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ABSTRACT

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different
objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms
that provide a solution to this problem have benefited from the representational power of deep models.
This paper provides a comprehensive survey on works that employ Deep Learning models to solve
the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and
an in-depth review of how Deep Learning was employed in each one of these stages is presented. A
complete experimental comparison of the presented works on the three MOTChallenge datasets is
also provided, identifying a number of similarities among the top-performing methods and presenting
some possible future research directions.

Keywords Multiple Object Tracking · Deep Learning · Video Tracking · Computer Vision · Convolutional Neural
Networks · LSTM · Reinforcement Learning
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1 Introduction

Multiple Object Tracking (MOT), also called Multi-Target Tracking (MTT), is a computer vision task that aims to
analyze videos in order to identify and track objects belonging to one or more categories, such as pedestrians, cars,
animals and inanimate objects, without any prior knowledge about the appearance and number of targets. Differently
from object detection algorithms, whose output is a collection of rectangular bounding boxes identified by their
coordinates, height and width, MOT algorithms also associate a target ID to each box (known as a detection), in order to
distinguish among intra-class objects. An example of the output of a MOT algorithm is illustrated in figure 1. The MOT
task plays an important role in computer vision: from video surveillance to autonomous cars, from action recognition to
crowd behaviour analysis, many of these problems would benefit from a high-quality tracking algorithm.
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Figure 1: An illustration of the output of a MOT algorithm. Each output bounding box has a number that identifies a
specific person in the video.

While in Single Object Tracking (SOT) the appearance of the target is known a priori, in MOT a detection step is
necessary to identify the targets, that can leave or enter the scene. The main difficulty in tracking multiple targets
simultaneously stems from the various occlusions and interactions between objects, that can sometimes also have
similar appearance. Thus, simply applying SOT models directly to solve MOT leads to poor results, often incurring in
target drift and numerous ID switch errors, as such models usually struggle in distinguishing between similar looking
intra-class objects. A series of algorithms specifically tuned to multi-target tracking have then been developed in recent
years to address these issues, together with a number of benchmark datasets and competitions to ease the comparisons
between the different methods.

Recently, more and more of such algorithms have started exploiting the representational power of deep learning (DL).
The strength of Deep Neural Networks (DNN) resides in their ability to learn rich representations and to extract complex
and abstract features from their input. Convolutional neural networks (CNN) currently constitute the state-of-the-art in
spatial pattern extraction, and are employed in tasks such as image classification [1, 2, 3] or object detection [4, 5, 6],
while recurrent neural networks (RNN) like the Long Short-Term Memory (LSTM) are used to process sequential data,
like audio signals, temporal series and text [7, 8, 9, 10]. Since DL methods have been able to reach top performance in
many of those tasks, we are now progressively seeing them used in most of the top performing MOT algorithms, aiding
to solve some of the subtasks in which the problem is divided.
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This work presents a survey of algorithms that make use of the capabilities of deep learning models to perform Multiple
Object Tracking, focusing on the different approaches used for the various components of a MOT algorithm and putting
them in the context of each of the proposed methods. While the MOT task can be applied to both 2D and 3D data, and
to both single-camera and multi-camera scenarios, in this survey we focus on 2D data extracted from videos recorded
by a single camera.

Some reviews and surveys have been published on the subject of MOT. Their main contributions and limitations are the
following:

• Luo et al. [11] presented the first comprehensive review to focus specifically on MOT, in particular on
pedestrian tracking. They provided a unified formulation of the MOT problem and described the main
techniques used in the key steps of a MOT system. They presented deep learning as one of the future research
directions, since at the time it had only been employed by very few algorithms.

• Camplani et al. [12] presented a survey on Multiple Pedestrian Tracking, but they focused on RGB-D data,
while our focus is on 2D RGB images, without additional inputs. Moreover, their review does not cover deep
learning based algorithms.

• Emami et al. [13] proposed a formulation of single and multi-sensor tracking tasks as a Multidimensional
Assignment Problem (MDAP). They also presented a few approaches that employed deep learning in tracking
problems, but it wasn’t the focus of their paper and they didn’t provide any experimental comparison among
such methods.

• Leal-Taixé et al. [14] presented an analysis of the results obtained by algorithms on the MOT15 [15] and
MOT16 [16] datasets, providing a summary of the trending lines of research and statistics about the results.
They found that after 2015, methods have been shifting from trying to find better optimization algorithms
for the association problem to focusing on improving the affinity models, and they predict that many more
approaches would tackle this issue by using deep learning. However, this work also did not focus on deep
learning, and it does not cover more recent MOT algorithms, published in the last years.

In this paper, based on the discussed limitations, our aim is to provide a survey with the following main contributions:

• We provide the first comprehensive survey on the use of Deep Learning in Multiple Object Tracking, focusing
on 2D data extracted from single-camera videos, including recent works that have not been covered by past
surveys and reviews. The use of DL in MOT is in fact recent, and many approaches have been published in the
last three years.

• We identify four common steps in MOT algorithms and describe the different DL models and approaches
employed in each of those steps, including the algorithmic context in which they are used. The techniques
utilized by each analyzed work are also summarized in a table, together with links to the available source code,
to serve as a quick reference for future research.

• We collect experimental results on the most commonly used MOT datasets to perform a numerical comparison
among them, also identifying the main trends in the best performing algorithms.

• As final point, we discuss the possible future directions of research.

The survey is further organized in this manner. We first describe the general structure of MOT algorithms and the most
commonly used metrics and datasets in section 2. Section 3 explores the various DL-based models and algorithms in
each of the four identified steps of a MOT algorithm. Section 4 presents a numerical comparison among the presented
algorithms and identifies common trends and patterns in current approaches, as well as some limitations and possible
future research directions. Finally, section 5 summarizes the findings of the previous sections and presents some final
remarks.

2 MOT: algorithms, metrics and datasets

In this section, a general description about the problem of MOT is provided. The main characteristics and common
steps of MOT algorithms are identified and described in section 2.1. The metrics that are usually employed to evaluate
the performance of the models are discussed in section 2.2, while the most important benchmark datasets are presented
in section 2.3.
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2.1 Introduction to MOT algorithms

The standard approach employed in MOT algorithms is tracking-by-detection: a set of detections (i.e. bounding boxes
identifying the targets in the image) are extracted from the video frames and are used to guide the tracking process,
usually by associating them together in order to assign the same ID to bounding boxes that contain the same target.
For this reason, many MOT algorithms formulate the task as an assignment problem. Modern detection frameworks
[4, 17, 18, 5, 6] ensure a good detection quality, and the majority of MOT methods (with some exceptions, as we
will see) have been focusing on improving the association; indeed, many MOT datasets provide a standard set of
detections that can be used by the algorithms (that can thus skip the detection stage) in order to exclusively compare
their performances on the quality of the association algorithm, since the detector performance can heavily affect the
tracking results.

MOT algorithms can also be divided into batch and online methods. Batch tracking algorithms are allowed to use
future information (i.e. from future frames) when trying to determine the object identities in a certain frame. They
often exploit global information and thus result in better tracking quality. Online tracking algorithms, on the contrary,
can only use present and past information to make predictions about the current frame. This is a requirement in some
scenarios, like autonomous driving and robot navigation. Compared to batch methods, online methods tend to perform
worse, since they cannot fix past errors using future information. It is important to note that while a real-time algorithm
is required to run in an online fashion, not every online method necessarily runs in real-time; quite often, in fact, with
very few exceptions, online algorithms are still too slow to be employed in a real-time environment, especially when
exploiting deep learning algorithms, that are often computationally intensive.

Despite the huge variety of approaches presented in the literature, the vast majority of MOT algorithms share part or all
of the following steps (summarized in figure 2):

• Detection stage: an object detection algorithm analyzes each input frame to identify objects belonging to the
target class(es) using bounding boxes, also known as ‘detections’ in the context of MOT;

• Feature extraction/motion prediction stage: one or more feature extraction algorithms analyze the detections
and/or the tracklets to extract appearance, motion and/or interaction features. Optionally, a motion predictor
predicts the next position of each tracked target;

• Affinity stage: features and motion predictions are used to compute a similarity/distance score between pairs
of detections and/or tracklets;

• Association stage: the similarity/distance measures are used to associate detections and tracklets belonging to
the same target by assigning the same ID to detections that identify the same target.

(1)

(2)

Feature 
extractor

Feature 
extractor

Feature 
extractor

Feature 
extractor

(3)

(4)
(5)

2

2

1

1

Figure 2: Usual workflow of a MOT algorithm: given the raw frames of a video (1), an object detector is run to obtain
the bounding boxes of the objects (2). Then, for every detected object, different features are computed, usually visual
and motion ones (3). After that, an affinity computation step calculates the probability of two objects belonging to the
same target (4), and finally an association step assigns a numerical ID to each object (5).

While these stages can be performed sequentially in the order presented here (often once per frame for online methods
and once for the whole video for batch methods), there are many algorithms that merge some of these steps together,
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or intertwine them, or even perform them multiple times using different techniques (e.g. in algorithms that work in
two phases). Moreover, some methods do not directly associate detections together, but use them to refine trajectory
predictions and to manage initialization and termination of new tracks; nonetheless, many of the presented steps can
often still be identified even in such cases, as we will see.

2.2 Metrics

In order to provide a common experimental setup where algorithms can be fairly tested and compared, a group of
metrics have been de facto established as standard, and they are used in almost every work. The most relevant ones are
metrics defined by Wu and Nevatia [19], the so-called CLEAR MOT metrics [20], and recently the ID metrics [21].
These sets of metrics aim to reflect the overall performance of the tested models, and point out the possible drawbacks
of each one. Therefore, those metrics are defined as follows:

Classical metrics

These metrics, defined by Wu and Nevatia [19], highlight the different types of errors a MOT algorithm can make. In
order to show those problems, the following values are computed:

• Mostly Tracked (MT) trajectories: number of ground-truth trajectories that are correctly tracked in at least 80%
of the frames.

• Fragments: trajectory hypotheses which cover at most 80% of a ground truth trajectory. Observe that a true
trajectory can be covered by more than one fragment.

• Mostly Lost (ML) trajectories: number of ground-truth trajectories that are correctly tracked in less than 20%
of the frames.

• False trajectories: predicted trajectories which do not correspond to a real object (i.e. to a ground truth
trajectory).

• ID switches: number of times when the object is correctly tracked, but the associated ID for the object is
mistakenly changed.

CLEAR MOT metrics

The CLEAR MOT metrics were developed for the Classification of Events, Activities and Relationships (CLEAR)
workshops held in 2006 [22] and 2007 [23]. The workshops were jointly organized by the the European CHIL project,
the U.S. VACE project, and the National Institute of Standards and Technology (NIST). Those metrics are MOTA
(Multiple Object Tracking Accuracy) and MOTP (Multiple Object Tracking Precision). They serve as a summary of
other simpler metrics which compose them. We will explain the simpler metrics at first and build the complex ones over
them. A detailed description on how to match the real objects (ground truth) with the tracker hypothesis can be found in
[20], as it is not trivial how to consider when a hypothesis is related to an object, and it depends on the precise tracking
task to be evaluated. In our case, as we are focusing on 2D tracking with single camera, the most used metric to decide
whether an object and a prediction are related or not is Intersection over Union (IoU) of bounding boxes, as it was the
measure established in the presentation paper of MOT15 dataset [15]. Specifically, the mapping between ground truth
and hypotheses is established as follows: if the ground truth object oi and the hypothesis hj are matched in frame t− 1,
and in frame t the IoU(oi, hj) ≥ 0.5, then oi and hj are matched in that frame, even if there exists another hypothesis
hk such that IoU(oi, hj) < IoU(oi, hk), considering the continuity constraint. After the matching from previous
frames has been performed, the remaining objects are tried to be matched with the remaining hypotheses, still using a
0.5 IoU threshold. The ground truth bounding boxes that cannot be associated with a hypothesis are counted as false
negatives (FN), and the hypotheses that cannot be associated with a real bounding box are marked as false positives
(FP). Also, every time a ground truth object tracking is interrupted and later resumed is counted as a fragmentation,
while every time a tracked ground truth object ID is incorrectly changed during the tracking duration is counted as an
ID switch. Then, the simple metrics computed are the following:

• FP: the number of false positives in the whole video;

• FN: the number of false negatives in the whole video;

• Fragm: the total number of fragmentations;

• IDSW: the total number of ID switches.

The MOTA score is then defined as follows:
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MOTA = 1− (FN + FP + IDSW )

GT
∈ (−∞, 1]

where GT is the number of ground truth boxes. It is important to note that the score can be negative, as the algorithm
can commit a number of errors greater than the number of ground truth boxes. Usually, instead of reporting MOTA, it is
common to report the percentage MOTA, which is just the previous expression expressed as a percentage. On the other
hand, MOTP is computed as:

MOTP =

∑
t,i dt,i∑
t ct

where ct denotes the number of matches in frame t, and dt,i is the bounding box overlap between the hypothesis i
with its assigned ground truth object. It is important to note that this metric takes few information about tracking into
account, and rather focuses on the quality of the detections.

ID scores

The main problem of MOTA score is that it takes into account the number of times a tracker makes an incorrect decision,
such as an ID switch, but in some scenarios (e.g. airport security) one could be more interested in rewarding a tracker
that can follow an object for the longest time possible, in order to not lose its position. Because of that, in [21] a
couple of alternative new metrics are defined, that are supposed to complement the information given by the CLEAR
MOT metrics. Instead of matching ground truth and detections frame by frame, the mapping is performed globally,
and the trajectory hypothesis assigned to a given ground truth trajectory is the one that maximizes the number of
frames correctly classified for the ground truth. In order to solve that problem, a bipartite graph is constructed, and the
minimum cost solution for that problem is taken as the problem solution. For the bipartite graph, the sets of vertices
are defined as follows: the first set of vertices, VT , has a so-called regular node for each true trajectory, and a false
positive node for each computed trajectory. The second set, VC , has a regular node for each computed trajectory and
a false negative for each true one. The costs of the edges are set in order to count the number of false negative and
false positive frames in case that edge were chosen (more information can be found in [21]). After the association is
performed, there are four different possible pairs, attending to the nature of the involved nodes. If a regular node from
VT is matched with a regular node of VC (i.e. a true trajectory is matched with a computed trajectory), a true positive
ID is counted. Every false positive from VT matched with a regular node from VC counts as a false positive ID. Every
regular node from VT matched with a false negative from VC counts as a false negative ID, and finally, every false
positive matched with a false negative counts as a true negative ID. Afterwards, three scores are calculated. IDTP is the
sum of the weights of the edges selected as true positive ID matches (it can be seen as the percentage of detections
correctly assigned in the whole video). IDFN is the sum of weights from the selected false negative ID edges, and IDFP
is the sum of weights from the selected false positive ID edges. With these three basic measures, another three measures
are computed:

• Identification precision: IDP = IDTP
IDTP+IDFP

• Identification recall: IDR = IDTP
IDTP+IDFN

• Identification F1: IDF1 = 2
1

IDP + 1
IDR

= 2IDTP
2IDTP+IDFP+IDFN

Usually, the reported metrics in almost every piece of work are the CLEAR MOT metrics, mostly tracked trajectories
(MT), mostly lost trajectories (ML) and IDF1, since this metrics are the ones shown in MOTChallenge leaderboards (see
section 2.3 for details). Additionally, the number of frames per second (FPS) the tracker can process is often reported,
and is also included in the leaderboards. However, we find this metric difficult to compare among different algorithms,
since some of the methods include the detection phase while others skip that computation. Also, the dependency on the
hardware employed is relevant in terms of speed.

2.3 Benchmark datasets

In the past few years, a number of datasets for MOT have been published. In this section we are going to describe the
most important ones, starting from a general description of the MOTChallenge benchmark, then focusing on its datasets,
and finally describing KITTI and other less commonly used MOT datasets.

MOTChallenge. MOTChallenge1 is the most commonly used benchmark for multiple object tracking. It provides,
among others, some of largest datasets for pedestrian tracking that are currently publicly available. For each dataset,

1https://motchallenge.net/
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the ground truth for the training split, and detections for both training and test splits are provided. The reason why
MOTChallenge datasets frequently provide detections (often referred to as public detections, as opposed to the private
detections, that are obtained by the algorithm authors by using a detector of their own) is that the detection quality
has a big impact on the final performance of the tracker, but the detection part of the algorithms is often independent
from the tracking part and usually uses already existing models; providing public detections that every model can use
makes the comparison of the tracking algorithms easier, since the detection quality is factored out from the performance
computation and trackers start on a common ground. The evaluation of an algorithm on the test dataset is done by
submitting the results to a test server. The MOTChallenge website contains a leaderboard for each of the datasets,
showing in separate pages models using the publicly provided detections and the ones using private detections. Online
methods are also marked as so. MOTA is the primary evaluation score for the MOTChallenge, but many other metrics
are shown, including all the ones presented in section 2.2. As we will see, since the vast majority of MOT algorithms
that use deep learning focus on pedestrians, the MOTChallenge datasets are the most widely used, as they are the most
comprehensive ones currently available, providing more data to train deep models.

MOT15. The first MOTChallenge dataset is 2D MOT 20152 [15] (often just called MOT15). It contains a series of 22
videos (11 for training and 11 for testing), collected from older datasets, with a variety of characteristics (fixed and
moving cameras, different environments and lighting conditions, and so on) so that the models would need to generalize
better in order to obtain good results on it. In total, it contains 11283 frames at various resolutions, with 1221 different
identities and 101345 boxes. The provided detections were obtained using the ACF detector [24].

MOT16/17. A new version of the dataset was presented in 2016, called MOT163 [16]. This time, the ground truth was
made from scratch, so that it was consistent throughout the dataset. The videos are also more challenging, since they
have a higher pedestrian density. A total of 14 videos are included in the set (7 for training and 7 for testing), with
public detections obtained using the Deformable Part-based Model (DPM) v5 [25, 26], that they found to obtain better
performance in detecting pedestrians on the dataset when compared to other models. This time the dataset includes
11235 frames with 1342 identities and 292733 boxes in total. The MOT17 dataset4 includes the same videos as MOT16,
but with more accurate ground truth and with three sets of detections for each video: one from Faster R-CNN [4], one
from DPM and one from the Scale-Dependent Pooling detector (SDP) [27]. The trackers would then have to prove to
be versatile and robust enough to get a good performance using different detection qualities.

MOT19. Very recently, a new version of the dataset for the CVPR 2019 Tracking Challenge5 has been released,
containing 8 videos (4 for training, 4 for testing) with extremely high pedestrian density, reaching up to 245 pedestrians
per frame on average in the most crowded video. The dataset contains 13410 frames with 6869 tracks and a total of
2259143 boxes, much more than the previous datasets. While submissions for this dataset have only been allowed for a
limited amount of time, this data will be the basis for the release of MOT19 in late 2019 [28].

KITTI. While the MOTChallenge datasets focus on pedestrian tracking, the KITTI tracking benchmark6 [29, 30]
allows for tracking of both people and vehicles. The dataset was collected by driving a car around a city and it was
released in 2012. It consists of 21 training videos and 29 test ones, with a total of about 19000 frames (32 minutes). It
includes detections obtained using the DPM7 and RegionLets8 [31] detectors, as well as stereo and laser information;
however, as explained, in this survey we are only going to focus on models using 2D images. The CLEAR MOT metrics,
MT, ML, ID switches and fragmentations are used to evaluate the methods. It is possible to submit results only for
pedestrians or only for cars, and two different leaderboards are maintained for the two classes.

Other datasets. Besides the previously described datasets, there is a number of older, and now less frequently used,
ones. Among those we can find the UA-DETRAC tracking benchmark9 [32], that focuses on vehicles tracked from
traffic cameras, and the TUD10 [33] and PETS200911 [34] datasets, that both focus on pedestrians. Many of their videos
are now part of the MOTChallenge datasets.

2Dataset: https://motchallenge.net/data/2D_MOT_2015/, leaderboard: https://motchallenge.net/results/2D_
MOT_2015/.

3Dataset: https://motchallenge.net/data/MOT16/, leaderboard: https://motchallenge.net/results/MOT16/.
4Dataset: https://motchallenge.net/data/MOT17/, leaderboard: https://motchallenge.net/results/MOT17/.
5https://motchallenge.net/workshops/bmtt2019/tracking.html
6http://www.cvlibs.net/datasets/kitti/eval_tracking.php
7The website says the detections were obtained using a model based on a latent SVM, or L-SVM. That model is now known as

Deformable Parts Model (DPM).
8http://www.xiaoyumu.com/project/detection
9https://detrac-db.rit.albany.edu/Tracking

10https://www.d2.mpi-inf.mpg.de/node/428
11http://www.cvg.reading.ac.uk/PETS2009/a.html
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3 Deep learning in MOT

As this survey focuses on the use of deep learning in the MOT task, we organize this section into five subsections. Each
of the first four subsections provides a review on how deep learning is exploited in each one of the four MOT stages
defined previously12. Subsection 3.4, besides presenting the use of deep learning in the association process, will also
include its use in the overall track management process (e.g. initialization/termination of tracks), since it is strictly
linked to the association step. Subsection 3.5 will finally describe uses of deep learning in MOT that do not fit into the
four-step scheme.

We have included a summary table in A that shows the main techniques used in each of the four steps in each paper
presented in this survey. The mode of operation (batch vs. online) is indicated and a link to the source code or to other
provided material is also included (when available).

3.1 DL in detection step

While many works have used as input to their algorithms dataset-provided detections generated by various detectors
(for example Aggregated Channel Features [24] for MOT15 [15] or Deformable Parts Model [25] for MOT16 [16]),
there have also been algorithms that integrated a custom detection step, that often contributed to improve the overall
tracking performance by enhancing the detection quality.

As we will see, most of the algorithms that employed custom detections made use of Faster R-CNN and its variants
(section 3.1.1) or SSD (section 3.1.2), but approaches that used different models also exist (section 3.1.3). Despite the
vast majority of algorithms utilized deep learning models to extract rectangular bounding boxes, a few works made a
different use of deep networks in the detection step: these works are the focus of section 3.1.4.

REGION PROPOSAL
NETWORK

PROPOSED REGIONS

FEATURE
MAPS

CONV
LAYERS

FINAL DETECTIONS
REGIONS AND IMAGE

MATCHING

Figure 3: Example of a deep learning based detector (Faster R-CNN architecture [4])

3.1.1 Faster R-CNN

The Simple Online and Realtime Tracking (SORT) algorithm [35] has been one of the first MOT pipelines to leverage
convolutional neural networks for the detection of pedestrians. Bewley et al. showed that replacing detections obtained
using Aggregated Channel Features (ACF) [24] with detections computed by Faster R-CNN [4] (illustrated in figure 3)
could improve the MOTA score by 18.9% (absolute change) on the MOT15 dataset [15]. They used a relatively simple
approach that consisted in predicting object motion using the Kalman filter [36] and then associating the detections
together with the help of the Hungarian algorithm [37], using intersection-over-union (IoU) distances to compute the
cost matrix. At the time of publishing, SORT was ranked as the best-performing open source algorithm on the MOT15
dataset.

12Note that the classification of the models should not be considered as a strict categorization, since it’s not rare that one of them
has been used for multiple purposes and drawing a line is sometimes difficult. For example, some deep learning models, Siamese
networks in particular, are often trained to output an affinity score, but at inference time they are only used to extract ‘association
features’, and a simple hardcoded distance measure is then used instead to compute the affinities. In those cases, we decided to
consider the network as performing feature extraction, since the similarity measure is not directly learned. However, those models
could have also been considered to use deep learning for affinity computation.
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Yu et al. reached the same conclusions in [38] using a modified Faster R-CNN, that included skip-pooling [39] and
multi-region features [40] and that was fine-tuned on multiple pedestrian detection datasets. With this architecture
they were able to improve the performance of the algorithm they proposed (see section 3.2.2) by more than 30%
(absolute change, measured in MOTA), reaching state-of-the-art performance on the MOT16 dataset [16]. They also
showed that having higher-quality detections reduces the need of complex tracking algorithms while still obtaining
similar results: this is because the MOTA score is heavily influenced by the amount of false positives and false
negatives, and using accurate detections is an effective way of reducing both. The detections computed by [38] on the
MOT16 dataset have also been made available to the public13 and many MOT algorithms have since exploited them
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

In the following years, other works have taken advantage of the detection accuracy of Faster R-CNN, that has since
been applied as part of MOT algorithms to detect athletes [52], cells [53] and pigs [54]. Moreover, an adaptation of
Faster R-CNN that adds a segmentation branch, Mask R-CNN [17], has been used for example by Zhou et al. [55] both
to detect and to track pedestrians,

3.1.2 SSD

The SSD [5] detector is another commonly used network in the detection step. In particular, Zhang et al. [54] compared
it with Faster R-CNN and R-FCN [18] in their pig tracking pipeline, showing that it worked better on their dataset.
They employed a Discriminative Correlation Filters (DCF) based online tracking method [56] with the use of HOG [57]
and Colour Names [58] features to predict the position of so-called tag-boxes, small regions around the center of each
animal. The Hungarian algorithm was used for the association between tracked tag-boxes and detections, and in the
case of tracking failure the output of the DCF tracker was used to refine the bounding boxes. Lu et al. [59] also used
SSD, but in this case to detect a variety of object classes to track (people, animals, cars, etc., see section 3.2.4).

Some works have tried to refine the detections obtained with SSD by taking into account the information obtained
in other steps of the tracking algorithm. Kieritz et al. [60], in their joint detection and tracking framework, used the
affinity scores computed between tracks and detections to replace the standard Non-Maximum Suppression (NMS) step
included in the SSD network with a version that refines detection confidence scores based on their correspondence to
tracked targets.

Zhao et al. [61] instead employed the SSD detector to search for pedestrians and vehicles in a scene, but they used
a CNN-based Correlation Filter (CCF) to allow SSD to generate more accurate bounding boxes. The CCF exploited
PCA-compressed [62] CNN features to predict the position of a target in the subsequent frame; the predicted position
was then used to crop a ROI (Region Of Interest) around it, that was given as input to SSD. In that way, the network
was able to compute small detections using deeper layers, that extract more valuable semantic information and that are
thus known to produce more accurate bounding boxes and less false negatives. The algorithm then combined these
detections with the ones obtained on the full image with a NMS step and then association between tracks and detections
was performed using the Hungarian algorithm, with a cost matrix that took into account geometric (IoU) and appearance
(Average Peak-to-Correlation Energy - APCE [63]) cues. APCE was also used for an object re-identification (ReID)
step, to recover from occlusions. The authors showed that training a detector with multi-scale augmentation could
lead to much better performance in tracking and the algorithm reached accuracy comparable to state-of-the-art online
algorithms on KITTI and MOT15.

3.1.3 Other detectors

Among the other CNN models used as detectors in MOT, we can mention the YOLO series of detectors [64, 6, 65];
in particular, YOLOv2 has been used by Kim et al. [66] also to detect pedestrians. Sharma et al. [67] used instead a
Recurrent Rolling Convolution (RRC) CNN [68] and a SubCNN [69] to detect vehicles in videos recorded on a moving
camera in the context of autonomous driving (see section 3.2.4). Pernici et al. [70] used the Tiny CNN detector [71] in
their face tracking algorithm, obtaining a better performance when compared to the Deformable Parts Model detector
(DPM) [25], that does not use deep learning techniques.

3.1.4 Other uses of CNNs in the detection step

Sometimes CNNs have been employed in the MOT detection step for uses other than directly computing object bounding
boxes.

For example, CNNs have been exploited to reduce false positives in [72], where vehicle detections were obtained with a
modified version of the ViBe algorithm [73] that performed background subtraction on the input. These detections were

13https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
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first given as input to a SVM [74] and, in case the SVM was not confident enough to either discard or confirm them, a
Faster-CNN based network [75] would then be used to decide whether to keep or discard each of them. In this way,
only a few objects would have to be analyzed by the CNN, making the detection step faster.

Bullinger et al. explored a different approach in [76], where instead of computing classical bounding boxes in the
detection step, a Multi-task Network Cascade [77] was instead employed to obtain instance-aware semantic segmentation
maps. The authors argue that since the 2D shape of instances, differently from rectangular bounding boxes, do not
contain background structures or parts of other objects, optical flow based tracking algorithms would perform better,
especially when the target position in the image is also subject to camera motion in addition to the object’s own
motion. After obtaining the segmentation maps for the various instances present in the current frame, an optical flow
method ([78, 79, 80]) was applied to predict the position and shape of each instance in the next frame. An affinity
matrix between predicted and detected instances was then computed and given as input to the Hungarian algorithm for
association. While the method obtained slightly lower MOTA score on the whole MOT15 dataset when compared to
SORT, the authors showed that it performed better on videos with moving camera.

3.2 DL in feature extraction and motion prediction

The feature extraction phase is the preferred one for the employment of deep learning models, due to their strong
representational power that makes them good at extracting meaningful high-level features. The most typical approach
in this area is the use of CNNs to extract visual features, as it is commented in section 3.2.2. Instead of using classical
CNN models, another recurrent idea consists in training them as Siamese CNNs, using contrastive loss functions, in
order to find the set of features that best distinguish between subjects. Those approaches are explained in section 3.2.3.
Furthermore, some authors explored the capabilities of CNNs to predict object motion inside correlation filter based
algorithms: these are commented in section 3.2.5. Finally, other types of deep learning models have been employed,
usually including them in more complex systems, combining deep features with classical ones. They are explained in
sections 3.2.4 (specifically for visual features) and 3.2.6 (for approaches that don’t fit in the other categories).

3.2.1 Autoencoders: first usage of DL in a MOT pipeline

To the best of our knowledge, the first approach using deep learning in MOT was presented by Wang et al. [81] in 2014.
They proposed a network of autoencoders stacked in two layers that were used to refine visual features extracted from
natural scenes [82]. After the extraction step, affinity computation was performed using a SVM, and the association
task was formulated as a minimum spanning tree problem. They showed that feature refinement greatly improved the
model performance. However, the dataset on which the algorithm was tested is not commonly used and results are
hardly comparable to other methods.

3.2.2 CNNs as visual feature extractors

The most widely used methods for feature extraction are based on subtle modifications of convolutional neural networks.
One of the first uses of these models can be found in [83]. Here, Kim et al. incorporated visual features into a classical
algorithm, called Multiple Hypothesis Tracking, using a pretrained CNN that extracted 4096 visual features from the
detections, that were later reduced to 256 using PCA. This modification improved the MOTA score on MOT15 by
more than 3 points. By the time that paper was submitted, it was the top ranked algorithm on that dataset. Yu el al.
[38] used a modified version of GoogLeNet [2], pretrained on a custom re-identification dataset, built by combining
classical person identification datasets (PRW [84], Market-1501 [85], VIPeR [86], CUHK03 [87]). Visual features were
combined with spatial ones, extracted with a Kalman filter, and then an affinity matrix was computed.

Other examples of the use of CNNs for feature extraction can be found in [88], where a custom CNN was used to
extract appearance features in a Multiple Hypothesis Tracking framework, in [89], whose tracker employed a pretrained
region-based CNN [90], or in [91], where a CNN extracted visual features from fish heads, later combined with motion
prediction from a Kalman Filter.

The SORT algorithm [35], presented in section 3.1.1, was later refined with deep features, and this new version was
called DeepSORT [41]. This model incorporated visual information extracted by a custom residual CNN [92]. The
CNN provided a normalized vector with 128 features as output, and the cosine distance between those vectors was
added to the affinity scores used in SORT. A diagram of the network structure can be found in figure 4. The experiments
showed that this modification overcame the main drawback of the SORT algorithm, which was a high number of ID
switches.

Mahmoudi et al. [42] also incorporated CNN extracted visual features along with dynamic and position features, and
then solved the association problem via Hungarian algorithm. In [93], a ResNet-50 [3] pretrained on ImageNet was
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Figure 4: Diagram of DeepSORT [41] CNN-based feature extractor. The red blocks are simple convolutional layers, the
yellow block is a max pooling layer, and the blue blocks are residual blocks, that are composed of three convolutional
layers each [3]. The final green block represents a fully-connected layer with batch normalization and L2 normalization.
The output size of each block is indicated in parentheses.

used as visual feature extractor. An extensive explanation of how a CNN can be used to distinguish pedestrians can be
found in [94]. In their model, Bae et al. combined the output of the CNN with shape and motion models, and computed
an aggregated affinity score for each pair of detections; the association problem was then solved by the Hungarian
algorithm. Again, Ullah et al. [95] applied an off-the-shelf version of GoogLeNet [2] for feature extraction. Fang et
al. [96] selected as visual features the output of a hidden convolutional layer of an Inception CNN [97]. Fu et al. [98]
employed the DeepSORT feature extractor, and measured the correlation of features using a discriminative correlation
filter. Afterwards, the matching score was combined with a spatio-temporal relation score, and the final score was used
as a likelihood in a Gaussian Mixture Probability Hypothesis Density filter [99]. The authors in [100] used a fine-tuned
GoogLeNet on the ILSVRC CLS-LOC [101] dataset for pedestrians recognition. In [70], the authors reused the visual
features extracted by the CNN-based detector, and the association was performed using a Reverse Nearest Neighbor
technique [102]. Sheng et al. [103] employed the convolutional part of GoogLeNet to extract appearance features,
using the cosine distance between them to compute an affinity score between pairs of detections, and merging that
information with motion prediction in order to compute an overall affinity which serves as edge cost in a graph problem.
Chen et al. [104] utilized the convolutional part of ResNet to build a custom model, stacking a LSTM cell on top of the
convolutions, in order to compute simultaneously a similarity score and a bounding box regression.

In [53], the model learned to distinguish fast moving cells from slow moving cells. After the classification was
computed, slow cells were associated using only motion features, since they were almost still, while fast cells were
associated using both motion features and visual features extracted by a Fast R-CNN based on VGG-16 [1], specifically
fine-tuned for the cell classification task. Moreover, the proposed model included a tracking optimization step, where
false negatives and false positives were reduced by combining possible tracklets that were mistakenly interrupted.

Ran et al. [52] proposed a combination of a classical CNN for visual features extraction and AlphaPose CNN for pose
estimation. The output of these two networks was then fed into a LSTM model together with the tracklet information
history to compute a similarity, as it is explained in section 3.3.1.

An interesting employment of CNNs in feature extraction can be found in [51]. The authors used a pose detector, called
DeepCut [105], that was a modification of Fast R-CNN; its output consisted in score maps predicting the presence of
fourteen body parts. These were combined with the cropped images of detected pedestrians and fed into a CNN. A
more detailed explanation of the algorithm is available in section 3.3.6.

3.2.3 Siamese networks

Another recurrent idea is training CNNs with loss functions that combine information from different images, in order
to learn the set of features that best differentiates examples of different objects. These networks are usually called

11

http://creativecommons.org/licenses/by-nc-nd/4.0/


THIS PREPRINT HAS BEEN ACCEPTED IN NEUROCOMPUTING
c©2019. THIS MANUSCRIPT VERSION IS MADE AVAILABLE UNDER THE CC-BY-NC-ND 4.0 LICENSE

CONV
LAYERS

SAME
PERSON?

FU
LL

Y 
C

O
N

N
EC

TE
D

 L
AY

ER
SCONV

LAYERS

Figure 5: Example of a Siamese CNN architecture. For feature extraction, the network is trained as a Siamese CNN,
but at inference time the output probability is discarded, and the last fully connected layer is used as feature vector for a
single candidate. When the network is used for affinity computation, the whole structure is preserved during inference.

Siamese networks (an example of the architecture is shown in figure 5). Kim et al. [106] proposed a Siamese network
[107] which was trained using a contrastive loss. The network took two images, their IoU score and their area ratio
as input, and produced a contrastive loss as output. After the net was trained, the layer that computed the contrastive
loss was removed, and the last layer was used as a feature vector for the input image. The similarity score was later
computed by combining the Euclidean distance between feature vectors, the IoU score and the area ratio between
bounding boxes. The association step was solved using a custom greedy algorithm. Wang et al. [108] also proposed a
Siamese network which took two image patches and computed a similarity score between them. The score at test time
was computed comparing the visual features extracted by the network for the two images, and including temporally
constrained information. The distance employed as similarity score was a Mahalanobis distance with a weight matrix,
also learned by the model.

Zhang et al. [109] proposed a loss function called SymTriplet loss. According to their explanation, during the training
phase three CNNs with shared weights were used, and the loss function combined the information extracted from two
images belonging to the same object (positive pair) and from an image of a different one (two negative pairs). The
SymTriplet loss decreased when the distance between the feature vectors of the positive pair was small, and increased
when the negative pairs’ features were close. Optimizing that function resulted in very similar feature vectors for
images of the same object, while producing different vectors for different objects, with a larger distance between them.
The dataset on which the tracking algorithm was tested was made of chapters from TV series and music videos from
YouTube. Since the videos included different shots, the problem was divided into two stages. First, data association
between frames in the same shot were performed. The affinity score in that case was a combination between the
Euclidean distance of the feature vectors from the detections, temporal and kinematic information. Afterwards, tracklets
were linked across shots, using a Hierarchical Agglomerative Clustering algorithm working over the appearance
features.

Leal-Taixé et al. [110] proposed a Siamese CNN which received two stacked images as an input, and output the
probability of both images belonging to the same person. They trained the network with this output so that it learned the
most representative features to distinguish subjects. Afterwards, the output layer was removed and the features extracted
by the last hidden layer were used as input for a Gradient Boosting model, together with contextual information, in
order to get an affinity score between detections. Then, the association step was solved using Linear Programming
[111].

Son et al. [112] proposed a new CNN architecture, called Quad-CNN. This model received as input four image
patches, where the first three of them were from the same person, but in increasing time order, and the last one from
another person. The network was trained using a custom loss, combining information about temporal distances between
detections, extracted visual features, and bounding box positions. During the test phase, the network took two detections,
and predicted the probability that both detections belonged to the same person, using the learned embedding.

In [55] a Siamese network based on Mask R-CNN [17] was built. After the Mask R-CNN had produced the mask for
each detection, three examples were fed into the shallow Siamese net, two from the same object (positive pair) and one
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from another object (negative pair), again, and a triplet loss was used for training. After the training phase, the output
layer was removed, and a 128-d vector was extracted from the last hidden layer. The appearance similarity was then
computed using the cosine distance. That similarity was further combined with a motion consistency, which consisted
on a score based on the predicted position of the object, assuming linear motion, and with a spatial potential, which was
a more complex motion model. The association problem was then solved with a power iteration over a 3-d tensor of
computed similarities.

Maksai et al. [113] directly used the 128-d feature vector extracted by the ReID triplet CNN proposed in [114], and
combined it with other appearance-based features (as an alternative to an appearance-less version of the algorithm).
Those features were further processed by a bidirectional LSTM. In [115] a similar approach was followed, with a
so-called Spatial Attention Network (SAN). The SAN was a Siamese CNN, which used a pretrained ResNet-50 as base
model. That net was truncated so that only the convolutional layers were employed. Then, a Spatial Attention Map was
extracted from the last convolutional layers of the model: it represented a measure of the importance of different parts
in the bounding box, in order to exclude background and other targets from the extracted features. The features were in
fact weighted by this map, acting as a mask. The masked features from both detections were then merged into a fully
connected layer which computed the similarity between them. During training, the network was also set to output a
classification score, because the authors observed that jointly optimizing classification and affinity computation tasks
resulted in a better performance in the latter. The affinity information was further fed into a bidirectional LSTM, as in
the previous example. Both will be further discussed in section 3.3. Ma et al. [116] also trained a Siamese CNN in
order to extract visual features from tracked pedestrians in their model, which is explained in detail in section 3.4.1.

In [117], Zhou et al. proposed a visual displacement CNN, which learned to predict the next position of an object
depending on previous positions of the objects, and the influence that an object had over other objects in the scene.
That CNN was then used to predict the location of objects in the next frame, taking as input their past trajectories. The
network was also capable of extracting visual information from the predicted positions and the actual detections, in
order to compute a similarity score, as it is explained in section 3.3.6.

Chen et al. [118] proposed a two-steps algorithm which employed GoogLeNet trained with triplet loss for feature
extraction. In the first step, the model used a R-FCN to predict possible detection candidates using information from
the existing tracklets. Then, those detections were combined with the actual detections and NMS was performed.
Afterwards, using the customly trained GoogLeNet model, they extracted visual features from the detections, and solved
the association problem with a hierarchical association algorithm. When their paper was published, the algorithm was
ranked on top among online methods in the MOT16 dataset.

Lee et al. [119] recently explored an interesting approach, combining pyramid and Siamese networks together. Their
model, called Feature Pyramid Siamese Network, employed a backbone network (they studied the performance using
SqueezeNet [120] and GoogLeNet [2], but the backbone network can be changed), which extracted visual features from
two different images using the same parameters. Afterwards, some of the hidden feature maps from the network were
extracted and given to the Feature Pyramid Siamese Network. The network then employed an upsampling and merging
strategy to create a feature vector for every stage of the pyramid. Deeper layers were merged with shallower ones in
order to enrich the simpler features with more complex ones. Afterwards, affinity score computation was performed, as
explained in section 3.3.7.

3.2.4 More complex approaches for visual feature extraction

More complex approaches have also been proposed. Lu et al. [59] employed the class predicted by the SSD in the
detection step as a feature, and combined it with an image descriptor extracted with RoI pooling for each detection.
Afterwards, the extracted features were used as input for a LSTM network, which learned to compute association
features for the detections. Those features were later used for affinity computation, using the cosine distance between
them.

In [121], the shallower layers of GoogLeNet were employed to learn a dictionary of features of the tracked objects. In
order to learn the dictionary, the algorithm randomly selected objects in the first 100 frames of the video. The model
extracted the feature maps in the first seven layers of the network. Then a dimensionality reduction was performed using
Orthogonal Matching Pursuit (OPM) [122] over the features extracted from the objects, and the learned representation
was used as a dictionary. During the test phase, the OPM representation was computed for every detected object in the
scene, and compared with the dictionary in order to construct a cost matrix, combining visual and motion information
extracted by a Kalman filter. Finally, the association was performed using the Hungarian algorithm.

LSTMs are sometimes employed for motion prediction, in order to learn more complex, non-linear motion models from
the data. In figure 6 a scheme of the typical use of LSTMs for motion prediction is shown. An example of this use of
recurrent networks is shown by Sadeghian et al. [123], who proposed a model that employed three different RNNs to
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Figure 6: Typical usage of LSTM for motion prediction. A group of bounding boxes are fed into the network, and the
produced output is the predicted bounding box in the next frame

compute various types of features, not only motion ones, for each detection. The first RNN was employed to extract
appearance features. The input of this RNN was a visual features vector extracted by a VGG CNN [1], pretrained
specifically for person re-identification. The second RNN was a LSTM trained to predict the motion model for every
tracked object. In this case, the output of the LSTM was the velocity vector of each object. The last RNN was trained to
learn the interactions between different objects on the scene, since the position of some objects could be influenced
by the behavior of surrounding items. The affinity computation was then performed by another LSTM, taking the
information of the other RNNs as input.

In [124], a model of stacked CNNs was proposed. The first section of the model consisted of a pretrained shared CNN
which extracted common features for every object in the scene. That CNN was not updated online. Then, a RoI pooling
was applied and the RoI features for every candidate were extracted. Afterwards, for every tracked candidate a new
specific CNN was instantiated and trained online. Those CNNs extracted both the visibility map and the spatial attention
map for its candidate. Finally, after the refined features were extracted, the probability of each new image belonging to
every already tracked object was computed, and the association step was finally performed using a greedy algorithm.

Sharma et al. [67] designed a set of cost functions to compute similarity between detections of vehicles. Those costs
combined appearance features, extracted by a CNN, with 3D shape and position features assuming an environment with
a moving camera. The defined costs were a 3D-2D cost, were the estimated 3D projection of the bounding box on the
previous frame was compared with the 2D bounding box on the new frame, a 3D-3D cost, were the 3D projection of the
previous bounding box was overlapped with the 3D projection of the current bounding box, an appearance cost, were
the euclidean distance of the extracted visual features was computed, and a shape and pose cost, were the rough shape
and position of the object in the bounding boxes were computed and compared. Note that while 3D projections were
inferred, the input was still 2D images. After every cost was computed, the final pairwise cost between detections in
two subsequent frames was a linear combination of the former costs. The final association problem was solved using
the Hungarian algorithm.

Kim et al. [66] employed the information extracted by the YOLOv2 CNN object detector to build a random ferns
classifier [125]. The algorithm worked in two steps. In the first step, a so-called teacher-RF was trained in order to
differentiate pedestrians from non-pedestrians. After the teacher-RF was trained, for every tracked object, a random
ferns classifier was constructed. Those classifiers were called student-RF, and they were smaller than the teacher-RF.
They were specialized in distinguishing their tracked object from the rest of the objects in the scene. The decision of
having a small random ferns classifier for every object was taken in order to reduce the computational complexity of the
overall model, so that it could work in real time.

In [126] the number of affinity computations that the model must compute was reduced by estimating first the position
of objects in subsequent frames, using a Hidden Markov Model [127]. Then, the feature extraction was performed
using a pretrained CNN. After the visual features were extracted, the affinity computation was only computed between
feasible pairs, that is, between detections close enough to the HMM prediction to be considered as the same object. The
affinity score was obtained using a mutual information function between visual features. When the affinity scores were
computed, a dynamic programming algorithm was used to associate detections.
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3.2.5 CNNs for motion prediction: correlation filters

Wang et al. [128] studied the employment of a correlation filter [129], whose output is a response map for the tracked
object. That map was an estimation of the new position of the object in the next frame. Such affinity was further
combined with an optical flow affinity, computed using the Lucas-Kanade algorithm [130], a motion affinity calculated
with a Kalman filter, and a scale affinity, represented by a ratio involving height and width of the bounding boxes. The
affinity between two detections was computed as a linear combination of the previous scores. There was also a step of
false detections removal, using a SVM classifier, and missing detections handling, using for that task the response map
calculated in the previous steps. If an object was mistakenly lost and then re-identified, that step could fix the mistake
and reconnect the broken tracklet.

In [61], a correlation filter was also employed to predict the position of the object in subsequent frames. The filter
received as input the appearance features extracted by a CNN, previously reduced using PCA, and produced a response
map of the predicted position for the object in the next frame as output. The predicted position was later used to
compute a similarity score, combining the IoU between prediction and detections, and the APCE score of the response
map. After the cost matrix was constructed, computing said score for every pair of detections between frames, the
assignment problem was solved using the Hungarian algorithm.

3.2.6 Other approaches

Rosello et al. [131] explored a completely different approach, using a reinforcement learning framework to train a set
of agents that helped in the feature extraction step. The algorithm was based solely on motion features, without any
visual information employed. The motion model was learned using a Kalman filter, whose behavior was managed by an
agent, using one agent for each tracked object. The agent learned to decide which action should the Kalman filter take,
between a set of actions that included ignoring the prediction, ignoring the new measure, using both information pieces,
starting or stopping a track. The authors claimed that their algorithm could solve the tracking task even in non-visual
scenarios, in contrast with classical algorithms whose performance was deeply influenced by visual features. However,
the experimental results on MOT15 are not reliable and cannot be compared with other models because the model was
tested on the training set.

Another algorithm that relied solely on motion features was the one proposed in [132]. Babaee et al. presented a
LSTM which learned to predict the new position and size of the bounding box for every object in the scene, using
information about position and velocity in previous frames. Using the IoU between the predicted bounding box and the
real detection, an affinity measure was computed, and the tracks were associated using a custom greedy algorithm. The
pipeline was applied on tracking results obtained by other algorithms, in order to handle occlusions, and the authors
showed that their method could effectively reduce the number of ID switches.

3.3 DL in affinity computation

While many works compute affinity between tracklets and detections (or tracklets and other tracklets) by using some
distance measure over features extracted by a CNN, there are also algorithms that use deep learning models to directly
output an affinity score, without having to specify an explicit distance metric between the features. This section focuses
on such works.

In particular, we are first going to describe algorithms that used recurrent neural networks, starting from standard LSTMs
(section 3.3.1) and then describing uses of Siamese LSTMs (section 3.3.2) and Bidirectional LSTMs (section 3.3.3).
A particular use of LSTM-computed affinities in the context of Multiple Hypothesis Tracking (MHT) frameworks
is presented in section 3.3.4; finally, a few works that employed different kinds of recurrent network for affinity
computations are presented in section 3.3.5.

In the second part of this section we are going to explore instead the uses of CNNs in affinity computation (section
3.3.6), including the algorithms that used the output of Siamese CNNs directly as an affinity score (section 3.3.7),
instead of relying on distance measures over feature vectors like in section 3.2.3.

3.3.1 Recurrent neural networks and LSTMs

One of the first works to use a deep network to directly compute an affinity is [133], where Milan et al. proposed an
end-to-end learning approach for online MOT, summarized in figure 7. A recurrent neural network (RNN) based model
was used as the main tracker, mimicking a Bayesian filter algorithm, consisting of three blocks: the first was a motion
prediction block, that learned a motion model that took as input the state of the target in the past frames (i.e. the old
bounding box locations and sizes) and predicted the target state in the next frame without accounting for the detections;
the second block refined the state prediction using the detections in the new frame and an association vector containing
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Figure 7: Diagram of the MOT algorithm proposed by Milan et al. [133] employing a LSTM to predict detection
associations. The algorithm used two different RNNs to solve them problem, each one specialized in one subtask. The
LSTM (left) learned to associate detections with tracks given predicted positions. It received the pairwise-distance
matrix between detections and predictions (Ct+1), the cell state (ci) and the hidden state (hi) as input, and output
the vector Ai

t+1 representing the probability of associating target i with the detections in the frame. The RNN (right)
was trained to predict the position of the targets in the new frame and the possible birth and death of new ones. It
received as input the hidden state (ht) and the current position of the target (xt), outputting the predicted position and
the new hidden state (blue box). After the associations from the LSTM were computed, using the detections zt+1, the
positions of targets were updated (green box), and the existence probability ε was computed to predict death and birth
of trajectories (red box).

the probability of associating the target with all such detections (it is evident how this can be considered an affinity
score); the third block managed the birth and death of tracks, as it used the previous collected information to predict the
probability of existence of the track in the new frame14. The association vector was computed using a LSTM-based
network, that used the Euclidean distance between the predicted state of the target and the states of the detections in
the new frame as input features (besides the hidden state and the cell state, as any standard LSTM). The networks
were trained separately using 100K 20-frame long synthetically generated sequences. While the algorithm performed
favorably to other techniques, like the combination of a Kalman filter with the Hungarian algorithm, the results on
the MOT15 test set did not quite reach top accuracy; however, the algorithm was able to run much faster than other
algorithms (∼ 165 FPS) and did not use any kind of appearance features, leaving room for future improvements.

Among the other works that later used LSTMs there is [123], that used a LSTM with a fully-connected (FC) layer to
fuse features extracted by 3 other LSTMs (as already explained in section 3.2.4) and output an affinity score15. The
overall algorithm is similar to the Markov Decision Processes (MDP) based framework presented in [134]: a single
object tracker (SOT) is used to track targets independently; when a target gets occluded, the SOT is stopped and a
bipartite graph is built that uses the affinities computed by the LSTM as edge costs and the association problem is then
solved with the help of the Hungarian algorithm. The authors showed that using both a combination of all the 3 feature
extractors and an LSTM rather than a plain FC layer led to consistently better performance on a MOT15 validation
set. The algorithm also reached state-of-the-art MOTA scores on both MOT15 and MOT16 test sets at the time of
publication, confirming the validity of the approach.

Another approach using multiple LSTMs is [52], where Ran et al. proposed a Pose-based Triple Stream Network,
that computed an affinity combining 3 other affinities output by 3 LSTMs: one for appearance similarity, using CNN
features and pose information extracted with AlphaPose [135], one for motion similarity, using pose joints velocity,
and one for interaction similarity, using an interaction grid. A custom tracking algorithm is then used to associate
the detections. The comparison with other state-of-the-art MOT algorithms on their proprietary Volleyball dataset for
athlete tracking was favourable.

14To smooth the existence probability predictions and avoid deleting tracks of temporarily occluded objects, the difference between
the new and the old existence probability was also output so that it could be minimized during training.

15The paper seems to imply that while the LSTM is trained to predict an affinity score, only the affinity features are extracted and
are then used to replace the handcrafted features used in the MDP paper. The algorithm presented in the MDP paper, though, adds on
top of those features another FC layer, trained with reinforcement learning to classify the track/detection pair as belonging to the
same identity or not. Thus we can consider the overall affinity computation as performed by a deep learning model.

16

http://creativecommons.org/licenses/by-nc-nd/4.0/


THIS PREPRINT HAS BEEN ACCEPTED IN NEUROCOMPUTING
c©2019. THIS MANUSCRIPT VERSION IS MADE AVAILABLE UNDER THE CC-BY-NC-ND 4.0 LICENSE

3.3.2 Siamese LSTMs

Liang et al. [136] also used multiple LSTMs to model various features, but they proceeded in a different way. Since
extracting appearance features with CNNs is computationally expensive, they proceeded with a so-called pre-association
step, that used a SVM to predict the association probability between tracklets and detections. The SVM took as input
position and velocity similarity scores, computed using two LSTMs for position and velocity prediction. The pre-
association step then consisted in discarding the detections with low SVM affinity scores. After this step, an actual
association step was performed by using VGG-16 features given as input to a Siamese LSTM, that predicted an affinity
score between the tracklet and the detections. Association was performed in a greedy manner, associating the detection
with the highest score to the tracklet. Testing was done on the MOT17 datasets, and the results were in line with the
top-performing algorithms.

Wan et al. [43] also used a Siamese LSTM in their algorithm, that was also composed of two steps. In the first step,
short reliable tracklets were built by using Hungarian algorithm with affinity measures computed using the IoU between
detections and the predicted target positions (obtained with Kalman filter or Lucas-Kanade optical flow). The second
step also used the Hungarian algorithm to join the tracklets, but this time the affinity was computed using a Siamese
LSTM framework that used motion features concatenated to appearance features extracted by a CNN (like in [137]),
pre-trained on the CUHK03 Re-ID dataset.

3.3.3 Bidirectional LSTMs

A different usage of LSTMs in the affinity computation phase was presented by Zhu et al. [115]. They used a so-called
Temporal Attention Network (TAN) to compute attention coefficients to weigh the features extracted by the Spatial
Attention Network (SAN) (see section 3.2.3) to give less importance to noisy observations. A bidirectional LSTM
was employed to this end. The whole network (called Dual Matching Attention Network) was used to recover from
occlusions when a modified version of the Efficient Convolution Operators tracker (ECO) [56], trained exploiting hard
example mining, failed to detect a target. The algorithm obtained results comparable to online state-of-the-art methods
on MOT16 and MOT17 according to various metrics (MOTA, IDF1, number of ID switches).

Yoon et al. [138] also used a Bidirectional LSTM to compute affinities, on top of some FC layers that encoded
non-appearance features (only bounding box coordinates and detection confidences). The association was solved using
the Hungarian algorithm. They trained the network on the Stanford Drone Dataset (SDD) [139] and evaluated it on
both SDD and MOT15. They reached comparable results with top algorithms that did not use visual cues, but the
performance was still worse than appearance-based methods.

3.3.4 Uses of LSTMs in MHT frameworks

In Multiple Hypothesis Tracking approaches, a tree of potential track hypotheses for each candidate target is first built.
Then the likelihood of each track is computed and the combination of tracks that has the highest likelihood is chosen as
a solution. Various deep learning algorithms have also been employed to enhance MHT based approaches.

Kim et al. [93] proposed the use of a so-called Bilinear LSTM network as the gating step of the MHT-DAM [83]
algorithm, that is, the affinity score computed by the LSTM was used to decide whether to prune or not a certain branch
of the hypotheses tree. The LSTM cell had a modified forward pass (inspired by the online recursive least squares
estimator proposed in [83]) and took as input the appearance features of a tracklet in the past frames, extracted with
a ResNet-50 CNN. The output of the LSTM cell was a feature matrix representing the historical appearance of the
tracklet, and such matrix was then multiplied by the vector with the appearance features of the detection that needed to
be compared with the tracklet. FC layers on top of that finally computed the affinity score between the tracklet and
the detection. The authors claimed that such a modified LSTM is able to store longer-term appearance models than
classical LSTMs. They also proposed to add a motion modeling classical LSTM to compute historical motion features
(using the normalized bounding box coordinates and sizes), that were then concatenated to the appearance features
before proceeding with the FC layers and the final softmax that output the affinity score. The two LSTMs were first
trained separately and then fine-tuned jointly. The training data was also augmented including localization errors and
missing detections, to resemble real-world data more closely. They used MOT15, MOT17, ETH, KITTI and other
minor datasets for training and they evaluated the model on MOT16 and MOT17. They showed that their model is
sensitive to the quality of detections, as they improved on the MOTA performance of MHT-DAM when using the public
Faster R-CNN and SDP detections, while they performed worse than it on the public DPM detections. Anyway, they
seemed to get a higher IDF1 score regardless of the detections used, and their overall results reflected that, since they
got the highest IDF1 of all the methods using MHT-based algorithms. However, the tracking quality, as measured both
in MOTA and in IDF1, was still lower than other state-of-the-art algorithms.

17

http://creativecommons.org/licenses/by-nc-nd/4.0/


THIS PREPRINT HAS BEEN ACCEPTED IN NEUROCOMPUTING
c©2019. THIS MANUSCRIPT VERSION IS MADE AVAILABLE UNDER THE CC-BY-NC-ND 4.0 LICENSE

A similar use of a RNN has been recently presented by Maksai et al. [113], who also employed a LSTM to compute
tracklet scores in a variation of the MHT algorithm, that grows and prunes tracklets iteratively and then tries to select
the set of tracklets that maximizes said score.16 The goal of their work was to solve two frequent problems in training
recurrent networks for multiple object tracking: the loss-evaluation mismatch, that arises when a network is trained by
optimizing a loss that is not well-aligned to the evaluation metric used at inference time (e.g. classification score vs.
MOTA); the exposure bias, that is present when the model is not exposed to its own errors during the training process.
In order to solve the first problem, they introduced a novel way to score tracklets (using a RNN) that is a direct proxy
of the IDF1 metric and does not use the ground truth; the network can then be trained to optimize such metric. The
second problem was solved instead by adding to the training set of the network the tracklets computed using the current
version of the network, together with hard example mining and random tracklet merging during training; in this way,
the training set distribution should be more similar to the inference-time input data distribution. The network used
was a Bidirectional LSTM, on top of an embedding layer that took as input various features. The authors presented a
version of the algorithm using only geometric features and a version that instead used appearance-based features, that
performed better. Lots of ablation studies were run, and various alternative approaches were tested. The final algorithm
was able to reach top-performance on various MOT datasets (MOT15, MOT17, DukeMTMC [21]) when considering
the IDF1 metric, even though it didn’t excel in MOTA.

Among the other approaches in the MHT family using RNNs we can also find [104], where Chen et al. used a so-called
Recurrent Metric Network (RMNet) to compute appearance affinity between tracklet hypotheses and detections (together
with a motion-based affinity) in their Batch Multi-Hypothesis Tracking strategy. The RMNet is an LSTM that takes as
input appearance features of the detection sequence under consideration, extracted with a ResNet CNN, and outputs a
similarity score together with bounding box regression parameters. A dual-threshold approach in gating and forming
hypothesis was used, and a re-find reward was employed to encourage recovery from occlusions. The hypotheses
were selected by casting the problem as a binary linear programming one, solved using lpsolve. Kalman filter was
finally used to smooth the trajectories. Evaluation was performed on MOT15, PETS2009 [34], TUD [140] and KITTI,
obtaining better results on the IDF1 metric, that gives more weight to people re-identification, than on MOTA.

3.3.5 Other recurrent networks

Fang et al. [96] used instead Gated Recurrent Units (GRUs) [141] inside their Recurrent Autoregressive Network
(RAN) framework for pedestrian tracking. The GRUs were used to estimate the parameters of autoregressive models,
one for motion and the other for appearance for each tracked target, that computed the probability of observing a given
detection motion/appearance based on the tracklet’s past motion/appearance features. The two probabilities, that can be
easily seen as a kind of affinity measure, were then multiplied together to obtain a final association probability, used to
solve a bipartite matching problem for association between tracklets and detections following the algorithm in [134].
The RAN training step was formulated as a maximum likelihood estimation problem.

Kieritz et al. [60] used a recurrent 2-hidden-layer multi-layer perceptron (MLP) to compute an appearance affinity
score between a detection and a tracklet. Such affinity was then given as input to another MLP, together with track and
detection confidence scores, to predict an aggregate affinity score (called association metric). Such score was finally
used by the Hungarian algorithm to perform association. The method reached top performance on the UA-DETRAC
dataset [32], but the performance on MOT16 was not very good when compared with other algorithms using private
detections.

3.3.6 CNNs for affinity computation

Other algorithms used instead CNNs to compute some kind of similarity score. Tang et al. [51] tested the use of 4
different CNNs to compute an affinity score between nodes in a graph, with the association task being formulated
as a minimum cost lifted multicut problem [142]: it can be seen as a graph clustering problem, where each output
cluster represents a single tracked object. The costs associated to the edges accounted for the similarity between two
detections. Such similarity was a combination of person re-identification confidence, deep correspondence matching and
spatio-temporal relations. To compute the person re-identification affinity, various architectures were tested (after being
trained on a dataset of 2511 identities extracted from MOT15, MOT16, CUHK03, Market-1501 datasets), but the best
performing one was the novel StackNetPose. It incorporated body part information extracted using the DeepCut body
part detector [105] (see section 3.2.2). The 14 score maps for the body parts of two images were stacked together with
the two images themselves to produce a 20-channel input. The network followed the VGG-16 architecture and output
an affinity score between the two input identities. Differently from Siamese CNNs, the pair of images were able to
‘communicate’ in the early stages of the network. The authors showed that the StackNetPose network performed better

16While it is not an explicit affinity measure, it can still be seen as an evaluation of the effect of merging two tracklets and thus
plays a similar role (i.e. taking decisions about associating tracklets) as other affinities presented in this section.
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in the person re-identification task, and thus they used it to compute the ReID affinity. The combined affinity score was
computed by multiplying a weight vector (learned with logistic regression, and dependent on the time interval between
the two detections) with a 14-d vector containing ReID affinity, DeepMatching-based affinity [143], a spatio-temporal
affinity score, the minimum of the two detection confidences and quadratic terms with all the pairwise combinations of
the previously mentioned terms. The authors showed that combining all these features produced better results, and
together with the improvement in framing the problem as a minimum cost lifted multicut problem (solved heuristically
using the algorithm proposed in [144]), they managed to reach state-of-the-art performance (measured in MOTA score)
on the MOT16 dataset at the time of publishing.

Another approach using CNNs was presented in [145], where Chen et al. used a Particle Filter [146] to predict target
motion, weighting the importance of each particle using a modified Faster R-CNN network. Such model was trained
to predict the probability that the bounding box contains an object, but it was also augmented with a target-specific
branch, that took as input features from lower layers of the CNN and merged them with the target historical features to
predict the probability of the two objects being the same. The difference with the previous approaches is that here the
affinity is computed between the sampled particles and the tracked target, instead of being computed between targets
and detections. The detections that did not overlap with the tracked objects were instead used to initialize new tracks or
retrieve missing objects. Despite being an online tracking algorithm, it was able to reach top performance on MOT15 at
the time of publishing, both when using public detections and when using private ones (obtained from [147]).

Zhou et al. [117] used a visual-similarity CNN, similar to the ResNet-101 based visual-displacement CNN presented in
section 3.2.3, that outputs affinity scores between the detections and the tracklet boxes predicted by the Deep Continuous
Conditional Random Fields. This visual affinity score was merged with a spatial similarity using IoU, and then the
detection with the highest score was associated to each tracklet; in case of conflicts, the Hungarian algorithm was
employed. The method reached results comparable to state-of-the-art online MOT algorithms on MOT15 and MOT16
in terms of MOTA score.

3.3.7 Siamese CNNs

Siamese CNNs are also a common approach used in affinity computation. An example of Siamese CNN is shown
in figure 5. The approaches presented here decided to directly use the output of the Siamese CNN as an affinity,
instead of employing classical distances between feature vectors extracted from the penultimate layer of the network,
like the algorithms presented in section 3.2.3. For example, Ma et al. [148] used one to compute affinities between
tracklets in a two-step algorithm. They chose to apply hierarchical correlation clustering, solving two successive lifted
multicut problems: local data association and global data association. In the local data association step temporally-close
detections were joined together by using the robust similarity measure presented in [149], that uses DeepMatching
and detection confidences to compute an affinity score between detections. In this step, only edges between close
detections were inserted into the graph. The multicut problem was solved with the heuristic algorithm proposed in
[144]. In the global data association step, local tracks that were split by long-term occlusion needed to be joined
together, and a fully-connected graph with all the tracklets was then built. The Siamese CNN was used to compute
the affinities that would serve as edge costs in the graph. The architecture was based on GoogLeNet [2] and it was
pretrained on ImageNet. The net was then trained on the Market-1501 ReID dataset and then fine-tuned on the MOT15
and MOT16 training sequences. Besides the verification layer, that output a similarity score between the two images,
two classification layers were added to the network only during training to classify the identity of each training image;
this was shown to improve the network performance in computing the affinity score. This so-called ‘generic’ ReID net
was also fine-tuned on each test sequence in an unsupervised manner, without using any ground truth information, to
adapt the net to the illumination conditions, resolution, camera angle, etc. of each particular sequence. This was done
by sampling positive and negative detection pairs by looking at the tracklets built in the local data association step. The
effectiveness of the algorithm was proven by the results obtained on MOT16, where it is at the time of writing the best
performing method with a published paper, with a 49.3 MOTA score.

As explained in section 3.2.3, Lee et al. [119] used a Feature Pyramid Siamese Network to extract appearance features.
When employing this kind of network in the MOT problem, a vector of motion features was concatenated to the
appearance features and 3 fully-connected layers were then added on top to predict an affinity score between a track
and a detection; the network was trained end-to-end. Detections were then associated iteratively, starting from the pairs
with highest affinity scores and stopping when the score got below a threshold. The method obtained top performance
results among the online algorithms on the MOT17 dataset at the time of publishing.

3.4 DL in Association/Tracking step

Some works, albeit not as many as for the other steps in the pipeline, have used deep learning models to improve the
association process performed by classical algorithms, like the Hungarian algorithm, or to manage the track status (e.g.
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by deciding to start or terminate a track). We are going to present them in this section, including the use of RNNs
(section 3.4.1), deep multi-layer perceptrons (section 3.4.2) and deep reinforcement learning agents (section 3.4.3).

3.4.1 Recurrent neural networks

A first example of algorithms employing DL to manage the track status is the one presented by Milan et al. in [133],
already described in section 3.3.1, that used a RNN to predict the probability of existence of a track in each frame, thus
helping with the decision of when to initiate or terminate the tracks.

Ma et al. [116] used a bidirectional GRU RNN to decide where to split tracklets. The algorithm proceeded in three
main stages: a tracklet generation step, that included a NMS step to remove redundant detections and then employed the
Hungarian algorithm with appearance and motion affinity together to form high-confidence tracklets; then, a tracklet
cleaving step was performed: since a tracklet might contain an ID switch error due to occlusions, this step aimed to split
the tracklets at the point where the ID switch happened, in order to obtain two separate tracklets that contained the same
identity; finally, a tracklet reconnection step was employed, using a customized association algorithm that made use of
features extracted by a Siamese bidirectional GRU. The gaps within the newly-formed tracklets were then filled with
polynomial curve fitting. The cleaving step was performed with a bidirectional GRU RNN, that used features extracted
by a Wide Residual Network CNN [92]. The GRU output a pair of feature vectors for each frame (one for each direction
of the GRU); then the distance between pairs of such feature vectors was computed and a distance vector was obtained.
The highest value in this vector indicated where to split the tracklet, provided that the score was higher than a threshold.
The reconnection GRU was similar, but it had an additional FC layer on top of the GRU and a temporal pooling layer to
extract a feature vector representing the whole tracklet; the distance between the features of the two tracklets was then
used to decide which tracklets to reconnect. The algorithm reached results comparable to state-of-the-art on the MOT16
dataset.

3.4.2 Deep Multi-Layer Perceptron

Despite not being a very common approach, deep multi-layer perceptrons (MLP) have also been employed to guide
the tracking process. For example, Kieritz et al. [60] used a MLP with two hidden layers to compute track confidence
scores, taking as input the track score at the previous step and various information about the last associated detection
(like association score and detection confidence). This confidence score was then used to manage the termination of
tracks: they decided in fact to keep a fixed number of targets through time, replacing with new tracks the older ones that
had the lowest confidence scores. The rest of the algorithm has been explained in section 3.3.5.

3.4.3 Deep Reinforcement Learning agents

Some works have used Deep Reinforcement Learning (RL) agents to take decisions in the tracking process. Rosello et
al. [131], as explained in section 3.2.6, used multiple deep RL agents to manage the various tracked targets, deciding
when to start and stop tracks and influencing the operation of the Kalman filter. The agent was modeled with a MLP
with 3 hidden layers.

Ren et al. [150] also used multiple deep RL agents in a collaborative environment to manage the association task. The
algorithm was mainly composed of two parts: a prediction network and a decision network. The prediction network
was a CNN that was learned to predict the movement of the target in the new frame looking at the target and at the
new image, and also using the recent tracklet trajectory. The decision network was instead a collaborative system that
consisted of multiple agents (one for each tracked target) and the environment. Each agent took decisions based on
the information about themselves, the neighbours and the environment; the interactions between the agents and the
environment were exploited by maximizing a shared utility function: the agents thus did not operate independently from
each other. Every agent/object was represented by a trajectory, its appearance features (extracted using MDNet [151])
and its current position. The environment was represented by the detections in the new frame. The detection network
took as input, for each target, its predicted location in the new frame (output by the prediction network), the nearest
target and the nearest detection, and based on various factors, such as the detection reliability and the target occlusion
status, took one among various actions: updating the track and its appearance features using both the prediction and
the detection, ignoring the detection and only using the prediction to update the track, detecting an occlusion of the
tracked target, deleting the track. The agents were modelled using 3 FC layers on top of the feature extraction part of
the MDNet. Various ablation studies showed the effectiveness of using the prediction and detection networks instead of
linear motion models and Hungarian algorithm, respectively, and the method obtained very good results on the MOT15
and MOT16 datasets, reaching state-of-the-art performance among online methods, despite suffering from a relatively
high number of ID switches.
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3.5 Other uses of DL in MOT

In this section we will present other interesting uses of deep learning models that don’t neatly fit into one of the four
common steps of a multiple object tracking algorithm. For this reason, such works have not been included in table 8,
but are summarized instead in table 1.

Detection Description Mode Source
and data

[152] N/A They integrate a bounding box regression step in various
existing MOT algorithms. The regression is done using Deep

Reinforcement Learning using CNN features.

N/A

[153] Public An ensemble of 2 CNNs, color histograms and a KLT motion
detector are used to compute likelihoods for a Markov Chain

Monte Carlo sampling; the position sampling was used to form
short tracklets. A Changing Point Detection algorithm was

employed to merge and delete tracklets.

Online

[154] CNN Multi-Bernoulli Filter with a novel Interactive Likelihood,
computed using a CNN.

Online

[155] Public Body detections are refined using head detections obtained with
a CNN [156]. A modified version of the Frank-Wolfe algorithm
is used to solve a correlation clustering problem for association,

using spatial and temporal costs.

Batch

[157] Public Modified MDNet CNN with target-specific branches to compute
affinities between targets and candidates extracted with

Gaussian sampling. Combination of appearance and motion
features to reduce ID Switches.

Online

[158] Public CNN to extract app features and LSTM to extract motion
features. The LSTM is part of a BF-Net, that performs Bayesian
filtering and uses the output from Hungarian algorithm for track

refinement.

Online

[159] Public PafNet and PartNet CNNs to distinguish targets from
background and among themselves. KCF SOT tracker is used.
SVM+Hungarian algorithm for error recovering. CNN trained

with RL for model updating.

Online

Table 1: Information summary about methods using DL that don’t fit the 4-step scheme.

One example is [152], where Jiang et al. use a Deep RL agent to perform bounding box regression after the use of one
of many MOT algorithms. The procedure is in fact completely independent from the tracking algorithm employed, and
can be used a posteriori to increase the accuracy of the model. A VGG-16 CNN was used to extract appearance features
from the region enclosed by the bounding box, then those features were concatenated to a vector representing the history
of the last 10 actions taken by the agent. Finally a Q-network [160] made of 3 fully-connected layers was used to
predict one among 13 possible actions, that included motion and scaling of the bounding box and a termination action,
to signal the completion of the regression. The use of this bounding box regression technique on various state-of-the-art
MOT algorithms allowed an improvement between 2 and 7 absolute MOTA points on the MOT15 dataset, reaching top
score among public detections methods. The authors also showed that their regression approach had better results than
using conventional methods, such as the bounding box regression computed by a Faster R-CNN model.

Lee et al. [153] proposed a multi-class multi-object tracker that used an ensemble of detectors, including CNN models
like VGG-16 and ResNet, to compute the likelihood of each target being at a certain location in the next frame. A
Markov Chain Monte Carlo sampling from a distribution that was influenced by said likelihoods was used to predict the
next position for each target, and together with an estimation of track birth and death probabilities, short track segments
were built. Finally, a changing point detection [161] algorithm was employed to detect abrupt changes in stationary
time series representing track segments; this was done in order to detect track drift, to remove unstable track segments
and to combine the segments together. The algorithm reached results comparable to state-of-the-art MOT methods
using private detections.

Hoak et al. [154] proposed a 5-layer custom CNN network, trained on the Caltech pedestrian detection dataset [162],
to compute the likelihood of a target being at a certain location in the image. They used a multi-Bernoulli filter
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(implemented using the particle filter algorithm presented in [163]), and a novel Interactive Likelihood (ILH) was
computed for each particle, in order to weigh them based on their distance from particles belonging to other targets; this
was done to prevent the algorithm from sampling from areas that belong to different objects. The algorithm obtained
good results on the VSPETS 2003 INMOVE soccer dataset17 and the AFL dataset [164].

Henschel et al. [155] used head detections, extracted with a CNN [156], in addition to the usual body detections to
perform pedestrian tracking. The presence/absence of a head and its position relative to the bounding box can help
determine if a bounding box is a true or a false positive. The association problem was modelled as a correlation
clustering problem on graphs, that the authors solved with a modified version of the Frank-Wolfe algorithm [165]; the
association costs were computed as a combination of spatial and temporal costs: the spatial costs were the distance
and the angle between the detected and the predicted head positions; the temporal costs were computed using the
correspondences between pixels between the two frames, obtained using DeepMatching [79]. The algorithm reached
top MOTA score on MOT17 and second-best score on MOT16 at the time of publication.

Gan et al. [157] employed a modified MDNet [151] in their online pedestrian tracking framework. Besides 3 shared
convolutional layers, common to all the targets, each target also had 3 specific FC layers, that were updated online to
capture the appearance change of the target. A set of box candidates, including detections intersecting the last bounding
box of the target and a set of boxes sampled from a Gaussian distribution with parameters estimated using a linear
motion model, were given as input to the network, that output a confidence score for each of them. The candidate with
the highest score was considered the optimal estimated target location. To reduce the number of ID switch errors, the
algorithms tried to find the past trajectory that was most similar to the estimated box, using another affinity measure
between the pairs; such affinity was computed using appearance and motion cues, together with the tracklet confidence
score and a collision factor. Detections were also used to initialize new tracklets and to fix the motion prediction errors
when occlusions happened.

Xiang et al. [158] used a MetricNet to track pedestrians. The model unified an affinity model with trajectory estimation,
done with a Bayesian filter. An appearance model, made of a VGG-16 CNN trained for person re-identification on
various datasets, extracted features and performed bounding box regression; the motion model instead consisted of two
parts: an LSTM-based feature extractor, that took as input the trajectory’s past coordinates, and a so-called BF-Net on
top, made of various FC layers, that combined the features extracted by the LSTM and a detection box (chosen by the
Hungarian algorithm) to perform the Bayesian filtering step and output the new position of the target. The MetricNet
was trained using a triplet loss, similar to other models presented in the previous sections. The algorithm obtained the
best and second-best results among online methods on MOT16 and MOT15, respectively.

Finally, Chu et al. [159] used three different CNNs in their algorithm. The first one, called PafNet [166], was used to
distinguish the background from the tracked objects. The second one, called PartNet [167], was employed to distinguish
among the different targets. The third CNN, made of one convolutional layer and one FC layer, was instead used to
decide whether to refresh the tracking model or not. The overall algorithm worked as follows: for every tracked target
in the past frame, two score maps were computed in the current one, using PafNet and PartNet. Then, using the Kernel
Correlation Filter tracker [168], a new position for the object was predicted. Moreover, after a certain number of frames,
a so-called detection verification step was performed: the detections output by a detector (in their experiments, they
chose to use the public detections provided with the dataset) were assigned to the tracked targets by solving a graph
multicut problem. Targets that were not associated to a detection for a certain number of frames were terminated. Then,
the third CNN was employed to check if the associated detection box was better than the predicted one. If so, the KCF
model parameters were updated to reflect the change in the object characteristics. Such CNN used the maps extracted
by PafNet, and was trained using reinforcement learning. Unassociated detections were then employed to recover from
target occlusion, using a SVM classifier and the Hungarian algorithm. Finally, the remaining unassociated detections
were used to initialize new targets. The algorithm was evaluated both on MOT15 and MOT16 datasets, reaching top
performance overall on the first one, and top performance among online methods on the second.

4 Analysis and comparisons

This section presents a comparison between all the works that have tested their algorithm on one of the MOTChallenge
datasets. We will only focus on the MOTChallenge datasets since for other datasets there aren’t enough relevant papers
using deep learning to perform a meaningful analysis.

We first describe the setup of the experimental analysis, including the considered metrics and the organization of the
tables in section 4.1. Section 4.2 will then present the actual results and considerations derived from the analysis.

17ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
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4.1 Setup and organization

For a fair comparison, we only show results reported on the whole test sets. Some of the discussed papers report
their results using subsets of the test set, or validation datasets extracted from the training splits of the MOTChallenge
datasets. These results are discarded as they are not comparable with the others. Moreover, the reported results are
divided into algorithms that use public detections and algorithms that use private detections, since the different quality
of the detections has a big impact on performance. The results are further split into online and batch methods, since
the online methods are at a disadvantage, being only able to access present and past information to assign IDs in each
frame.

For each algorithm we indicate the year of the referenced published paper, their mode of operation (batch vs. online);
the MOTA, MOTP, IDF1, Mostly Tracked (MT) and Mostly Lost (ML) metrics, expressed in percentages; the absolute
number of false positives (FP), false negatives (FN), ID switches (IDS) and fragmentations (Frag); the speed of the
algorithm expressed in frames per second (Hz). For each metric, an arrow pointing up (↑) indicates that a higher score
is better, while an arrow pointing down (↓) indicates the opposite. The metrics shown here are the same that can be
found on the public leaderboards on the MOTChallenge website. The numerical results presented in the referenced
works have been integrated with data from the MOTChallenge leaderboards.

Attending to the classification presented before, a table for each of the combinations dataset/detection source is shown.
Tables 2 and 3 show results on MOT15 using public and private detections respectively; tables 4 and 5 do the same
on MOT16; finally, table 6 shows results on MOT17, who currently only has published algorithms that use public
detections. Each table groups online and batch methods separately, and for each group the papers are sorted by year,
and then by ascending MOTA score if the papers are from the same year, since it is the main metric considered in the
MOTChallenge datasets18. If a work presents multiple results on the same dataset, using the same set of detections and
the same mode of operation, we only show the result with the highest MOTA. The best performance for each metric is
highlighted in bold, while the best performance among papers operating in the same mode (batch/online) is underlined.
It is important to note though that comparisons on the Hz metric may not be reliable since the performance is usually
reported only for the tracking part of the algorithms, without the detection step and sometimes without including the
runtime of deep learning models, that are usually the most computational intensive part of the algorithms presented in
this survey; moreover, the algorithms were run on widely different hardware.

Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑
[83] 2015

Online

32.4 71.8 45.3 16.0 43.8 9064 32 060 435 826 0.7
[133] 2017 19.0 71.0 17.1 5.5 45.6 11 578 36 706 1490 2081 165.2
[128] 2017 31.6 71.8 10.1 46.3 491 994
[94] 2017 32.8 70.7 38.8 9.7 42.2 4983 35 690 614 1583 2.3
[124] 2017 34.3 70.5 48.3 11.4 43.4 5154 34 848 348 1463 0.5
[89] 2017 35.0 72.6 47.7 11.4 42.2 8455 31 140 358 1267 4.6
[123] 2017 37.6 71.7 46.0 15.8 26.8 7933 29 397 1026 2024 1.0
[145] 2017 38.5 72.6 47.1 8.7 37.4 4005 33 204 586 1263 6.7
[117] 2018 33.6 70.9 39.1 10.4 37.6 5917 34 002 866 1566 0.1
[96] 2018 35.1 70.9 45.4 13.0 42.3 6771 32 717 381 1523 5.4
[150] 2018 37.1 71.0 14.0 31.3 7036 30 440
[152] 2018 42.3 47.7 13.6 39.7 3.1
[138] 2019 22.5 70.9 25.9 6.4 61.9 7346 39 092 1159 1538 172.8
[158] 2019 37.1 72.5 48.4 12.6 39.7 8305 29 732 580 1193 1.0
[159] 2019 38.9 70.6 44.5 16.6 31.5 7321 29 501 720 1440 0.3

[110] 2016

Batch

29.0 71.2 34.3 8.5 48.4 5160 37 798 639 1316 52.8
[108] 2016 29.6 71.8 36.8 11.2 44.0 7786 34 733 712 943 1.7
[112] 2017 33.8 73.4 40.4 12.9 36.9 7898 32 061 703 1430 3.7
[113] 2018 22.2 71.1 27.2 3.1 61.6 5591 41 531 700 1240 8.9
[104] 2019 28.1 74.3 38.7 6733 36 952 477 790 16.9

Table 2: Experimental results of MOT algorithms using deep learning and public detections on MOT15 dataset.

18If not differently specified, when we use in this section expressions such as "best performing" or similar, we are always referring
to a higher MOTA score, since it’s the main evaluation metric used in the MOTChallenge benchmark.
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑
[35] 2016

Online

33.4 72.1 40.4 11.7 30.9 7318 32 615 1001 1764 260.0
[76] 2017 32.1 70.9 13.2 30.1 6551 33 473 1687 2471
[94] 2017 51.3 74.2 54.1 36.3 22.2 7110 22 271 544 1335 1.3
[145] 2017 53.0 75.5 52.2 29.1 20.2 5159 22 984 708 1476 6.7
[61] 2018 32.7 38.9 26.2 19.6 11.1
[96] 2018 56.5 73.0 61.3 45.1 14.6 9386 16 921 428 1364 5.1

Table 3: Experimental results of MOT algorithms using deep learning and private detections on MOT15 dataset.

Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑
[106] 2016

Online

35.3 75.2 7.4 51.1 5592 110 778 1598 5153 7.9
[147] 2016 38.8 75.1 7.9 49.1 8114 102 452 965 1657 11.8
[94] 2017 43.9 74.7 45.1 10.7 44.4 6450 95 175 676 1795 0.5

[124] 2017 46.0 74.9 50.0 14.6 43.6 6895 91 117 473 1422 0.2
[123] 2017 47.2 75.8 46.3 14.0 41.6 2681 92 856 774 1675 1.0
[157] 2018 44.2 78.3 15.2 45.7 7912 93 215 560 1212
[117] 2018 44.8 75.6 39.7 14.1 42.3 5613 94 125 968 1378 0.1
[96] 2018 45.9 74.8 48.8 13.2 41.9 6871 91 173 648 1992 0.9
[115] 2018 46.1 73.8 54.8 17.4 42.7 7909 89 874 532 1616 0.3
[150] 2018 47.3 74.6 17.4 39.9 6375 88 543
[118] 2018 47.6 74.8 50.9 15.2 38.3 9253 85 431 792 1858 20.6
[158] 2019 48.3 76.7 50.9 15.4 40.1 2706 91 047 543 896 0.5
[159] 2019 48.8 75.7 47.2 15.8 38.1 5875 86 567 906 1116 0.1

[112] 2017

Batch

44.1 76.4 38.3 14.6 44.9 6388 94 775 745 1096 1.8
[88] 2017 45.3 75.9 47.9 17.0 39.9 11 122 87 890 639 946 1.8
[51] 2017 48.8 79.0 18.2 40.1 6654 86 245 481 595 0.5
[93] 2018 42.1 47.8 14.9 44.4 11 637 93 172 753 1156 1.8
[132] 2018 46.9 76.4 46.8 16.1 43.2 6257 91 669 549 757
[103] 2018 47.2 75.7 52.4 18.6 42.8 12 586 83 107 542 787 0.5
[100] 2018 47.5 43.6 19.4 36.9 13 002 81 762 1035 1408 0.8
[155] 2018 47.8 75.5 44.3 19.1 38.2 8886 85 487 852 1534 0.6
[116] 2018 48.2 77.5 48.6 12.9 41.1 5104 88 586 821 1117 2.8
[148] 2018 49.3 79.0 50.7 17.8 39.9 5333 86 795 391 535 0.8

Table 4: Experimental results of MOT algorithms using deep learning and public detections on MOT16 dataset.

4.2 Discussion of the results

General observations

As expected, the best performing algorithms on each dataset use private detections, confirming the fact that the detection
quality dominates the overall performance of the tracker: 56.5% MOTA vs. 42.3% for MOT15 and 71.0% vs. 49.3%
for MOT16. Moreover, on MOT16 and MOT17 the batch algorithms slightly outperform the online ones, even though
the online methods are progressively getting closer to the performance of the batch ones. In fact, on MOT15 the best
reported algorithm that uses deep learning runs in an online fashion. However, this can be an effect of a greater focus
on developing online methods, which is a trend in the MOT deep learning research community. A common problem
among online methods, that is not reflected in the MOTA score, is the higher number of fragmentations, as we can see
in table 7. This happens because, when occlusions occur or detections are missing, online algorithms cannot look ahead
in the video, re-identify the lost targets and interpolate the missing part of the trajectories [124, 89, 94]. We can see in
figure 8 an example of trajectory that is fragmented by an online method, MOTDT [118], while it is correctly tracked
by a batch method, eHAF16 [103].

Another interesting thing to notice is that since the MOTA score is basically a normalized sum of FPs, FNs and ID
switches, and since the number of FNs is usually at least an order of magnitude higher than the FPs and two order of
magnitudes higher than the ID switches, the methods that manage to strongly reduce the number of FNs are the ones
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Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑
[38] 2016

Online

66.1 79.5 65.1 34.0 20.8 5061 55 914 805 3093 9.9
[41] 2017 61.4 79.1 62.2 32.8 18.2 12 852 56 668 781 2008 17.4
[60] 2018 39.1 11.1 41.1 9411 99 727 1906 4.5
[44] 2018 55.0 76.7 20.4 24.5 15 766 65 297 1024 1594 16.9
[43] 2018 62.6 78.3 32.7 21.1 10 604 56 182 1389 1534
[96] 2018 63.0 78.8 63.8 39.9 22.1 13 663 53 248 482 1251 1.6
[55] 2018 64.8 78.6 73.5 40.6 22.0 13 470 49 927 794 1050 39.4
[42] 2019 65.2 78.4 62.2 32.4 21.3 6578 55 896 946 2283 11.2

[153] 2016

Batch

62.4 78.3 51.6 31.5 24.2 9855 57 257 1394 1318 34.9
[38] 2016 68.2 79.4 60.0 41.0 19.0 11 479 45 605 933 1093 0.7
[51] 2017 71.0 80.2 70.1 46.9 21.9 7880 44 564 434 587 0.5
[132] 2018 58.1 77.2 47.4 23.1 33.3 4883 70 207 1624 2539

Table 5: Experimental results of MOT algorithms using deep learning and private detections on MOT16 dataset.

Year Mode MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑
[157] 2018

Online

44.9 78.9 13.8 44.2 22 085 287 267 1537 3295
[98] 2018 46.5 77.2 16.9 37.2 23 859 272 430 5649 9298 1.6

[115] 2018 48.2 75.7 55.7 19.3 38.3 26 218 263 608 2194 5378 0.3
[118] 2018 50.9 76.6 52.7 17.5 35.7 24 069 250 768 2474 5317 18.3
[119] 2019 44.9 76.6 48.4 16.5 35.8 33 757 269 952 7136 14 491 10.1

[113] 2018

Batch

44.2 76.4 57.2 16.1 44.3 29 473 283 611 1529 2644 4.8
[93] 2018 47.5 51.9 18.2 41.7 25 981 268 042 2069 3124 1.9

[136] 2018 50.3 47.9 21.8 36.2 22 204 249 342 3243 3155 1.9
[155] 2018 51.3 77.0 47.6 21.4 35.2 24 101 247 921 2648 4279 0.2
[103] 2018 51.8 77.0 54.7 23.4 37.9 33 212 236 772 1834 2739 0.7

Table 6: Experimental results of MOT algorithms using deep learning and public detections on MOT17 dataset.

that obtain the best performances. We can in fact observe a strong correlation between MOTA and number of FNs, in
accordance to what was found in [14]: MOTA and FN values are linked by a Pearson correlation coefficient of −0.95
on MOT15, −0.98 on MOT16 and −0.95 on MOT17. So, while there have been limited improvements in the reduction
of FNs using public detections, the most effective way is still building and training a custom detector; the halving of the
number of FNs is in fact the main reason why private detectors have lead to better tracking performances, being able to
identify previously uncovered targets. In figure 9 we can see how the SORT algorithm, that is particularly sensitive to
missing detections, is not able to detect a target as soon as the relative detection is missing.

To avoid this issue, many new algorithms are including new strategies to tackle this problem. In fact, while basic
approaches that perform interpolation are able to recover missing boxes during occlusions, this is still insufficient to
detect targets that are not covered by even a single detection, that have been shown to be 18% of the total on MOT15 and
MOT16 [14]. For example, the eHAF16 algorithm presented by Sheng et al. [103] employed a superpixel extraction
algorithm to complement the publicly provided detections and was in fact able to significantly reduce the number of
false negatives on MOT17, reaching top MOTA score on the dataset. The MOTDT algorithm [118] instead used a
R-FCN to integrate the missing detections with new candidates, and was able to reach best MOTA and lowest number
of false negatives among online algorithms on MOT17. The AP-RCNN algorithm [145] was also able to avoid the
problems caused by missing detections by employing a Particle Filter algorithm and relying on detections only to
initialize new targets and to recover lost ones. The algorithm presented in [150] also reduces FNs by designing a deep
prediction network, whose aim is to learn the motion model of the objects. At test time, the network is capable to
predict the position of them in subsequent frames, and thus reducing the amount of false negatives produced by missing
detections. In fact, it is the second best among online methods in MOT16 regarding this metric.

An important observation must be made regarding the training strategy for affinity networks. As noted by [93], training
a network using ground truth trajectories to predict affinities might produce suboptimal results, as at test time those
networks would be exposed to a different data distribution, made of noisy trajectories that can include missing/wrong
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(a) MOTDT output before occlusion (b) MOTDT output during occlusion (c) MOTDT output after occlusion

(d) eHAF16 output before occlusion (e) eHAF16 output during occlusion (f) eHAF16 output after occlusion

Figure 8: Example of fragmentation produced by an online method during occlusion. Above: tracking results for
MOTDT [118], online algorithm. Below: tracking results for eHAF16 [103], batch algorithm. From left to right, frames
50, 60 and 70 of the MOT16-08 video are shown for both methods. Only the relevant boxes are shown to avoid clutter.
As we can see in the image, while some online algorithms are able to re-identify lost targets after occlusions, they are
usually unable to track them while the target is not visible, and this results in a fragmentation. Batch methods, on the
other hand, are capable of reconstructing a fragmented trajectory by inferring the position of the target given past and
future information.

Mode MOT15 MOT16 MOT17

Batch 1143.8 1104.9 3188.2
Online 1509.5 1820.2 7555.8

Table 7: Average number of fragmentations for online and batch methods in the three considered datasets.

detections. Many algorithms in fact have chosen to train networks using either actual detections [96] or by manually
adding noise and errors to the ground truth trajectories [93, 115], although this may slow the training procedure
sometimes and not always be feasible [60].

Best approaches in the four MOT steps

Speaking of private detections, the tables show that the best performing detectors are currently Faster R-CNN and its
variants. In fact, the algorithm presented in [38], that uses a modified Faster R-CNN, has held its top ranking position
among online methods on MOT16 for 3 years, and many of the other top-performing MOT16 algorithms have employed
the same detections. In contrast, algorithms that employed the SSD detector, such as the ones presented in [60] and
[61], tend to perform worse. A big advantage of SSD, though, is its faster speed: thanks to that the algorithm by Kieritz
et al. [60] was able to reach near real-time performance (4.5 FPS) including the detection step19. Despite the great
number of online methods, a major issue in using deep learning techniques in a MOT pipeline is still the difficulty in
obtaining real-time predictions, making such algorithms not usable in most practical online scenarios.

Regarding feature extraction, all the top performing methods on the three considered datasets have used a CNN to
extract appearance features, where GoogLeNet is the most common one. Methods that do not exploit appearance
(either extracted with deep or classical methods) tend to perform worse. However, visual features are not enough:
many of the best algorithms also employ other types of features to compute affinity, especially motion ones. In fact,
algorithms like LSTMs and Kalman Filters are often employed to predict the position of the target in the next frame
and this often helps in improving the quality of the association. Various Bayesian filter algorithms, such as particle

19We remind the reader that the FPS reported by many algorithms tend to exclude the detection step, that can easily be the most
computationally expensive part of the algorithm.
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(a) Public detections (b) Detections from [38]

(c) Output tracks with public detections (d) Output tracks with detections from [38]

Figure 9: Above: Public detections (generated using DPM v5 [26]) and private detections (obtained by [38] with a
customized Faster R-CNN trained on multiple datasets) for frame 70 of MOT16-08 sequence. It can be observed that
the man in the foreground is correctly detected by the custom Faster R-CNN detector (b), while it is ignored by DPM
(a). Below: Results of tracking for the two detection sets using the SORT [35] algorithm, whose performance is heavily
dependent on detection errors. We can indeed see that the mentioned missing detection produces a corresponding false
negative in the tracking output (c), while in (d) the man is correctly tracked.

filter and hypotheses density filter, are also used to predict target motion, and they benefit from the use of deep models
[158, 145, 98]. Nonetheless, even when employed together with non-visual features, appearance still plays a major
role in improving the overall performance of the algorithm [123, 158], especially in avoiding ID switches [83] or to
re-identify targets after long occlusions [41]. In the latter case, simple motion predictors do not work since the linear
motion assumption is easily broken, as noted by Zhou et al. [55].

While deep learning plays an important role in detection and feature extraction, the use of deep networks to learn
affinity functions is less ubiquitous and has not yet been proven to be essential for a good MOT algorithm. Many
algorithms in fact rely on a combination of hand-crafted distance metrics on a variety of deep and non-deep features.
However, some works have already demonstrated how using affinity networks can produce top-performing algorithms
[148, 145, 51, 96], with approaches ranging from the use of Siamese CNNs to recurrent neural networks. In particular,
the adapted Siamese network proposed by Ma et al. [148] was able to produce reliable similarity measures that helped
with the person re-identification after occlusions and allowed the algorithm to reach the highest MOTA score on MOT16.
The integration of body part information was also crucial for the StackNetPose CNN proposed by Tang et al. [51]: it
served as an attention mechanism that allowed the network to focus on the relevant parts of the input images, thus
producing more accurate similarity measures. The algorithm was able to reach top performance on MOT16 using
private detections.

Very few works have instead explored the use deep learning models to guide the association process, and this could be a
interesting research direction for future approaches.

Other trends in top-performing algorithms

Some other trends can be identified among current top ranked methods. For example, a successful approach in online
methods is the use of Single Object Tracking algorithms, properly modified in order to solve the MOT task. Some
of the top performing online algorithms on the 3 datasets have in fact employed a SOT tracker augmented with deep
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(a) Frame 14 (b) Frame 22 (c) Frame 28 (d) Frame 34

Figure 10: Example of SOT drift in the context of a MOT algorithm (KFC16 [159]). The four images are cropped from
the MOT16-07 video, and are best viewed in color, since each color represents a different target ID. At first (a) the three
persons are tracked. After a few frames (b) the red box starts drifting towards the occluded man, while the light blue
box starts drifting towards the foreground woman. In (c) the white track is interrupted and the first two ID switches are
completed. In (d) a new identity is assigned to the woman in the background, causing a third ID switch.

learning techniques to recover from occlusions or to refresh the target models [159, 115, 123]. Interestingly, to the best
of our knowledge, no adapted SOT algorithm has been used to perform tracking with private detections. As we have
already observed, the use of private detections reduces the number of completely uncovered targets; since SOT trackers
don’t usually need detections to keep following a target once it’s been identified, the reduction in uncovered targets
might translate in a much lower number of lost tracks, that in turn would enhance the overall performance of tracker.
The application of a SOT tracker on private detections could thus be a good research direction to try to further improve
the results on the MOTChallenge datasets. A batch method could also exploit a SOT tracker to look at past frames
in order to recover missed detections before the target was first identified by the detector. However, SOT-based MOT
trackers can sometimes still be prone to tracking drift and produce a higher number of ID switches. For example, the
KCF16 algorithm [159], while reaching top MOTA score among online methods on MOT16 on public detections, it still
produces a relatively high number of switches due to tracker drift, as can be seen in figure 10. Moreover, SOT-based
MOT algorithms must be careful not to keep tracking spurious trajectories, caused by the inevitably higher number of
false positive detections predicted by higher-quality detectors, for too many frames, as this might offset the reduction in
the number of FNs. Current approaches [159, 115] still tend to use detection overlap (e.g. in how many recent frames
the trajectory is covered by a detection) to understand if a trajectory is a true or a false positive in the long run, but
better solutions should be investigated to avoid exclusive reliance on detections.

While many methods perform association by formulating the task as a graph optimization problem, batch methods
benefit in particular from this, since they can perform global optimization on them. For example, the minimum cost
lifted multicut problem has reached top performance on MOT16, helped by CNN-computed affinities [148, 51], while
heterogeneous association graph fusion and correlation clustering are used on the two top MOT17 methods [103, 155].

Finally, it can be noticed that the accuracy of bounding boxes radically affects the final performance of the algorithms.
In fact, the top ranked tracker on MOT15 [89] obtained a relatively high MOTA score by just performing a bounding
box regression step on the output of a previous state-of-the-art algorithm [89] using a deep RL agent. Developing an
effective bounding box regressor to be incorporated in future MOT algorithms could be an interesting research direction
that has not yet been explored thoroughly. Moreover, instead of relying on a single frame to fix the boxes, that could
make them enclose the wrong target in case of an occlusion, batch methods could also try to exploit future and past
target appearance to more accurately regress the bounding boxes around the right target.

5 Conclusion and future directions

We have presented a comprehensive description of all MOT algorithms employing deep learning techniques, focusing
on single-camera videos and 2D data. Four main steps have been shown to characterize a generic MOT pipeline:
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detection, feature extraction, affinity computation, association. The use of deep learning in each of these four steps has
been explored. While most of the approaches have focused on the first two, some applications of deep learning to learn
affinity functions are also present, but only very few approaches use deep learning to directly guide the association
algorithm. A numerical comparison of the results on the MOTChallenge datasets has also been provided, showing that,
despite the wide variety of approaches, some commonalities can be found among the presented methods:

• detection quality is important: the amount of false negatives still dominates the MOTA score. While deep
learning has allowed for some improvement in this regard for algorithms employing public detections, the use
of higher quality detections is still the most effective way to reduce false negatives. Thus, a careful use of deep
learning in the detection step can considerably improve the performance of a tracking algorithm;

• CNNs are essential in feature extraction: the use of appearance features is also fundamental for a good
tracker and CNNs are particularly effective at extracting them. Moreover, strong trackers tend to use them in
conjunction with motion features, that can be computed using LSTMs, Kalman filter or other Bayesian filters;

• SOT trackers and global graph optimization work: the adaptation of SOT trackers to the MOT task, with
the help of deep learning, has recently produced good-performing online trackers; batch methods have instead
benefited from the integration of deep models in global graph optimization algorithms.

As deep learning has been introduced only recently in the field of MOT, a number of promising future research directions
have also been identified:

• researching more strategies to mitigate detection errors: although modern detectors are constantly reaching
better and better performances, they are still prone to produce a significant number of false negatives and false
positives in complex scenarios such as dense pedestrian tracking. Some algorithms have provided solutions to
reduce the exclusive reliance on detections by integrating them with information extracted from other sources
(e.g. superpixels [103], R-FCN [118], Particle Filter [145], etc.), but further strategies should be investigated;

• applying DL to track different targets: most of DL-based MOT algorithms have focused on pedestrian
tracking. Since different types of targets pose different challenges, possible improvements in tracking vehicles,
animals, or other objects with the use of deep networks should be investigated;

• investigating the robustness of current algorithms: how do current methods perform under different camera
conditions? How do a varying contrast, illumination, the presence of noisy/missing frames affect the result of
current algorithms? Are existing DL networks able to generalize to different tracking contexts? For example,
the vast majority of people tracking frameworks are trained to follow pedestrians or athletes, but tracking
could be useful in other scenarios. A possible new application could be helping with scene understanding in
different contexts: inside movies, in order to generate textual descriptions to provide a coarse way of searching
for a scene in a movie; or on social networks, in order to generate descriptions for blind users or to detect
inappropriate videos that should be removed from the platform. These different scenarios would probably
require changes to the current detection and tracking algorithms, since the people could appear in unusual
poses and behaviors that are not present in the existing datasets for MOT;

• applying DL to guide association: the use of deep learning to guide the association algorithm and to directly
perform tracking is still in its infancy: more research is needed in this direction to understand if deep algorithms
can be useful in this step too;

• combining SOT trackers with private detections: a possible way to reduce the number of lost tracks, and
thus reduce the false negatives, could be the combination of SOT trackers with private detections, especially in
a batch setting, where it would be possible to recover past detections that were previously missed;

• investigating bounding box regression: the use of bounding box regression has been shown to be a promising
step in obtaining a higher MOTA score, but this has not yet been explored in detail and further improvements
should be investigated, e.g. the use of past and future information to guide the regression;

• investigating post-tracking processing: in batch contexts, it is possible to apply correction algorithms on the
output of a tracker to increase its performance. This has already been shown by Babaee et al. [132], that have
applied occlusion handling on top of existing algorithms, and by Jiang et al. [152] with the aforementioned
bounding box regression step. More complex processing could be applied on the results from a tracker to
further improve the results.

Finally, as very few of the presented algorithms have provided public access to their source code, we would like to
encourage future researchers to publish their code in order to allow for better reproducibility of their results and benefit
the whole research community.
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A Appendix

Here we present a table containing a summary of the techniques used by each algorithm presented in this paper. The
table follows the order of presentation of the papers. Since we think that the publication of open source code can greatly
help the research community, we have also provided links to the source codes for the papers that provide them.

Detection Feature extr. / mot.
pred.

Affinity / cost
computation

Association /
Tracking

Mode Source
and data

[35] Faster
R-CNN

Kalman filter IoU Hungarian algorithm O Source

[38] Modified
Faster

R-CNN

Modified
GoogLeNet, Kalman

filter

Cosine distance +
IoU

Hungarian algorithm
(online), modified
H2T [169] (batch)

O+B Detections
and ap-

pearance
features

[52] Faster
R-CNN

CNN (app.),
AlphaPose CNN,

pose joints velocities,
interaction grid

Pose-based Triple
Stream Network
(LSTM-based)

Custom algorithm O

[53] Faster
R-CNN

CNN Euclidean distance,
cosine distance

Multifeature fusion
re-tracking algorithm

B

[54] CNN HOG + Colour
Names

Variation of
Discriminative

Correlation Filter

Custom algorithm +
Hungarian algorithm

O

[59] SSD SSD, LSTM Cosine similarity Hungarian algorithm O

[60] SSD SSD RNN Hungarian algorithm,
MLP (track scores)

O

[61] SSD SSD + Correlation
Filter

IoU + APCE Hungarian algorithm O

[55] Public / Mask
R-CNN

Siamese Mask
R-CNN

App. affinity, mot.
consistency, spatial
structural potential

Tensor-based
high-order graph

matching

O Code
will be
released

[66] YOLOv2 Tiny Yolo, Particle
filter, Random Ferns,

KLT

Pairwise overlap
ratio, student

Random Ferns,
Euclidean distance

Greedy bipartite
assignment

O

[67] RRC or
SubCNN

Feature-based
odometry, Pose

Adjustment CNN,
stacked-hourglass

CNN

3D-2D cost + 3D-3D
cost + appearance,

shape and pose costs

Hungarian algorithm O Source

[70] DPM or Tiny
(CNN)

DPM or Tiny (CNN) Implicit in Reverse
Nearest Neighbour

Reverse Nearest
Neighbour Matching

O Code
will be
released

[72] ViBe + SVM
+ CNN

IoU Region Matching
algorithm

O

[76] Multi-task
Network
Cascades
(CNN)

Optical flow Overlap of
segmentation

instances

Hungarian algorithm O

[81] Dalal-Triggs
detector

Autoencoders SVM Minimum spanning
tree

O

39

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/abewley/sort
https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
https://drive.google.com/file/d/0B5ACiy41McAHMjczS2p0dFg3emM/view
https://github.com/JunaidCS032/MOTBeyondPixels


THIS PREPRINT HAS BEEN ACCEPTED IN NEUROCOMPUTING
c©2019. THIS MANUSCRIPT VERSION IS MADE AVAILABLE UNDER THE CC-BY-NC-ND 4.0 LICENSE

Detection Feature extr. / mot.
pred.

Affinity / cost
computation

Association /
Tracking

Mode Source
and data

[83] Public CNN + PCA Multi-Output
Regularized Least

Squares

Variation of Multiple
Hypothesis Tracking

O Source

[88] Public CNN, Kalman Filter Multi-Output
Regularized Least
Squares + Kalman

Filter +
detection-scene score

Maximum Weighted
Independent Set

B

[89] Public R-CNN Observation cost +
transition cost +
birth-death cost

Min-cost multi
commodity flow

problem, solved with
Dantzig-Wolfe
decomposition

O

[91] DoH [170] CNN CNN + Kalman filter Custom algorithm,
SVM

B

[41] From [38] Kalman filter, Wide
Residual Net

Mahalanobis dist.
(mot.) + cosine

distance (app.), IoU

Hungarian algorithm O Source

[42] From [38] CNN appearance + motion
+ dynamic affinity

Hungarian algorithm O

[93] Public CNN Bilinear LSTM Variant of
MHT-DAM [83]

B

[94] Public /
SDP+RPN

CNN Appearance +
motion + shape

affinities

Hungarian algorithm O Source

[95] Public GoogLeNet CNN App. similarity Bayesian inference
using [171]

B

[96] Public / Faster
R-CNN

GoogLeNet CNN Recurrent
Autoregressive

Networks
(GRU-based)

Bipartite graph
matching

O

[98] Public CNN Hybrid Likelihood
Function

(Discriminative
Correlation Filter +
Gaussian Mixture

Probability
Hypothesis Density)

Hungarian algorithm O

[100] Public CNN app. + HSV
histogram + motion

similarities

Pairwise update
algorithm + SSVM

B Will be
available

at this
link

[103] Public GoogLeNet CNN,
Optical flow

Distance between
app. features,

common superpixels,
optical flow
predictions

Multiple Hypotheses
Tracking

B

[104] Public CNN LSTM (app.) +
motion affinity

Batch
Multi-Hypothesis

B
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Detection Feature extr. / mot.
pred.

Affinity / cost
computation

Association /
Tracking

Mode Source
and data

[51] Public / From
[38]

DeepCut CNN [105],
StackNetPose CNN

StackNetPose CNN Lifted multicut
problem, solved as in

[144]

B Source

[106] Public Siamese CNN Euclidean distance
(app. feat.) + IoU +

box area ratio

Custom greedy
algorithm

O

[108] DPM Siamese CNN with
temporal constraints

Mahalanobis
distance (app. feat.)
+ motion affinity

Generalized Linear
Assignment solved

with Softassign
[172],

Dual-threshold
strategy [173]

B

[109] HeadHunter
[174]

CNN Euclidean distance
(app. feat.), temporal

and kinematic
affinities

Hungarian algorithm,
Agglomerative

clustering

B Source

[110] Public Siamese CNN,
contextual features

Gradient Boosting Linear programming B

[112] Public CNN,
sequence-specific
statistics, optical
flow, FC layers

FC layer combining
app. and mot.

distances

Minimax label
propagation

B

[113] Public CNN + various app.
and non-app. feat.

embedding layer +
bidirectional LSTM

Variation of Multiple
Hypothesis Tracking

B

[115] Public Linear motion model,
Spatial Attention
Network CNN

Temporal Attention
Network

(bidirectional LSTM)

Custom greedy
algorithm, ECO
(SOT tracker)

O Source

[116] Public Siamese CNN,
LSTM, WRN CNN,
Siamese Bi-GRU +

CNN

Euclidean dist. (app.
feat.), spatial

distance, GRU
feature matching

Hungarian algorithm,
bi-GRU RNN (track

split), custom
algorithm

B

[117] Public DCCRF,
visual-displacement

CNN

Visual-similarity
CNN, IoU

Hungarian algorithm O

[118] Public R-FCN + Kalman
Filter, GoogleNet

Eucl. dist. (app.
feat.), IoU

Hierarchical Data
Association

O Source

[119] Public Feature Pyramid
Siamese Network,
motion features

Feature Pyramid
Siamese Network

Custom greedy
algorithm

O

[121] Public Kalman Filter,
GoogLeNet

Distance between
sparse coding of
features using a

learned dictionary

Hungarian algorithm B

[123] Public 3 LSTMs (app., mot.,
interaction features)

using CNN, bb
velocity, occupancy

map

LSTM Hungarian algorithm,
SOT tracker [134]

O
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Detection Feature extr. / mot.
pred.

Affinity / cost
computation

Association /
Tracking

Mode Source
and data

[124] Public Linear motion model,
CNN

CNN Association to
highest classification

score

O

[126] Manually
generated

Hidden Markov
Models, CNN

Mutual information
(app. feat.)

Dynamic
programming

algorithm from [171]

B

[128] Public LK optical flow,
Convolutional

Correlation Filter
CNN, Kalman filter

Optical flow aff., app.
feat. aff., IoU, scale

affinity, distance
between detections

Custom algorithm
(with Hungarian alg.)

O Source

[131] Public Kalman filter + Deep
RL agent

IoU Hungarian algorithm
+ Deep RL agent

O

[132] N/A LSTM (mot.) Stitching score using
IoU

Custom iterative
tracklet-stitching

algorithm

B

[133] Public RNN (mot.) LSTM RNN O Source

[136] Public 2 LSTMs, VGG16
CNN

SVM, Siamese
LSTM

Greedy association B

[43] From [38] Kalman filter or LK
optical flow, CNN +

motion features

IoU, Siamese LSTM Hungarian algorithm B

[138] Public FC layers +
Bi-directional LSTM

Hungarian algorithm O

[145] Public / from
[147]

(combines
DPM, SDP
and ACF)

Modified Faster
R-CNN

Modified Faster
R-CNN

Particle filter O

[148] Public DeepMatching,
Siamese CNN

Edge potential as in
[149], Siamese CNN

Lifted multicut B

[150] Public CNN (motion pred.),
part of MDNet

(CNN)

N/A Deep RL agents O

Table 8: Information summary about the methods commented in section 3. In each column, the approach for each paper
in that step is shown. app. means appearance, mot. means motion, feat. means features, pred. means prediction; O and
B in the Mode column indicate Online and Batch methods respectively. Text in the last column is clickable and contains
links to the specified data.
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