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Abstract

The amount of real-time communication between agents in an information sys-
tem has increased rapidly since the beginning of the decade. This is because the
use of these systems, e.g. social media, has become commonplace in today’s
society. This requires analytical algorithms to learn and predict this stream
of information in real-time. The nature of these systems is non-static and can
be explained, among other things, by the fast pace of trends. This creates an
environment in which algorithms must recognize changes and adapt. Recent
work shows vital research in the field, but mainly lack stable performance dur-
ing model adaptation. In this work, a concept drift detection strategy followed
by a prototype-based adaptation strategy is proposed. Validated through ex-
perimental results on a variety of typical non-static data, our solution provides
stable and quick adjustments in times of change.

Keywords: Stream Classification, Concept Drift, Robust Soft Learning Vector
Quantization, Kolmogorov-Smirnov, RMSprop, Momentum-Based Gradient
Descent, Prototype Adaptation

1. Introduction

Recent years demonstrated a rapidly increasing amount of data generated
by technologies like social media or sensor data. In particular, data is streamed
and exceeds the memory and processing capabilities of analyzing systems by
far. Hence, streaming algorithms are designed to process data as fast as they
arrive, online and without storing large portions of data in the main memory. In
a supervised setting, streams are often affected by a change of underlying class
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distributions known as concept drift [1]. This results in drops of the prediction
performance of prior models, making them unusable. The detection and han-
dling of these events is one key area in the field of streaming research. Drifts
appear differently through speed, intensity, and frequency, i.e. incremental,
abrupt, gradual or reoccurring shown in Fig. 1.

The stability-plasticity dilemma [2] defines the trade-off between incorpo-
rating new knowledge into models (plasticity) and preserve prior knowledge
(stability). This prevents stable performance over time because on the edge of a
drift, significant efforts going into learning and testing against new distributions.

The main contribution of this work is a concept drift streaming algorithm
able to maintain stability during drift while learning new concepts. The Ro-
bust Soft Learning Vector Quantization (RSLVQ) [3], recently considered as
stream classifier [4], is enhanced by a prototype adaptation technique and com-
bined with the Kolmogorov-Smirnov (KS)-Test for concept drift detection and
referred as Reactive Robust Soft Learning Vector Quantization (RRSLVQ). The
RRSLVQ is tested against standard concept drift stream classifiers on bench-
mark streams and showed stability during the drift, while quickly learning new
concepts. Further, frequent reoccurring concept drift, which has not yet been
considered in the literature, is introduced in Sec. 3.2 and integrated into the
study.

The remaining structure of the paper is given in the following. We discuss
prior work on modifications of LVQ-prototypes and concept drift detectors in
Sec. 2. In Sec. 3, stream classification and concept drift are introduced. The
RRSLVQ as the main contribution is discussed in Sec. 4 and is divided into
two parts. The concept drift detector is described in Sec. 4.1. The prototype
adaptation strategy is discussed in Sec. 4.3 and its properties are shown in 4.4.
An experimental study in Sec. 5 validates the approach.

2. Related Work

Concept drift detectors are trying to detect a change in streams either by
monitoring the distribution of the streams or the performance of a classifier with
respect to some benchmark, e.g. accuracy. A popular approach for monitoring
the prediction accuracy of a classifier is the Adaptive Sliding Window (Adwin)[5]
and it assumes that if a change in performance is detected, the concept has
changed. Adwin identifies changes in distributions using a window W and splits
W into two adaptive subwindows and compares underlying statistics. The main
window grows as there is no change detected and shrinks if a change between
statistics of subwindows is detected. The change is recognized via Hoeffding
Bound [5].

Other methods similar to our approach identify drift not only but mainly via
statistical tests on distributions of streams. In [6], two windows are maintained
by a randomized search tree, which keeps recent data and the last concept.
The KS-Test detects concept drift between windows. The approach simplifies
the KS-Test similar to our approach. However, it requires a table of critical
values for application. Further research is done in [7], where one window stores
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a snapshot of the concept since last drift and another store a recently surveyed
concept. This detector is supervised and is not able to detect concept drift
independent of conditional class probabilities.

Concept drift handling techniques can be roughly divided into active and
passive [8]. The passive ones have no specific detection strategy, hence continu-
ally updating the model without awareness of concept drift. Active adaptation
changes a model noticeable. By means of Learning Vector Quantization (LVQ),
prototype adaptation or insertion is common [9].

The family of LVQ algorithms is a learning scheme of prototypes representing
class regions [10]. The prototypes have a geometric representation and provide
a simple interpretation and classification scheme. Within the learning process,
the prototypes are attracted and repelled depending on the class of given sam-
ples minimizing the error function. Note that the first version of LVQ is a
heuristic-based approach. However, through recent developments in the field,
the Generalized-LVQ (GLVQ) [11] or probabilistic approaches like RSLVQ [3]
are standard [12].

In [13], a new prototype is inserted as the mean of a set of misclassified
examples. Losing et al. [14] select one sample from given samples as new proto-
types, which minimizes the error. A near-mean technique is proposed by Climer
et al. [9]. It uses a specific sample as a new prototype, which has the small-
est Euclidean distance to the mean of a set of misclassified examples. Besides
great results in the respective domains, they share the problem of assuming the
existence of all classes in a given batch of samples or apply asymmetric proto-
type insertion. Due to the composition of streams, with potentially unbalanced
classes [15], this assumption is not guaranteed. In this work, we propose a
prototype adaptation strategy that can cope with missing classes.

3. Preliminaries

3.1. Stream Classification

In supervised classification a stream with potentially infinite length is a
sequence S = {s1, . . . , st, . . . } of tuples si = {xi, yi}, arriving one st at time
t. A stream classifier predicts labels yt ∈ {1, . . . , C} of unseen data xt ∈ Rd
by prior model ŷ = ht−1(xt) and includes this tuple into the model afterwards
ht = learn(ht−1, st). This requires algorithms to predict and learn at any time.

Further, a stream classifier must cope with non-stationary environments,
which change through the occurrence of concept drift.

3.2. Concept Drift

Concept drift is the change of joint distributions of a set of samples and
corresponding labels between two points in time by

∃X : pt−1(X, y) 6= pt(X, y). (1)

There are a variety of different drift types occurring in streaming data and causes
the concept to change from one time step to another one. Fig. 1 gives a short
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overview of drift types [2]. Every sub-fgure shows a particular drift given as
data mean. The shapes mark the dominating concept at a given time step. The
vertical axis shows the overall data mean and the transition from one to another
concept. The goal of detectors is to identify any change as soon as possible, as
in Eq. (1). Therefore a detector should monitor the data distribution rather
than performance values.

Note that we can rewrite Eq. (1) to

pt−1(y|X)pt−1(X) 6= pt(y|X)pt(X). (2)

If only the prior distribution p(X) changes for two points in time, then it is called
virtual drift. We assume that a change in this prior distribution is always present
at real concept drift [2]. Therefore, we assume with the proposed detector to
identify every concept drift through monitoring p(X). This is also an essential
assumption for most statistical tests since they do not observe the conditional
class probability but the prior distribution.

The frequent reoccurring drift is shown in the Fig. 1d and has not yet been
considered in the literature but is particularly impressive. Stream classification
algorithms are usually tested on streams with a low number of drifts per setting
[16]. However, in real-world settings like robotics or autonomous driving, the
concept can change very often due to changing external conditions like lighting
or weather [17, 18]. Therefore, we also use stream generators with frequent
reoccurring drifts.

4. Reactive Robust Soft Learning Vector Quantization

The section details the main contribution and contains two main parts. The
first in Sec. 4.1 details the concept drift detector and the second part introduces
the RSLVQ (Sec. 4.2), the proposed prototype adaptation strategy (Sec. 4.3)
and the properties of the adaptation (Sec. 4.4).

4.1. Concept Drift Detection

Before applying a drift detector, a memory strategy must be defined. The
sliding window Ψ keeps n recent points from the stream. It pushes incoming
data to the top and removing the oldest one from the bottom. We use the
Kolmogorov-Smirnov test as a concept drift detector, which expects two data
windows. Therefore, we create two windows out of the sliding window Ψ. The
first windows R = {xi ∈ Ψ}ni=n−r+1 has the most recent data points from Ψ.
We define most recent as the r newest arrived data points. The second window
W is created by sampling uniformly from the non-recent part of Ψ by

W = {xi ∈ Ψ|i < n− r + 1 ∧ p(x) = U(xi|1, n− r)} (3)

with |W | = |R| = r and U(xi|1, n − r) = 1
n−r is the uniform distribution. By

this, we do not make any assumptions of distribution but assume to represent the
concept of the non-recent data. The memory strategy with the sliding window
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Figure 1: Different types of drifts, one per sub-figure and illustrated as data mean. The colors
mark the dominate concept at given time step. The vertical axis shows the data mean and
the transition from one to another concept. Given the time axis the speed of the transition is
given, which reaches from very slow at incremental to very fast at frequent reoccurring drift.
The figures are inspired by [2].
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Figure 2: The memory strategy within the concept drift detector. It stores n samples in a
sliding window. At every time step, r samples are picked uniform and are compared against
the newest r samples of the window.

is summarized in Fig. 2. For subsequent adaptation steps, we also store the
label yi to a given sample xi.

By using the above scheme, there is a limitation in concept drift detection
regarding some streams. The worst case is to take a sample from a recur-
ring stream at certain intervals and always get the same concept of the chang-
ing stream. Thus the distribution seems to be the same from window R and
the samples W , because the detector always picks at the same rate of concept
change. However, there is clearly a concept drift ongoing. This is due to the
large window and the Uniform picking. Other probability distributions for the
sampling scheme should lead to a different result, but with familiar problems
and some concept drifts will be missed, because the sampling procedure is an
approximation of the window Ψ. We choose the Uniform distribution because
it has no parameters and is fair in sampling from unknown distributions.

The Kolmogorov-Smirnov [19] test is a non-parametric test accepting one-
dimensional data without any assumptions of underlying distributions. It com-
pares the absolute distance distw,r between two empirical cumulative distribu-
tions FW and FR by

distw,r = sup
x
|FW (x)− FR(x)|, (4)

where F(·)(x) = 1
n

∑n
j=1 I[−∞,x](Xj) and I[−∞,x](Xj) is an indicator function

which is one if Xi ≥ x and zero otherwise. Note that sup(x) is the smallest
required x for a condition to be valid. If this lower bound of maximum distance,
i.e. distw,r, is greater than the test statistic, then the null hypothesis is rejected,
with significance level α. For two subwindows W,R with the same size, the test
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is reduced to

distw,r > c(α)

√
n+ r

nr
=

√
−1

2
lnα

√
n+ r

nr

(n=r)
=

√
− lnα

r
, (5)

where α is the confidence level, r is the size of the window R and n is the size of
the window w. c(α) is the critical value of the test with respect to the confidence
level α, which can either be looked up for standard test sizes or computed by√
− 1

2 lnα. Due to the restriction to one-dimensional distributions, the test in

Eq. (5) is applied to all dimensions, therefore at any point t, d tests must be
done due to Rd. With this extension and based on Eq. (5), the following can
be stated:

Lemma 4.1. Given Xt and Xt−1 with Xk = {xj}nj=1 ∈ Rd, p(X) =
d∏
i=1

p(x(i)),

∀x(i) ∼ i.i.d and their cumulative distributions Ft,Ft−1, KS-Test detects any
change between p(Xt) and p(Xt−1), i.e. ∃x(i) : pt(x

(i)) 6= pt−1(x(i)), with

probability 1− α, if the difference in empirical distribution is at least
√
−lnα
r .

To implement Lemma 4.1, we set Xt = R and Xt−1 = W . For a reasonable
choice of window size r, the influence of changing the window size and the
confidence level of the KS-Test is demonstrated in Fig. 3. The left figure shows
the influence of the window size and the right figure, the confidence level on the
required distance. By decreasing the confidence level α, dist increases, and with
increasing window size r, dist decreases. Hence, they behave competitively w.r.t.
dist value. In a streaming context with potentially unlimited data, the KS-Test
will be too sensitive, given a large window size, with many false positives. This
motivates the choice of a relatively small window size r = 30, but still being
statistically valid at the same time.

However, when it comes to many statistical tests, the problem with multiple
hypothesis testing arises, with the consequence of false positives due to random
chance. By applying the Bonferroni-Dunn correction [20], we reduce this effect
by obtaining a new alpha with α∗ = bαr c = 0.05

60 = 0.0001. Because α∗ affects
Eq. (5), a small alpha increases the required distance.

Both, a small window size and the corrected alpha should avoid false posi-
tives. However, both actions do not entirely avoid false signals, but making the
KS-Test more insensitive and combined with the proposed prototype adaptation
strategy false positives are not critical. In the following, the KS-Test detector
is called Kswin.

4.2. Robust Soft Learning Vector Quantization

The Robust Soft Learning Vector Quantization [3] is a probabilistic pro-
totype based classification algorithm and capable of online learning. Given
a labeled dataset D = {(xi, yi) ∈ Rd × {1, . . . , C}}ni=1 as classification task.
The RSLVQ assumes that D can be represented as class-dependent Gaus-
sian mixture model and approximates this mixture by a set of m prototypes
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Figure 3: Plot of the parameter sensitivity to the required distance of the KS-Test in log scale
on the x-axes. The left figure shows the sample size and the right figure, shows the confidence
level against the required distance needed for a concept drift detection. Both figures show
sensitivity towards the window size and especially with a tiny window the test becomes more
insensitive to small differences in distribution.

Θ = {(θj , yj) ∈ Rd × {1, . . . , C}}mj=1, where each prototype represents a multi-
variate Gaussian model, i.e. N (θj ,Σ) with Σ = Iσ and I as identity matrix.
Further, θj is a d-dimensional prototype representing the mean of a Gaussian
mixture component with a variance of σ, which is assumed to be the same for
every component. The goal of RSLVQ algorithms is to learn prototypes repre-
senting the class-dependent distribution, i.e. a corresponding class sample xi
should be mapped to the correct class or Gaussian mixture based on the highest
probability.

The RSLVQ [3] algorithm minimizes the objective function

L =
1

n

n∑
i=1

ls(xi, yi|Θ) with ls(xi, yi|Θ) =
p(xi, ȳi|Θ)

p(xi|Θ)
. (6)

Where p(xi, ȳi|Θ) is the probability density function that xi is generated by
the mixture model of any of the different classes and p(xi|Θ) is the overall
probability density function of xi given Θ. In other words, ȳi is every label
which is not the ground truth label yi of xi. At time step t, these probabilities
are computed by

lst(xt, yt|Θ) =
p(xt, ȳt|Θ)

p(xt|Θ)
=

∑
j:cj 6=yt

P (j|xt). (7)

Where j is the j-th prototype in Θ and cj is the corresponding label. P (j|x) is
the probability that x is generated by the component j with

P (j|x) =
p(x|j)P (j)

p(x)
=

exp
(
− ‖x−θ

2
j‖

2σ2

)
∑
k:ck 6=cj exp

(
− ‖x−θ

2
k‖

2σ2

) . (8)
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Based on this, the gradient [3] for the prototype update step at time t is com-
puted by

gt =

{
−P (j|xt)lst(xt − θt), if cj = yt,

P (j|xt)(1− lst)(xt − θt), if cj 6= yt.
(9)

Note that lst abbreviated for Eq. (7). The normalization term in Eq. (6)
is not computed at the update step and, therefore, the RSLVQ is feasible for
potentially infinite streams.

The prototypes in each update step will be optimized with a momentum-
based gradient technique designed for RSLVQ [21] given with

θt+1 = θt −∆θt = θt −
√
E[∆θ2]t + ε√
E[g2]t + ε

gt. (10)

Where ε is a small positive value for numerical stability. The E[g2]t are the
stored past squared gradients as running mean

E[g2]t = γE[g2]t−1 + (1− γ)g2t (11)

and E[∆θ2] are the past squared parameter updates as running mean

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2t . (12)

Both equations are controlled by the decay-factor γ controlling the relevance of
previous updates and the current ones. As pointed out in [22], a momentum-
based gradient descent is a reliable strategy to handle concept drift with LVQ
classifiers. In a streaming setting at every time step, every prototype will be
updated by Eq. (10) with a given tuple si = {xi, yi}, as shown in pseudocode 1.
The RSLVQ predicts a given sample point x by selecting the nearest prototype
θq according to the Gaussian kernel

q = arg min
i

exp

(
−
∥∥x− θ2

∥∥
2σ2

)
, (13)

and assigning the corresponding label of θq to x. The σ is the width of the
Gaussian kernel and together with the number of prototypes, are the only tune-
able parameters in the RSLVQ. For a more comprehensive derivation of RSLVQ
with momentum SGD see [3, 21].

4.3. Prototype Adaptation Strategy

In this work, the adaptation strategy adapts actively to abrupt or gradual
concept drift. We allow missing classes in R since streams have unbalanced
classes and class-wise adaptation is usually infeasible. If a drift is detected
as in Sec. 4.1, window R represents a new context and Θ represents the last
context. According to Kswin, the current set of prototypes Θ has approximated
an out-dated distribution.
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Figure 4: Process of prototype adaptation strategy on given window R with |R| = 50 for more
details. First, insertion of m prototypes as mean over all samples in the left figure, marked
as a red diamond. Second after optimization, where green/blue crosses/dots are representing
class prototypes.

Hence, we propose the following two-step adaptation strategy. The first step
is to replace the complete set Θ of prototypes by m new prototypes. Note that
the classes remain the same. A good starting point for replacement by means of
approximating an unknown mixture model by Gaussian mixture is the mean of
points[3], regardless of class affiliation. Therefore, the new prototypes become

θ
(new)
i =

1

r

∑
x∈R

x, ∀i = 1, . . . ,m. (14)

The next step is to train all prototypes as in Eq. 10 on all {xi, yi} ∈ R.
This modifies prototypes and draws them to the same class points and pushes
different class prototypes away. In the case of missing classes, the algorithm
pushes the prototypes away from points with a different class.

The process is shown in pseudocode 1 in the State 3 - Learning Rate. Further,
we visualized the adaptation in Fig. 4. It shows the adaptation of two prototypes
with different classes as mean in 4a and the optimization afterward in 4b in a
two-dimensional feature space. Data is generated with MIXED generator stream
from Scikit-Multiflow [23]. Further, we show in Sec. 4.4 that adaptation on R
leads to a lower error, if the distributions are different enough, rather then taking
no action. Therefore, false positives as described in Sec. 4.1, are not critical
because every replacement always leads to lower error and does no harm.

4.4. Stability during Concept Drift

The stability during drift will be shown in the following and we start with the
introduction of notation and background. Given a two-class classifier h : X →
{−1, 1} on a given sample x ∈ X ⊆ Rd. The loss of a classifier l(h(x)) ∈ R+

is measuring the performance of a given set of labeled data sampled from the
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Algorithm 1 Reactive Robust Soft Learning Vector Quantization (RRSLVQ)

State 1 – Initialization

Input: m as number of prototypes; σ as width of Gaussian kernel; γ as decay-
factor; r as sampling size; α as confidence-level.

Output: h0(x; Θ, γ, α,r) as initialized model
1: Create prototypes Θ = {θj}mj=1 ∼ N (0,Σ = Iσ)

State 2 – Prediction

Input: ht−1(x) as RRSLVQ model; xt ∈ Rd sample point arrived at time t.
Output: Predicted label ŷt of sample xt.

2: Compute nearest prototype θq to xt (Eq. (13))
3: Assign predicted label ŷ based on the neared prototype θq

State 3 – Learning

Input: ht−1(x) as RRSLVQ model from previous time step; {xt, yt} as labeled
data at time step t.

Output: ht(x) as updated model.
4: Update sliding window (According to Fig. 2)
5: Create sampling window W and R(Eq. 3 and Fig. 2)
6: Compute d distribution differences distw,r between R,W ∈ Rd (Eq. (4))

7: if ∃di >
√
− lnα

r (CD-Detection Eq. (5)) then

8: for ∀xi, yi ∈ R do
9: Step 12 to 16

10: end for
11: end if
12: for θj : j = 1→ m do
13: Compute posterior probabilities (Eq. (8))
14: Compute gradient gt for θj (Eq. (9))
15: Compute past gradient and parameter updates (Eq. (11) and (12))
16: Update prototype θj+1 = θj −∆θt (Eq. (10))
17: end for

11



concept C = p(x, y) = p(y|x)p(x). The expected risk R(h(x)) and the empirical
risk R̂(h(x)) of the classifier h(x) [24] are defined as

R(h(x)) = E[l(h(x), y)]

=

∫
l(h(x), y)p(y|x)p(x)dxdy ≤ R̂(x) =

1

n

n∑
i=1

l(h(x), y),
(15)

while computing the empirical risk with n samples.

Lemma 4.2. Given two classifiers h1(x) and h2(x) with loss l(h(·)(x)) and
trained on two different concepts C1 and C2 with c classes each and correspond-
ing risks R(·)(h(·)). The empirical risk R2(h1(x)) on C2 can be bounded by

R̂2(h2(x)) ≤ 1− 1

c
≤ δR2(h1(x)) ≤ R̂2(h1(x)), (16)

under the assumption that there is a linear relationship δ = p2(x)
p1(x)

with δ ∈ R+

between the prior of the concepts.

Proof. First consider the first classifier on the concept one, where it is trained
on with the risk

R1(h1(x)) = E[l(h1(x), y)] =

∫
l(h1(x), y)p1(y|x)p1(x)dxdy, (17)

where R1 is the risk corresponding to concept C1. Applying h1(x) to concept
two leads to the expected risk

R2(h1(x)) =

∫
l(h1(x), y)p2(y|x)p2(x)dxdy. (18)

Similar as in [24], we assume the relationship between the two concepts by
p2(x) = δp1(x), e.g. two variants of Gaussian distributions, then we can rewrite
the risk to

R2(h1(x)) =

∫
l(h1(x), y)p2(y|x)δp1(x)dxdy

= δ

∫
l(h1(x), y)p2(y|x)p1(x)dxdy.

(19)

The expected risk R2(h2(x)) is analog to Eq. (18). If the difference in prior
distribution between the two concepts is large enough, then δ becomes large.
Hence, for large δ, the expected risk of R2(h1(x)) becomes larger than random
guessing, which is 1− 1

c for c classes. Because h2(x) is trained on concept two,

we expect that the empirical risk R̂2(h2(x)) in the worst-case is random and
therefore

R̂2(h2(x)) ≤ 1− 1

c
≤ R̂2(h1(x)). (20)
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This can be implemented as h1(x) being the RSLVQ model at time t − 1
and h2(x) = g(R) at time t after the adaptation procedure. Hence, for large
enough differences between windows, which the Kswin detects given a small r
and α, the performance of the adaptation yields a smaller loss in comparison
to the model from t − 1. This also means that the classification result is not
negatively affected even if Kswin detects a change in prior distribution within a
concept, which is not real concept drift. Therefore, the false positives of Kswin
do not harm. The effect is demonstrated in Fig. 5, showing that δ is always
sufficiently large so that g(R) achieves better performance on the Mixed concept
drift stream.

4.5. Time and Memory Complexity

The RRSLVQ optimized via online momentum gradient descent has the time
complexity of O(m) at given time t for m prototypes without concept drift.
The concept drift handling has the complexity O(r · m). The KS-Test can
be implemented in log-linear time [6]. The demand for memory depends on
the number of prototypes m and sliding window size n. Therefore, the model
needs at maximum m × d and n × d as real float numbers in memory, which
accumulates in the complexity of O(d ·(m+n)) = O(d ·(m+300)) with n = 300.
For using RRSLVQ in embedded systems with restrictive memory, we follow
the any memory framework by [2, p. 6] and we suggest setting the number of
prototypes plus the window length to a maximum of d · (m + 300) < k with k
as maximum float memory storage capacity.

5. Experiments

The experimental section of the paper consists of three parts. First, we
provide the study design, the performance metrics and a data set overview with
their properties. The second part analyses the performance of Kswin as an
independent approach compared to other concept drift detectors. The last part
shows the performance of the RSLVQ paired with the Kswin detector.

5.1. Study Design

We use six stream generators (synthetic data) and six real-world datasets.
We follow the study design of [15], but additional, we simulate frequent grad-
ual/abrupt reoccurring drift with streams having abrupt or gradual drift. This
type of drift stream introduces reoccurring drift with a certain frequency. The
frequency is specified in section 5.2 and section 5.3 respectively. An overview of
the streams is given in Tab. 1. The synthetic and the real-world datasets are
described in detail in Appendix A.

In a stream setting, prediction performance is measured with interleaved
test-then-train accuracy [8, 15]. It is the moving average accuracy including the
current sequence of data at time t by

A(S) =
1

t

t∑
i=1

1(hi−1(xi) = yi). (21)
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Where 1(·) is an indicator function and is one for a correct classification and
zero otherwise. For the evaluation, the length of the streams is fixed to tmax =
1, 000, 000. At tmax, the interleaved test-then-train accuracy becomes the over-
all mean accuracy. We use this and the kappa-statistics for the subsequent
performance tables. A stream classifier within this setting first predicts the
given sequence and then learns with it. This evaluates the ability to predict
and learn anytime over a long period [8].

Data set # Instances # Features Type Drift # Classes
SEAa 1,000,000 3 Synthetic A 2
SEAg 1,000,000 3 Synthetic G 2
MIXEDa 1,000,000 4 Synthetic A 2
MIXEDg 1,000,000 4 Synthetic G 2
RTG 1,000,000 10 Synthetic N 2
RBFm 1,000,000 10 Synthetic Im 5
RBFf 1,000,000 10 Synthetic If 5
HYPER 1,000,000 10 Synthetic If 2
POKER 829,201 11 Real - 10
GMSC 120,269 11 Real - 2
ELEC 45,312 8 Real - 2
COV 581,012 27 Real - 7
AIR 539,383 8 Real - 2
SQRE 200,000 2 Real - 4

Table 1: Configuration of the data sets (A: Abrupt Drift, G: Gradual Drift, Im: Moderate
Incremental Drift, If : Fast Incremental Drift and N: No Drift)

5.2. Comparison of Concept Drift Detectors

The Kswin detector is tested against other commonly used detectors, i.e Ad-
win [5], Drift-Detection Method (DDM) [25] and Early Drift Detection Method
(EDDM) [26]. The parameters for Kswin are (r = 30, n = 300) and α = 0.0001.
The Adwin parameter is α = 0.002. The DDM algorithm has a minimum num-
ber of test size, which is set to 30 and a detection threshold set to 3. The
window size of EDDM is also set to 30 with a detection threshold of β = 0.95.

Each tested stream has 100,000 time steps with a batch size of ten per time
step and in summary, there are one million samples per stream. All time steps of
occurring drifts are compared against the predicted time steps of the detectors,
which are either zero for no concept drift and one if drift is detected. Summa-
rizing, there are ten standard concept drift streams with one concept drift per
stream and six frequent reoccurring concept drift streams with 99,999 occur-
rences of concept drift per stream. The results of the concept drift detectors are
split up into two parts. For both parts, the detectors test every data dimension
separately and not the performance values of classifiers.

The results of the first part of the evaluation are given in Tab. 2. It shows
a confusion matrix of the detectors tested on the listed concept drift stream
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generators given in Tab. 1 plus the frequent reoccurring versions. The Kswin
algorithm detect the concept drifts and has, by far, the most true positives
but also the most false positive. The detection accuracy of Kswin is roughly
5%, while the detection rate of remaining detectors is roughly 0.001%. Sum-
marizing, concept drift detection per dimension on stream data is somewhat
unreliable and most of the time, the detectors just missing concept drift, be-
cause of insensitivity. The Kswin detector is an improvement to the state of
the art detectors by means of detection rate. The false positive rate should be
tackled in future work, but as shown in the prototype adaptation strategy in
Sec. 4.4 and shown in the following experiments, where Kswin is paired with
the Naive Bayes classifier, false positives are not critical.

The second part is shown in Tab. 3 and gives the prediction performance of
the Naive Bayes classifier combined with a given detector. If a detector notices
concept drift, the current underlying learning model of a respected detector is
discarded and a new one is learned with the current batch of data. This exper-
iment ensures that every detector uses the same underlying classifier and the
classifier does not influence the performance. Inspecting each drift separately,
the Kswin algorithms is only best at four out of 16 streams. However, Kswin
has the best mean performance. The second best algorithm is Adwin. The re-
sults at MIXED are interesting because the algorithms that do not recognize the
concept drift, are not able to switch to the new concept. EDDM and DDM are
particularly affected by this and also Adwin at frequent reoccurring MIXED.
However, apart from MIXED, the performance of the detectors on the frequently
reoccurring drift streams is not much worse compared to the standard streams.

5.3. Comparison of Stream Classifiers

In these experiments, we compared the RRSLVQ with Hoeffding Adaptive
Tree [27], OzaBaggingAdwin [28], Adaptive Random Forest [16], SamKNN [29]
and RSLVQ [3] as the baseline.

In this setting, the frequent reoccurring drifts starting at sample 2000 and,
further, every 1000 samples after the last drift is finished. The width of grad-
ual drift is 1000. For every non-frequent reoccurring stream, we are adding
abrupt/gradual concept drift at position 500,000, while gradual drift has a width
of 50,000.

Detectors True Negative False Positive False Negative True Positive
Kswin 748956 51040 379345 20659
Adwin 799823 173 399933 71
EDDM 799941 55 399971 33
DDM 799984 12 400004 0

Table 2: Confusion matrix of concept drift detectors showing that Kswin detects the most
drifts but also has most false positives. It is tested on standard concept streams (10) and
frequent reoccurring versions (6) of them. Overall, there are 400,004 concept drifts within
120,000,000 time steps. Each of the eight standard streams has one drift, and each of the
frequent reoccurring concept drift streams has 99,999 drifts.
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Standard Streams Kswin Adwin EDDM DDM
MIXEDa 0.8646 0.9024 0.5057 0.4998
MIXEDg 0.8645 0.5004 0.5000 0.5001
Hyperplane 0.5797 0.6090 0.5890 0.5883
RTG 0.6325 0.7048 0.6318 0.6655
RBFf 0.6584 0.5299 0.4952 0.5009
RBFm 0.6459 0.6512 0.5034 0.6019
SEAa 0.8400 0.8909 0.7036 0.8876
SEAg 0.8334 0.8304 0.6787 0.8396
Standard Mean 0.7456 0.7089 0.5853 0.6435
MIXEDra 0.783 0.4902 0.490 0.4896
MIXEDrg 0.7766 0.4921 0.4901 0.4975
SEAra 0.8385 0.8766 0.8104 0.8745
SEArg 0.8302 0.8688 0.806 0.847
Reoccurring Mean 0.8217 0.7150 0.6793 0.7065
Overall Mean 0.7837 0.7120 0.6323 0.6750

Table 3: Interleaved mean accuracy of concept drift detectors with Naive Bayes as the un-
derlying classifier. Tested on standard concept drift streams and the frequent reoccurring
versions of them separated in two parts. The results are overall similar comparing prediction
performance, but in the mean, the Kswin detector outperforms the remaining detectors. Win-
ner marked bold. a = abrupt, if = incremental fast, im = incremental medium, g = gradual,
ra = frequent reoccurring

The RRSLVQ provides stable performance during drift and high adaptation
rate shown in Fig. 5, superior w.r.t. other methods. Other variants of concept
drift handling, like prototype insertion or prototype replacement based on the
Adwin detector are not providing stability during a drift. Hence, both parts,
the Kswin and the prototype adaptation strategy, are equally relevant for the
stability of RRSLVQ.

An overview of memory consumption during stream processing is shown in
Fig. 6. It shows that the RSLVQ variants and HAT have very low memory
requirements and are stable in memory consumption during the drift. This
validates Sec. 4.5. The stable consumption is not given by the remaining
classifiers and at the detection of drifts, the memory usage fluctuates.

The time result is plotted in Fig. 7 as incremental time in seconds per pro-

Figure 5: Performance of baseline RSLVQ, RRSLVQ, Incremental-RSLVQ, Adwin-RSLVQ,
and SamKNN [8] on Mixed stream in SciKit-Multiflow [23]. Plot shows clear drops in perfor-
mance of non-RRSLVQ methods during abrupt concept drift. From point 2000, drift happens
every 1000 points after last drift is finished. The line shows accuracy over the last 200 samples.
Best viewed in color.
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cessed samples. It also validates the time complexity of RRSLVQ and further
shows that every other stream classifier also has linear time complexity. How-
ever, the RRSLVQ needs less total time as the ARF and OZA. The RSLVQ is
slightly faster as the RRSLVQ because of missing concept drift detector, non-
momentum-based SGD and prototype adaptation strategy. The HAT algorithm
is the fastest. All in all, the classifiers do not need any additional time to handle
the concept drift.

The results of the prediction performance of the concept drift classifiers on
the data streams are presented in Tab. 4. Our approach shows a boost in per-
formance to baseline RSLVQ and is comparable to other concept drift classifiers
like HAT and OZA. The RSLVQ is the worst classifier on the tested real-world
datasets, affected by the worse performance on COV and SQR. The RRSLVQ
performs about 8 % better when looking at the mean of the real-world datasets.
However, it is still worse than the other classifiers, especially SAMKNN, which
performed best. Especially on COV, where RSLVQ had an accuracy of 36 %,
RRSLVQ improved the prediction to an accuracy of 73 %, which is approxi-
mately equal to the performance of ARF. On the artificial data streams, the
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Figure 6: Memory usage of stream classifiers tested on Mixed stream with abrupt drift (top)
and frequent abrupt reoccurring drift (bottom). SAMKNN is plotted separately due to scaling
issues. It shows the constant memory consumption of RSLVQ methods and HAT even during
drift.
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Figure 7: Incremental time in seconds per amount of samples processed on Mixed generator
with abrupt drift (left) and frequent reoccurring drift (right). All tested methods are increasing
linearly in time due to linear complexity per batch, even during drift.

RSLVQ performs worst with a mean accuracy of 69 %. The RRSLVQ does a
better job on the synthetic concept drift streams due to the drift detector and
thus has better accuracy than RSLVQ and HAT with 81 %. Again, SAMKNN
performed best with an accuracy of 86 %. Overall, RRSLVQ performed ap-
proximately equal to OZA with an accuracy of 81 %, which is a performance
increase of 12 % compared to the baseline RSLVQ.

Comparing the prediction results in Tab. 4 to the time and memory con-

Streams ARF [16] SAMKNN [8] HAT [27] RSLVQ [3] RRSLVQ OZA [28]

COV 0.699 0.8937 0.8221 0.3647 0.7278 0.6909
ELEC 0.856 0.7250 0.7750 0.6220 0.6448 0.740
POKER 0.8071 0.7951 0.6455 0.7206 0.5779 0.7904
WTHR 0.7392 0.7784 0.6771 0.6502 0.6703 0.7827
GMSC 0.930 0.9270 0.8800 0.7800 0.9213 0.9196
SQR 0.5114 0.9659 0.7296 0.334 0.5993 0.4439
REAL MEAN 0.7572 0.8476 0.7548 0.5787 0.6838 0.7556
MIXEDa 0.934 0.990 0.870 0.733 0.8930 0.975
MIXEDg 0.912 0.990 0.870 0.733 0.8938 0.975
Hyperplane 0.5091 0.5602 0.622 0.5254 0.6208 0.5731
RTG 0.5827 0.7008 0.6582 0.5769 0.8075 0.656
RBFif 0.7457 0.9371 0.6242 0.5939 0.6648 0.9353
RBFim 0.7983 0.9389 0.7344 0.5992 0.6797 0.9557
SEAa 0.8866 0.8898 0.8362 0.8077 0.8924 0.881
SEAg 0.8764 0.8869 0.8295 0.8033 0.8996 0.8747
MIXEDra 0.8492 0.8535 0.5288 0.7316 0.7794 0.5464
MIXEDrg 0.8816 0.8535 0.5288 0.7227 0.7790 0.5468
SEAra 0.8668 0.8784 0.8312 0.8019 0.8857 0.9471
SEArg 0.851 0.8808 0.8273 0.8049 0.8908 0.9471
ARTIFICIAL MEAN 0.8078 0.8633 0.73 0.6899 0.8072 0.8178
OVERALL MEAN 0.7909 0.8581 0.7383 0.6528 0.7455 0.7971

Table 4: Interleaved mean accuracy on data streams. Moving average of accuracy on one
million samples. Winner marked bold. a = abrupt, if = incremental fast, im = incremental
medium, g = gradual, ra = frequent reoccurring
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Streams ARF [16] SAMKNN [8] HAT [27] RSLVQ [3] RRSLVQ OZA [28]

COV 0.4267 0.8285 0.7139 0 0.4598 0.8233
ELEC 0.6981 0.4334 0.5347 0.2158 0.2616 0.4609
POKER 0.6673 0.6259 0.3689 0.4969 0.3498 0.6162
WTHR 0.3352 0.4439 0.2634 0.268 0.2743 0.47
GMSC 0.0788 0.002 0.0069 -0.0019 0.0017 0.0026
SQRE 0.3486 0.9546 0.6394 0.112 0.209 0.2054
REAL MEAN 0.4258 0.5481 0.4212 0.1818 0.2594 0.4297
MIXEDa 0.8685 0.9791 0.7392 0.4643 0.8117 0.9505
MIXEDg 0.823 0.9791 0.7392 0.4643 0.8138 0.9505
Hyperplane 0.0175 0.1204 0.2441 0.0508 0.2555 0.1462
RTG 0.1631 0.3441 0.273 0.1315 0.2574 0.1723
RBFif 0.4701 0.8736 0.2434 0.1861 0.2457 0.8658
RBFim 0.594 0.8773 0.4297 0.1601 0.2831 0.9063
SEAa 0.7454 0.7282 0.6029 0.5434 0.7398 0.7082
SEAg 0.723 0.7626 0.6435 0.5905 0.7896 0.7376
MIXEDra 0.6982 0.707 0.0576 0.2998 0.4445 0.0928
MIXEDrg 0.7631 0.707 0.0576 0.2989 0.4313 0.0936
SEAra 0.6997 0.7143 0.609 0.5780 0.7324 0.8851
SEArg 0.6561 0.7426 0.6286 0.5802 0.7646 0.8851
ARTIFICIAL MEAN 0.6018 0.7113 0.439 0.3623 0.5474 0.6162
OVERALL MEAN 0.5431 0.6569 0.4331 0.3022 0.4515 0.554

Table 5: Interleaved test-then-train Kappa statistics on data streams. Moving average of
Kappa on one million samples. Winner marked bold. a = abrupt, if = incremental fast, im
= incremental medium, g = gradual, ra = frequent reoccurring

sumption in Fig. 7 and 6, it encourages the assumption that there is a trade-off
between prediction performance and model size and time.

The results of the stream experiment measured by Kappa statistics are shown
in Tab. 5. The improved performance of RRSLVQ compared to RSLVQ is
also given w.r.t. Kappa. This means that RRSLVQ also performs better on
imbalanced data and has no tendency to only predict one label. Especially on
COVTYPE, where RSLVQ was not able to separate the classes of the dataset,
RRSLVQ showed a Kappa score of 45.98 %. The improved score is not only
related to frequent reoccurring drift. It is also given when using other types of
drift. On the Hyperplane generator, RRSLVQ performed best and is the only
algorithm with a Kappa score > 0.2. This is due to the case that the distribution
of the stream changes naturally very often and thus needs a sensible concept drift
detector. However, the Kappa score is still very low on this dataset. Given the
performance of the baseline classifier, the RRSLVQ does a good job of improving
the RSLVQ on concept drift streams. On the real-world streams, the Kappa
score is also better, but the overall improvement is small. This is affected by
the fact that RSLVQ did a better job of distinguishing the ten classes of the
POKER dataset. Overall, SAMKNN performed best with a score of 65 %, while
RRSLVQ performed very similar to HAT at 45 %

Summarizing, the advantages of the RRSLVQ are the stability during con-
cept drift and the constant model size and time. This makes the processing of
stream data on a limited technical device feasible. The prototypes are providing
an interpretable model, which is a lacking feature of the competitive algorithms.
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The prediction performance is comparable with OZA and HAT.

6. Conclusion

The proposed method is a major improvement to the original RSLVQ. Es-
pecially in streams with high rates of drift, the RRSLVQ2 shows remarkable
stability over time.

Kswin seems to detect occurring changes in stream data and supports the
concept drift handling process with good indicators at a given time. Based
on the experimental setting, the Kswin algorithm is the best at detecting drift
at the given streaming data. Further, the adaptation strategy paired with the
momentum-based gradient descent is useful to minimize performance losses dur-
ing the drift.

Compared to other stream approaches, the RRSLVQ provides a straight-
forward and interpretable model. The memory and time complexity is easy to
bound and well-suited for embedding systems. The prediction performance is
comparable with OzaBaggingAdwin and Hoeffding Adaptive Tree.

Future work should tackle dimension-wise testing at every time step to avoid
unneeded tests. Besides, Kswin should be combined with other classifiers and
false positives should be inspected. Although that Kswin already outperforms
standard detectors, the task of concept drift detection must still be improved.
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Appendix A. Dataset Description

In this appendix, the data streams are described. It is split up in synthetic
data streams and real-world streams.

Appendix A.1. Synthetic Stream Generators

The synthetic stream generators are potentially infinite and drift can be
implemented by changing the generating function. A common approach to
create drift is to invert the function. The length of the streams is set to one
millions time steps. SEA The SEA generator is an implementation of the data
stream with abrupt concept drift, first described by Street and Kim in [30]. It
produces data streams with three continuous attributes (f1, f2, f3). The range
of values that each attribute can assume lies between 0 and 10. Only the first
two attributes (f1, f2) are relevant, i.e. f3 does not influence the class value

2Source code available at https://github.com/ChristophRaab/rrslvq
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determination. New instances are obtained through randomly setting a point in
a two-dimensional space, such that these dimensions correspond to f1 and f2.
This two-dimensional space is split into four blocks, each of which corresponds
to one of four different functions. In each block, a point belongs to class 1 if
f1 + f2 ≤ θ and to class 0 otherwise. The threshold θ is used to split instances
between class 0 and 1 assumes the values 8 (block 1), 9 (block 2), 7 (block
3), and 9.5 (block 4). Two important features are the possibility to balance
classes, which means the class distribution will tend to a uniform one, and the
possibility to add noise, which will, according to some probability, change the
chosen label for an instance. In this experiment, the SEA generator is used with
10 % noise in the data stream. SEAg simulates one gradual drift, while SEAa

simulates an abrupt drift.
MIXED The MIXED Generator creates a binary classification stream. The

stream consists of four features, two Boolean attributes v, w and two numeric
attributes x and y between [0; 1]. The label is positive if two out of three
conditions are satisfied

v = true, t = true, y < 0.5 + 0.3 sin (3πx). (A.1)

After each concept drift, the classification is reversed [26].
RTG The Random Tree Generator (RTG) is based on a random tree that

splits features at random and sets labels to its leafs [31]. After the tree is built,
new instances are obtained through the assignment of uniformly distributed
random values to each attribute. The leaf reached after a traverse of the tree,
according to the attribute values of an instance, determines its class value. RTG
allows customizing the number of nominal and numeric attributes, as well as
the number of classes. In our experiments, we did not simulate drifts for the
RTG data set. Since the concepts are generated and classified according to a
tree structure, in theory, it should favor decision tree learners.

RBF This generator produces data sets by means of the Radial Basis Func-
tion (RBF) [23]. This generator creates several centroids, having a random
central position and associates them with a standard deviation value, a weight,
and a class label. To create new instances, one centroid is selected at random,
where centroids with higher weights have more chances to be selected. The new
instance input values are set according to a random direction chosen to offset the
centroid. The extent of the displacement is randomly drawn from a Gaussian
distribution according to the standard deviation associated with the given cen-
troid. Incremental drift is introduced by moving centroids at a continuous rate,
effectively causing new instances that ought to belong to one centroid to another
with (maybe) a different class. Both RBFm and RBFf were parametrized with
50 centroids, and all of them drift. RBFm simulates a moderate incremental
drift (speed of change set to 0.0001) while RBFf simulates a faster incremental
drift (speed of change set to 0.001).

HYPER The HYPER data set simulates an incremental drift, and it was
generated based on the hyperplane generator [32]. A hyperplane is a flat, n− 1
dimensional subset of that space that divides it into two disconnected parts. It
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is possible to change a hyperplane orientation and position by slightly changing
its relative size of the weights wi. This generator can be used to simulate time-
changing concepts by varying the values of its weights as the stream progresses
[33]. HYPER was parametrized with ten attributes and magnitude of change
of 0.001. Also, a 10 % noise was added.

Appendix A.2. Real-world Streams

The real-world streams are finite in length and concept drift from a statistical
standpoint is unknown. However, some streams have scenarios, which change
by nature like COVTYPE.

GMSC The Give Me Some Credit (GMSC) data set3 is a credit scoring
data set where the objective is to decide whether a loan should be allowed or
not. This decision is essential for banks since erroneous loans lead to the risk
of default and unnecessary expenses on future lawsuits. The data set contains
historical data on 150,000 borrowers, each described by ten attributes.

Electricity The Electricity data set4 was collected from the Australian New
South Wales Electricity Market, where prices are not fixed. These prices are af-
fected by the demand and supply of the market itself and set every five minutes.
The Electricity data set contains 45,312 instances, where class labels identify
the changes in the price (two possible classes: up or down) relative to a moving
average of the last 24 hours. An important aspect of this data set is that it
exhibits temporal dependencies [26].

Poker-Hand The Poker-Hand data set consists of 1,000,000 instances and
eleven attributes. Each record of the Poker-Hand data set is an example of a
hand consisting of five playing cards drawn from a standard deck of 52. Each
card is described using two attributes (suit and rank), for a total of ten predictive
attributes. There is one class attribute that describes the Poker Hand. This
data set has no drift in its original form since the poker hand definitions do not
change, and the instances are randomly generated. Thus, the version presented
in [34] is used, in which virtual drift is introduced via sorting the instances by
rank and suit. Duplicate hands were removed.

Forest Cover Type Forest Cover Type (COVTYPE) is a data set, which is
often used to benchmark stream mining algorithms [34, 35]. The dataset assigns
cartographic variables like elevation, soil type, slope, etc. of 30 square meter
cells to different forest cover types. It only includes forests with minimal human-
caused disturbances, so that the contained cover types are mostly a result of
ecological processes.

Airlines The task on the Airlines dataset is to predict whether a planned
flight will be delayed or not. It contains the airport of departure and arrival, as
well as the airline and time-related features. The delay is only represented as a
binary attribute. The dataset is used in the form as the MOA framework [33]
provides it.

3https://www.kaggle.com/c/GiveMeSomeCredit
4https://www.openml.org/d/151
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SQRE The Moving Squares dataset has been used in [8] and consists of
four equally distant separated squared uniform distributions which are moving
in a horizontal direction with constant speed. Whenever the leading square
reaches a predefined boundary, the direction is inverted. Each square represents
a different class. The added value of this dataset is the predefined time horizon
of 120 examples before old instances may start to overlap current ones. Thus,
the dataset should be useful for dynamic sliding window approaches, allowing
testing whether the size is adjusted accordingly.

References

[1] C. Raab, F.-M. Schleif, Reactive Soft Prototype Computing for frequent
reoccurring Concept Drift, in: 27th European Symposium on Artificial
Neural Networks, ESANN 2019, Bruges, Belgium, April 24-26, 2019, 437–
442, 2019.

[2] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey
on concept drift adaptation, ACM Computing Surveys 46 (4) (2014) 1–37.

[3] S. Seo, M. Bode, K. Obermayer, Soft nearest prototype classification, IEEE
Transactions on Neural Networks 14 (2) (2003) 390–398.
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[7] C. Salperwyck, M. Boullé, V. Lemaire, Concept drift detection using su-
pervised bivariate grids, Proceedings of the International Joint Conference
on Neural Networks 2015-September.

[8] V. Losing, B. Hammer, H. Wersing, KNN classifier with self adjusting
memory for heterogeneous concept drift, Proceedings - IEEE International
Conference on Data Mining, ICDM 1 (2017) 291–300.

[9] J. Climer, M. J. Mendenhall, Dynamic Prototype Addition in General-
ized Learning Vector Quantization, Advances in Self-Organizing Maps and
Learning Vector Quantization 428 (2016) 355–368.

23
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