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Abstract

Two dilemmas frequently occur in many real-world clinical prognoses. First,
the on-hand data cannot be put entirely into the existing prediction model,
since the features from new data do not perfectly match those of the model.
As a result, some unique features collected from the patients in the current
domain of interest might be wasted. Second, the on-hand data is not suffi-
cient enough to learn a new prediction model. To overcome these challenges,
we propose an output-based transfer learning approach with least squares
support vector machine (LS-SVM) to make the maximum use of the small
dataset and guarantee an enhanced generalization capability. The proposed
approach can learn a current domain of interest with limited samples effec-
tively by leveraging the knowledge from the predicted outputs of the existing
model in the source domain. Also, the extent of output knowledge transfer
from the source domain to the current one can be automatically and rapidly
determined using a proposed fast leave-one-out cross validation strategy. The
proposed approach is applied to a real-world clinical dataset to predict 5-year
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overall and cancer-specific mortality of bladder cancer patients after radical
cystectomy. The experimental results indicate that the proposed approach
achieves better classification performances than the other comparative meth-
ods and has the potential to be implemented into the real-world context to
deal with small data problems in cancer prediction and prognosis.

Keywords: transfer learning, machine learning, least squares support
vector machine, cancer prediction

1. Introduction

Accurate prediction and prognosis plays an important role in the cancer
field [1][2]. The successful implementation can help: 1) doctors to make
prompt treatment decisions, 2) related health care industry to forecast the
needs of their targeted populations and allocate resources accordingly, and 3)
patients to better understand their conditions. For example, bladder cancer
patients with poor prognosis will be advised to have follow-up examinations,
such as cystoscopic or excretory urography.

However, there is a common dilemma that different hospitals or insti-
tutions may not exactly use the same clinical assessments for a particular
cancer [3]. Thus, this leads to a possible situation that the existing pre-
diction model or on-line tool were trained using a different feature set from
the on-hand data. Although the most common features such as age, gen-
der, tumour stage, etc. were remained, it is important to note that as time
passes, the importance or relevance of the clinical measures might change,
and the performance of the prediction model might be enhanced by adding
more potential features.

Another significant dilemma is lack of data. If there are insufficient train-
ing samples in the current domain of interest, the performance of the con-
structed prediction model would substantially deteriorate. This is particu-
larly common in the medical applications. For example, patients may not
wish their medical records to be publicly available, or they drop out in the
clinical follow-up study. In addition, due to the small sample size of the
training data, it is important to employ the leave-one-out cross validation
to guarantee that the selected parameters of the model can give the optimal
generalization capability. This is because that the relatively high variance of
the leave-one-out estimator can be offset by the stability resulting from the
greater size of the training partition than using the traditional k-fold cross
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validation [4]. However, how to greatly reduce the high computational cost
of leave-one-out cross validation is another issue that is worthy of study.

To solve the above issues, in this study, transfer learning is used to take
the advantage of the output knowledge from an existing model or on-line tool
(source domain), which was trained on a large readily dataset to facilitate
the learning process on a much smaller target domain with limited samples
(target domain). More specific, our problem is heterogeneous transfer learn-
ing since the feature space between two domains may be different. Ideally, a
subset of robust features is shared in both source and target domains while
a unique subset of features is only kept in the target domain. The source
and target data form an inverted pyramid dataset, as shown in Fig. 1. Due
to the obvious commonality between the source and target data, the output
knowledge from the prediction models in both domains should remain similar
and mutually transferable. To achieve this, we propose a novel output-based
transfer least squares support vector machine (LS-SVM) [5] approach in two
versions. According to the concept of cascaded methods [6, 7], the proposed
approach keeps the essence of cascaded methods and has the following main
contributions:

(1) The proposed approach can learn knowledge from the probabilistic
output predicted from the existing model or on-line tool to facilitate the
learning process on the on-hand small bladder cancer dataset. It can be
readily extended to learn a partial knowledge such as the sign of the output
predicted from the existing model as well.

(2) The proposed approach can autonomously and quickly determine the
influence level on the target domain made by the knowledge learned from the
output using a proposed fast leave-one-out cross validation strategy.

(3) The proposed approach do not need to know the existing model’s
details and its training data to achieve transfer learning from the source
domain to target domain. This makes it very practical to be implemented
in the real-world scenarios such as bladder cancer prediction where the data
and modeling details are kept in private.

The paper is organized as follows. Related work is introduced in Section
2. In Section 3, two versions of the proposed output-based transfer LS-SVM
approach are presented. A fast leave-one-out cross validation strategy for
parameter tuning is also developed. In Section 5, we give the experimental
results on a real-world bladder cancer dataset. Lastly, the conclusions and
future work are given in Section 6.
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2. Related Work

This section presents the problem of transfer learning and its application
in the medical field.

2.1. Transfer learning

Traditional machine learning techniques have been widely used in many
fields; however, most hold the assumption that the training and testing data
retain the same feature space and have the same data distribution. Therefore,
once the feature space or the feature distribution of the new collected data
changes, the prediction models cannot be used and must be re-constructed
from scratch from new training data, which are very time consuming and
impractical to collect. To solve this problem, transfer learning is introduced.
The aim is to extract the knowledge from the related domain and apply it to
the learning process in the current domain of interest which has few available
data.

In transfer learning, a domain is denoted by D = {χ, P (X)}. χ represents
the feature space, and P (X) represents the marginal probability distribution
where X = {x1, · · · ,xn} ∈ χ. Given a source domain DS and learning
task TS, and a target domain DT and learning task TT , transfer learning can
improve the learning process in DT using the leveraged knowledge in DS and
TS. In this work, DS 6= DT , TS = TT and the condition DS 6= DT implies
that χS 6= χT .

There are three important problems to solve in transfer learning [8][9]:
1) what to transfer, 2) how to transfer, and 3) when to transfer. ”What to
transfer” focuses on which part of the knowledge or how much knowledge
it is planned to leverage across domains. Based on this, transfer learning
approaches in the literature can be classified into four categories.

The first category is instance transfer, which assumes that certain amount
of data in the source domain can be useful for learning in the target domain,
via instance re-weighting and importance sampling techniques. For example,
in [10], a nonparametric method was proposed to directly obtain resampling
weights with no distribution estimation. Xia et al. [11] presented another
novel method to re-weight the training instance using in-target-domain prob-
ability by positive and unsupervised learning. Wang et al. [12] proposed a
new transfer learning method with partial related ’instance-feature’ knowl-
edge to avoid discarding the partial related or unrelated knowledge in each
source instance. Such partial structure is first explored by co-clustering
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among both instances and features, then the source instances are recon-
structed based on the exploited ’instance-feature’ knowledge and the related
target instances together such that the source instances are more related to
the target ones for knowledge transfer later.

The second category is feature representation transfer, which aims to
learn an appropriate common feature representation for the target domain
such that the difference between the source and target domain is decreased,
resulting in a decrease in classification error. The knowledge to be trans-
ferred across domains is embedded in the common feature representation.
For example, transfer component analysis (TCA), was discovered in [13],
whereby the distance between domains can be reduced in a latent space for
domain adaptation. Duan et al. [14] proposed a method which augments
the heterogeneous features from the source and target domains by utilizing
two novel feature mapping functions. After that, the SVMs can be incorpo-
rated with newly generated feature representations for classification across
domains with different feature spaces. In [15], a novel collaborative filtering
method called Feature Subspace Transfer (FST) was proposed based on the
user feature subspace transfer model for recommender systems, where the
source and target features have different dimensions. Zuo et al. developed a
fuzzy regression transfer learning in Takagi-Sugeno fuzzy models [16] and a
granular fuzzy regression domain adaptation in Takagi-Sugeno fuzzy models
[17], which both modify the input space of data through through mappings
so that the fuzzy rules of the existing model become more compatible for
solving tasks in the domain of interest.

The third category is relational knowledge transfer, which assumes that
the relationship between the data in the source and target domain is similar.
The knowledge to be transferred is the relationship between the data. In
this context, statistical relational learning techniques are used to solve prob-
lems. For example, Mihalkova et al. [18] proposed a Markov logic networks
(MLN)-based transfer system which maps the predicates in the source MLN
to the target domain, and then edits the mapping structure to improve its
performance.

The last category is parameter transfer, which assumes that the source
and target domains share some parameters or priors of the models. The
knowledge to be transferred is embedded in the shared parameters or priors.
For example, a novel model proposed in [19] attempted to learn a shared
covariance function on input dependent features and a ’free-form’ covariance
matrix of tasks. In [20], Gao et al. proposed a locally weighted ensemble

5



framework to leverage knowledge from multiple models for transfer learning.
The weights are dynamically determined based on every model’s predictive
ability in each testing sample. Li et al. [21] proposed a transfer learning based
extreme learning machines (ELM) called TL-ELM to use a small amount of
target domain labeled data and a big number of source domain data to en-
hance the classification performance. The transferring knowledge is produced
from exploiting the source model parameter knowledge reserved in the ini-
tial trained source ELM classifier. In [22][23], a knowledge-leverage-based
Takagi-Sugeno-Kang fuzzy system (KL-TSK-FS) and an advanced version
were proposed for parameter learning of the TSK-FS model on the target
domain by utilizing existing knowledge in the source domain.

Of the existing transfer learning approaches, the parameter-transfer learn-
ing is most related to the output-based transfer LS-SVM classifier proposed in
this paper. In general, most approaches aim to find the shared parameters/hyper-
parameters of the models. In the proposed classifier, since the existing model
in the source domain is unknown, we focus on the output obtained from the
source domain, and aim to learn a weighting parameter on the output of the
target domain influenced by the predicted output of the existing model. The
basic assumption behind is that the output from the models in both domains
should be similar. This is because in this study, we only consider the inverted
pyramid dataset in which a subset of features is shared in the feature space
of both the source and target domains, such that there is a similarity be-
tween them. We can assume that the output from the ideal classifier on the
target domain will retain a certain degree of consistency with the output of
the existing model on the source domain. On the other hand, we find that
there is an extra subset of unique features only in the target domain in the
inverted pyramid dataset. Therefore, the problem in this study also involves
the transfer of knowledge across different feature spaces, which is referred to
as heterogeneous transfer learning [8].

”How to transfer” focuses on how to develop the model to achieve the
knowledge transfer. ”When to transfer” focuses on the circumstances in
which transfer learning may or may not be used. If the source and target
domain are not relevant to one another, brute-force transfer might fail, or
even result in negative transfer. In this study, as explained above, the source
and target domain are related to each other since only inverted pyramid
datasets are adopted.
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2.2. Transfer learning in medical applications

Transfer learning has been applied in various areas of medicine, as shown
in the literature. For example, Silver and Mercer [24] proposed a task re-
hearsal method (TRM) which leverages the representation of a previously
learned task as a source of inductive bias to make more accurate hypotheses
for new tasks in three heart disease domains. In addition, they proposed a
machine lifelong learning system composed of the task rehearsal method and
ηMTL to learn a series of medical diagnostic tasks in a sequence. The source
knowledge is stored in a domain knowledge database which contains the rep-
resentations of successfully learned neural network models of the secondary
tasks. Through ηMTL, this source knowledge is selectively transferred to
help the learning process on the primary task based on a measure of task
relatedness. Task rehearsal sequentially retains the task knowledge and uses
it to generate virtual examples for learning a new task with ηMTL. The
proposed system was practically applied to a number of medical diagnostic
tasks. Another transfer learning based model was proposed in [25] in which
knowledge previously learnt from each task using different drug combination
are joined together to help predict the outcome of HIV therapy. The accuracy
of the proposed method was increased by 10%-14% compared with the tradi-
tional modelling methods for individual tasks. Similarly, Zhou et al. [26][27]
considered the prediction problem as a learning from multiple tasks in which
each prediction at each time point is taken as a task. The authors proposed
two novel transfer learning based models to predict MMSE/ADAS-Cog scores
of Alzheimer’s disease over the next four years using the baseline MRI fea-
tures. In [28], a transfer-learning-based intelligent recognition method was
proposed for epilepsy detection which learns the useful knowledge between
the source and target domains by calculating the maximal mean discrepancy.
Christodoulidis et al. [29] presented a method that improves the accuracy
and stability of a deep convolutional neural network (CNN) to analyze lung
tissue pattern, demonstrating the potential of transfer learning in the field of
medical image analysis. However, there is little literature on utilizing trans-
fer learning techniques for bladder cancer prediction and prognosis. This
presents the opportunity to apply transfer learning to this specific area.
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Figure 1: The inverted pyramid dataset in which d′ < d

3. Output-based transfer LS-SVM classifier

3.1. Inverted pyramid dataset

In this work, we denote the data in the target domain as DT = {(x1, y1),
· · · , (xi, yi), · · · , (xN , yN)}, where xi = (xi1, x

i
2, · · · , xid) ∈ XT ⊂ Rd and

yi ∈ YT = {−1, 1}. XT is the input dataset and YT is the corresponding class
label set. Each sample xi contains d features, i.e., f1, f2,· · · , fd. The data
in the source domain is a subset of the target domain which only contains
the same group of features with the existing model. We denote the data in
the source domain as DS = {(x′1, y1), · · · , (x′i, yi), · · · , (x′N , yN)}, where x′i =
(xi1, x

i
2, · · · , xid′) ∈ XS ⊂ Rd′ and yi ∈ YS = [0, 1]. XS is the input dataset

in the source domain and YS is the corresponding probabilistic output set
obtained from the existing model. Each sample x′i contains d

′
features, i.e.,

f1, f2, · · · , fd′ (d
′
< d). We want to find a decision function F : XT → YT ,

such that it can find the matching y for any new incoming sample x.
We can stack DT onto DS as demonstrated in Fig. 1. Because it is

shaped like an inverted pyramid, we call the adopted dataset in the proposed
approach the inverted pyramid dataset.

3.2. Framework of the proposed approach

The framework of the proposed output-based transfer approach is illus-
trated in Fig. 2. As discussed in the last section, following Fig. 2, the
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dataset is first transformed into the inverted pyramid dataset, which con-
tains the target data DT and the source data DS with the same feature
space of the existing model. After applying the existing prediction model or
on-line tool on DS, we obtain the corresponding probabilistic outputs. The
proposed output-based transfer LS-SVMs classifier is then taken to help the
classification in the target domain by not only making the full use of the
data from DT but also leveraging the output knowledge from the existing
prediction model or on-line tool.

3.3. Handling probabilistic outputs from the existing model

Most prediction models or on-line tools in the medical field only pro-
duce probabilistic outputs using traditional statistical methods. Since the
classification on the target domain is achieved using a different classification
method with its class label set, the proposed approach is also designed to
directly handle the probabilistic outputs from the existing model for conve-
nience in the learning process in the target domain.

We put the source data DS into the existing prediction model and obtain
the corresponding probabilistic output pi (0 ≤ pi ≤ 1, i = 1, 2, ..., N). pi
and 1 − pi are the probabilities of xi which are classified into the positive
or negative class. We set a threshold θ to 0.5 such that xi is classified as
positive class if its output probability is greater than 0.5. For example, if the
sample xi obtains the probabilistic output 0.65 from an existing predictive
model, the probability of xi being classified into the positive class or negative
class is 0.65 or 0.35 (1 − 0.65 = 0.35) respectively. Based on the threshold
θ, we classify xi as the positive class (0.65 − 0.5 = 0.15 > 0) instead of the
negative class (0.35− 0.5 = −0.15 < 0).

Because the sign of (2pi − 1) reflects which class xi belongs to, it can be
used to retain the consistency between the output of the existing model and
the adopted classification method, i.e., LS-SVM. This processed probabilistic
output is the knowledge we want to effectively leverage in the target domain
for classification.

3.4. Output-based transfer LS-SVM classifier in the target domain

After handling the probabilistic output from the existing prediction model,
we can construct a model in the target domain in which the signs of the clas-
sification outputs and those of the processed probabilistic output from the
existing source model are retained as much the same as possible.
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Figure 2: Framework of the proposed output-based transfer approach
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In the proposed approach, the classification method for model construc-
tion on the target domain is LS-SVM. LS-SVM has two simplifications based
on traditional SVM [30]. First, the inequality constraints in SVM are re-
placed by the equality constraints. Second, the hinge loss function in SVM
is replaced by a squared loss function in the objective function. The opti-
mization problem in LS-SVM is thus simplified by these updates and can be
solved using a linear system instead of quadratic programming in SVM. At
the same time, the performance of LS-SVM is comparable to SVM. The an-
alytical solution of LS-SVM can assist with the efficient performance of the
leave-one-out cross validation strategy, which is used for parameter tuning
in the proposed approach and will be discussed in Section 4. The objective
function of the standard LS-SVM is formulated as follows:

min
w,b

1

2
w2 +

C

2

N∑
i=1

ξ2
i

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(1)

where C is the given trade-off parameter. The input xi can be classified into
its positive class or negative class in terms of the decision function F (xi),
i.e.,:

wTϕ(xi) + b =

{
> 0, positive class
< 0, negative class

Therefore, to retain the same signs of both yi and (2pi− 1) (i = 1, 2..., N) as
much as possible,

∑N
i=1(yi− ξi)(2pi− 1) should be made as large as possible.

We add a weighting parameter to reflect the influence level of the pro-
cessed probabilistic outputs from the existing prediction model on the pre-
dicted output from the target domain. This weighting parameter can be
selected by the fast leave-one-out cross validation strategy and is discussed
in Section 4. Here, we present two versions of the proposed classifier in the
target domain. Based on the equality constraints, the first version is de-
veloped to encourage the flexibility in its generalization capability, and the
second version is developed to encourage the flexibility in its loss function.

First version:
In the first version, the objective function based on the LS-SVM becomes:

min
w,b

1

2
w2 +

C

2

N∑
i=1

ξ2
i − µ

N∑
i=1

(yi − ξi)(2pi − 1)

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(2)
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where µ is a weighting parameter. Since

1

2
w2 +

C

2

N∑
i=1

ξ2
i − µ

N∑
i=1

(yi − ξi)(2pi − 1) =

1

2
w2 +

C

2

N∑
i=1

ξ2
i + µ

N∑
i=1

ξi(2pi − 1)− µ
N∑
i=1

yi(2pi − 1)

(3)

and µ
∑N

i=1 yi(2pi − 1) is a constant, thus after adding up the constant∑N
i=1( µ

2C
(2pi − 1))2, we have the equivalent objective function as follows:

min
w,b

1

2
w2 +

C

2

N∑
i=1

(ξi +
µ

2C
(2pi − 1))2

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(4)

where µ
2C

represents the influence level of the probabilistic output of the
existing predictive model on the target domain. We can easily observe that
if we set µ to 0, Eq. (4) becomes the objective function of the standard SVM
in Eq. (1).

The Lagrangian J of Eq. (4) is

J = 1
2
w2+ C

2

∑N
i=1(ξi + µ

2C
(2pi − 1))2 +

∑N
i=1 αi(yi −wTϕ(xi)− b− ξi) (5)

where α = (α1, α2, ..., αN)T is the vector of all Lagrangian multipliers. With
respect to w, ξi, b, αi, we have

∂L

∂w
= 0 ⇒w =

N∑
i=1

αiϕ(xi) (6)

∂L

∂ξi
= 0 ⇒ξi =

1

C
[αi −

µ

2
(2pi − 1)] (7)

∂L

∂b
= 0 ⇒

N∑
i=1

αi = 0 (8)

∂L

∂αi
= 0 ⇒yi = wTϕ(xi) + b+ ξi (9)

Combining Eq. (6) and Eq. (7) with Eq. (9), we obtain
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N∑
j=1

αiϕ(xj)
Tϕ(xi) + b+

αi
C

= yi +
µ

2C
(2pi − 1) (10)

Using the kernel trick, we replace ϕ(xj)
Tϕ(xi) with K(xj,xi), and then write

the linear equation in Eq. (10) in the following matrix form[
K + 1

C
Λ 1

1T 0

] [
α
b

]
=

[
y + µ

2C
M

0

]
(11)

where Λ is a matrix in which each diagonal entry is one and all other entries
are zero, y is the output vector of all the samples in the training dataset, i.e,

y = (y1, y2, · · · , yN)T and M =
(
2p1 − 1, 2p2 − 1, ..., 2pN − 1

)T
.

Lastly, the model parameters can be calculated simply by using the matrix
inversion: [

α
b

]
= P

[
y + µ

2C
M

0

]
(12)

where P = V−1 and V is the first matrix on the left in Eq. (11). Once we
have obtained µ, α and b can be calculated by using Eq. (12). Combined
with Eq. (6), we can easily obtain the decision function for the new sample
xt as follows:

F1(xt) = wTϕ(xt) + b

=
N∑
i=1

αiK(xi,xt) + b
(13)

Second version:
In the second version, in terms of the equality constraints, we replace

(yi − ξi) in the first version with (wTϕ(xi) + b), therefore the objective
function based on LS-SVM becomes:

min
w,b

1

2
w2 +

C

2

N∑
i=1

ξ2
i − λ

N∑
i=1

(2pi − 1)(wTϕ(xi) + b)

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(14)

where λ is a weighting parameter.
The Lagrangian J of Eq. (14) is

J = 1
2
w2+ C

2

∑N
i=1 ξ

2
i − λ

∑N
i=1(2pi − 1)(wTϕ(xi) + b) +

∑N
i=1 αi(yi −wTϕ(xi)− b− ξi)

(15)
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where α = (α1, α2, ..., αN)T ∈ RN×1 is the vector of all Lagrangian multipli-
ers. With respect to w, ξi, b, αi, we have

∂L

∂w
= 0 ⇒w = λ

N∑
i=1

(2pi − 1)ϕ(xi) +
N∑
i=1

αiϕ(xi) (16)

∂L

∂ξi
= 0 ⇒ξi =

αi
C

(17)

∂L

∂b
= 0 ⇒λ

N∑
i=1

(1− 2pi) =
N∑
i=1

αi (18)

∂L

∂αi
= 0 ⇒yi = wTϕ(xi) + b+ ξi (19)

Combining Eq. (16) and Eq. (17) with Eq. (19), we obtain

N∑
i=1

αiϕ(xi)
Tϕ(xj) + b+

αj
C

= yj − λ
N∑
i=1

(2pi − 1)ϕ(xi)
Tϕ(xj) (20)

Using the kernel trick, we replace ϕ(xj)
Tϕ(xi) with K(xj,xi), and then

write the linear equation in Eq. (20) in the following matrix form:[
K + 1

C
Λ 1

1T 0

] [
α
b

]
=

[
y − λZ

λ
∑N

i=1(2pi − 1)

]
=

[
y
0

]
− λ

[
Z∑N

i=1(1− 2pi)

] (21)

where Λ is a matrix in which each diagonal entry is one and all other entries
are zero, y is the output vector of all the samples in the training dataset, i.e.,

y = (y1, y2, · · · , yN)T , and Z =
(∑N

j=1(2pj − 1)K(xj,x1),
∑N

j=1(2pj − 1)K(xj,x2), · · · ,
∑N

j=1(2pj − 1)K(xj,xN)
)T

.
Lastly, the model parameters can be calculated simply by using the matrix

inversion: [
α
b

]
= P

[
y − λZ

λ
∑N

i=1(1− 2pi)

]
= P

[
y
0

]
− λP

[
Z∑N

i=1(1− 2pi)

] (22)
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where P = V−1 and V is the first matrix on the left in Eq. (11). Once we
have obtained µ, α and b can be calculated from Eq. (22). Combined with
Eq. (16), the decision function for the new sample xt becomes

F2(xt) = wTϕ(xt) + b

= λ

N∑
i=1

(2pi − 1)K(xi,xt) +
N∑
i=1

αiK(xi,xt) + b

=
N∑
i=1

(λ(2pi − 1) + αi)K(xi,xt) + b

(23)

Before ending up this section, we have the following remarks:
Remark 1: Although the first and second versions are proposed based

on the equality constraints, we can observe the difference between them.
According to Eq. (2), the second and the third terms actually forms a convex
loss function, while the first and third terms in Eq. (14) actually forms a
convex function about w which indeed controls the generalization capability
of the second version. Therefore, we can take different values of λ and µ to
provide different generalization capabilities or loss functions of the proposed
classifier in practical applications. Only when λ = µ with the same C, the
first version is equivalent to the second version theoretically.

Remark 2: We can use the signs of the probabilistic outputs to achieve
the partial knowledge transfer by slightly changing the proposed approach.
The value of (2pi − 1) in Eq. (2) and Eq. (14) can be replaced by the sign
(+1 or −1) of (2pi − 1). It is expected that this sign knowledge transfer
approach is less effective than the proposed approach as the sign of (2pi− 1)
is less informative than its actual value. We will report the corresponding
experimental results in Section 5.

4. Fast leave-one-out cross validation strategy for parameter tun-
ing

We know from Section III that the classification performance of the pro-
posed approach depends on the value of the parameter µ. The traditional
leave-one-out cross validation strategy is commonly used as an unbiased es-
timator for parameter tuning during model construction; however, leave-
one-cross validation is very time-consuming. In this section, we propose a
fast version of the leave-one-out cross validation strategy for our proposed
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approach to find the optimal value of µ and λ in Eq. (12) and Eq. (21)
respectively of the two versions.

First version:
According to Eq. (12), we decompose V into block presentation with the

isolation of the first row and column as follows:

V =

[
K + 1

C
Λ 1

1T 0

]
=

[
v11 vT1
v1 V(−1)

]
(24)

We denote α(−i) and b(−i) as the model parameters during the i-th itera-
tion of the leave-one-out cross validation. In the first iteration, we have:[

α(−1)

b(−1)

]
= P(−1)

(
y(−1) +

µ

2C
M (−1)

)
(25)

where P(−1) = V−1
(−1) and y(−1) = [y2, y3, ..., yN , 0]T . We denote the predicted

label of the i-th sample excluded from the training dataset as ỹi, so the
predicted label of the first training sample becomes

ỹ1 = vT1

[
α(−1)

b(−1)

]
− µ

2C
m1

= vT1 P(−1)

(
y(−1) +

µ

2C
M (−1)

)
− µ

2C
m1

(26)

where m1 denotes the first element of the vector M , i.e., m1 = 2p1−1. Con-

sidering the last N equations in Eq. (11), we obtain
[
v1 V(−1)

] [
αT , b

]T
=(

y(−1) + µ
2C
M (−1)

)
, and Eq. (26) can be written as

ỹ1 = vT1 P(−1)

[
v1 V(−1)

]
[α1, · · · , αN , b]T −

µ

2C
m1

= vT1 P(−1)v1α1 + vT1 [α2, · · · , αN , b]T −
µ

2C
m1

(27)

In Eq. (11), the first equation of the system is y1 + µ
2C
m1 = v11α1 +

vT1 [α2, α3, · · · , αN , b]T . Combined with Eq. (26), we obtain ỹ1 = y1−α1(v11−
vT1 P(−1)v1). Lastly, by using P = V−1 and the block matrix inversion lemma,
we obtain

P =

[
u−1 −u−1v1P−1

P(−1) + u−1P(−1)v
T
1 v1P(−1) −u−1P(−1)v

T
1

]
(28)
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where u = v11− vT1 P(−1)v1. Since the system of linear equations in Eq. (11)
is not sensitive to permutations of the ordering of the equations, we obtain

ỹi = yi − αi/Pii (29)

where Pii denotes the i-th diagonal entry of P. By defining
[
α

′T , b
′]T

=

P
[
yT , 0

]
,
[
α

′′T , b
′′]

= P
[
MT , 0

]
, and α = α

′
+ µ

2C
α

′′
, then we obtain

ỹi = yi −
α

′
i

Pii
−

µ
2C
α

′′
i

Pii
(30)

It can be seen from Eq. (30) that ~α and µ have a linear relationship,
which indicates that we can obtain the learning model if µ is determined.
It is assumed that the optimal µ will retain the same sign of ỹi and yi for
all the samples in the training dataset. However, this might result in many
local minima issues due to its non-convex formulation. Thus, we adopt the
following loss function, which is similar to the hinge loss function:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣∣yiα
′
i −

µ
2C
α

′′
i

Pii

∣∣∣∣∣
+

(31)

where |x|+ = max{0, x}. This is a convex upper bound to the leave-one-out
misclassification loss. It prefers the solutions in which ỹi has an absolute
value that is equal to or bigger than 1 and retain the same sign of yi. In the
end the objective function becomes:

N∑
i=1

l(ỹi, yi)

s.t 0 ≤ µ ≤ D

(32)

where D is a constant. This optimization process can be implemented by
a projected sub-gradient descent algorithm. The pseudo-code is given in
Algorithm 1.

Second version:
Similar to the first version, according to Eq. (22), we decompose V in Eq.

(12) into block presentation with the isolation of the first row and column in
Eq. (24).
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We denote α(−i) and b(−i) as the model parameters during the i-th itera-
tion of the leave-one-out cross validation. In the first iteration, we have:[

α(−1)

b(−1)

]
= P(−1)

(
y(−1) − λZ(−1)

)
(33)

where P(−1) = V−1
(−1) and y(−1) = [y2, y3, ..., yN , 0]T . The predicted label of

the i-th sample excluded from the training dataset is denoted as ỹi. Similar
to the derivations (see Eqs. (26)-(29)) in the first version, the predicted label
of the first training sample becomes

ỹ1 = vT1

[
α(−1)

b(−1)

]
+ λz1

= vT1 P(−1)

(
y(−1) − λZ(−1)

)
+ λz1

(34)

where z1 denotes the first element of the vector Z, i.e., z1 =
∑N

j=1(2pj −
1)K(xj,x1). Considering the last N equations in the system of Eq. (21), it

is clear that
[
v1 V(−1)

] [
αT , b

]T
=
(
y(−1) − λZ(−1)

)
. Therefore Eq. (34) can

be written as

ỹ1 = vT1 P(−1)

[
v1 V(−1)

]
[α1, · · · , αN , b]T + λz1

= vT1 P(−1)v1α1 + vT1 [α2, · · · , αN , b]T + λz1

(35)

Note that the first equation in the linear system in Eq. (21) is y1 − λz1 =
v11α1 + vT1 [α2, α3, · · · , αN , b]T . Combining it with Eq. (35), we obtain

ỹ1 = y1 − α1(v11 − vT1 P(−1)v1) (36)

Finally, by using P = V−1 and the block matrix inversion lemma, we obtain

P =

[
u−1 −u−1v1P−1

P(−1) + u−1P(−1)v
T
1 v1P(−1) −u−1P(−1)v

T
1

]
(37)

where u = v11− vT1 P(−1)v1. Since the system of linear equations in Eq. (21)
is not sensitive to permutations of the ordering of the equations, we obtain

ỹi = yi − αi/Pii (38)

By defining
[
α

′T , b
′]T

= P
[
yT , 0

]
,
[
α

′′T , b
′′]

= P
[
MT , 0

]
, and α =

α
′ − λα′′

, we obtain

ỹi = yi −
α

′
i

Pii
+
λα

′′
i

Pii
(39)
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Algorithm 1: Projected Sub-gradient Descent Algorithm

Input: α
′
, α

′′

Initialize: µ← 0 and t← 1
Repeat

ỹi = yi − α′
i

Pii
−

µ
2C
α
′′
i

Pii
, i = 1, 2, ..., N

di ← 1{ỹiyi > 0}, i = 1, 2, ..., N

µ← µ− 1√
t

∑N
i=1 diyi

α
′′
i

Pii

If µ > D then µ← D
End if
µ← max(µ, 0)
t← t+ 1
Until convergence
Output: µ

We can observe from Eq. (39) that α and µ also have a linear relation-
ship, which indicates that we can obtain the learning model once µ has been
determined. We adopt the same loss function in the first version and present
it below:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣yiα′
i + λα

′′
i

Pii

∣∣∣∣
+

(40)

The objective function becomes:

N∑
i=1

l(ỹi, yi)

s.t 0 ≤ µ ≤ D

(41)

where D is a constant. This optimization process can be implemented by
a projected sub-gradient descent algorithm. The pseudo-code is given in
Algorithm 2.

4.1. Computational complexity

Compared with traditional cross validation, the proposed fast leave-one-
out cross validation strategy features the fast computational ability in both
versions. Its computational cost contains two parts, which can be repre-
sented as O(N3 +N). The first part calculates the matrix P by the inverse,
which is related to the training dataset in the target domain, therefore the
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Algorithm 2: Projected Sub-gradient Descent Algorithm

Input: α
′
, α

′′

Initialize: λ← 0 and t← 1
Repeat

ỹi = yi − α′
i

Pii
+

λα
′′
i

Pii
, i = 1, 2, ..., N

di ← 1{ỹiyi > 0}, i = 1, 2, ..., N

λ← λ− 1√
t

∑N
i=1 diyi

α
′′
i

Pii

If λ > D then λ← D
End if
λ← max(λ, 0)
t← t+ 1
Until convergence
Output: λ

corresponding computational complexity becomes O(N3). The second part
consists of the computational complexity of each iteration in Algorithm 1 for
optimizing Eq. (32) or in Algorithm 2 for optimizing Eq. (41), which can be
both represented as O(N).

In terms of traditional cross validation with grid search, the whole time
complexity from [µ1, µ2, ..., µT ] for µ in the first version of the proposed clas-
sifier in Eq. (12), or from [λ1, λ2, ..., λT ] for λ in the second version of the
proposed classifier in Eq. (22), would become T ∗ O(N3 ∗N) = T ∗ O(N4),
which is computationally much more expensive than O(N3 +N) in the pro-
posed fast cross validation strategy.

5. Experimental results

5.1. The clinical dataset and the existing on-line model

A real clinical dataset collected in a urology unit in Hong Kong between
2003 and 2011 was used in the experiment [31][32]. The dataset contains 117
records of bladder cancer patients after radical cystectomy. In this dataset,
ninety-nine patients are male. The mean age of patients is 68 years old
(SD=10 years). The mean follow-up time is two years and seven months
(SD=29 months). 71 patients had undergone open radical cystectomy, and
96 patients had ileal conduit diversion. The 30-day mortality rate, five-year
cancer-specific mortality rate, other-cause mortality rate, and the overall
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Figure 3: Online Nomogram predicting the probability of mortality due to bladder cancer
versus other causes

mortality rate was 3%, 33%, 22% and 55% respectively. Other features in-
clude tumor stage, and grade, lymph node stage and preoperative serum
albumin level. More details about this clinical dataset is presented in Table
1 [32]. Our goal is to predict the 5-year overall mortality and cancer-specific
mortality of bladder cancer patients after radical cystectomy. Table 2 lists
the data input and output we used for model construction.

The existing on-line model is selected from CancerNomograms.com [33],
which was built using a smoothed Poisson regression model to predict the
probability of overall mortality, cancer-specific mortality, and mortality due
to other causes after five years. This on-line model is trained on 11,260
bladder cancer patients treated with radical cystectomy between 1988 and
2006 in the United States [34]. These patients were further stratified into
20 groups based on age, tumor stage, and lymph node stage after radical
cystectomy. The user interface of this on-line model is screenshotted in Fig.
3.

From the observation, the adopted clinical dataset and the existing on-
line model share the same feature groups, including ’age at operation,’ ’tumor
stage’ and ’lymph node stage.’ Therefore, the clinical dataset can be trans-
formed into the inverted pyramid dataset to fit into our proposed framework.
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Table 1: Patient demographics and clinicopathological characteristics

Demographics/Characteristics No. (%) of patients or mean ± standard deviation
Overall Age<=75 years Age>75 years

No. of patients 117(100) 83(71) 34(29)
Mean age (years) 68±10 64±9 80±4
Gender

Male 99 (85) 72 (87) 27 (79)
Female 18 (15) 11 (13) 7 (21)

Cystectomy
Open 71 (61) 52 (63) 19 (56)
Laparoscopic/ robotic-assisted 46 (39) 31 (37) 15 (44)

Urinary diversion
Ileal conduit 96 (82) 62 (75) 34 (100)
Neo-bladder/ continence diversion 21 (18) 21 (25) 0

Hospital stay duration (mouths)
Mean 22±17 23±18 22±15
Median 18 17 (14-26) 18 (12-24)

Preoperative serum albumin level (g/L) 38±6 39±6 36±7
CCI
0 77 (66) 60 (72) 17 (50)
1-2 38 (32) 22 (27) 16 (47)
>=3 2 (2) 1 (1) 1 (3)

Tumour grade
G0 5 (4) 5 (6) 0
G2 24 (21) 17 (20) 7 (21)
G3 69 (59) 48 (58) 21 (62)
CIS 4 (3) 4 (5) 0
N/A 15 (13) 9 (11) 6 (18)

Tumour stage
NMIBC 34 (29) 25 (30) 9 (26)

T0 11 6 5
Tis 7 7 0
Ta 4 3 1
T1 12 9 3

MIBC 82 (70) 57 (69) 25 (74)
T2 32 23 9
T3 32 23 9
T4 18 11 7
N/A

Lymph node
N0 88 (75) 65 (78) 23 (68)
N1 6 (5) 5 (6) 1 (3)
N2 14 (12) 8 (10) 6 (18)
N3 1 (1) 0 1 (3)
N/A 8 (7) 5 (6) 3 (9)

Follow-up (months)
Mean 31±29 34±31 24±23
Range (0-100) (0-100) (0-77)
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Table 2: Input and output for the model construction

Input Value(s)

Gender
1 (female)
2 (male)

Age at operation Normalized to [0, 1]

Surgery Type
1 (open surgery)
2 (laparoscopic surgery)
3 (robotic surgery)

Preoperative serum albumin level Normalized to [0,1]

Tumor stage

1 (T1)
2 (T2)
3 (T3)
4 (T4)

Lymph node stage

0 (N0)
1 (N1)
2 (N2)
3 (N3)

Overall cancer stage

1 (Stage I)
2 (Stage II)
3 (Stage III)
4 (Stage IV)

Follow up period Normalized to [0,1]

Grade
1 (Grade 1)
2 (Grade 2)
3 (Grade 3)

Type of diversion
1 (ideal conduit)
2 (neo bladder)

Ouput Value(s)

5-year mortality
0 (alive)
1 (died from bladder cancer)
2 (died from other causes)
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5.2. Experimental Design
The primary purpose of the experiment is to evaluate the performance of

the proposed approach (i.e., proposed classifier v1 (probability) and proposed
classifier v2 (probability)) for predicting 5-year overall mortality and 5-year
cancer-specific mortality after radical cystectomy. We compared the pro-
posed approach with ten methods: proposed classifier v1 (sign), proposed
classifier v2 (sign), large margin projected transductive transfer learning
LMPROJ[35], LS-SVM [5], standard SVM [36], random forest, AdaBoost,
back-propagation neural network (BPNN) [37], K nearest neighbor (KNN)
algorithm [38] and NB∇C4.5 [7]. The first two methods are the same as the
proposed classifier v1 (probability) and classifier v2 (probability) except that
they transfer the knowledge learned from the signs of the outputs rather than
the probabilistic outputs from the source model. We want to see if there is
a performance difference between the probabilistic output transfer and the
sign knowledge transfer under our proposed framework. The LMPROJ tech-
nique can minimize the distribution distance between the source and target
domains by finding a feature transformation. Random forest and AdaBoost
are the classical ensemble learning algorithms. The difference is that random
forest trains individual models in a parallel way, while AdaBoost trains in-
dividual models in a sequential way where each model learns from mistakes
made by the previous round. NB∇C4.5 is a cascade classification algorithm
following the theory of Cascade Generalization [6]. A Bayesian classifier (NB)
and a decision tree classifier (C4.5) are combined under an ensemble scheme
to give a class decision. Notably, the C4.5 has additional input feature, which
is the predicted outputs from the NB classifier. Other traditional machine
learning methods, such as LS-SVM, SVM, BPNN, and KNN are also selected
as comparative methods.

Before training our proposed models, the first step is to feed common
features from the on-hand clinical data into the existing on-line tool to obtain
the corresponding probabilistic predictions. This is the knowledge we want to
leverage to assist the target domain construction. After that, the proposed
classifier-v1 and classifier-v2, are applied to the whole clinical dataset for
model construction with the help of output knowledge from the previous
step. However, comparative methods only work on clinical data without
learning probabilistic outputs.

To make our comparison fair, we used grid search with cross validation
to discover the optimal parameters during the training process. More con-
cretely, for the proposed models, LS-SVM and SVM, polynomial kernel was
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selected [31] and the trade-off parameter C and the degree parameter γ were
selected by searching C ∈ {1, 10, 50, 100, 150, 200, 250} and γ ∈ {2e− 5, 2e−
4, 2e − 3, 2e − 2, 2e − 1, 1}. For LMPROJ, λ, C and δ were selected from
{10−3, 10−2, 10−1, 100}, {102, 103, 104, 105, 106} and {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6}.
For Random Forest, the number of trees were selected from {5, 10, 15, 20, 25, 30}
respectively. For AdaBoost, the number of learning cycles were selected from
{10, 50, 100, 150}. For BPNN, the number of hidden neurons, the momentum
and the learning rate were selected from {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29},
{0, 0.2, 0.5, 0.9} and {0.01,0.05,0.09} respectively. For KNN, the number k of
neighbors was experimentally selected from {5,7,9,11,13,15,17,19}. The de-
tailed parameter settings are summarized in Table 3. All the experiments are
implemented using 64-bit MATLAB on a computer with Intel Core i5-6300
2.40 GHz CPU and 8.00GB RAM.

5.3. Performance evaluation

The 10-fold cross validation was used for performance evaluation. This
strategy randomly divides the dataset into ten subsets. The model was built
on nine subsets and the remaining subset was used for testing. This pro-
cess was repeated ten times, and the mean and standard deviation (SD)
of accuracy, sensitivity, specificity, precision and AUC of ten models were
calculated.

5.4. Classification performances

Tables 4 and 5 present the classification results of all the methods on the
5-year overall mortality and cancer-specific mortality, respectively. The cor-
responding ROC curves are shown in Fig. 4. A paired t-test was also used to
compare the accuracy and AUC results between the proposed classifier and
the other methods. Tables 4 and 5 list the corresponding paired t-test results,
where the threshold of the p-value is set as 0.05. The superscript (+) means
that the proposed classifier is significantly better than the other method due
to a small p-value (<0.05). It can be observed that the proposed classifier v1
(probability) or the proposed classifier v2 (probability) achieved the highest
classification accuracy in the different task. We conducted the paired t-test
between the best classifier and every other method. The proposed classi-
fier v1 (probability) or the proposed classifier v2 (probability) is statistically
better than the proposed classifier v1 (sign) & the proposed classifier v2
(sign) in terms of accuracy. Besides, the proposed classifier v1 (probability)
or the proposed classifier v2 (probability) achieved higher AUC values than
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the proposed classifier v1 (sign) & the proposed classifier v2 (sign), although
there is no statistically significant difference. At the same time, the proposed
classifier v1 (probability) or the proposed classifier v2 (probability) is statis-
tically better than the other comparative methods in terms of AUC in the
different task. The performance of the comparative methods can be broadly
categrozied into two tiers using an accuracy threshold of 0.7000. LMPROJ,
LS-SVM, SVM, random forest, AdaBoost and KNN fall into the middle tier.
In general the kernel based methods such as SVM and LS-SVMs performed
better than the ensemble learning methods such as random forest and Ad-
aBoost on the adopted datasets. BPNN and NB∇C4.5 are in the lower tier,
whose accuracy are below 0.7000 in both tasks.

To further investigate the effectiveness of the proposed approach, we plot
the t-SNE 2-D results with and without transfer for two prediction tasks
in Fig. 5. Here, we only show the results of the proposed classifier v1
(probability). We observed that without output knowledge transfer, the two
classes are not discriminated very well, while with output knowledge transfer,
the data points are discriminated much better.

The experimental results indicate the proposed approach can achieve bet-
ter classification performance on the clinical dataset than the traditional ma-
chine learning methods that do not benefit from learning knowledge in the
source domain, showing its great potential for the real-world implementation.
The proposed approach also outperformed the cascade method NB∇C4.5 al-
though the latter one leverages the predictions from the Naive Bayes classifier
to guide the final decisions at the higher level using C4.5. This might be due
to the fact that the outcomes predicted from the base classifier in NB∇C4.5
did not supply enough valuable information to further enhance the prediction
performance. In fact, the classifier levels and the selection of the combined
classifiers can greatly influence the final classification results. As state in the
above, we notice that the proposed approach also outperforms the proposed
classifier v1 (sign) and the proposed classifier v2 (sign). We believe it is be-
cause that the direct use of the probabilistic output from the source model
can help us precisely evaluate to what extent it will influence the output
transfer term (third term in Eq. (2) and Eq. (14), respectively) in terms
of each data point. That is, any data point’s probabilistic output from the
existing model may influence the learning of the weighting parameter at a
certain degree. However, if we simply use the sign of (2p−1), it only gives two
absolute influence level (’+1’ and ’-1’) instead of a specific influencing value.
Besides, We used the online nomogram itself to predict the mortality due to
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bladder cancer. It can only give 0.633 accuracy for predicting 5-year overall
mortality and 0.725 accuracy for predicting 5-year cancer-specific mortality,
showing our proposed output-transfer based approach has a big advantage
in bladder cancer prognosis over the existing online model.

In addition, we noticed that there are similar works in the literature. For
example, Fernandes et al.[39] proposed a SVMs based framework that regu-
larizes the goal function with a penalty relevant with the source coefficient
sign. However, how to obtain the value of α in the proposed objective func-
tion in Eq. (12) in [39] is a problem. Comparatively, in our approach, we
can use the proposed fast leave-one-out cross validation strategy to automat-
ically and simultaneously determine the value of the new parameter µ and
λ perspectively, which has a superior advantage for implementation in the
real-world scenarios. Kato et al. [40] imposed a hard constraint to restrict
the sign of the predictor parameter w. Instead, our approach focuses on the
output knowledge instead of the predictor parameters, which allows the tar-
get and source feature sets being different. In summary, the main advantage
of this study is that by using either version of the proposed approach, we
are able to construct a reliable classifier on a small number of samples. The
improved accuracy of prognosis could assist doctors to advise the best treat-
ment plans for patients. Moreover, the proposed approach has the capability
to work readily with the existing model or on-line tool in the medical field by
leveraging their probabilistic output knowledge to help the learning process
in the current domain of interest. Importantly, it is not necessary in this
approach to know the details of the existing model and data trained on the
model. It can still utilize transfer learning to improve generalization perfor-
mance in the target domain. This is very practical in real-world scenarios
where the data and its modeling are private. In other words, the proposed
approach can be regarded as a module-based model which has the capacity
be extended to various medical problems and situations.
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(a) 5-year overall mortality: proposed classifier-v1 and com-
parative methods

(b) 5-year overall mortality: proposed classifier-v2 and com-
parative methods

(c) 5-year cancer-specific mortality: proposed classifier-v1
and comparative methods

(d) 5-year cancer-specific mortality: proposed classifier-v2
and comparative methods

Figure 4: ROC curves

6. Conclusions and future work

Newly collected clinical data cannot always be put into the existing pre-
diction model, as their features are not exactly matching those in the existing
model. Besides, the new data may not be sufficient enough for learning a pre-
diction model from scratch. To overcome these challenges, we propose a novel
output-based transfer learning approach in two versions to make the max-
imum use of small data and guarantee an enhanced generalization capabil-
ity. The proposed approach can leverage the probabilistic outputs predicted
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(a) overall mortality - without transfer (b) overall mortality - with transfer

(c) cancer-specific mortality - without transfer (d) cancer-specific mortality - with transfer

Figure 5: Feature visualization: t-SNE without transfer (a) and with transfer (b) for
predicting 5-year overall mortality; t-SNE without transfer (c) and with transfer (d) for
predicting 5-year cancer-specific mortality.

from the existing model to facilitate better learning in the target domain.
Also, our proposed approach has advantages in tuning the weighting pa-
rameter autonomously and quickly by using our proposed fast leave-one-out
cross validation strategy. The proposed approach is applied to a real-world
clinical dataset for predicting bladder cancer 5-year mortality after radical
cystectomy. The experimental results show that the proposed approach can
work readily with the existing on-line tool and obtain better classification
performances than the other comparative methods.

In future, it is worthwhile to evaluate the performances of the proposed
approach on different clinical datasets for cancer prediction and prognosis.
Furthermore, we can expand our work by incorporating output knowledge
learned from multiple existing models to enhance the generalization capabil-
ity further.
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