the previous expression y = (y1, . . . , yN)T are the objective evaluations

obtained so far; k∗ are the prior covariances between f(x) and each yi; σ
2
0

is the variance of the additive Gaussian noise; K is a matrix with the prior

covariances among each f(xi), for i = 1, . . . , N ; finally, k(x,x) is the prior

variance of f(·) at the candidate location x. All these quantities are obtained

by evaluating the covariance function k(·, ·) on the corresponding input values.

See [24] for further details.

The BO method uses the previous predictive distribution to determine at

which point xN+1 the objective function has to be evaluated next. Once this

new observation has been collected, the GP is fitted again to the observed

data, and the process is repeated iteratively. When the maximum number

of evaluations of the objective has been reached (given by the available
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computational budget), an estimate of the solution of the optimization problem

can be simply obtained by optimizing the GP posterior mean for f(·) given

in (3). Notwithstanding, as described previously, GPs have hyper-parameters

that need to be adjusted during the fitting process. These include the variance

of the additive Gaussian noise σ2
0, and also other potential hyper-parameter

of the covariance function k(·, ·). These can be, e.g., the amplitude parameter

σ2 and the length-scales `j [24]. Rather than trying to find point estimates of

these hyper-parameters, BO methods often compute an approximate posterior

distribution for them using slice sampling [30]. This has been shown to give

better empirical results, particularly at the first iterations of BO, in which

the number of observations is very small and carrying out a point estimation

of the hyper-parameters of the GP can lead to over-fitting. Given the samples

from the GP hyper-parameters, the Gaussian predictive distribution defined

in (3) and (4) is then simply averaged over the samples. This is the final

predictive distribution of the GP probabilistic model.

The key to BO success is found in the acquisition function α(·). For each

input location, this function uses the predictive distribution given by the GP

to compute the expected utility of performing an evaluation of the objective

there. Therefore, the next input location where the objective is evaluated is

simply chosen as xN+1 = arg maxx α(x). Note that the acquisition function

is not does not depend on f(·). It only depends on the predictive distribution

given by the GP. Therefore, the maximization of α(·) is very cheap. Algorithm

1 shows the detailed steps involving the BO of a black-box function.

A popular acquisition function is expected improvement (EI) [14]. EI is de-

fined by the expected value of the utility function u(f(x)) = max(0, ν − f(x)).

12



Input: Maximum number of evaluations T .

for N = 1, 2, 3, . . . , T do
1: if N = 1:

Choose xN at random from X .

else:

Find xN by maximzing the acquisition: xN = arg max
x

α(x).

2: Evaluate the black-box objective f(·) at xN : yN = f(xN) + εN .

3: Include the point in training set: D1:N = D1:N−1
⋃
{xN , yN}.

4: Fit again the Gaussian process model using D1:N .

end

Result: Optimize the mean of the Gaussian process to estimate the

solution to the optimization problem.

Algorithm 1: Bayesian optimization of a black-box objective function.

This expectation is computed in terms of the GP predictive distribution for

f(x). Furthermore, ν = min({yi}Ni=1) is the best observation obtained so far,

also called incumbent, assuming a minimization problem. In consequence, EI

measures in expectation how much we will improve on the current best-found

solution by evaluating the objective at a candidate point. The following

expression gives the EI acquisition function in closed-form:

α(x) = σ(x)(γ(x)Φ(γ(x) + φ(γ(x)) , (5)

where

γ(x) = (ν − µ(x))/σ(x) , (6)

and Φ(·) and φ(·) represent the cumulative density function (c.d.f.) and
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probability density function (p.d.f.) of a standard Gaussian distribution,

respectively.

Predictive Entropy Search (PES) is another commonly used acquisition

function [11]. PES is an information-theoretic acquisition function. This

acquisition function chooses the next input location xN+1, at which the black-

box function f(·) has to be evaluated, as the point that gives maximum

information about the global optimum x? of f(·). The information about

this optimum is measured in terms of the differential entropy of the random

variable x?. This particular random variable is fully specified in terms of the

corresponding posterior distribution p(x?|DN ). PES selects xN+1 as the point

that reduces the most the expected differential entropy of x?, after performing

an evaluation of the objective at that particular input location. Therefore,

the PES acquisition function is:

α(x) = H[p(x?|DN)]− Ey[H[p(x?|DN ∪ (x, y))] , (7)

where the expectation w.r.t. y is computed using the predictive distribution

of the GP at the candidate location x..

A critical issue is, however, that computing (7) in closed-form is intractable.

This is a consequence of the difficulty of evaluating the posterior distribution

of the global optimum p(x?|DN). Therefore, in practice, (7) needs to be

approximated. With this goal, in the literature it has been observed that

(7) is just the mutual information between x? and y, I(x?; y) [11]. Note that

the mutual information is a symmetric quantity. That is, I(x?; y) = I(y;x?).

Therefore, the roles of y and x? can be swapped in (7). This simplifies

considerably the computation of the PES acquisition function, since now in

(7) we will have to evaluate the entropy of y rather than the entropy of x?. The
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entropy of y can be estimated efficiently using expectation propagation (EP),

as described in [11]. PES has been compared to other acquisition functions

showing improved optimization results. In particular, it often shows a better

trade-off between exploration (evaluating regions with high uncertainty) and

exploitation (evaluating regions with low mean value) than EI.

3. Dealing with Categorical and Integer-valued Variables

In the framework described before it is assumed that the black-box f(·)

has input variables whose values lie on the real line. This is a consequence

of the covariance function of the GP, k(·, ·), which assumes that the input

variables are real-valued. An issue may arise in the case that some, or all

the input variables, take values in a closed discrete subset, such as, e.g., the

integers, or when some of the input variables are categorical. Concerning

this last case, a commonly used technique is to use a one-hot encoding of

the categorical variable. That is, the input dimension corresponding to that

variable is replaced by additional variables, one variable per category. The

only valid configurations are those in which one of the additional variables

takes value one (i.e., the additional variable corresponding to the active

category), and all the remaining variables take value zero. For instance,

suppose that an input dimension xj is categorical, taking potential values

from the set C = {red, green, blue}. Dimension j is replaced in x with three

extra variables that may take values values (1, 0, 0), (0, 1, 0) and (0, 0, 1), for

each value in C, respectively. In the case of integer-valued variables, a simple

approach is to consider that they are real. If an integer value is strictly

needed, then the real value can be rounded to the closest integer.
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When some of the input variables of the black-box f(·) do not take real

values, like integer or categorical values, some problems may arise in the

BO method. In particular, a standard GP will ignore that only some input

values are actually valid and will place probability mass on configurations

at which the objective f(·) cannot be evaluated. These incorrect modeling

assumptions about f(·) will have a negative impact on the optimization

process. Furthermore, the optimization of the acquisition function α(·) will

result in candidate points xN+1 in which the categorical or integer-valued

variables will be set to invalid values. In practice, some mechanism must be

implemented to transform real values into integer or categorical values before

the evaluation of the black-box can take place. Importantly, if this is not

done with care, some problems may appear, as we explain in the next section.

3.1. Naive and Basic Approaches

As described before, if the problem of interest considers some categorical

or integer-valued variables, we cannot evaluate f(·) at all the potential input

locations. We can only do the evaluation at compatible input locations with

the integer or categorical-valued variables. A naive approach to take this

into account within the BO method is to (i) optimize α(·) assuming that

all variables lie in the real line, and (ii) use a one-hot encoding procedure

to assign values to the categorical variables. For example, the extra input

variable (associated to the categorical variable) with the largest value will

be set to 1 and all other extra variables will be set to 0. Similarly, we can

round all the integer-valued variables to the closest integer. As an example

of the first case, consider that Qk is the set of extra input dimensions of x

that correspond to the k-th categorical input variable. For each j ∈ Qk, we
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simply set xj = 1 if xj > xi ∀i ∈ Qk and i 6= j. Otherwise, we set xj = 0.

The approach described is precisely the one followed by the popular software

for BO Spearmint (https://github.com/HIPS/Spearmint).

The first row of Figure 1 shows, for an integer-valued input variable, that

the naive approach just described can lead to a mismatch between the point

where the acquisition function has the highest value, and the point where

the evaluation of the objective is performed. Importantly, this can produce

situations in which the BO method always evaluates the black-box objective

at a location that has already been evaluated before. This is precisely the

case illustrated in the first row of Figure 1. Note that we have highlighted the

maximum of the acquisition function, which is the recommendation for the

next new evaluation of the black-box objective. At iteration 6, the BO method

will choose the same point for evaluation as the one chosen at iteration 5. This

happens simply because the next and following evaluations are performed at

input locations that differ from the input locations at which the acquisition

function is maximum. More precisely, because the evaluation is performed

at a different location, it may not reduce at all the uncertainty at the point

maximizing the acquisition function. Of course, in the case of categorical

variables this mismatch between the point at which the black-box is evaluated

and the maximizer of the acquisition function can be a problem as well. For

this reason, we do not recommend using the approach described in practice.

The problem described in the previous paragraph can be easily solved in

practice. In the case of integer-valued variables, one simply has to do rounding

to the closest integer inside the wrapper that evaluates the black-box. A

similar approach can be followed in the case of categorical variables. Namely,
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Figure 1: Different methods that deal with integer-valued variables. At the top of

each image, we show a GP fit to the data (Posterior mean and 1-std confidence

interval, in purple) that models a 1-dimensional objective taking values in the set

{0, 1, 2, 3, 4} and its generated acquisition function colored in green. Each column

shows similar figures before and after evaluating a new point, respectively. Best

seen in color.

perform the corresponding transformation inside the wrapper that evaluates

the black-box. For this, (i) observe which extra input variable is the largest

one, (ii) assign to that input variable value 1, and (iii) set all other extra

variables equal to 0. This basic method is represented in the second row of

Figure 1 for the case of an integer-valued variable. In this case, the location

at which the acquisition function is maximum and the location at where

the black-box objective is evaluated coincide. Therefore, the BO method

will perform evaluations at different input locations each time, which is the
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expected behavior. This avoids the problem of the naive approach mentioned

before, where the BO method may get stuck. The problem now is, however,

that the actual black-box objective becomes constant in those intervals of

real values that, after being rounded to the closest integer, result in the

same value. This is shown in the figures by displaying a flat objective. The

GP model ignores this constant behavior which is expected to lead to sub-

optimal optimization results. The same is expected to happen in the case of

categorical input variables. The next section describes our proposed approach

that solves the modeling problem described and leads to no uncertainty about

the objective after performing just 2 evaluations.

3.2. Proposed Approach

We describe here a method that can be used to alleviate the problems

of the basic approach introduced in Section 3. With this goal, we consider

that the model should be constant in those regions of the input space that

lead to the same input variable configuration on which the actual objective

has to be evaluated. This is precisely how the actual objective behaves. This

feature can be simply coded into the GP model by transforming the covariance

function k(·, ·). Covariance functions are usually stationary, depending only

on the distance between the input points [24]. If the distance between points

is equal to zero, the correlation is maximum and the function values at both

points are expected to be equal. Based on this, we suggest to transform the

input points before computing the covariance function k(·, ·). The result is

an alternative covariance function k′(·, ·):

k′(xi,xj) = k(T (xi), T (xj)) , (8)
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where T (x) is a transformation in which all input variables of f(·) that are

not real are modified as follows:

• The input variables that correspond to an integer-valued variable are

simply rounded to the closest integer value.

• The input variables that correspond to the same categorical variable

are assigned 0 value, unless they take the largest value among its

corresponding group of extra variables. If they take the largest value,

they are set equal to 1.

Note that T (·) performs the same transformation on an input location, x, as

the transformation described in Section 3.1 for the basic approach. In that

case, however, the transformation was performed only inside the wrapper

that evaluates the black-box objective. In this case, the transformation is

performed in the covariance function of the GP model, which allows for a

better modeling of the objective.

The beneficial properties of the proposed covariance function, k′(·, ·), when

used for BO, are illustrated in the third row of Figure 1. Again, this is the

case a single input variable that takes integer values. We can see that the GP

model correctly identifies that the black-box objective is constant inside those

intervals of real values that are rounded to the same integer value. Moreover,

the level of uncertainty is just the same in those intervals, and this is reflected

in the acquisition function. Furthermore, after doing a single measurement

in every interval, the uncertainty about the objective function goes to zero.

This better modeling of the objective is expected to be reflected in better

optimization results. The same behavior is expected in the case of categorical
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variables.

The transformation T (x) rounds all integer-valued variables, that initially

take values in R, to the closest integer k ∈ Z. The set of the integers, Z, has

a notion of order. That is, for all z ∈ Z, we can define operators of order

that involve two values: <,>,≤ and ≥, such that zi < zj, zj > zi, zi ≤ zj

and zj ≥ zi, having that zi, zj ∈ Z. The resulting transformation preserves

this order. More precisely, assume an integer input variable and that T (x)

and T (x′) only different in such integer-valued variable. The prior covariance

between f(x) and f(x′) under k(T (x), T (x′)) will be higher the closer the

corresponding integer values of T (x) and T (x′) are the one from the other.

Therefore, the GP model will be able to correctly capture the smoothness

properties of the black-box objective f(·) when solving the optimization

problem.

In the case of categorical-valued variables (e.g., variables with values such

as red, green, blue) the notion of order does not apply. That is, the operators

<,>,≥ and ≤ have no meaning nor purpose. One cannot compare two

different values c1, c2 of any categorical set C according to these operators.

However, in a categorical set, there exists a notion of equality or difference,

specified by the operators =, 6=. The proposed transformation preserves this

notion of no order and notion of equal or different. More precisely, assume

one categorical variable and that T (x) and T (x′) simply differ in the extra

variables corresponding to the categorical variable. The prior covariance

between f(x) and f(x′) under k(T (x), T (x′)) will be equal as long as T (x)

and T (x′) encode a different value for the categorical variable. On the other

hand, if T (x) and T (x′) encode the same value for the categorical variable,
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the covariance will be maximum, which is the expected behavior, since the

objective is will take the same value at both inputs.

It is straightforward to show that the proposed transformation generates

a valid covariance function or kernel. In particular, a kernel is valid if we can

find an embedding φ(·) such that k(x,x′) = φ(x)T ·φ(x) [29]. Assume that the

original kernel is valid and hence k(x,x′) = φ(x)T · φ(x) for some embedding

φ(·). Then k(T (x), T (x′)) = φ(T (x))T · φ(T (x)), and the embedding of the

resulting kernel is simply given by φ(T (·)).

One important feature of the proposed transformation is that it does not

add any extra parameters to tune. It is simply a transformation performed

over the input variables, before computing the covariance function of the GP.

Furthermore, this transformation is independent of the covariance function

used and is also independent of acquisition function. Therefore, it can be used

with any stationary GP covariance function and any acquisition function.

The proposed approach incorporates a transformation that consists in

rounding input variables to the closest integer, in the case of integer-valued

variables. In the case of categorical variables, a one-hot encoding transforma-

tion is used. Therefore, its computational complexity is in O(N), where N is

the number of observations. This is much smaller than the cost of computing

the predictive distribution of the GP process, which requires the inversion of

the covariance matrix, with a cost in O(N3). The consequence is that the

computational cost of the BO method is not expected to be affected by the

proposed transformation. The dominant cost will still be the same.
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3.2.1. Visualization of the Proposed Transformation

Figure 2 shows the modeling properties of the proposed transformation, in

the case of a real and an integer-valued variable (8). The figure displays the

mean and standard deviation of the GP posterior distribution conditioned to

a set of observations when the proposed transformation is used to compute

the covariance function (top). The results obtained are compared with a

standard GP which does not use the proposed transformation (bottom). To

generate these data, we have used samples from a GP with the covariance

function in (8) and k(·, ·) the squared exponential covariance function [24].

The first dimension takes integer-valued values in {0, 1, 2, 3, 4}, while the

second dimension takes real values. Therefore, the actual objective is constant

in any interval of integer-valued values that are rounded to the same integer

value, for the integer-valued dimension. Note that the constant behavior of

the objective function is correctly captured by the posterior distribution, only

when the proposed transformation is used in the computation of the covariance

function (top). The predictive distribution of a standard GP (corresponding

to the basic approach in Section 3) cannot capture this constant behavior

(bottom).

Figure 3 shows how the proposed transformation applies in a scenario

with a categorical variable that can take only two values, e.g., True and False.

When a one-hot encoding is used, these two values are represented as (0, 1)

and (1, 0), respectively. Therefore, in the basic approach described before,

this categorical variable is replaced by two real variables taking values in the

range [0, 1]. Notwithstanding, any combination of values in which the first

component is larger than the second will lead to the configuration (1, 0). By
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Figure 2: (top) Posterior mean and standard deviation of a GP over a 2-dimensional

space in which the first dimension can only take 5 different integer values. The

second dimension can take real values. The covariance function in (8) is used in

this case. (bottom) Similar results for a standard GP model that does not use the

proposed transformation in the covariance function. Best seen in color.

contrast, any combination of values in which the second component is larger

will lead to the configuration (0, 1). Therefore, the corresponding black-box

objective is expected to be constant in those regions of the input space that

correspond to the same configuration.

Figure 3 (top) shows that a GP with the proposed covariance function

can capture the behavior described in the previous paragraph. This figure

shows the posterior distribution of the GP. We observe that the uncertainty

is equal to zero after just collecting one observation that corresponds to the
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Figure 3: (top) Posterior mean and standard deviation of a GP, for a 1-dimensional

binary variable, when the covariance function in (8) is used. (bottom) Same results

without using the proposed transformation in the covariance function of the GP

model. Best seen in color.

True value and just one observation that corresponds to the False value. This

makes sense because the objective is expected to be constant in all the regions

of the input space that lead to the same configuration, after the corresponding

one-hot encoding. Figure 3 (bottom) shows that a standard GP is not able

to capture this behavior, and the mean of the posterior distribution is not

constant in those regions of the input space that lead to the same variable

configuration. Furthermore, the standard deviation is significantly different
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from 0, unlike in the proposed approach. Summing up, Figure 3 shows that a

better modeling the black-box objective is done when the proposed covariance

function is used in practice. In the end, this is expected to be translated into

better optimization results by the BO method, as a consequence of using a

better model of the objective.

3.3. Optimization of the Acquisition Function

A consequence of the transformation introduced in the previous section

is that the acquisition function becomes flat in some regions of the input

space. These are precisely the regions in which integer-valued and categorical

variables specify the same configuration, after the doing the corresponding

rounding to the closest integer, or the corresponding one-hot encoding, re-

spectively. This behavior is illustrated in Figure 1 for one integer-valued

variable. The typical approach to maximize the acquisition is to evaluate

it first on a grid of points. Then, the best point from the grid is chosen to

start a gradient-based search using, e.g., L-BFGS. This is the approach em-

ployed by the BO software Spearmint. However, in the case of a non-smooth

acquisition function, sub-optimal results may be obtained. Assume that we

want to optimize a function with D binary categorical inputs, and let D = 30,

for example. It is extremely unlikely that the best point after evaluating

the acquisition function is the best among the 2D choices. Furthermore, a

gradient-based optimization of the acquisition function will not leave the

starting point since the acquisition function will be flat at the starting point,

as described before.

To address the problem of optimizing the acquisition function, we consider

a block coordinate ascent methodology which iterates between optimizing
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non-real variables (integer-valued and categorical) and real variables, similar

to the described one-exchange neighborhood (OEN) strategy in [13, 17].

Our methodology consists in using the grid and the L-BFGS method to

optimize all real variables. Then, the OEN strategy is used to optimize the

transformed integer and categorical variables. The OEN strategy is a greedy

method. Specifically, one iteratively evaluates, for each non-real dimension,

the corresponding neighbors of that dimension (or dimensions in the case

of categorical variables). If some improvement is achieved in terms of the

acquisition function, after changing to one of the neighbors, that new value

is kept as the best one. This process is repeated until there is no further

progress. Of course, in order to evaluate the quality of each neighbor, the

real variables have to be optimized. For that task, we use again L-BFGS.

At this point, one may ask whether the proposed transformation of

the GP covariance function is beneficial at all. More precisely, it can be

the case that it is simply enough to optimize the acquisition function as

described here to obtain improved results. To answer this question, we have

also implemented a block coordinate ascent optimization methodology that

ignores the transformation of integer-valued and categorical variables in the

GP covariance function. We compared in a toy problem the results obtained

by both approaches, the proposed approach and the alternate optimization

methodology alone, which we refer to as OEN optimization only.

Figure 4 shows the evaluations performed by the proposed approach and

by OEN optimization only in a 2-dimensional optimization problem with

one real variable and one integer-valued variable taking 5 different values.

The contour curves show the value of the acquisition function. Results are
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shown after performing 10, 20 and 30 evaluations. The points at which the

objective has been evaluated are displayed as blue crosses. We observe that

the proposed approach performs a more evenly spaced evaluation of the input

space. By contrast, the OEN optimization only strategy, that does not use the

proposed transformation, focuses on doing all the evaluations in a localized

region of the input space. This is a consequence of using a model (i.e., a GP

without the proposed transformation) that ignores that the actual objective

is constant in those regions of the input space leading to the same integer

value. In any case, our experiments of Section 5 show that OEN optimization

only often performs better than the basic approach described in Section 3,

which simply uses a grid of points combined with L-BFGS to optimize the

acquisition function with respect to all input variables, independently of

whether they take real, integer or categorical values.

4. Related Work

We describe here two approaches that can be used as an alternative to

BO methods based on GPs, when categorical and/or integer-valued variables

are present in the black-box optimization problem. These methods are

the Sequential model-based optimization for general algorithm configuration

(SMAC) [12] and the Tree-structured Parzen Estimator Approach (TPE) [2].

Both naturally handle categorical and integer-valued variables. SMAC is

implemented in the machine learning tool AutoWeka [34]. TPE is used in the

HyperOpt tool [1]. Unlike the methods described so far for BO, SMAC and

TPE do not rely on a GP as the underlying model of the objective function.

SMAC uses a random forest as the surrogate probabilistic model of the
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Figure 4: BO of a 2-dimensional objective with one integer-valued variable in

1, 2, 3, 4, 5, and one real variable. The evaluations of the objective are shown by a

cross symbol. We show results for OEN optimization only (top) and the proposed

approach (bottom). The contour curves show the value of the acquisition function,

as estimated by each method. From left to right, the value of the acquisition

function after 10, 20 and 30 evaluations. Best seen in color.

objective function [3]. This model gives a predictive distribution which is used

to select promising values of the parameters at which to evaluate the black-

box objective. In a random forest, T random regression trees are generated.

Each tree is grown using a different bootstrap sample of training data. Each

bootstrap sample is obtained by drawing with replacement N instances from

the observed data. Furthermore, in a random tree, at each node a random

subset of variables are tested to split the data. This introduces variability in

the generated trees. For a candidate test point, the random forest prediction

is obtained by computing the individual predictions of each of the T trees of
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the ensemble. The predictive distribution is simply a Gaussian distribution

with the empirical mean and variance across individual tree predictions for

that point. Given this predictive distribution, the EI criterion described in

Section 2 is evaluated and maximized to select a new point at which the

black-box f(·) should be evaluated. The random forest main advantage is

that it has a smaller computational cost than a GP.

Random forest uses regression trees to compute the predictive distribution.

Importantly, these trees can naturally consider categorical and integer-valued

variables. Therefore, SMAC does not suffer from the limitations of GPs for

handling these variables, as described in Section 3. A problem, nevertheless, is

that the predictive distribution of random forest is expected to be suboptimal.

In particular, it strongly relies on the randomness introduced by the bootstrap

samples and the randomly chosen variables that have to be tested at each

node to split the data. This result is confirmed by our experiments, in which

GP-BO tends to outperform SMAC.

In SMAC, the EI criterion is optimized by a simple multi-start local search

algorithm. This method considers the ten resulting configurations with locally

maximal EI from previous runs and starts a local search at each of them.

To manage a mixture of categorical and integer-valued variables, it employs

a randomized one-exchange neighborhood search method, as described in

Section 3.3. The search is stopped when none of the neighbors improves the

EI criterion. The configuration with the highest EI value is chosen as the

candidate on which to query the black-box function at the next iteration.

More details on this method are given in [12].

TPE also uses EI as the acquisition function. However, its computation is
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performed in a slightly different way, using a different modeling strategy. While

standard BO methods fit a regression model for p(y|x) directly, TPE follows a

generative approach. In particular, p(x|y) and p(y) are fit in this case. Both

methods are related since p(y|x) = p(x|y)p(y)
p(x)

, where p(x) =
∫
p(x|y)p(y)dy. To

compute an estimate of p(x|y), TPE assigns to each dimension a probability

distribution which plays the role of a prior distribution. Then, TPE replaces

those distributions with non-parametric density estimators. TPE redefines

p(x|y) by using two different densities, `(x) and g(x). `(x) is estimated using

only the observations in which the objective value is lower than a chosen

value y?. g(x) is estimated using all other observations. That is,

p(x|y) =

 `(x) if y ≤ y? ,

g(x) if y > y? .
(9)

Importantly, non-parametric Parzen estimators are used to obtain `(x) and

g(x) in the case of continuous random variables. In the case of categorical

variables, a categorical distribution is used instead. Similarly, in the case of a

variable over the integer set, a distribution that considers only this domain is

used instead. Therefore, the particular characteristics of integer-valued and

categorical input variables are naturally considered in TPE. y? is simply set

as some quantile of the objective values y observed so far. An interesting

property of this approach is that no specific model for p(y) is necessary.

Specifically, TPE follows a different approach to evaluate the EI acquisition

function. Namely,

α(x) =

∫ y?

−∞
(y? − y)p(y|x)dy

=

∫ y?

−∞
(y? − y)

p(x|y)p(y)

p(x)
dy ∝ (γ +

g(x)

`(x)
(1− γ))−1 , (10)
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where we have used that γ = p(y < y?) and that p(x) =
∫
p(x|y)p(y)dy =

γl(x) + (1−γ)g(x). See [2] for further details. Importantly, both models, `(x)

and g(x), represent hierarchical processes that naturally allow for continuous

and discrete-valued variables. Therefore, TPE can consider categorical and

integer-valued variables.

The EI acquisition function of TPE is maximized simply by choosing

points with high probability under `(x) and low probability under g(x).

More precisely, in TPE, at each iteration, the evaluation is performed at the

candidate point with greatest EI among many generated points sampled from

`(x) and evaluated according to (proportionally) `(x)/g(x). The particular

form of `(x) makes it easy to draw candidates with a mix between discrete

and continuous variables.

In the literature, there are other BO methods based on GP that can

account for integer-valued and categorical input variables. For example,

[23, 17] suggest constraining the optimization of the acquisition function to

consider only those values that are valid. This is essentially equivalent to the

method OEN optimization only described in Section 3.3. Again, we would

like to highlight that such a method is expected to give sub-optimal results

for the reasons explained in that section.

A related approach to our transformation that also allows to deal with

categorical variables is the GP kernel proposed in [13]. In that work, it is

used a weighted Hamming distance kernel to account for this type of variables

in the context of GPs. That method is equivalent to our transformation when

the squared exponential covariance function is used as the base covariance

function in (8). However, as we transform the input variables before feeding
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them into the covariance function, our approach is more general. Specifically,

it has the advantage that any valid covariance function for GPs can be used.

It is not restricted to the squared exponential covariance function. More over,

[13] does not include any empirical evaluation of the benefits of considering

the kernel described, nor it explains how to deal with integer-valued variables.

5. Experiments

We have carried out several synthetic and real-world experiments to

evaluate the performance of the proposed approach for BO with GPs. We

compare this method with (i) the basic method described in Section 3. We

also compare results with (ii) the basic approach that uses the OEN procedure

to optimize the acquisition function (without performing the transformation

in the covariance function of the GP). We refer to such a method as OEN

optimization only. Each method (Proposed, Basic and OEN optimization only)

has been implemented in the BO software Spearmint. The code is available

online at https://github.com/EduardoGarrido90/Spearmint. Finally, we

also compare results with two other methods that do not use GPs as the

surrogate model to guide the search. These methods are the ones described

in the Section 4. Namely, (iii) SMAC, as implemented in AutoWeka, and (iv)

TPE, as implemented in the HyperOpt platform.

For each optimization problem considered in this section we repeat the

experiment 100 times and report average results and standard deviations.

The standard deviation of the mean is estimated using 200 bootstrap samples.

This is done to ensure that the comparison among the methods is fair. In

each of the 100 repetitions we use a different random seed. Random seeds
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are shared across methods. For the GP based methods (Proposed approach,

Basic and OEN optimization only) we use a Matérn covariance function and

slice sampling [20] to estimate the GP hyper-parameters (length-scales, level

of noise and amplitude). Specifically, we generate 10 samples (50 samples in

the real-world problems) of the hyper-parameters and average the acquisition

function across the sample values, as in [30]. The acquisition function that

we employ in these methods is PES.

We consider synthetic and real-world problems. In the last ones, the GP

model need not be optimal. This is done to guarantee a fair comparison with

other probabilistic surrogate models, as the random forests used by SMAC,

or the Tree Parzen Estimator used by TPE. All GP based methods have

been coded in Spearmint to ensure that the comparison is not influenced by

other features of the BO process. For each method, at each iteration of the

optimization process, we output a recommendation. This recommendation is

obtained by optimizing the GP mean in the synthetic experiments. In the

real-world experiments, we simply return the best observation obtained so

far. Both SMAC and TPE deliver their recommendation based on the best

observation in both real-world and synthetic problems.

The experiments contained in this section are organized as follows: The

first set of experiments are synthetic and the objective is sampled from a GP

prior. Then, we consider three real optimization problems to compare GP

based methods with non-GP based methods in scenarios where the objective

need not be sampled from a GP prior. These problems include finding an

optimal ensemble of trees on the digits dataset and finding an optimal deep

neural network on the digits and MNIST datasets.

34



5.1. Synthetic Experiments

We compare the five methods described before when the objective function

is sampled from a GP prior. We consider problems with 4 and 6 dimensions.

We also consider noiseless evaluations and evaluations contaminated with

additive Gaussian noise. The variance of the additive Gaussian noise is set

equal to 0.01 in the noisy scenario. In each setting, the objective is randomly

sampled from the corresponding GP prior 100 times and we report average

optimization results across the different objectives.

The first batch of experiments considers 4 input variables. The first 2

variables take real values and the rest of the variables take 3 and 4 different

integer values, in the integer case. In the categorical case, the last two

variables take 3 different categories. In the second batch of experiments, we

consider 6 input variables. The first 3 variables take real values and the

other 3 take 4, 3 and 2 different integer values, in the integer case. In the

categorical case, they take 3 different categories. The next section considers

real, categorical and integer-variables at the same time.

In each setting, we sample the objective from a GP prior using (8) as the

covariance function. Furthermore, we run each BO method (Basic, Proposed,

OEN optimization only, SMAC and TPE) for 50 iterations in the problems

with 4 input variables and for 100 iterations in the problems with 6 input

variables. For each method, we report, as a function of the evaluations done,

the logarithm of the difference, in absolute value, between the actual objective

value at the recommendation and the best objective value. In each of the

100 random repetitions of the experiments, we use a different random seed to

generate the objective.
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The average results of each method are displayed in Figure 5 and 6, for

the 4 dimensional input setting, and for the integer and categorical case,

respectively. We observe that the proposed approach provides better results

than the other methods. In particular, it finds points that are closer to the

optimum with fewer evaluations of the black-box objective, both in the case

of integer-valued (noiseless and noisy) and categorical scenarios (noiseless

and noisy). Figure 7 and 8 shows similar results for the 6 dimensional input

setting, for the integer and categorical case, respectively.

Figure 5: Average results on the synthetic experiments with 4 dimensions and 2

integer-valued variables.
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Figure 6: Average results on the synthetic experiments with 4 dimensions and 2

categorical variables

We observe that GP based BO outperforms the non-GP based BO, being

the proposed approach better than the basic approach or the OEN optimiza-

tion only method. This last method works better than the basic approach,

showing that optimizing the acquisition function with the OEN procedure

achieves better results. In the 6-dimensional scenario the difference in perfor-

mance between the basic approach, OEN optimization only and the proposed

approach is slightly higher than in the 4-dimensional scenario. TPE and
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Figure 7: Average results on the synthetic experiments with 6 dimensions and 3

integer-valued variables.

SMAC also behave worse than the other methods in the 6-dimensional case.

Finally, in the noisy setting, the methods are more equal but the proposed

approach works slightly better. TPE and SMAC also deliver worse results in

the noisy setting.

Note that TPE and SMAC do not assume a GP for the underlying model,

which could be in a disadvantage in these experiments. Nevertheless, we think

that it is still interesting to contrast results with them in this scenario in

38



Figure 8: Average results on the synthetic experiments with 6 dimensions and 3

categorical variables.

which the exact solution of the optimization problem can be easily obtained

and where the level of noise can be controlled. In Section 5.3, we perform

experiments in which the objective function need not be sampled from a GP.

The goal is to show the advantages of the proposed method in a wider range

of scenarios.
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5.2. Computational Time Analysis

In the problem involving 4 dimension we have also recorded the computa-

tional time required by each method (Proposed, Basic and OEN optimization

only). The results obtained are displayed in Table 1. We can observe that the

basic approach is the method that requires most average time per iteration.

This is an unexpected result, since the proposed transformation should in-

crease the cost of the method by at least a very small amount (recall that the

cost of the proposed transformation is linear in N , the number of observations,

while the fitting process of the GPs has a cost in O(N3), which is the effective

bottle-neck of BO).

The explanation for these results is found in the optimization of the

acquisition function. More precisely, we have observed that in the case of the

basic approach, the optimization of the acquisition function requires more

steps of the the L-BFGS algorithm. In particular, Figure 1 shows that if we

do not consider the transformation of the proposed approach, the shape of

the acquisition function is more complex and hence more difficult to optimize.

The proposed approach transforms the predictive distribution of the GP, and

in consequence, also the acquisition function. The result is an acquisition that

is easier to optimize using L-BFGS. A profile analysis of Spearmint shows that

the optimization of the acquisition function takes 3 times less iterations, on

average, when the proposed transformation is considered. The computational

cost of optimizing the acquisition function represents a large fraction of the

total execution time of BO methods. Therefore, in the end, the proposed

approach takes the less computational time.

Finally, we observe that in the case of the OEN optimization only method,
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the computational cost is also higher than in the cost of the proposed approach.

The explanation for this is similar to the one described before. The shape

of the acquisition function is more complex in the OEN optimization only

method than in the proposed approach, as illustrated by Figure 4. Again, we

have observed that optimizing the acquisition function in Spearmint using

L-BFGS takes more time for OEN optimizing only than for the proposed

approach.

Table 1: Average time per iteration in seconds of each method.

Basic Approach OEN Optimization Only Proposed Approach

26.9± 6.1 27.2± 8.5 14.6± 2.2

5.3. Hyper-parameter Tuning of Machine Learning Algorithms

We compare all methods on the practical problem of finding the optimal

parameters of a gradient boosting ensemble [5] and a deep neural network

(DNN) on the digits dataset. This dataset contains 1,797 data instances,

64 dimensions and 10 class labels. It has been extracted from the python

package scikit-learn [22]. In the case of the DNN, we also consider the MNIST

dataset [16]. This dataset has 60, 000 data instances, 768 dimensions and 10

class labels.

When finding an optimal gradient boosting ensemble on the digits dataset,

the objective that is considered for optimization is the average test log-

likelihood of the ensemble. This objective is estimated using a 10-fold cross-

validation procedure. Importantly, model bias can be a problem for all

approaches in this setting since the actual form of the objective is unknown.

In this problem we consider a maximum of 200 evaluations. A table with
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the parameters to be optimized, their range and their type is displayed in

Table 2. These parameters include: The logarithm of the learning rate, the

maximum depth of the generated trees and the minimum number of samples

used to split a node in the tree building process. Note that while the first

parameter takes real values, the other two take integer values only.

Table 2: Ensemble of trees names, types and range of their optimized parameters

Name Type Range

Log Learning Rate Real [−10, 0]

Maximum Tree Depth Integer [1, 6]

Minimum Number of Samples to Split Integer [2, 6]

To guarantee a fair comparison among the different methods, we consider

100 repetitions of the experiments. In each repetition we consider a different

10-fold cross-validation split of the data. Figure 9 shows the average results

obtained across the 100 repetitions. The value displayed is the logarithm

of the difference, in absolute value, between the test log-likelihood of the

recommendation made and the best observed test-log likelihood, for that

particular split. We observe that the proposed approach is able to find

gradient boosting ensembles that perform better than those found by the basic

approach, using a smaller number of evaluations of the objective. Furthermore,

the proposed approach also performs better than SMAC, TPE, or the OEN

optimization only method. This illustrates the benefits of using a better

model of the objective, which in the end is translated into better optimization

results.

In the task of finding an optimal deep neural network on the digits and
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Figure 9: Average results on task of finding an optimal gradient boosting ensemble

on the digits dataset.

MNIST dataset, the objective considered is the network test log-likelihood.

This objective is estimated 10-fold cross-validation in the case of the Digits

dataset. In the MNIST dataset, a validation set of 10, 000 instances, extracted

from the training set, is used instead. We consider 125 and 150 evaluations

of the objective for the digits and the MNIST dataset, respectively. The

parameters that are optimized, their range and their type is displayed in Table

3. These parameters are: The logarithm of the learning rate, the number

of hidden layers and the activation function. The first parameter is real-

valued. The second and third parameters are integer-valued and categorical,

respectively. The number of units in each layer of the deep neural network is

set to 75.

The average results obtained in the two problems are displayed in Figure

10. The figure shows the logarithm of the difference, in absolute value,

between the test log-likelihood of the recommendation made and the best

observed test-log likelihood. We observe that again, the basic approach is
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Table 3: Description, type and range of the deep neural network parameters optimized.

Name Type Range

Log Learning Rate Real [−10, 0]

Activation Function Categorical Linear, Sigmoid, Tanh or ReLU

Number of hidden layers Integer [1, 3]

significantly outperformed by the proposed approach. More precisely, the

proposed approach can find parameter values that lead to a neural network

with a better test log-likelihood on the left-out dataset, using a smaller number

of evaluations of the objective. The proposed approach also outperforms

SMAC and TPE on the digits dataset. However, on the MNIST dataset, the

proposed approach gives similar results to those of TPE. We believe that

better results of TPE on the MNIST dataset are explained as a consequence

of model bias. Specifically, it can be the case that the GP model is not able

to capture the properties of the objective. In any case, in both problems

the proposed approach outperforms OEN optimization only and the basic

approach.

5.4. Analysis of the Results and Limitations of the Proposed Approach

We provide in this section a brief summary and analysis of all the experi-

mental results obtained so far. Similarly, we describe some of the limitations

of the method proposed in this paper to account for integer-valued and

categorical variables, in the context of BO with on GPs.

A first set of synthetic experiments has provided a controlled environ-

ment to evaluate the benefits of the proposed approach. In this setting, in

which there is no model bias, the specific consideration of integer-valued and
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Figure 10: Average results on the Digits and MNIST dataset using deep neural

networks.

categorical variables in the BO optimization process significantly improves

the results obtained with respect to a basic approach that assumes that

integer-valued and categorical variables take real values. In particular, with a

smaller number of evaluations, the proposed approach is able to find better

solutions of the optimization problem. These improvements have also been

observed in a noisy evaluation setting, in which one does not obtain the

value of the objective, but an estimate that is contaminated with noise. The

proposed approach also provides better results than OEN optimization only,
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a BO method that optimizes the acquisition function taking into account

that only some configurations for the objective are valid. This highlights the

importance of considering an adequate model of the objective, and shows

that it is not enough to constrain the evaluation of the objective at valid

configurations. In this setting, GP based BO optimization also outperforms

other BO methods such as SMAC and TPE that can naturally consider

integer-valued and categorical variables.

We have also analyzed the computational time required by each GP based

BO method, obtaining unexpected results. In particular, besides providing

better optimization results, the proposed approach also improves the average

time per iteration of GP based BO methods. We believe that the reason for

this is that a better modeling of the objective leads to a better acquisition

function that is easier to optimize. More precisely, we have observed that

when the proposed transformation is used, the L-BFGS method that is used to

optimize the acquisition function needs less iterations to achieve convergence,

resulting in faster decision times.

A second set of experiments considers real-world problems in which the

hyper-parameters of several machine learning methods need to be adjusted.

These experiments are free of any model bias since the actual objective is

unknown. The results obtained in this setting also point out the beneficial

properties of the proposed approach, which is able to find better configura-

tions with a smaller number of evaluations than the basic approach or OEN

optimization only. In some of these experiments, however, TPE seems to give

similar results to those of the proposed approach. We hypothesized that this

can be a consequence of GPs being a sub-optimal model of the objective in
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this setting.

We now point out some limitations of the proposed approach. First, in the

case of categorical variables, the proposed transformation adds as many extra

variables as categories. This is expected to make the optimization process

more difficult. Therefore, we recommend that the proposed transformation

is used only with categorical variables taking a small number of categories.

Second, if there is an integer-valued variable that takes values in a wide

interval of integers (e.g., between 1 and 5000) the proposed transformation is

not expected to be very useful. The reason is simply that in such a setting

there are not that many differences between an integer-valued variable and

a real variable. So one should not expect significant benefits with respect

to the basic approach for BO. Finally, if the number of categories or the

range of integer values is very large, the optimization of the acquisition

function is expected to be very expensive. More precisely, the One Exchange

Neighborhood method will have to evaluate a large number of neighbors in

this setting, which is expensive. Therefore, we only recommend the proposed

approach when the number of categories or potential integer values is fairly

small.

6. Conclusions

We have addressed in this paper the problem of using GP with integer-

valued and categorical variables in the context of BO. Standard GPs assume

real variables and cannot accurately account for this type of input variables.

A naive method that is often used in the context of BO with GPs to account

for categorical and integer-valued variables is to simply assume real variables.
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Then, given a candidate point at which to evaluate the objective, a one-hot

encoding or a rounding to the closes integer is done in the case of categorical

or integer-valued variables, respectively. Notwithstanding, we have shown

that under this approach the BO method may get stuck. More precisely,

it will always evaluate the objective at the same candidate point at each

iteration.

The problem described is a consequence of a mismatch between the regions

of the input space that have high values of the acquisition function and the

points at which the black-box objective is evaluated. A basic method to

avoid this problem is to do the one-hot encoding or the rounding to the

closest integer inside the wrapper that is used to evaluate the objective. This

technique has the limitation that it makes the objective constant in those

regions of the input space that lead to the same variable configuration. This

constant behavior cannot be modeled by standard GPs.

In this paper we have modified the covariance function of the underlying

GPs to account for those regions of the input space in which the objective

should be constant. Our proposed method simply performs a transformation

of the input variables that rounds integer-valued variables to the closest integer

and that does a one-hot encoding of categorical variables. The consequence

of this method is that the Euclidean distance between the points that lead

to the same variable configuration becomes zero. This enforces maximum

correlation between the function values at those input points under the GP,

obtaining the expected constant behavior.

The proposed approach has been compared with the basic approach

described before, and also with SMAC and TPE, that account naturally for
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categorical and integer-valued variables. Several experiments illustrate that

the proposed approach outperforms the basic approach and SMAC, and is

most of the times better or at least equivalent to TPE. The proposed approach

also performs better than a strategy that constrains the optimization of the

acquisition function to evaluate the objective only at those points that are

feasible (i.e., the OEN optimization only method). We show that such a

method turns out to be sub-optimal in practice. In particular, the GP model

considered ignores that the objective is constant in those regions of the input

space that lead to the same parameter configuration. We conclude that the

proposed approach results in a better model of the objective, which is then

translated into better optimization results by the BO method.
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