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Abstract

Although supervised deep representation learning has attracted enormous attentions

across areas of pattern recognition and computer vision, little progress has been made

towards unsupervised deep representation learning for image clustering. In this paper,

we propose a deep spectral analysis network for unsupervised representation learning

and image clustering. While spectral analysis is established with solid theoretical foun-

dations and has been widely applied to unsupervised data mining, its essential weak-

ness lies in the fact that it is difficult to construct a proper affinity matrix and determine

the involving Laplacian matrix for a given dataset. In this paper, we propose a SA-Net

to overcome these weaknesses and achieve improved image clustering by extending

the spectral analysis procedure into a deep learning framework with multiple layers.

The SA-Net has the capability to learn deep representations and reveal deep correla-

tions among data samples. Compared with the existing spectral analysis, the SA-Net

achieves two advantages: (i) Given the fact that one spectral analysis procedure can

only deal with one subset of the given dataset, our proposed SA-Net elegantly inte-

grates multiple parallel and consecutive spectral analysis procedures together to enable

interactive learning across different units towards a coordinated clustering model; (ii)

Our SA-Net can identify the local similarities among different images at patch level

and hence achieves a higher level of robustness against occlusions. Extensive experi-

ments on a number of popular datasets support that our proposed SA-Net outperforms
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11 benchmarks across a number of image clustering applications.

Keywords: Image clustering, spectral analysis network, deep representation learning

1. Introduction

As clustering is one of the most fundamental tasks in machine learning and data

mining [1, 2, 3], its main goal is to reveal the meaningful structure of a dataset by

categorizing the data samples into a number of clusters, where similar samples are

grouped together. It is extensively studied and a large number of methods have been

reported, including subspace clustering [4], partitional clustering [5], hierarchical clus-

tering [6, 7], and density-based clustering [8]. Over the past decades, clustering has

found a wide range of applications, such as video retrieval [9], text analysis [10], as

well as large scale data analysis [11, 12].

Spectral analysis is one of the most promising clustering methods [13, 14], and has

been successfully applied in various computer vision tasks [15, 16]. Spectral analysis

first derives a Laplacian matrix from the pairwise similarities among the data samples,

and then embeds the data samples into an eigenspace of the Laplacian matrix, before

the k-means is applied to complete the final categorization of all the data samples.

Theoretically, the numerical embeddings or the spectral features of the data samples are

taken as the relaxation of binary cluster labels [17]. Thus, these spectral features can

improve both the intra-cluster compactness and the inter-cluster separability. Spectral

analysis has three appealing properties, including (i) it can produce the embeddings

analytically via an eigen-decomposition procedure; (ii) it has solid interpretations and

can be derived from the theory of random walk, where the diffusion distance between

a pair of data samples is equal to the distance between their embeddings [18]; (iii)

spectral analysis is effective in revealing the non-convex data structure [19].

In general, spectral analysis has two unsolved problems. The first problem is the

fact that it is still unclear how the affinity graph can influence the clustering perfor-

mance. To construct the affinity graph, there exist three popular strategies, including,

k-nearest-neighborhood, ǫ-nearest-neighborhood, and fully connected graph. While

each of these three strategies has its own advantages and disadvantages, how to choose
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a specific strategy and how to determine its optimal parameter still remains to be an

open issue. The second problem is that no agreement has ever been reached in the

choice of Laplacian matrix for eigenvector decomposition. Both of the two popular

Laplacian matrices, i.e. symmetric normalized Laplacian matrix [13] and left normal-

ized Laplacian matrix [20, 21], have their own advantages and disadvantages.

Being the input of clustering, representations of data samples are also important

for achieving good performances. Out of the popularity of deep learning, an increasing

number of researchers use convolutional neural network (CNN) to learn deep represen-

tations that are feasible for clustering [22, 23, 24, 25, 26, 27, 28, 29]. Compared with

low-level or handcrafted representations, the deep representations show overwhelming

strengths in dealing with complicated data sample distributions [25, 30, 31].

Motivated by the significant success of deep learning, we extend the spectral anal-

ysis into multiple layers and propose a new spectral analysis network (SA-Net). Our

SA-Net learns deep representations based on both parallel and consecutive spectral

analysis procedures and shows its strength in various image clustering tasks. The pro-

posed SA-Net consists of four different types of layers, i.e. spectral analysis layer,

pooling layer, binarization layer, and coding layer. While parallel spectral analysis

procedures reveal the intrinsic structure of differently distributed data samples, the con-

secutive spectral analysis procedures inside the SA-Net learn deep features to further

improve the clustering friendliness of spectral features. By taking the image patches as

the input, a spectral analysis layer learns a patch-level representation space in such a

way that similar patches are made close to each other and dissimilar ones are made far

away from each other. This procedure can implicitly associate similar patches across

different images and identify the local similarity among them. While the spectral anal-

ysis layer stacks the patch representations to produce the representation of an image

for further processing by other layers, the pooling layer reduces the size of the feature

by summarization, the binarization layer binarizes the spectral features, and the coding

layer transforms the binary features into numerical feature maps.

Compared with the existing spectral analysis techniques applied to clustering, our

SA-Net has the following three advantages.
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• While the existing approaches are dominated by one single spectral analysis pro-

cedure to learn clustering-friendly features, our SA-Net stacks multiple spectral

analysis procedures in both parallel and consecutive manners to identify the best

possible features for data samples across various distribution models.

• Our proposed SA-Net elegantly integrates three types of affinity graphs as well

as two different normalized Laplacian matrices rather than relying on a single

empirically determined spectral analysis procedure. In this way, different spec-

tral analysis procedures can collaborate together in dealing with different data

sample distributions. Thus, our network can achieve enhanced clustering perfor-

mances in dealing with the variety of input datasets.

• While existing spectral analysis can only assess the similarity between image

pairs holistically, our proposed SA-Net can reveal the local similarity at patch

level via learning with multiple and multi-type layers. As a result, the proposed

method is more robust in identifying local similarities among images, especially

against occlusions.

The rest of this paper is organized as follows. Section 2 reviews the existing spec-

tral analysis clustering and deep representation learning, which are related to our work.

Section 3 presents the details of the proposed spectral analysis network (SA-Net). Sec-

tion 4 reports the experiments and finally Section 5 provides concluding remarks.

2. Related Work

2.1. Spectral Analysis Clustering

Given a dataset of N samples, i.e. I = {I1, I2, · · · , IN}, a clustering task aims to

partition it into k clusters. To achieve this, spectral analysis methods first build a non-

directed graph G = {I,W}, with W ∈ RN×N as the affinity matrix. In the graph G,

each node Ii(1 ≤ i ≤ N) corresponds to a data sample and the element wij(1 ≤ i, j ≤

N) represents the affinity between a pair of nodes Ii and Ij . Spectral analysis partitions

the graph G into a number of subgraphs based on a graph cut criterion [20], and thus
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produces a set of clusters. Mathematically, spectral clustering solves the following

minimization problem:

min
Ŷ

tr(Ŷ TWŶ ) (1)

where the binary assignment matrix Ŷ ∈ {0, 1}N×k satisfies Ŷ 1k = 1N , i.e. each

sample belongs to one and only one cluster. The element ŷic = 1 if and only if the data

sample Ii is assigned to the cth cluster.

It is known that the problem in Eq. (1) is NP-hard. In order to solve this problem

numerically, researchers relax it by the spectral graph theory [32]. By allowing the

assignment matrix to have continuous values, we obtain the following relaxation for

Eq. (1):

min
Y

tr(Y TWY ) s.t. Y TY = Ek (2)

where Y ∈ RN×k is the relaxed continuous clustering assignment matrix with orthog-

onal constraint and Ek ∈ Rk×k is the identity matrix. Based on a normalized cut

criterion, the spectral clustering can also be formulated as [17]:

max
Y TDY=Ek

tr(Y TWY ) (3)

where Y = Ŷ (Ŷ TDŶ )−1/2 and D ∈ RN×N is a diagonal matrix with Dii =
∑N

j=1 wij . We can also formulate spectral clustering as [13]

min
Y TDY=Ek

tr(Y TLY ) (4)

where L = D − W is the Laplacian matrix. With the solution Y of Eq. (2), (3), or

(4), we can obtain the final cluster labels by simply conducting an additional k-means

procedure. For the convenience of description, we consider yi as the spectral feature of

the data sample Ii(1 ≤ i ≤ N).

A typical spectral analysis clustering procedure is shown in Algorithm 1, which

mainly consists of four steps, i.e. affinity matrix construction, Laplacian matrix com-

putation, matrix eigen-decomposition, and k-means clustering. While spectral analysis

clustering has the advantage in revealing the intrinsic data distribution [13, 21], it also

has a number of deficiencies, compared with other clustering approaches, which can

be highlighted as follows.
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Algorithm 1 Spectral Clustering

Input: data points I = {I1, I2, · · · , IN} and number of clusters k;

Output: k clusters

1: Construct an affinity matrixW ∈ RN×N between data points, where wij measures

the similarity between Ii and Ij ;

2: Compute the Laplacian matrix L = D − W , where D ∈ RN×N is the degree

matrix with dii =
∑N

j=1 wij ;

3: Compute the k eigenvectors qi(1 ≤ i ≤ k) for Laplacian matrix L , corresponding

to the k smallest eigenvalues, and denote them by: Q = [qi, q2, · · · , qk] ∈ RN×k;

4: For 1 ≤ i ≤ N , let yi ∈ Rk be the ith row of the matrix Q, and apply k-means to

cluster the points yi(1 ≤ i ≤ N) to obtain the k clusters: Clusterj(1 ≤ j ≤ k).

Firstly, there is little theoretical analysis that could lead us to a proper affinity matrix

W for a given dataset, although it is extensively studied [33, 34]. While three different

similarity measurements are popularly used to construct the affinity matrix, including

k-nearest-neighborhood, ǫ-nearest-neighborhood, and the fully connected graph, each

of these three affinity matrices can only deal with some but not all types of data sets.

While the k-nearest-neighborhood strategy might break a connected component into

several components, the ǫ-nearest-neighborhood strategy can not handle datasets with

varying densities, and the fully connected affinity method suffers from high computa-

tional complexity. In addition, the clustering results are also sensitive to the parameter

variations of these similarity measurements.

Secondly, the relevant research communities have not reached consensus on how

to choose between different Laplacian matrices. The unnormalized Laplacian matrix L

has two popular extensions, including symmetric normalization and left normalization,

and details of these two normalization matrices are described in the following two

equations:

Lsym = D−1/2LD−1/2 = EN −D−1/2WD−1/2 (5)

Lrw = D−1L = EN −D−1W (6)
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where EN ∈ RN×N is the identity matrix. Both the normalized matrices are positive

semi-definite and thus have N real-valued eigenvalues. Let vrw be an eigenvector of

Lrw corresponding to eigenvalue λrw, i.e. Lrwvrw = λrwvrw. Then, we have the

following equations to describe their relationships.

ENvrw −D−1Wvrw = λrwvrw ⇔

vrw −D−1/2D−1/2WD−1/2D1/2vrw = λrwvrw ⇔

D1/2vrw − (D−1/2WD−1/2)D1/2vrw = λrwD
1/2vrw ⇔

Lsym(D1/2vrw) = λrw(D
1/2vrw)

(7)

Thus, D1/2vrw is the eigenvector of Lsym corresponding to the eigenvalue λrw. This

means that Lsym and Lrw have the same set of eigenvalues and their eigenvectors differ

by a scaling of D1/2. While Ng [13] adopted the symmetrically normalized Laplacian

matrix and claimed superior performances, Shi [20] and Luxburg [21] recommended

the left normalized matrix. Both normalizations have their individual advantages and

disadvantages.

Thirdly, spectral clustering is computationally expensive. In general, Algorithm 1

has the computational complexity of O(N2) in terms of space and O(N3) in terms

of time, and thus many efforts have been reported to reduce the computational com-

plexity. Dhillon et al. [35] eliminate the need for eigen-decomposition by proposing

a multilevel algorithm to optimize weighted graph cuts. Yan et al. [36] propose to

conduct spectral clustering based on the representative centroids. In a similar manner,

Zhang et al. [37] minimize the quantization error of samples and thus improve Nystrom

spectral clustering. Based on the Nystrom method, Fowlkes et al. [38] approximate the

affinity matrix using a subset of data samples. Wang et al. [39] select a subset of data

points based on data-dependent nonuniform probability distribution and use them to

construct a low-rank approximation for the affinity matrix. In 2017, Han and Filippone

[40] propose to recover the Laplacian spectrum via mini-batch-based stochastic gradi-

ent optimization on Stiefel manifolds. In contrast, our proposed approach is computa-

tionally efficient and converges to critical points, even with a data set as large as 580K ,

providing the potential of allowing us to conduct spectral analysis on large datasets.
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2.2. Deep Representation Learning for Clustering

To achieve satisfactory clustering performances, data representations are also of

vital importance in addition to the clustering techniques. Along with the popularity

of deep learning [41], existing research has increasingly focused on deep representa-

tions, leading to significant improvement of clustering performances. Based on the

reconstruction task, Hinton and Salakhutdinov propose an autoencoder to learn deep

representations [42]. Tian et al. [25] correlate spectral clustering with autoencoder,

and thus put forward a so-called sparse autoencoder for deep representation learning.

Chen [43] takes the nonparametric maximum margin clustering results as the super-

vision information and learns the deep data representations using a DBN (deep belief

network). As a recurrent framework for agglomerative clustering, JULE [28] integrates

CNN-based representation learning with the cluster assignment learning, and through

such an integration, these two learning procedures can boost each other. Both DCN

[27] and DBC [23] propose a well-designed objective function in order to learn deep

representations which are suitable for k-means clustering. DEC [26] proposes soft as-

signments for data samples based on the representation distribution and refines them

iteratively. DEPICT [22] designs a new network structure by stacking a soft-max layer

on top of a multilayer autoencoder and trains it by minimizing relative entropy. Sha-

ham et al. [24] train a SpectralNet that can learn the data embeddings as well as the

cluster assignments at the same time. Such spectralNet can deal with out-of-sample

problem as well as large data set. Recently, Aljalbout et al. [30] present a systematic

taxonomy for clustering with deep learning.

All of the above mentioned methods learn deep representations based on convolu-

tional neural networks. In this work, we extend [44] and propose a new framework for

deep representation learning based on spectral analysis with multiple layers.

3. The Proposed SA-Net

3.1. Main Idea

At present, the dominating technique in deep representation learning is CNN [45],

consisting of multiple layers, such as convolutional layers, pooling layers, and softmax
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layers. In a CNN, the convolution operation is the key to produce the representative and

discriminative representations. Researchers also attempt to extend other techniques,

such as k-means [46], to a network structure for deep representation learning. In this

paper, we propose a new representation learning method via expansion of the concept

in spectral analysis, and to the best of our knowledge, we are the first to build a deep

learning network by stacking spectral analysis procedures both consecutively and par-

allelly.

(a) Data samples (b) One spectral analysis procedure (c) Two spectral analysis procedures

spectral

analysis

spectral

analysis

Figure 1: Illustration of samples in a two-cluster dataset and their corresponding spec-

tral features, where (a) the data samples; (b) the shallow spectral features of the samples

obtained from one spectral analysis procedure; and (c) the deep spectral features of the

samples obtained from two consecutive spectral analysis procedures.

It is widely recognized that, as relaxation of the cluster assignment vectors Ŷ =

{ŷi}
N
i=1, the spectral features Y = {yi}

N
i=1 in algorithm 1 are more suitable for clus-

tering than the original data points {Ii}
N
i=1 [21]. In other words, a spectral analysis

procedure can enhance the intra-cluster similarity as well as the inter-cluster separabil-

ity. Inspired by such an observation, we consider to conduct multiple spectral analysis

procedures consecutively to learn deep representations and hence create more spaces

for research towards improved clustering performances. An intuitive example is shown

in Fig. 1, where part-(a) shows a two-cluster data set and part-(b) shows the spectral

features obtained from a single spectral analysis procedure. By taking the features in

part-(b) as the input, the second spectral analysis procedure produces a set of more

clustering-friendly features (as shown in part-(c)). Specifically, the deep features in

part-(c) associate with a higher Calinski-Harabasz(CH) score than the shallow features

in part-(b).

As previously mentioned, there are three different methods to construct the affin-
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ity matrix, involving two different types of Laplacian matrices. Since each of them

has its own advantage, and it remains difficult to determine which one to use for

a given dataset, yet the variation of a parameter can influence the clustering results

significantly. Fig. 2 shows an example on two-cluster dataset and visualizes the

clustering results of different spectral analysis procedures with a symmetrically nor-

malized matrix. In Fig. 2, part-(a) and part-(b) adopt a fully connected graph (i.e.

wij = exp(−‖xi − xj‖
2/(2σ2))) to construct the affinity matrix with σ = 0.2 and

σ = 0.5, respectively, and part-(c) adopts knn to construct the affinity matrix with the

parameter k = 3. As seen, all these three spectral analysis procedures do not have opti-

mal parameters and consequently, each of them mis-cluster a portion of data points. In

order to improve the clustering performance, we propose to conduct multiple spectral

analysis procedures parallelly and integrate them together by simply concatenating

their spectral features. After applying a k-means clustering on the concatenated fea-

tures, we present our clustering results in part-(d). As seen, the integration of three

spectral analysis procedures can cluster all the data points correctly, though none of

them can achieve this individually. This indicates that we can improve the cluster-

ing performance by integrating multiple spectral analysis procedures with sub-optimal

affinity matrices. Similarly, different Laplacian matrices can also collaborate with each

other to boost the clustering performance. In this way, multiple parallel spectral analy-

sis procedures can be elegantly integrated to work together collectively and collabora-

tively, and thus deep correlations across the data samples can be effectively identified

and exploited for improved clustering performances.

3.2. SA-Net Structure

In this subsection, we propose a new network structure that can extract deep fea-

tures or representations for the task of image clustering. Fig. 3 provides an overview

of the proposed network structure. As seen, the proposed network consists of five lay-

ers, i.e. two spectral analysis layers, one pooling layer, one binarization layer, and one

coding layer. Note that we can easily build deeper networks by adding more layers out

of the four different types.

In order to enhance the clustering friendliness of its input, a spectral analysis layer
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(a) fully connected graph, 0.2 (b) fully connected graph, 0.5

(c) knn graph, k=3 (d) Integrated features

Figure 2: Illustration of a two-cluster dataset and the clustering results by different

spectral analysis procedures, where a), b), and c) use a single type of spectral features,

d) concatenates all of the three spectral features before conducting k-means.

produces the concatenation of spectral features obtained from multiple parallel spec-

tral analysis procedures. For the convenience of description, the output features of a

spectral analysis layer is referred to as spectral features. In Algorithm 1, yi denotes the

spectral feature of sample Ii. In general, spectral features are theoretically more intra-

cluster compact and inter-cluster separate [21]. In practice, however, different spectral

analysis procedures have their own capabilities in dealing with data samples with vari-

ous distributions. In order to deal with data samples that follow different distributions,

we extract a range of spectral features from multiple spectral analysis procedures and

stack them together. The first spectral analysis layer takes the image patches as the

input and then its extracted spectral features are fed into the second layer for further

processing to increase the discriminative power of the first layer spectral features.

The pooling layer summarizes the neighboring spectral features, and takes the

strongest response to represent the visual appearance. The binarization layer bina-

rizes the spectral features, and the coding layer transforms the binary feature maps

into numerical feature maps, which provides better suitability and more friendliness

for k-means clustering.
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Figure 3: Illustration of the structure of the proposed SA-Net. In addition to the input

and output layers, there are five layers in the proposed network, including two spectral

analysis layers, one pooling layer, one binarization layer, and one coding layer. (a)

shows the details of the whole network structure and (b) shows the input and output of

different layers

Detailed descriptions and discussions of all these layers are provided as follows.

For an image clustering task, we assume that the image dataset I = {Ii|1 ≤ i ≤ N}

consists of N samples, and the image size is m0 × n0 with c0 channels, i.e. Ii ∈

Rm0×n0×c0 .

(1) The first spectral analysis layer

The first layer conducts spectral analysis based on the densely sampled image

patches. In the patch sampling procedure, we pad the image to include the border

information. Around each of a subset (or all) pixels, we crop an image patch of size

p0h × p0w × c0. With a stride of s0 in patch sampling, we obtain n0
p = m1 × n1 =
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⌈m0/s0 ⌉ × ⌈n0/s0 ⌉ patches in total from the image. In order to address the prob-

lem of illumination variation, a normalization procedure subtracts the mean from each

image patch. For an image Ii, we obtain a set of normalized image patches X0
i =

{x0
ij |1 ≤ j ≤ n0

p}. The patch set is X0 = {X0
1 , X

0
2 , · · · , X

0
N} with size of N × n0

p.

Given the image patch set X0, the tth (1 ≤ t ≤ b1) spectral feature in the 1st layer,

i.e. SA1t, extracts the spectral feature f1t
ij ∈ R1×d1t for the patch x0

ij . The parameter

b1 counts different spectral analysis procedures in the first layer and d1t denotes the

dimension of the spectral feature. Taking the normalized Laplacian matrix Lsym in

Eq. (5) as an example, we can formulate the tth spectral analysis procedure by the

following objective function:

max
FT

1tD
1

tF1t=Ed1t

tr(FT
1tW

1
t F1t) (8)

where W 1
t is the affinity matrix, D1

t is a diagonal matrix with (D1
t )ii =

∑N
j=1(W

1
t )ij ,

and F1t =
[

(f1t
11)

T
(f1t

12)
T
· · · (f1t

Nn0
p
)
T
]T

∈ R(N∗n0

p)×d1t . The following integrates

the b1 spectral analysis procedures into a single objective function:

max
FT

1tD
1

tF1t=Ed1t

t=1,2,...,b1

tr
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(9)

After obtaining F1t ∈ R(N∗n0

p)×d1t , we stack the spectral features belonging to the

same image into d1t feature maps with the size of m1 × n1, instead of clustering

them directly. Note that, any one of the spectral analysis procedures in Eq. (9) can

also be formulated by the left normalized Laplacian matrix Lrw. In general, the b1

different spectral analysis procedures can be different from each other in one or more

of the following three aspects, i.e. the affinity matrix, the Laplacian matrix, and the

computing method to produce the spectral features (further details are given in Sec.

3.3). With b1 different spectral analysis procedures, we obtain the spectral features of

an image with the dimensionality of m1 × n1 × c1, where c1 =
∑b1

t=1 d1t sums the

dimensionality of b1 different sets of spectral features. Let F 1
i ∈ Rm1×n1×c1 denote

the first layer spectral features of the ith image, and F 1 = {F 1
i |1 ≤ i ≤ N}.
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(2) The second spectral analysis layer

This layer has two operational steps. The first step is to sample the feature patches

on the output of the first layer, i.e. F 1. Let the feature patch set be X1, the second step

is to conduct spectral analysis procedures on X1 and produce the second layer spectral

features F 2.

Let the size of the feature patches be p1h × p1w × c1 as shown in Fig. 3, each fea-

ture patch carries the information learned from a larger patch with the size of (p1h +

p0h − 1) × (p1w + p0w − 1) × c0 in the original image. This indicates that, while the

first layer deals with the correlations between small image patches, the second layer

discovers the correlations among larger image areas from the original image. In addi-

tion, a feature patch also integrates the discriminative information learned by different

spectral analysis procedures, which are suitable for the clustering of data samples with

various distributions. This layer provides an elegant manner to integrate different spec-

tral analysis procedures together in the feature-level, in order to enable them to work

collaboratively.

(3) The pooling layer

The pooling layer summarizes the neighboring spectral features within the same

spectral map, which can be conducted on the spectral features of the first or the second

spectral analysis layer. To illustrate the specific operation process, we take spectral

features of the second layer as an example. The spectral analysis SC2t produces d2t

different feature maps with the size m2 × n2 for each image, and each feature map

is associated with an eigenvalue. The pooling operation is conducted inside each fea-

ture map. For a sp × sp grid centered at a point, the pooling operation only keeps

the strongest response in terms of an absolute value, which can be mathematically ex-

pressed as:

pooling(G) = gkl where |gkl| = max
ij

|gij | (10)

where gij denotes the feature in the ith row and the jth column of the target feature

grid. The pooling grids can be overlapped in our algorithm.

(4) The binarization layer

From the graph cut point of view, the sign of spectral features (positive or nega-
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tive) carries the cluster information [21]. For a clustering task with only two clusters,

specifically, we can simply take a single eigenvector in step 3 of Algorithm 1, and clus-

ter the data Ii into the first cluster if yi > 0 and the second cluster if yi < 0. This

observation explicitly shows the importance of the sign of the spectral features in the

clustering process. Following the pooling layer, correspondingly, we use a binarization

layer to binarize the spectral features, in which Bij denotes the jth binary feature maps

associating with the ith image, and B = {Bij} denotes the binary feature map set.

B1 B3 B4 B15 B16B2 ……

2627 20

feature maps

group index

weight

Figure 4: Illustration of partitioning the feature maps into groups, where the 16 fea-

ture maps are permuted based on their corresponding eigenvalues in a non-descending

order, and we assign larger weights to those the feature maps with smaller eigenvalues.

(5) The coding layer

Following the binarization layer, a coding layer [31] is added to transform the bi-

nary code into decimal numbers and thus make it feasible for the following clustering

operation. In this layer, we first partition the binary features of each image into dif-

ferent groups. Each group consists of L binary feature maps, and L is normally set to

be 8. With nb binary feature maps, the coding layer produces ⌈nb/L⌉ decimal feature

maps. Let Bk
ij be the jth (1 ≤ j ≤ L) binary feature map in the kth group for the ith

image. At the position (u, v), we take the L binary features Bk
ij(u, v) and convert them

into decimal by:

Ck
i (u, v) =

L
∑

j=1

2L−jBk
ij(u, v) (11)

In this way, we obtain the kth decimal feature map Ck
i for the ith image. Note, we

assign large weights to the spectral features with small eigenvalues, due to their strong

discriminative capabilities. By setting L to be 8, we can produce the gray maps in the

15



coding layer as shown in Fig. 3. The final clustering results are obtained by applying

a simple k-means to the output of the coding layer. Fig. 4 shows an example of parti-

tioning 16 feature maps into two groups and assigning a weight to each feature map. In

this figure, the feature maps are permuted based on their corresponding eigenvalues in

a non-descending order, i.e. vi ≤ vi+1, where vi is the eigenvalue associated with Bi.

3.3. Operational set-up across different spectral analysis procedures

In our proposed SA-Net, the spectral analysis procedures are different from each

other in terms of affinity matrix, Laplacian matrix, and computing method. Tab. 1

presents an overview of all these methods, from which it can be seen that we have

three different affinity matrices and three types of Laplacian matrices to design the

spectral analysis procedures. In addition, we have four different methods to compute

the spectral features based on a given Laplacian matrix. The last column of Tab. 1

provide the details of whether we adopt the corresponding item or how we set the

parameters.

To construct an affinity matrix with k-nearest-neighborhood, we choose a parame-

ter k so that the affinity graph is connected. To determine the parameter ǫ for ǫ-nearest-

neighborhood affinity matrix construction, we first obtain a minimal spanning tree from

the fully connected graph, then set the parameter ǫ to be 0.5η, η, or 2η, where η de-

notes the longest edge in the minimal spanning tree. For a fully connected graph, we

use empirical parameters or the self-tuning method [33] to determine an appropriate

parameter value for each sample point.

There are three different types of Laplacian matrices, including one unnormalized

and two normalized matrices. We adopt the two types of normalized Laplacian matri-

ces, i.e. Lsym and Lrw, for our proposed SA-Net, as they have already shown their

advantages in clustering. Theoretically, these two normalized Laplacian matrices im-

plement the essential objective in maximizing both the inter-cluster separability and

the intra-cluster similarity. As the unnormalized matrix (i.e. L) only takes the first half

of the objective into consideration, it is removed from our consideration.

Due to its high computational complexity, we do not apply the traditional eigen-

decomposition procedure to our patch-based spectral analysis procedures. As the Lanc-
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Table 1: Overview of spectral analysis procedures.

Stage Methods Settings

Affinity Matrix

k-nearest-neighborhood k = 5, 9, 17, 21

ǫ-nearest-neighborhood ǫ = 0.5η, η, 2η*

Fully connected matrix σ = 10−1, 10−2, 10−3, or self-tunning

Laplacian Matrix

L=D-W No**

Lsym = E −D−1/2WD−1/2 Yes

Lrw = E −D−1W Yes

Computing Method

Eigen-decomposition No

Lanczos method [47] Yes

Nystrom approximation [38] Yes

Mini-batch analysis [40] Yes

* η denotes the longest edge in the minimal spanning tree.

** Yes or No denotes whether the corresponding term is used in this paper.

zos method [47] has shown its advantages in decomposition of sparse matrices, we

adopt this method to produce the spectral features from the sparse affinity matrices con-

structed by k-nearest-neighborhood and ǫ-nearest-neighborhood. The computational

complexity of Lanczos method is O(Nmatrix · neig · niter), where Nmatrix denotes

the width or height of the Laplacian matrix, neig denotes the number of eigenvectors

to produce, and niter denotes the number of iterations. For image clustering reported

in this paper, the parameter Nmatrix is a multiple of the number of images N . For

example, we have Nmatrix = N × n0
p in the first spectral analysis layer, where n0

p

denotes the number of patches in each image. As given in each experiment of sec. 4,
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the parameter neig varies in different spectral analysis procedures and is no larger than

64. We set the parameter niter to be 1000 in this paper. For the dense affinity matrix,

we apply the Nystrom approximation-based method [38] or mini-batch spectral clus-

tering (MBSC) [40] to produce the spectral features. The computational complexity of

the Nystrom method is O(neigℓ
2
col+neigℓcolNmatrix), where ℓcol denotes the number

of representative columns sampled from the Laplacian matrix. In the implementation

of Nystrom method, we set ℓcol = logNmatrix and adopt sparse matrix greedy ap-

proximation (SMGA) sampling method [48] to select the columns in a greedy manner.

The number of eigenvectors neig , which equals to the target rank, is given in each

experiment. Taking the face image clustering as an example, we set neig = 64 in

the first spectral layer and neig = 16 in the second spectral layer. In the MBSC, we

set the size of mini-batch to be N
1

2

matrix, leading to the computational complexity of

O(Nmatrixn
2
eig +N2

matrixneig + n3
eig).

4. Experiments

To evaluate the proposed SA-Net, we carry out extensive experiments on a range of

image clustering tasks, including handwritten digit image clustering, face image clus-

tering, natural image clustering, and fashion image clustering. We show the robustness

of our method against parameter variation in digit image clustering. We also show the

performance variations of our method when the number of spectral analysis procedures

changes in face image clustering. Four popular standard metrics are adopted for mea-

suring the clustering performances, which include accuracy (ACC), nomarlized mutual

information (NMI) , adjust rand index (ARI), and F1-score (FS).

To benchmark our proposed SA-Net, we compare our proposed with 11 existing

clustering algorithms, which cover almost all the representative existing state of the

arts in image clustering. These include: k-Means (KM), normalized cuts (N-Cuts)

[20], self-tuning spectral clustering (SC-ST) [33], large-scale spectral clusteirng (SC-

LS) [12], agglomerative clustering via path integral (AC-PIC) [7], spectral embedded

clustering (SEC) [15], local discriminant models and global integration (LDMGI) [2],

NMF with deep model (NMF-D) [3], deep embedding clustering (DEC) [26], joint
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supervised learning (JULE) [28], and Deep embeded regularized clustering (DEPICT)

[22].

4.1. Handwritten Digit Image Clustering

For the convenience of validation, we conduct the experiments on two popular

handwritten digit image datasets, i.e. MNIST [49] and USPS1. The USPS dataset is

a handwritten digits dataset produced by the USPS postal service. There are 11, 000

images in this dataset, each belonging to 10 different classes (i.e. from 0 to 9), and

the image size is 16 × 16. The MNIST dataset is one of the most popular image

datasets, widely used for deep learning based research. In total, this dataset consists

of 70, 000 images, 60, 000 for training and 10, 000 for testing. Each image in the

dataset represents a handwritten digit, from 0 to 9. We use all the data samples in our

experiments, and the images are centered with the size 28× 28.

We take MNIST dataset as the example to show the implementation details, and it

is similar for the USPS dataset. In the first layer, we sample 11×11 image patches with

a stride of 5 both vertically and horizontally. With padding in the border, we sample

6× 6 = 36 image patches from an 28× 28 image.

For k-nearest-neighborhood affinity matrix construction, we set the parameter k

to be 9 and 17. As mentioned previously, we have three different settings for the

value of ǫ in ǫ-nearest-neighborhood affinity matrix construction, i.e. 0.5η, η, and 2η,

where η denotes the longest edge in the minimal spanning tree. We also construct

three different dense affinity matrices. While one dense matrix is determined by the

self-tunning method [33], the other two are constructed based on the Gaussian function

wij = exp(−||xi − xj ||
2/(2σ2)) with the parameter σ equals to 0.1 and 0.01, respec-

tively. Thus, we have 5 different sparse affinity matrices and 3 different dense affinity

matrices.

A symmetric Laplacian matrix is computed from each of the affinity matrices to

yield spectral features. We apply Lanczos to obtain spectral features from sparse affin-

ity matrices, and mini-batch anlaysis to derive spectral features from dense affinity

1https://cs.nyu.edu/roweis/data.html
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matrices. For each of the Laplacian matrix, we calculate neig = 64 eigenvectors, i.e.

the dimensionality of spectral features is 64. In summary, the spectral features pro-

duced by the first layer is of the size 6× 6× 512 for each image, with 64 dimensional

spectral features for every 8 different Laplacian matrices.

Figure 5: The typical visual patterns in the MNIST dataset

To show that the first layer can learn the typical visual patterns in the image dataset,

we conduct a k-means clustering based on the first layer spectral features and visualize

40 cluster centers in Fig. 5. As seen, while the first three rows represent lines in

different angles and positions, the last two rows represent different curve shapes in the

digit images. A proper combination of these visual patterns can produce a digit image.

In the second layer, we sample feature patches with the size of 4× 4× 512. With a

stride of 1 and no feature padding, we obtain 3×3 feature patches for all the 6×6×512

spectral features at the first layer. In other words, each image is associated with 9 fea-

ture patches with the dimensionality of 4 × 4 × 512. Similarly, the second layer also

uses both sparse affinity matrices and dense affinity matrices in the spectral analysis

procedures. By setting the parameter k to be 9 and 17, we use k-nearest-neighborhood

strategy to construct two sparse affinity matrices. To maximize the strength of the

multiple spectral analysis procedures, we also construct two dense affinity matrices by

self-tuning method and the Gaussian distance with σ = 0.1, respectively. With a sym-

metric Laplacian matrix employed, therefore, this layer has 4 different spectral analysis

procedures altogether. As each spectral analysis produces neig = 16 dimensional fea-

tures, the second spectral analysis layer produces 64 feature maps for every image and

20



Table 2: Comparative results on handwritten digit image datasets

MNIST USPS

ACC ARI NMI FS ACC ARI NMI FS

KM 0.534 0.408 0.500 0.347 0.460 0.430 0.451 0.392

N-Cuts 0.327 0.311 0.411 0.301 0.314 0.449 0.675 0.462

SC-ST 0.311 0.291 0.416 0.289 0.308 0.572 0.726 0.491

SC-LS 0.714 0.627 0.706 0.637 0.659 0.599 0.681 0.614

SEC 0.804 0.700 0.779 0.766 0.544 0.509 0.511 0.552

AC-PIC 0.115 0.095 0.017 0.154 0.855 0.729 0.840 0.754

LDMGI 0.842 0.795 0.802 0.717 0.580 0.538 0.563 0.525

NMF-D 0.175 0.159 0.152 0.212 0.382 0.334 0.287 0.251

DEC 0.844 0.795 0.816 0.716 0.619 0.554 0.586 0.635

JULE 0.959 0.832 0.906 0.814 0.922 0.749 0.858 0.801

DEPICT 0.965 0.808 0.917 0.851 0.964 0.846 0.927 0.809

SA-Net 0.970 0.838 0.923 0.888 0.976 0.857 0.936 0.900

each feature map is of the size 3×3. Following the binarization and coding layer (with

L = 8), we now have 64/8 = 8 coding feature maps, each of which has the size of

3×3. In other words, the dimensionality of the features for the final k-means procedure

is 72.

Tab. 2 lists the experimental results of our proposed SA-Net in comparison with the

benchmarks. Across all the four assessment metrics, our proposed SA-Net achieves the

best performances indicating that the proposed network can learn feasible deep features

for the clustering task.

In order to show the robustness of our method against parameter variations, we

conduct further experiments on the MNIST testing subset and list the results in table

3. In both of the two spectral analysis layers, we change the parameter k in k-nearest-

neighborhood affinity matrix and parameter σ in the dense affinity matrix. The first

layer has two k-nearest-neighborhood affinity matrices and two dense matrices deter-

mined by σ. Thus, we have two values for k and two values for σ in the first layer.
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Similarly, we have two values for k and one value for σ in the second layer. With three

different settings for these parameters, the accuracy of our method only varies slightly,

which are 0.974, 0.966, and 0.969, validating that our proposed SA-Net does achieve a

good level of robustness against the parameter variations.

Table 3: The accuracies achieved by SA-Net with different parameters. For simplic-

ity, the following abbreviations are adopted: SAL: spectral analysis layer; PL: pool-

ing layer; BL: binarization layer; CL: coding layer. We also use Xand × to indicate

whether the layer is included or not in our experiments.

The 1st SAL The 2nd SAL PL BL CL ACC

k=5,17;σ=0.1,0.05 k=5,17;σ=0.1

! ! ! 0.974

! ! # 0.957

! # # 0.891

# # # 0.884

k=9,21;σ=0.05,0.01 k=9,21;σ=0.01

! ! ! 0.966

! ! # 0.942

! # # 0.903

# # # 0.876

k=5,21;σ=0.1,0.05 k=5,21;σ=0.01

! ! ! 0.969

! ! # 0.934

! # # 0.912

# # # 0.906

The experimental results in table 3 also empirically show the effectiveness of the

pooling layer, the binarization layer, and the coding layer. When we remove the coding

layer, as seen, the accuracy drops about 2% in all of the three settings. This is due

to the fact that the coding layer assigns higher weights to the feature maps in order to

increase the discriminating power, yet all of the feature maps have equal weights with-

out the coding layer. Although we may lose information in the operations of pooling

and binarization, they can indeed improve the accuracy by reducing the intra-cluster

distance and improving the cluster compactness.
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4.2. Face Image Clustering against occlusions

To have more comprehensive evaluations upon our proposed SA-Net, we carry

out another phase of experiments by testing our proposed against occlusions via three

publicly available face image data sets AR [50], YaleB [51], and CMU PIE [52]. While

the occlusions in YaleB-O and CMU PIE-O are introduced by ourselves, the occlusions

in AR are real ones generated by scarf and glasses.

The AR dataset [50] consists of more than 4, 000 frontal face images from 126 peo-

ple (70 men and 56 women). The face images were captured under different conditions

introduced by facial expression, illumination variation, and disguises (sunglasses and

scarf). The images were captured in two sessions (with an interval of two weeks). In

our experiment, we use a subset of the AR dataset, consisting of 14 non-occluded im-

ages and 12 occluded images for each of the 120 persons. Fig. 6 shows three groups of

sample images out of 3 different persons.

Figure 6: Illustration of example images from the AR dataset.

The YaleB facial image dataset [51] has around 64 near frontal images from 38 in-

dividuals. The images are captured under different illuminations. Totally, this dataset

has 2414 face images. The CMU PIE dataset [52] is collected by Carnegie Mellon Uni-

versity. The face images in this dataset are captured with different poses, illumination

conditions and expressions. We use 2, 856 images from 68 persons.

Compared with the AR dataset, neither YaleB nor CMU PIE has occluded face
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images. To test the robustness of our proposed SA-Net, we create two datasets with

occlusions, i.e. CMU PIE occlusion (CMU PIE-O) and YaleB occlusion (YaleB-O).

In these two occluded datasets, we simulate contiguous occlusions by hiding 20% of

pixels at a randomly selected location with a block out of another irrelevant image,

some samples of which are shown in Fig. 7.

Figure 7: Illustration of eight example face images from YaleB and CMU PIE whose

twenty percent pixels are occluded. The occlusions are not related to the face images

and are randomly located.

Table 4: Comparative results on AR face image dataset

ACC ARI NMI FS ACC ARI NMI FS

KM 0.534 0.408 0.500 0.347 LDMGI 0.460 0.430 0.451 0.392

N-Cuts 0.327 0.311 0.411 0.301 NMF-D 0.314 0.449 0.675 0.462

SC-ST 0.311 0.291 0.416 0.289 DEC 0.308 0.572 0.726 0.491

SC-LS 0.714 0.627 0.706 0.637 JULE 0.659 0.599 0.681 0.614

SEC 0.804 0.700 0.779 0.766 DEPICT 0.544 0.509 0.511 0.552

AC-PIC 0.115 0.095 0.017 0.154 SA-Net 0.855 0.729 0.840 0.754

Following the same design as for the clustering of digit images, we apply the pro-

posed SA-Net shown in Fig. 3 to face image clustering. While each spectral analysis

procedure produces neig = 64 eigenvectors in the first layer, the second layer produces

neig = 16 eigenvectors. However, some of the implementation details need to be

adapted correspondingly. Firstly, for face image clustering, we sample patches of size

15 × 15 with stride of 7. The patches are larger than the ones used in the handwritten

image dataset, in order to allow the typical visual patterns to cover meaningful parts
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Table 5: Comparative results on CMU PIE and PIE-O face image datasets

CMU PIE CMU PIE-O

ACC ARI NMI FS ACC ARI NMI FS

KM 0.196 0.190 0.266 0.153 0.158 0.154 0.258 0.123

N-Cuts 0.129 0.156 0.223 0.111 0.105 0.128 0.211 0.081

SC-ST 0.218 0.198 0.295 0.250 0.185 0.170 0.270 0.224

SC-LS 0.282 0.191 0.277 0.265 0.246 0.169 0.189 0.242

SEC 0.112 0.122 0.126 0.149 0.079 0.086 0.105 0.086

AC-PIC 0.244 0.320 0.221 0.189 0.224 0.283 0.194 0.169

LDMGI 0.256 0.194 0.242 0.257 0.198 0.158 0.214 0.223

NMF-D 0.310 0.357 0.380 0.292 0.280 0.324 0.266 0.266

DEC 0.421 0.389 0.477 0.348 0.403 0.334 0.347 0.291

JULE 0.550 0.437 0.521 0.497 0.522 0.421 0.311 0.423

DEPICT 0.535 0.484 0.488 0.453 0.516 0.374 0.320 0.347

SA-Net 0.610 0.497 0.605 0.537 0.569 0.423 0.567 0.518

of the faces. Secondly, we use the Nystrom approximation method (a different method

from the digit image clustering experiment) to compute the spectral features from the

dense affinity matrices. It is observed in our experiments that the computing method

has little impact upon the clustering performances.

Table 4, 5, and 6 summarize all the experimental results, from which it can be seen

that our proposed SA-Net outperforms all the 11 benchmarks selected out of the exist-

ing clustering algorithms. Further examinations of the experimental results also reveal

that, compared with all other spectral analysis-based clustering methods, the proposed

SA-Net achieves additional advantages in dealing with the occluded face images, due

to the fact that the network allows us to identify the local similarity between the face

images at patch-level. In contrast, the existing spectral analysis-based methods only

consider the global similarity between face images, yet the occlusion can significantly

reduce the similarity between two images, even when they associate with the same per-

son. This explains why the performances of the existing methods drop significantly on
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Table 6: Comparative results on YaleB and YaleB-O face image datasets

YaleB YaleB-O

ACC ARI NMI FS ACC ARI NMI FS

KM 0.234 0.208 0.287 0.216 0.117 0.070 0.111 0.083

N-Cuts 0.163 0.139 0.219 0.160 0.093 0.113 0.163 0.150

SC-ST 0.308 0.276 0.268 0.321 0.216 0.170 0.236 0.197

SC-LS 0.577 0.502 0.642 0.547 0.167 0.108 0.194 0.125

SEC 0.401 0.438 0.431 0.452 0.230 0.158 0.157 0.152

AC-PIC 0.472 0.482 0.412 0.428 0.264 0.208 0.242 0.241

LDMGI 0.574 0.597 0.615 0.509 0.230 0.176 0.172 0.223

NMF-D 0.578 0.520 0.637 0.613 0.393 0.296 0.310 0.242

DEC 0.571 0.597 0.569 0.606 0.402 0.245 0.469 0.441

JULE 0.610 0.573 0.697 0.649 0.471 0.460 0.496 0.358

DEPICT 0.678 0.619 0.650 0.617 0.418 0.393 0.441 0.380

SA-Net 0.766 0.648 0.707 0.681 0.621 0.526 0.580 0.497

both Yale-O and CMU PIE-O.

In order to show that every spectral analysis procedure contributes positively to

the clustering task, we adopt different number of spectral analysis procedures in our

experiments and show the average accuracy in Fig. 8. Specifically, we keep all of the

spectral analysis procedures in one layer and remove one or more spectral analysis pro-

cedures in the other layer. In Fig. 8 (a), we use 1 to 8 spectral analysis procedures in

the first layer and 4 spectral analysis procedures in the second layer. In Fig. 8 (b), we

use 8 spectral analysis procedures in the first layer and 1 to 4 in the second layer. As

seen, the average accuracy increases when we use more spectral analysis procedures.

This means that, as more spectral analysis procedures are added with our proposed

SA-Net, more discriminative spectral features and subspaces are brought in to increase

the discriminating power of our proposed method. In other words, the additional spec-

tral analysis procedures bring beneficial subspaces for clustering, indicating that the

parallel spectral analysis procedures are indeed working together collaboratively and
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(a) (b)

Figure 8: The average accuracy (vertical) versus the number of spectral analysis pro-

cedures (horizontal) in the first layer (a) and the second layer (b)

collectively. In principle, we can adopt more spectral analysis procedures, but the in-

crease on clustering accuracies remains trivial, revealing that our choice of 8 spectral

analysis procedures in the first layer and 4 in the second layer is sufficient not only in

discovering clustering-friendly representations, but also in representing an appropriate

balance between the computing cost and the effectiveness.

4.3. Natural Image Clustering

To assess how our proposed SA-Net performs on natural image clustering, we

further conduct experiments on three more image datasets, STL-10, CIFAR-10, and

CIFAR-100. They respectively have 13k, 60k, and 60k images, and the number of

clusters for them are respectively 10, 10, and 20. For training purposes, we resize the

images from STL-10 to 32× 32× 3, and let them be the same size as the images from

the other two datasets.

We compare the proposed SA-Net with four representative deep learning methods,

i.e. SEC [15], DEC [26], JULE [28], and DEPICT [22]. Based on the four types of lay-

ers (i.e. SAL-Spectral Analysis Layer, PL-Pooling Layer, BL-Binarization Layer, and

CL-Coding Layer), we build three different network structures, including SA-Net-2

(SAL-SAL-PL-BL-CL), SA-Net-3 (SAL-SAL-PL-SAL-PL-BL-CL), and SA-Net-5 (SAL-

SAL-PL-SAL-PL-SAL-PL-SAL-PL-BL-CL).

In the first spectral layer, we sample 11 × 11× 3 image patches with a stride of 2

pixels both vertically and horizontally. For each image of size 32× 32× 3, we obtain
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Table 7: Results of SA-Net and baselines on STL-10, CIFAR-10, and CIFAR-100

SEC DEC JULE DEPICT SA-Net-2 SA-Net-3 SA-Net-5

STL-10

ACC 0.148 0.276 0.182 0.195 0.317 0.331 0.328

ARI 0.125 0.184 0.207 0.231 0.274 0.304 0.295

NMI 0.212 0.359 0.277 0.264 0.398 0.351 0.386

FS 0.216 0.276 0.237 0.245 0.327 0.330 0.353

CIFAR-10

ACC 0.168 0.257 0.192 0.244 0.322 0.297 0.336

ARI 0.175 0.206 0.291 0.273 0.316 0.342 0.318

NMI 0.204 0.301 0.272 0.295 0.341 0.356 0.374

FS 0.237 0.221 0.268 0.217 0.283 0.316 0.323

CIFAR-100

ACC 0.094 0.136 0.103 0.187 0.208 0.223 0.254

ARI 0.141 0.154 0.169 0.184 0.194 0.222 0.240

NMI 0.123 0.185 0.137 0.240 0.274 0.276 0.293

FS 0 106 0.162 0.173 0.200 0.207 0.246 0.273

16 × 16 = 256 image patches. To deal with these difficult image datasets, we use

16 different spectral analysis procedures, involving 8 different affinity matrices and 2

normalized Laplacian matrices. The 8 different affinity matrices are: three k-nearest-

neighborhood affinity matrices with k = 9, 17, 21; three ǫ-nearest-neighborhood affin-

ity matrices with ǫ = 0.5η, η, 2η; and two fully connected affinity matrices determined

by a self-tunning method and σ = 0.1. Each spectral analysis procedure produces

spectral features with dimensionality of neig = 16, and thus the dimensionality of the

first layer spectral feature for an image is 16× 16× 256.

In the second spectral analysis layer, we sample 5 × 5 × 256 feature patches and

set the stride to be 2. With 8 different spectral analysis procedures each contributing

neig = 8 spectral features, we obtain the second layer spectral feature with a dimen-

sionality of 8× 8× 64. In each of the following (i.e. the third, forth, and fifth) spectral

analysis layers, we set the patch size to be 3 × 3 and adopt 8 different spectral analy-

sis procedures. After pooling, binarization and coding, the dimensionality of the final

feature map for an image is 4× 4× 8 = 128.

Tab. 7 summarizes the experimental results for both the benchmarks and our meth-
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ods, where the best performances are highlighted in bold. As seen, the proposed meth-

ods outperform the benchmarks in terms of ACC, ARI, NMI, and FS. While SA-Net-5

achieves the best performance in 8 cases, SA-Net-3 and SA-Net-2 achieve the best in

3 cases and 1 case, respectively. In the most difficult CIFAR-100 dataset, the deepest

SA-Net-5 achieves the best performances across all of the four evaluating metrics. Tak-

ing FS as the example, SA-Net-5 beats SA-Net-2 by a margin of 0.066 on CIFAR-100.

In terms of NMI, even the shallowest network SA-Net-2 can outperform the existing

benchmarks by a margin larger than 0.03 on all of the three datasets. In terms of ACC

(or FS), both SA-Net-3 and SA-Net-5 outperform the existing benchmarks by a margin

larger than 0.035 (or 0.045) on all of the three datasets.

Figure 9: The STL-10 images which are far away from their associating cluster centers

To show the difficulty of these clustering tasks, Fig. 9 illustrates some sample

images from STL-10. As seen, the samples are indeed far away from their associating

cluster centers. While the planes are captured under different views in the first column,

the cats are heavily occluded in the fourth column and the horses are captured under

quite different backgrounds in the eighth column.

4.4. Fashion image clustering

To test our proposed SA-Net for its capability in clustering variety of images with

different styles, we carry out one more phase of experiments to cluster the fashion

images into different styles on the dataset HipsterWars [53]. This dataset consists of

1, 893 fashion images, each associating with one of five style categories, including hip-

ster, bohemian, pinup, preppy, and goth. The numbers of images in these five categories
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are 376, 462, 191, 437, and 427 respectively. For the convenience of implementation

without losing generality, we resize all the images into 600× 400× 3.

As in Sec. 4.3, we also adopt three different network structures, i.e. SA-Net-2,

SA-Net-3, and SA-Net-5. We compare our method with three existing state of the art

benchmarks, including StyleNet [54], ResNet [55], and PolyLDA [56]. The StyleNet

is a network for clothing that is trained from the Fashion 144K dataset [57], and the

ResNet is a popular network for image classification. We extract features from these

two networks and obtain the clusters by k-means. PolyLDA (polylingual Latent Dirich-

let Allocation) is a Bayesian nonparametric model to characterize the styles by discov-

ering the compositions of lower-level visual cues.

In this experiment, the first spectral analysis layer samples image patches of size

32 × 32. The main goal of the first layer is to discover the typical visual patterns that

appears in many fashion images, where we use the 8 different spectral analysis proce-

dures as in the digit image clustering to learn the spectral features. In the second and

the subsequent spectral analysis layers, we only use sparse affinity matrix constructed

by the k-nearest-neighborhood, with the parameter k equals to 5, 9, 17 and 21, respec-

tively. We adopt both the symmetric normalized matrix and the left normalized matrix,

and apply the Lanczos method for Laplacian matrix decomposition to produce spectral

features. A spectral analysis procedure produces neig = 64 eigenvectors in the first

and neig = 16 eigenvectors in the second or the subsequent spectral analysis layers.

Table 8: Comparative results on HipsterWars dataset

StyleNet ResNet PolyLDA SA-Net-2 SA-Net-3 SA-Net-5

ACC 0.39 0.30 0.50 0.54 0.54 0.55

ARI 0.14 0.12 0.18 0.22 0.24 0.25

NMI 0.20 0.16 0.21 0.20 0.20 0.21

FS 0.30 0.28 0.33 0.39 0.41 0.41

As seen from Tab. 8, our method performs better than the existing benchmarks

in the four evaluating metrics. Specifically, our proposed method can improve the

ACC by a margin of 5%, the ARI by a margin of 7%, the FS by a margin of 8%.
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Table 9: The confusion matrix of the proposed SA-Net-2 on the Hipsterwars dataset

Hipster Bohemian Pinup Preppy Goth

Hipster 140 83 21 81 51

Bohemian 47 328 18 28 41

Pinup 30 25 72 23 41

Preppy 92 49 35 202 59

Goth 64 20 28 32 283

Hipster Bohemian Pinup Preppy Goth

Figure 10: Illustration of the fashion image samples nearest to the cluster centers of the

five different styles

As seen, there exist no significant differences among the performances of our three

network structures, indicating that two spectral analysis layers are sufficient for this

small dataset.

For the convenience of further examination and analysis, Tab. 9 illustrates the val-

ues of our confusion matrix for SA-Net-2, and Fig. 10 illustrates some image samples

that are nearest to the cluster centers.

In addition, further examination reveals that all the compared methods fail to achieve

good clustering results on this dataset. This is mainly due to two reasons. Firstly, the

images are obtained from on-line, not captured under any controlled environment, and
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as a result, they are significantly different from each other in terms of the capturing

view, illumination, and background (see Fig. 10). Secondly, a style (and the resulting

cluster) normally represents the coherent latent appearance between different parts of

the fashion images, not simply a composition of several visual components. In other

words, the foregrounds of two images can be quite different even though they are from

the same cluster.

5. Conclusions

In this paper, we have described a new deep learning network SA-Net for image

clustering based on the technique of spectral analysis. This provides one more method

for deep representation learning, in addition to the popular convolutional neural net-

work. Our proposed network structure has four type of layers, including spectral anal-

ysis layer, binarization layer, coding layer, and pooling layer. Compared with the ex-

isting spectral analysis clustering methods, SA-Net achieves three advantages. Firstly,

while the existing spectral clustering methods learn representations by a single spectral

analysis procedure, our proposed SA-Net conducts multiple procedures in both con-

secutive and parallel manner to learn more clustering-friendly representations. Sec-

ondly, SA-Net can elegantly integrate different spectral analysis procedures and thus

capable of dealing with different data sample sets. Thirdly, by conducting spectral

analysis procedures on image patches, SA-Net can discover the local similarity among

images at patch-level, and hence it is more robust against occlusions than the existing

spectral clustering methods. Extensive experiments validate the effectiveness of the

proposed SA-Net on a range of different image clustering tasks, including handwrit-

ten digit image clustering, face image clustering, natural image clustering, and fashion

image clustering.
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