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Abstract

In recent years, deep learning based visual tracking methods have ob-

tained great success owing to the powerful feature representation abil-

ity of Convolutional Neural Networks (CNNs). Among these methods,

classification-based tracking methods exhibit excellent performance while

their speeds are heavily limited by the expensive computation for mas-

sive proposal feature extraction. In contrast, matching-based tracking

methods (such as Siamese networks) possess remarkable speed superiority.

However, the absence of online updating renders these methods unadapt-

able to significant object appearance variations. In this paper, we propose

a novel real-time visual tracking method, which adopts an object-adaptive
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LSTM network to effectively capture the video sequential dependencies

and adaptively learn the object appearance variations. For high com-

putational efficiency, we also present a fast proposal selection strategy,

which utilizes the matching-based tracking method to pre-estimate dense

proposals and selects high-quality ones to feed to the LSTM network for

classification. This strategy efficiently filters out some irrelevant proposals

and avoids the redundant computation for feature extraction, which en-

ables our method to operate faster than conventional classification-based

tracking methods. In addition, to handle the problems of sample inade-

quacy and class imbalance during online tracking, we adopt a data aug-

mentation technique based on the Generative Adversarial Network (GAN)

to facilitate the training of the LSTM network. Extensive experiments on

four visual tracking benchmarks demonstrate the state-of-the-art perfor-

mance of our method in terms of both tracking accuracy and speed, which

exhibits great potentials of recurrent structures for visual tracking.

1 Introduction

Visual tracking aims to track an arbitrary object throughout a video sequence,

where the target is solely identified by the annotation in the first frame. As a

fundamental problem in computer vision, visual tracking has extensive applica-

tions such as video surveillance, human-computer interaction and automation.

Despite rapid progress in the past few decades, visual tracking is still very chal-

lenging since the trackers are prone to show inferior performance under complex

scenes including occlusion, deformation, background clutter, etc.

In recent years, deep learning has brought a significant breakthrough in

tracking accuracy owing to the powerful feature representation ability of Con-

volutional Neural Networks (CNNs) [1]. The deep tracking methods [2, 3, 4, 5]

can be roughly divided into two categories, i.e., classification-based tracking

methods and matching-based tracking methods. Classification-based tracking

methods [2, 3, 6] train an online classifier to distinguish the object from the

background. However, most of these methods contain complex feature extrac-

tion stages for massive proposals and sophisticated online updating techniques

to adapt the network to the arbitrary temporally changing object. As a result,

although these methods have achieved promising accuracy, the heavy computa-
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tional burden renders these methods difficult to satisfy the real-time requirement

of the tracking task. In addition, some high-accuracy trackers [2, 3, 6] pre-train

their networks based on the videos from the visual tracking benchmarks, which

may raise the risk of over-fitting.

Matching-based tracking methods [4, 5, 7] usually firstly learn general match-

ing models offline on the large dataset (such as ILSVRC15 [8]). Then, these

methods directly match the candidate proposals with the target template using

the pre-trained models during online tracking. The succinct online tracking algo-

rithms make these methods possess remarkable speed superiority. However, due

to the inherent lack of online adaptability and the ignorance of background infor-

mation, these matching-based tracking methods cannot well handle the object

appearance variations and similar objects in the background. Thus, these meth-

ods usually suffer from drift when the object appearance changes or the similar

object appears in some complex scenes. Recent matching-based tracking meth-

ods [9, 10] are proposed to online update the matching template of the object,

but they still do not utilize the background information sufficiently. Fig. 1 shows

a comparison between our method and some state-of-the-art matching-based

tracking methods, i.e., CFNet [9], RFL [10] and SiamFC [5]. The compared

matching-based tracking methods cannot effectively track the target when en-

countering the significant object appearance variations or complex background,

while our method can accurately locate the target position in these challenging

situations.

Most of existing deep learning based tracking methods take advantage of the

powerfulness of CNN in feature representation, while these methods cannot fully

utilize the temporal dependencies among successive frames in a video sequence.

Different from the traditional CNN-based tracking methods, we consider the

Long Short-Term Memory (LSTM) [12] network, a variant of the Recurrent

Neural Network (RNN) [13], which can memorize useful historical information

and capture long-range sequential dependencies. Based on the LSTM network,

we are able to utilize the sequential dependencies and learn the target appear-

ance variations via maintaining an internal object representation model.

In this paper, we propose a novel object-adaptive LSTM network for visual

tracking, which can fully utilize the time dependencies among successive frames

of a video sequence and effectively adapt to the temporally changing object
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OA-LSTM-ADA CFNet RFL SiamFC

Figure 1. Comparison between our method (OA-LSTM-ADA) and the state-of-

the-art matching-based tracking methods, i.e., CFNet [9], RFL [10] and SiamFC

[5], on the Bolt and DragonBaby [11] sequences. Our tracker that utilizes back-

ground information with online adaptability performs more robustly than the

other trackers when encountering object deformation and background clutter.

via memorizing the target appearance variations. Since the proposed LSTM

network is learned online 1 as a per-object classifier, our tracker can effectively

track an arbitrary object with superior adaptability to sequence-specific cir-

cumstances. Furthermore, due to its intrinsic recurrent structure, our network

can dynamically update the internal state, which characterizes the object rep-

resentation during the forward passes. For high computational efficiency, we

also present a fast proposal selection strategy. In particular, we make use of

the matching-based tracking method to pre-estimate the dense proposals and

select high-quality ones to feed to the LSTM network for classification. In this

strategy, we directly obtain the proposal features from the big feature map of

the search region so that only one feature extraction operation is performed. In

this way, the proposed strategy can effectively filter out the irrelevant proposals

and only retain the high-quality ones. As a result, the computational burden of

proposal feature extraction is largely alleviated.

In order to handle the sample inadequacy and class imbalance problems dur-

ing the online learning process, we also adopt Generative Adversarial Network

(GAN) [14] to generate diverse positive samples, which augments the available

1In this paper, “online” refers to that only the information accumulated up to the present

frame is used for inference during tracking.
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Figure 2. Pipeline of the proposed method for visual object tracking. During

online tracking, we maintain a set of high-confident tracking results including the

given original object. The real data fed to the discriminator are drawn according

to this tracking result set. The “Loss” at the far right of the “Adversarial Data

Augmentation” part collectively refers to the discriminator loss and generator

loss of GAN. The black solid arrows represent the links between blocks. The

black dashed arrow between “Generated Data” and “LSTM” means that the

generated data of GAN augment the training samples of LSTM. The red solid

arrows stand for the backpropagation direction of losses during the training of

GAN.

training data and thus facilitates the training of the LSTM network. In this

paper, GAN is trained in the first frame and updated in the subsequent frames

during tracking. We refer to our method as an Object-Adaptive LSTM net-

work with Adversarial Data Augmentation (OA-LSTM-ADA) for visual track-

ing. Fig. 2 illustrates the pipeline of our tracking method. Experimental re-

sults on the OTB (both OTB-2013 and OTB-2015) [11], TC-128 [15], UAV-123

[16] and VOT-2017 [17] benchmarks demonstrate that our method achieves the

state-of-the-art performance while operating at real-time speed, which exhibits

great potentials of recurrent structures for visual object tracking.

We summarize our main contributions as follows:

• We propose a novel object-adaptive LSTM network for visual tracking,
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which fully exploits the sequential dependencies and effectively adapts to

the object appearance variations. Due to its intrinsic recurrent structure,

the internal state of the network can be dynamically updated during the

forward passes. Therefore, the proposed method is able to robustly track

an arbitrary object under complex scenarios.

• We propose a fast proposal selection strategy, which utilizes the matching-

based tracking method to pre-estimate the dense samples and selects high-

quality ones to feed to the LSTM network. The proposed strategy directly

obtains the proposal features from the feature map of search region. In

this manner, the expensive computational cost for proposal feature extrac-

tion in conventional classification-based tracking frameworks is effectively

reduced, by which our method can operate in real-time.

• We propose a data augmentation strategy to address the problems of sam-

ple inadequacy and class imbalance during online learning of the LSTM

network. We use an online learned GAN to generate diverse positive

samples with sequence-specific information, which enriches the available

training data and thus facilitates the training of the LSTM network.

This paper is an extension of our previous work [18]. In this paper, we ac-

celerate the proposed method by directly obtaining the proposal features from

the feature map of the search region. No extra computational cost for pro-

posal feature extraction is required. Thus, our method can operate in real-time.

Moreover, we additionally investigate the problems of sample inadequacy and

class imbalance during the online training of the LSTM network. Specifically,

we propose to use a GAN to augment the available training data, which signif-

icantly improves the performance of the original method. The experiments are

also extended via presenting results of the further internal comparison, state-

of-the-art comparison and attribute-based comparison.

The rest of this paper is organized as follows: Section 2 gives an overview of

the related work. Section 3 discusses the proposed tracking method, which con-

tains the components of the fast proposal selection strategy, the object-adaptive

LSTM network and the data augmentation technique. Section 4 describes the

proposed online tracking algorithm. Section 5 presents the experimental results
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on four public tracking benchmarks. Conclusions and future work are drawn in

Section 6.

2 Related Work

In this section, we briefly review the deep learning based tracking methods and

discuss the related works on RNNs and generative adversarial learning.

Visual tracking. Visual tracking has been actively studied over the past

few decades and it remains one of the most important and challenging problems

in computer vision. A large number of visual tracking methods, including sparse

representation [19, 20, 21, 22, 23, 24], multiple instance learning [25, 26, 27] and

correlation filters [28, 29, 30, 31], have been proposed. For example, a strong

classifier and structural local sparse descriptors are introduced for tracking ob-

jects in [19]. In [21], a tracking method which jointly learns a nonlinear classier

and a visual dictionary in the sparse coding manner, is proposed. In [22], the

authors use sparse coding tensors to represent target templates and candidates,

and build the appearance model via incrementally learning. A tracking frame-

work which combines blur state estimation and multi-task reverse sparse learn-

ing, is proposed in [23]. A generalized feature pooling method [24] is presented

for robust visual tracking. A novel two-stage classifier with the circulant struc-

ture [32] is developed to address scenes including occlusion. In [33], the authors

employ a part space with two online learned probabilities to represent the target

structure. A hyperparameter optimization method [34] is proposed for robust

object tracking.

In recent years, deep learning based tracking methods [2, 3, 5, 35] have

shown their outstanding performance by taking advantage of the powerful abil-

ity of CNNs in feature representation. These methods can be roughly divided

into classification-based tracking methods and matching-based tracking meth-

ods. Classification-based tracking methods [2, 3] treat visual tracking as a

binary classification problem, which aims to distinguish the object from the

background. For example, MDNet [2] adopts a multi-domain learning strategy

to utilize large-scale annotated tracking data and learn an online per-object

classifier. SANet [3] proposes a structure-aware network to handle similar dis-

tractors. MRCNN [35] introduces a particle filter based tracking framework by
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taking advantage of an online updated manifold regularized deep model. Al-

though these methods achieve high tracking accuracy, the expensive cost spent

on the massive proposal feature extraction and sophisticated online fine-tuning

heavily limits their speeds. Besides, these methods perform the pre-training

stages on tracking benchmark datasets, which may raise the risk of over-fitting.

Matching-based tracking methods [5, 4, 7] are developed to match the candi-

date proposals with the target template using the general pre-trained networks.

These methods usually do not perform any online updating procedures so that

they possess remarkable speed superiority. Siamese network is one of the most

representative methods. For example, GOTURN [4] uses the Siamese network

to directly regress the object location from the previous frame. SiamFC [5]

proposes a fully-convolutional Siamese network to learn a general similarity

function. Despite the efficiency of these methods, the inherent lack of online

adaptability makes them prone to drift when the object appearance significantly

changes or similar objects appear.

Recently, several Siamese network based trackers [36, 37, 38, 39, 40, 41]

have been proposed to address the above problems, which can improve the

tracking accuracy while preserving real-time speeds. For example, DSiam [36]

proposes a dynamic Siamese network with transformation learning and EAST

[37] learns a decision-making strategy in a reinforcement learning framework

for adaptive tracking. SiamFC-tri [38] incorporates a novel triplet loss into the

Siamese network to extract expressive deep features. SiameseRPN [39] proposes

an offline trained Siamese Region Proposal Network (RPN). DaSiameseRPN

[42] improves SiameseRPN by introducing a distractor-aware module. C-RPN

[43] proposes Siamese cascaded RPNs to solve the problem of class imbalance

by performing hard negative sampling. HASiam [40] introduces the attention

mechanism into the Siamese network to enhance its matching discrimination.

Quad [41] proposes a quadruplet network to detect the potential connections of

training instances for better representation. In contrast to the above Siamese

based methods, we use the Siamese network to select high-quality proposals for

computational efficiency and learn a real-time object-adaptive LSTM network

to classify these selected proposals. As a result, the proposed tracker effectively

captures the object appearance variations with online adaptability.

Recently, some works [44, 45, 46] adopt specialized attention networks for
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saliency prediction. Different from these works, we employ the fast proposal se-

lection strategy for salient object detection, which efficiently selects high-quality

proposals and filters out the irrelevant ones according to the matching-based re-

sponse map.

Recurrent neural networks. Recurrent Neural Networks (RNNs) have

drawn extensive attention due to their excellent capability of memorizing useful

historical information and modeling sequential data. Gan et al. [47] and Kahou

et al. [48] use attention-based RNNs for visual tracking, but these methods only

demonstrate their effectiveness on simple datasets (such as MNIST) instead of

natural videos. Re3 [49] proposes a recurrent regression model to offline learn

the changes in the target appearance and motion. SANet [3] incorporates RNNs

into CNNs to model the object structure and improve the tracking robustness.

Note that RFL [10] and MemTrack [50] also combine Siamese networks and

LSTM networks to track objects. They adopt pre-trained LSTM networks as

target information memorizers to update the template-matching procedure in

Siamese networks. However, different from the above methods, in this paper

we use Siamese network as a coarse object pre-estimator to filter out irrelevant

proposals and train an LSTM network online as a fine object-specific classifer

to distinguish the object from the background. Our LSTM classifier can not

only sequence-specifically utilize both foreground and background information,

but also effectively equip the proposed tracker with adaptability to the object

appearance variations while operating in real-time.

Generative adversarial learning. Recently, generative adversarial learn-

ing has been widely applied to visual tracking. The state-of-the-art tracker,

VITAL [6], proposes to use GAN to identify the masks that maintain robust

features of the object over a long temporal span. Although VITAL achieves high

tracking accuracy, it is very slow due to massive feature extractions and sophis-

ticated online fine-tuning procedures. SINT++ [51] generates diverse positive

samples via a deep generative model and learns a hard positive transformation

network with reinforcement learning to occlude the object with background im-

age patch for higher robustness. However, its slow basic tracker (i.e., SINT [7])

heavily limits its tracking speed, which is far from the real-time requirement.

In this paper, we directly employ GAN as an image data augmenter to generate

diverse positive samples in the image space, while maintaining a real-time track-
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Figure 3. Overview of the proposed method.

ing speed. The generated realistic-looking sample images enrich the available

training data and thus facilitate the training of the LSTM network.

3 The Proposed Method

3.1 Overview

As shown in Fig. 3, the proposed method consists of two stages, i.e., fast pro-

posal selection via a pre-trained Siamese network and object classification via

an online object-adaptive LSTM network.

In the first stage, we utilize the Siamese network to match the target template

with the search region centered at the previously estimated target position. As a

result, we can obtain a response map, which denotes the similarities between the

target template and the proposals in the search region. Based on the response

map, we select the high-quality proposals and crop their features from the big

feature map of the search region to feed to the subsequent LSTM network for

classification. This proposal selection strategy not only efficiently filters out the

irrelevant proposals, but also significantly reduces the computational cost for

proposal feature extraction. Therefore, our method can operate in real-time,

which is faster than conventional classification-based tracking methods [2, 3].

In the second stage, we learn an object-adaptive LSTM network online to

classify the input proposal features based on sequence-specific information. Tak-

ing advantage of the superior ability of LSTM to memorize useful historical
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information, we feed the LSTM network with the selected proposals, together

with the previously estimated target state. By doing this, the LSTM network

is able to identify the optimal target state according to the internal network

state which effectively memorizes the object appearance variations over a long

temporal span. Owing to the intrinsic recurrent structure of the LSTM network,

the internal network state can be simultaneously updated when a forward pass

is performed. Note that the Siamese network used in our method is pre-trained

on a large dataset (i.e., ILSVRC15 [8]) and the proposed object-adaptive LSTM

network is learned online. Therefore, our method is able to robustly track an ar-

bitrary object without suffering from the problem of over-fitting to the tracking

datasets.

In order to address the problems of sample inadequacy and class imbalance

during the online learning process of LSTM network, we make use of GAN to

generate diverse positive samples to approximate the real target images. The

generated diverse positive samples are incorporated into the training dataset

of LSTM network. Such a strategy effectively augments the available training

data and thus improves the tracking performance of our method.

3.2 Fast Proposal Selection

In the conventional classification-based tracking framework (such as [2, 3]),

trackers usually generate massive candidate proposals via dense sampling and

then evaluate these proposals through convolutional feature extractors and bi-

nary classifiers. However, the densely sampled proposals include many irrelevant

and trivial proposals, which are far away from the object center. As a result, the

unnecessary high computational cost is spent on the step of massive proposal

feature extraction, which heavily constrains the tracking speed.

Recently, a number of matching-based tracking methods [4, 5, 7] are devel-

oped to directly compare the target template with the search region (and these

methods usually do not involve online updating procedures). These methods

possess remarkable speed superiority, but they lack of online adaptability to sig-

nificant object appearance variations. Motivated by this observation, we utilize

a representative matching-based tracking method, SiamFC [5], to pre-estimate

the dense proposals and obtain their confidence scores. Then, we select the
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Figure 4. An illustration of the proposed fast proposal selection strategy. In this

example, the purple and blue points in the response map denote the similarities

for the corresponding proposals in the search region. We crop their features

(corresponding to the purple and blue rectangular solids, respectively) from the

feature map of the search region. Best viewed in color.

proposals of high confidence scores and crop their features from the big feature

map of the search region to feed to the subsequent LSTM network for further

classification.

Specifically, SiamFC [5] trains a fully-convolutional Siamese network offline

to compare the target template with the search region. By taking advantage of a

bilinear layer which calculates the cross-correlation of inputs from two streams,

it is able to achieve dense sliding-window evaluation in a single forward pass.

The Siamese network can be formulated as the following similarity function,

F (z, x) = ϕ(z) ∗ ϕ(x) + kI, (1)

where z is a template image and x is a search region. ϕ refers to a convo-

lutional embedding function and F represents a similarity metric. ‘∗’ is the

cross-correlation operation. kI denotes a signal that takes the value k ∈ R in

every position. F (z, x), denoting the output of the Siamese network, is a score

map, which contains the similarities between the target template and each can-

didate proposal in the search region.

As mentioned above, we aim to filter out the irrelevant and trivial pro-

posals far away from the object center, which can effectively reduce the redun-
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dant computation for proposal feature extraction. Although the matching-based

tracking method (such as SiamFC [5]) is sensitive to the changes in object ap-

pearance and contexts, it can be effectively used as a coarse pre-estimator. Such

a pre-estimator can identify irrelevant and trivial proposals by comparing them

with the initial object appearance. Hence, taking advantage of the high com-

putational efficiency of the fully-convolutional Siamese network, we select the

proposals that have high confidence scores to make further evaluation via the

subsequent LSTM network.

It is worth pointing out that, different from our previous work [18], we

directly crop the features of the selected proposals from the feature map of the

search region at the last convolutional layer. As depicted in Fig. 4, a score

value in the final response map corresponds to a sub-window in the search

region. Thus, we can crop the feature of a proposal by locating its corresponding

position in the search region, where the size of features is the same as that of

the template features. Then, we feed high-quality proposals (i.e., the selected

proposals with high confidence scores) to the online trained LSTM network to

perform fine estimation.

This fast proposal selection strategy avoids a mass of redundant computation

for the trivial proposals and enables the feature extraction for all the proposals

to be performed in a single convolutional forward pass. Such a manner efficiently

accelerates the conventional classification-based tracking framework. Note that

this proposal selection strategy is adopted to optimize the computational ef-

ficiency of proposal feature extraction, while the following LSTM network is

proposed to finely detect the object from the selected proposals with the high

adaptability to constantly changing target appearance and contexts. Both com-

ponents are tightly coupled to promote the tracking performance in both speed

and accuracy, especially in challenging scenes.

3.3 Object-Adaptive LSTM Network

3.3.1 LSTM Network for classification

Different from the existing classification-based tracking methods [2, 3], which

simply train the fully-connected layers as a classifier, in this paper we apply

an online LSTM network to visual tracking for classification. As an alternative
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RNN, the LSTM network inherits the powerful capability of RNNs in modeling

sequential data by memorizing the previous input information. In particular,

the introduction of the forget mechanism enables the LSTM network to not

only capture long-range temporal dependencies, but also ignore distracting in-

formation. Hence, the proposed LSTM classification network, which is designed

to suit the visual tracking task, can adapt to the temporally changing object

appearance and discriminate the tracked target from the distractors (such as

similar objects in background).

As discussed in Section 3.2, we can obtain high-quality proposals through the

proposed fast proposal selection strategy. Then, these selected proposals are fur-

ther estimated by the LSTM network using the learned temporal dependencies

and memorized historical information. Note that, different from common LSTM

networks [49, 10, 50] that take a sequence as an input and combine the hidden

states of several timesteps as an output, our LSTM network takes a batch of

proposal features in the current frame and the previously estimated LSTM state

as inputs, and then estimate a classification result for each proposal features in

each frame. The classification result is solely derived from the calculation of

the current timestep. After finishing the estimation for the current frame, we

choose the LSTM state corresponding to the estimated target state as a new

reliable object representation model, which stores temporal target information

and is used in next estimation.

3.3.2 Forward Pass

As depicted in Fig. 5, the internal architecture of our LSTM blocks is a standard

model, while the input layer and the output layer are modified to classify the

feature maps of selected proposals. To obtain suitable inputs for our LSTM

blocks (vectors in Rn, where n is the number of LSTM units), each feature map

of selected proposals is directly reshaped to a vector xt ∈ Rm. The subsequent

input layer is implemented using a fully-connected layer with a weight matrix

WInput ∈ Rm×n and a bias vector bInput ∈ Rn, which transforms xt ∈ Rm

to zt ∈ Rn. The inputs of LSTM blocks in the tth frame consist of three

components, i.e., the transformed proposal feature vector zt, the estimated cell

ĉt−1 and hidden states ĥt−1 in the (t− 1)
th

frame. Both ĥt−1 and ĉt−1 store the

previous target information. For brevity, we denote the internal LSTM state in
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t - 1ĉ
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Figure 5. The architecture of the proposed LSTM network. ĉt−1 and ĥt−1 are

the cell and hidden states of the previously estimated target, which together

compose the the previously estimated LSTM state ˆState
t−1

. xt is the reshaped

feature vector of a 17 × 17 × 32 proposal feature map. zt is the transfromed

feature vector of xt by the input layer. ct and ht are the generated cell and

hidden states corresponding to xt. rt is the classification result. f t, it and ot

denote the parameters of forget gates, input gates and output gates in the LSTM

blocks, respectively. WInput, bInput, WOutput and bOutput respectively represent

weight matrices and bias vectors of the input and output layer. In practice, the

new estimated LSTM state ˆState
t

= (ĉt, ĥt) corresponding to the new estimated

target x̂t is fed to the next time step, which allows the information of object

representation to propagate through time.

the tth frame by a tuple Statet = (ct, ht). Hence, the LSTM blocks take the

feature vector zt and the previously estimated LSTM state ˆState
t−1

as inputs.

Note that in the first frame, given the annotation, we can obtain the initial

LSTM state State1 by passing the initial target feature x1 through the LSTM

network. Thus, we can start the online tracking process from the second frame

using State1.

The parameters of input gates it and output gates ot in LSTM blocks control

the writing and reading for new target information. The parameters of forget

gate f t control to ignore the useless information such as the background or

distractors. The LSTM blocks calculate corresponding cell ct and hidden states

ht for each feature vector zt, according to the previously estimated LSTM state
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ˆState
t−1

. Note that our goal is to classify each proposal features, so we use a

fully-connected layer with a weight matrix WOutput ∈ Rn×2 and a bias vector

bOutput ∈ R2 and a following softmax operation to implement the output layer.

By comparing the historical target information stored in ˆState
t−1

with each

proposal feature vector xt, our LSTM network can generate a corresponding new

LSTM state Statet (i.e., Statet = (ct, ht), which stores the representation infor-

mation of xt) and the classification result rt ∈ R2 (i.e., rt = (p+(xt), p−(xt))T ,

where p+(xt) and p−(xt) are the positive and negative scores of xt). The track-

ing result is determined by choosing the proposal with the maximum p+(x̂t). Its

corresponding LSTM state ˆState
t

is considered to represent the optimal target

state and used for the next estimation. In online tracking, ˆState
t

maintains an

internal object representation model, which can be dynamically updated while

receiving new object features. The proposed LSTM network learns to classify

the input proposal features xt according to the previously estimated LSTM state

ˆState
t−1

. Specifically, the forward pass of the proposed LSTM network can be

calculated with Eqs. (2) to (8).

Input Layer: zt = WT
Inputx

t + bInput (2)

Input Gate: it = σ(Uιz
t + Vιĥ

t−1 + bι) (3)

Forget Gate: f t = σ(Uνz
t + Vν ĥ

t−1 + bν) (4)

Output Gate: ot = σ(Uωz
t + Vωĥ

t−1 + bω) (5)

Cell: ct = f t � ĉt−1 + it � tanh(Ucz
t + Vcĥ

t−1 + bc) (6)

Cell Output: ht = ot � tanh(ct) (7)

Output Layer: rt = Softmax(WT
Outputh

t + bOutput) (8)

where it, f t and ot denote the parameters of input gates, forget gates and output

gates in the LSTM blocks, respectively. U , V are the weight matrices and b is

the bias vector. The subscript ι, ν, ω and c respectively refer to the input

gates, forget gates, output gates and LSTM cells. ‘�’ represents the element-

wise product. tanh and σ respectively denote the hyperbolic tangent activation

function and sigmoid activation function. Softmax(·) represents the softmax

activation function.
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3.3.3 Backward Pass

We aim to sufficiently utilize the sequence-specific information to track an ar-

bitrary object and avoid the risk of over-fitting to the datasets from the visual

tracking domain. Thus, we adopt an online learning strategy to train the LSTM

network for the visual tracking task. Particularly, during the training process

in the tth frame, instead of feeding a sequence of training data to the LSTM

network as done in [49, 10, 50], we use the previously estimated LSTM state

ˆState
t−1

and the training samples St drawn from the current frame to train a

per-object classifier. In this manner, the LSTM network learns to distinguish

the object from the background in accordance with the previously memorized

object information. The training loss is directly derived from the classifica-

tion results. Thus, it does not need to propagate through noisy intermediate

timesteps, which can accelerate the convergence of the LSTM network.

Specifically, in the 1st frame, we pass the initial target feature x1 through

the LSTM network and obtain the initial LSTM state State1 = (c1, h1). Then,

we use State1 and training samples S1 generated around the original target

position to train the LSTM network. In the tth frame, we generate the training

samples St according to the estimated target state. The LSTM network is

updated using St and the previously estimated LSTM state ˆState
t−1

to obtain

online adaptability to the temporally changing object appearance and contexts.

We use the cross-entropy loss function L for training. The backward pass in the

training process can be calculated with Eqs. (9) to (11).

εtr
def
=

∂L
∂rt

∂rt

∂Softmax(·)
(9)

εth = WOutputε
t
r (10)

εtc = (ot)
′
tanh(ct)εth + ot tanh′(ct)εth (11)

where εtr is defined as the derivative of loss function L with respect to the softmax

activation function Softmax(·), i.e., the derivative of the softmax cross-entropy

loss function. εth and εtc denote the derivatives of loss function L with respect

to ht and ct, respectively. (ot)
′

refers to the derivative of ot with respect to ct,

i.e., (ot)
′

= ∂ot

∂ct . tanh′(·) represents the derivative of the hyperbolic tangent

activation function.
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3.4 Data Augmentation with GAN

To learn a robust classifier that can effectively discriminate the object from

the background in challenging scenes, the online training of the LSTM network

requires adequate labelled training data. However, since only one object is pro-

vided despite the comparatively broad background for the visual tracking task,

the number of positive samples is relatively small and is far less than the number

of negative samples. The problems of sample inadequacy and positive-negative

class imbalance will hinder the online training of the LSTM network and need to

be tackled properly. Compared with our previous work [18], we present a data

augmentation strategy based on GAN [14] to generate diverse positive samples

in the image space. The proposed strategy enriches the available training data

and thus effectively boosts the performance of the proposed method.

In this paper, we adopt a recently developed generative adversarial model

[52] (DCGAN) for the training stability. Since the tracking method needs to

track an arbitrary object, it is difficult to pre-train a general sample augmenter.

Therefore, during online tracking, we train GAN in the first frame to learn the

original target appearance and then update it with real sampled images in the

subsequent frames to effectively capture temporarily changing target appear-

ance.

In the generative adversarial learning process, a real image x of positive

sample drawn from the frames obeys the distribution Pimg(x). The model con-

tains a generator G to learn this real data distribution and a discriminator D

to distinguish the real images from the generated images. The generator takes

a noise variable Pnoise(z) as the input and it outputs an image G(z) that ap-

proximates the real image Pimg(x). The discriminator D takes both Pimg(x)

and G(z) as inputs and outputs their classification probability. On one hand,

we train D to maximize the classification probability of assigning the correct

labels to both the real images and generated images. On the other hand, we

train G to maximize the probability of D making a mistake, i.e., to minimize

the classification probability of G(z) assigned with the correct label. Hence, D
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Figure 6. The left two columns in the red rectangle are real images of positive

samples. The right eight columns are the generated positive samples with GAN

on the four sequences from the OTB dataset (from top to down: Boy, Girl,

Tiger1 and Coke, respectively). Best viewed in color.

and G play a two-player minimax game with the following function:

min
G

max
D

F (D,G) =Ex∼Pimg(x)[logD(x)] (12)

+ Ez∼Pnoise(z)[log(1−D(G(z)))].

By the adversarial training, D and G boost their respective performance

from each other until D cannot distinguish the differences between the real

images and the generated ones. In this way, G effectively learns the real data

distribution Pimg. The generated images closely approximate the real images.

Fig. 6 presents the real images of positive samples and the generated posi-

tive samples based on GAN. We take real images of positive samples as Pimg(x),

which are drawn around the estimated target position from video frames. The

noise variable Pnoise(z) is randomly generated. After the adversarial learning

process, we apply the learned generator G to sample a number of positive sam-

ples G(z). Then, we augment the training data of the LSTM network with these

generated positive samples. By this way, the problem of class imbalance is al-

leviated. As shown in Section 5.2.2, this data augmentation strategy facilitates

the online training of the LSTM network and improves the tracking accuracy of

the proposed method.
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3.5 Discussions

It is worthy mentioning that the proposed method exploits but differs from the

previous works, including SiamFC [5] and DCGAN [52].

In this paper, we propose a novel and fast proposal selection strategy to

accelerate the LSTM classification network. Specifically, we take advantage of

the response map of the matching-based tracking method (SiamFC is used in

this paper) to select high-quality proposals and directly obtain the proposal

features from the feature map of search region. Such a strategy effectively

avoids the heavy computation for proposal feature extraction in the classification

based tracking framework. In contrast, SiamFC adopts an offline pretrained

model, which directly outputs the proposal with the highest response score as

the tracked result. In other words, SiamFC does not perform object-adaptive

proposal re-estimation and inherently lacks online adaptability.

The proposed data augmentation technique is based on DCGAN. However,

DCGAN [52] is trained on various image datasets for general image representa-

tions, while our data augmenter is learned online with sequence-specific informa-

tion, which better suits for the visual tracking task. In addition, we incorporate

it into our recurrent tracking model to facilitate the training of the proposed

object-adaptive LSTM network.

4 Online Tracking Algorithm

4.1 Online Training of the Network Model

As discussed in Section 3.2, the Siamese network (i.e., SiamFC [5]) used in

our fast proposal selection is trained offline using pairs of images taken from

the ILSVRC15 [8] dataset, which avoids the risk of over-fitting to the datasets

in the visual tracking domain. Since the Siamese network is used as a coarse

pre-estimator, we directly apply the pre-trained Siamese network to select the

high-quality proposals without online updating. In the following, we introduce

the online training of the LSTM network, which is designed to further estimate

the selected proposals by exploiting temporal dependencies.

Given the annotated first frame, we feed the LSTM network with the origi-

nal target appearance to initialize the LSTM state. Then, we draw the positive
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and negative samples around the original target position with the normal dis-

tribution. We use the training samples from the first frame and the original

LSTM state to train the LSTM network as stated in Section 3.3. In the subse-

quent frames, we update the LSTM network using the training samples drawn

around the estimated target position and the previously estimated LSTM state.

Through online learning, the LSTM network is encouraged to discriminate the

object from the background according to the previously estimated LSTM state

which stores the historical information of object representation. Besides, due

to its intrinsic recurrent structure, the LSTM network can dynamically update

its recurrent parameters during the forward passes. Thus, the model of object

representation stored in the LSTM state is constantly updated as new inputs of

proposal features are received.

4.2 Online Tracking Using OA-LSTM-ADA

Our online tracking algorithm of the Object-Adaptive LSTM network with

Adversarial Data Augmentation (OA-LSTM-ADA) is presented in Algorithm 1.

The similarity learning function F refers to the Siamese network [5] used in the

fast proposal selection step (see Section 3.2). F can be regarded as a general

function that calculates the similarities between the target template and the

candidate patches. θ is a predefined threshold for the online update of the

LSTM network. When the positive score of the estimated target state exceeds

θ, the tracked result is considered to be reliable and it can be used for the

sampling of training data.

In the first frame, we initialize the LSTM network using the original target

state x1 and train the network with the training data S1 drawn from the first

frame. The drawn positive data s1+ are taken as the input real images for the

initial training of GAN. After the initial training, the generator of GAN coarsely

learns the appearance representation of the object.

In the subsequent tth frame, we firstly pre-evaluate the densely sampled

proposals with the similarity learning function F and select high-quality ones

to feed to the following LSTM network. Then, the selected proposals are esti-

mated by the LSTM network according to the previously estimated LSTM state

ˆState
t−1

. We obtain the positive scores and negative scores of the selected pro-
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Algorithm 1 Tracking algorithm of OA-LSTM-ADA

Input: Original target state x1, similarity learning function F , predefined
threshold θ

Output: Estimated target state x̂t

1: Initialize the Object-Adaptive LSTM network using x1;
2: Sample training data s1+ and s1− from the 1st frame,
S1 ← {s1+} ∪ {s1−};

3: Train the Object-Adaptive LSTM network using S1;
4: Train GAN with the positive samples s1+;
5: repeat
6: Apply the similarity learning function F to obtain a confidence mapM;
7: Select N high-score proposals {xti}Ni=1 from M;

8: Evaluate {xti}Ni=1 with the previously estimated LSTM state ˆState
t−1

to
obtain their positive scores {p+(xti)}Ni=1;

9: Find the tracked result by x̂t = arg maxxt
i
p+(xti);

10: Set the optimal LSTM state ˆState
t

corresponding to x̂t;
11: if p+(x̂t) > θ then
12: Sample training data st+ and st− by using the hard negative mining

technique, St ← {st+} ∪ {st−};
13: Take {s1+, ..., st+} as the inputs, and generate diverse positive samples

gt+ using GAN, St ← St ∪ {gt+};
14: Update the LSTM network using St;
15: end if
16: until end of sequence

posals and treat the one with the maximum positive score to be the tracked

result x̂t. The optimal LSTM state ˆState
t

corresponding to x̂t is accordingly

updated and will be used for the estimation of target state in the next frame.

When the positive score of the estimated target state exceeds θ, we perform

the update procedure. In order to improve the robustness of the LSTM network

to deal with the similar objects in the background, we apply the hard negative

mining technique [53] to draw training samples St. Note that we can directly

use the confidence map M to select hard negative samples and do not require

the extra computational cost for sample evaluation. This technique makes the

LSTM network more discriminative when the background contains similar ob-

jects to the tracked target.

Taking the positive samples {s1+, ..., st+} as the input real images, we use

GAN to generate diverse positive samples gt+ and augment the training data

St. Therefore, the LSTM network is updated with the augmented training data

22



St that contain adequate positive samples and hard negative samples. This

strategy provides the LSTM network with high adaptability to the temporarily

changing object and background.

5 Experiments

To evaluate the performance of the proposed tracking method, we conduct ex-

tensive experiments on four public tracking benchmarks, i.e., OTB (including

OTB-2013 [54] and OTB-2015 [11]), TC-128 [15], UAV-123 [16] and VOT-2017

[17]. In Section 5.1, we present the implementation details and parameter

settings used in our experiments. In Section 5.2, we evaluate our tracker on

the OTB dataset by providing internal comparison, quantitative comparison,

attributed-based comparison and qualitative comparison. In Section 5.3, Sec-

tion 5.4 and Section 5.5, we conduct the evaluation on the TC-128, UAV-123 and

VOT-2017 datasets respectively, showing the results of quantitative comparison

with several state-of-the-art trackers.

5.1 Implementation Details and Parameter Settings

Our tracker, OA-LSTM-ADA, is implemented in Python using TensorFlow [55].

It runs at an average speed of 32.5 fps with a 2.7 GHz Intel Core i7 CPU with

16 GB RAM and an NVIDIA GeForce GTX Titan X GPU. In the proposed fast

selection strategy, we utilize the matching-based tracking method, i.e., SiamFC-

3s [5] (the version searching over 3 scales instead of 5 scales). The template used

in the Siamese network is the original object appearance in the first frame. We

set the size of the Siamese response map to 33 × 33 without upsampling. To

obtain the features of the selected proposals, we crop the feature patches with

the size of 17 × 17 (the same size as the template feature patch) from the feature

map (with the size of 49 × 49) of the search region. Since SiamFC-3s scales

the exemplar images and search images with an added margin for context, we

set the parameter of context to 0.2 to alleviate the effects of the added context

in our classification model. We experimentally select 64 high-quality proposals,

which is effective and efficient for a trade-off between performance and speed.

In the proposed LSTM network, we adopt a two-layer LSTM network, each

23



layer of which has 2,048 units. We use the ADAM gradient optimizer [56]

with a softmax cross-entropy loss function and a learning rate of 10−5. In the

proposed data augmentation strategy, we utilize a recent state-of-the-art model

(DCGAN [52]) and generate 64 positive samples in each update. In Algorithm 1,

the positive score of the estimated target state p+(x̂t) is normalized and the

threshold parameter θ for online update of the LSTM network is set to 0.6,

which is efficient experimentally. In addition, we conduct all the experiments

with the same parameter settings to guarantee the reliability of our experimental

results.

5.2 Evaluation on OTB

5.2.1 Dataset and Evaluation Metrics

The OTB-2013 [54] dataset consists of 50 fully annotated video sequences with

eleven challenging attributes, such as scale variation, illumination variation,

occlusion, etc. The OTB-2015 [11] dataset is the extended version of OTB-2013,

which contains the entire 100 fully annotated video sequences with substantial

variations.

We adopt the straightforward One-Pass Evaluation (OPE) as the perfor-

mance evaluation method. For the performance evaluation metrics, we use

precision plots and success plots. Following the protocol in the OTB bench-

mark, we use the threshold of 20 pixels and area under curve (AUC) to present

and compare the representative precision plots and success plots of trackers,

respectively.

5.2.2 Internal Comparison

In OA-LSTM-ADA, we adopt a novel object-adaptive LSTM network to utilize

time dependencies and memorize the object appearance variations. We also em-

ploy the fast proposal selection strategy to improve the computational efficiency.

In addition, to facilitate the online training of the LSTM network, we present

a data augmentation technique based on GAN. To validate the effectiveness of

each component in OA-LSTM-ADA, we investigate its four variants:

• OA-FF: a feed-forward variant, where the LSTM network is replaced by

the fully-connected layers.
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Figure 7. Results of internal comparison on the (a) OTB-2013 and (b) OTB-

2015 datasets. The speeds are presented in the legend.

• OA-LSTM-PS: a variant without using fast proposal selection, which per-

forms dense sampling and tracks the object via the proposed LSTM net-

work.

• OA-LSTM: our previous work [18], which cumbersomely extracts the pro-

posal features by passing the proposal patches through convolutional layers

and does not employ the data augmentation technique.

• OA-LSTM+: an accelerated version of OA-LSTM [18], which directly

crops the proposal features from the feature map of search region and

does not adopt the data augmentation technique.

We evaluate four variants on the OTB-2013 and OTB-2015 datasets and

compare their tracking performance with the proposed OA-LSTM-ADA.

As shown in Fig. 7, all the variants perform worse than OA-LSTM-ADA in
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terms of tracking accuracy. OA-FF simply classifies the selected proposals with

the fully-connected layers and it does not effectively capture time dependencies

among sequential frames. As a result, OA-FF cannot adapt to the temporarily

changing object, and thus it is prone to drift in challenging scenes. OA-LSTM-

PS is much slower than other methods due to the heavy computational burden

caused by dense sampling. OA-LSTM and OA-LSTM+ show similar tracking

accuracy due to the effectiveness of the object-adaptive LSTM network. How-

ever, OA-LSTM+ achieves a higher speed by directly obtaining the selected pro-

posal features from the big feature map of the search region, which accelerates

our original fast proposal selection strategy. This implies that the proposed fast

proposal selection strategy effectively reduces the redundant computation for

feature extraction and leads to a significant speedup. OA-LSTM-ADA achieves

the best tracking accuracy and satisfactory speed among the compared ver-

sions. This is because that OA-LSTM-ADA employs GAN to augment training

data for the online training of the LSTM network, which effectively improves

the tracking performance. Although the speed of OA-LSTM-ADA is slightly

lower than that of OA-LSTM+ due to the additional data augmentation tech-

nique, OA-LSTM-ADA achieves significant improvements in tracking accuracy

by taking advantage of enriched training samples.

Moreover, we further experimentally investigate the influence of the number

of selected proposals m and the predefined threshold θ on the performance and

speed of OA-LSTM-ADA. We select a range of values for these two parameters,

i.e., m ∈ {32, 64, 128} and θ ∈ {0.5, 0.6, 0.7}. The results are given in

Fig. 7. As shown in Fig. 7, the proposed method with the parameter setting

m = 64, θ = 0.6 for OA-LSTM-ADA obtains the best performance among all

the parameter settings. While the proposed method with this parameter setting

shows slightly slower speed than that with the parameter settings m = 32, θ =

0.6 and m = 64, θ = 0.7, it achieves better trade-off between tracking accuracy

and speed. Therefore, we set m = 64, θ = 0.6 for practical efficiency in the

following.

5.2.3 Quantitative Comparison

As illustrated in Fig. 8, we compare the precision plots and success plots ob-

tained by our OA-LSTM-ADA and several state-of-the-art trackers including
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(a) State-of-the-art Comparison on OTB-2013

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Precision plots of OPE

OA-LSTM-ADA (ours) [0.872]
MemTrack (2018) [0.820]
TRACA (2018) [0.816]
CNN-SVM (2015) [0.814]
CSR-DCF (2017) [0.802]
ACFN (2017) [0.802]
Staple (2016) [0.784]
SiamFC-tri (2018) [0.781]
CFNet2-tri (2018) [0.780]
RFL (2017) [0.778]
SiamFC (2016) [0.771]
DLSSVM (2016) [0.763]
CFNet (2017) [0.748]
KCF (2015) [0.696]
CNT (2016) [0.572]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE
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(b) State-of-the-art Comparison on OTB-2015

Figure 8. Precision plots and success plots showing the performance of our OA-

LSTM-ADA compared with other state-of-the-art trackers on the (a) OTB-2013

and (b) OTB-2015 datasets.

MemTrack [50], TRACA [57], SiamFC-tri [38], CFNet2-tri [38], ACFN [58],

CNN-SVM [59], DLSSVM [60], SiamFC [5], CFNet [9], CSR-DCF [61], Staple

[30], RFL [10], KCF [29] and CNT [62]. We choose these methods because

SiamFC, CFNet, SiamFC-tri and CFNet2-tri are Siamese network based track-

ing methods, which are closely related to our OA-LSTM-ADA (recall that OA-

LSTM-ADA utilizes the Siamese network to pre-estimate the densely sampled

proposals). MemTrack and RFL also combine the Siamese networks and LSTM

networks, but their LSTM networks are used for object template management.

Since our tracker adopts deep features for object representation, we choose some

representative methods based on deep features, i.e., TRACA, ACFN, CNN-

SVM, DLSSVM and CNT. We also choose some state-of-the-art real-time meth-

ods based on correlation filters, i.e., CSR-DCF, Staple and KCF.

We can observe that our OA-LSTM-ADA performs favorably among the
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state-of-the-art trackers on both benchmark versions. Compared with the four

Siamese network based trackers, i.e., SiamFC, CFNet, SiamFC-tri and CFNet2-

tri, OA-LSTM-ADA achieves higher tracking accuracy. This fully validates the

effectiveness of the proposed novel object-adaptive LSTM network. OA-LSTM-

ADA performs better than MemTrack and RFL with respect to both precision

plots and success plots, which demonstrates that our LSTM network is successful

in classifying proposals using its memorized target information, compared with

the matching-based recurrent trackers. OA-LSTM-ADA also outperforms other

deep learning based trackers, i.e., TRACA, ACFN, CNN-SVM, DLSSVM and

CNT. This is because that OA-LSTM-ADA not only uses deep features, but

also exploits the sequential dependencies in a video and captures the object

appearance variations via the LSTM network. Other trackers using hand-crafted

features, i.e., CSR-DCF, Staple and KCF, adopt the popular correlation filter

tracking framework and achieve state-of-the-art performance. However, these

methods achieve worse tracking results than our OA-LSTM-ADA, due to the

lack of high-level semantic understanding in challenging scenes. Note that the

results of some state-of-the-art methods are directly taken from [63] (using the

same hardware platform).

Table 1 compares the precision scores, AUC scores and speeds obtained by

our OA-LSTM-ADA and other state-of-the-art trackers. For the tracking speed,

KCF is the fastest among the compared trackers, but it achieves the worse

tracking accuracy than other recent state-of-the-art trackers. SiamFC, CFNet,

SiamFC-tri, CFNet2-tri and MemTrack achieve high speeds and competitive

tracking accuracy owing to the efficiency of the Siamese network. But they

are worse than our OA-LSTM-ADA for both the precision and AUC scores.

Our OA-LSTM-ADA performs better than high-speed KCF and TRACA (with

speeds beyond 100 fps) in tracking accuracy while still maintaining a real-time

speed. Staple, CSR-DCF and CNT are able to operate at satisfactory speeds on

CPU. However, their tracking accuracies are much lower than our OA-LSTM-

ADA. Other trackers, i.e., CNN-SVM, ACFN, RFL and DLSSVM, are slower

and less accurate than our OA-LSTM-ADA. These results demonstrate that OA-

LSTM-ADA achieves outstanding trade-off in terms of state-of-the-art accuracy

and real-time speed among all the competing trackers.
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Table 1. The precision score, the AUC (Area Under the Curve) score and speed

(fps, * indicates the GPU speed, otherwise the CPU speed) on the OTB-2015

dataset. The best and second best results are displayed in red and blue fonts,

respectively.

Tracker Precision AUC Speed

OA-LSTM-ADA 87.2 62.8 32.5*

MemTrack [50] 82.0 62.6 50.0*

TRACA [57] 81.6 60.3 101.3*

CNN-SVM [59] 81.4 55.4 1.0*

CSR-DCF [61] 80.2 58.7 16.4

ACFN [58] 80.2 57.5 15.0*

Staple [30] 78.4 58.1 50.8

SiamFC-tri [38] 78.1 59.0 86.3*

CFNet2-tri [38] 78.0 59.2 55.3*

RFL [30] 77.8 58.1 15.0*

SiamFC [5] 77.1 58.2 86.0*

DLSSVM [60] 76.3 53.9 4.4*

CFNet [9] 74.8 56.8 75.0*

KCF [29] 69.6 47.7 170.4

CNT [62] 57.2 45.2 1.5

5.2.4 Attribute-Based Comparison

Fig. 9 compares the performance obtained by our OA-LSTM-ADA and other

state-of-the-art trackers using success plots on the OTB-2015 dataset for eleven

challenging attributes including background clutter, deformation, fast motion,

in-plane rotation, low resolution, illumination variation, motion blur, occlusion,

out-of-plane rotation, out of view and scale variation.

Our OA-LSTM-ADA performs favorably against other compared state-of-

the-art trackers in most cases, which indicates that OA-LSTM-ADA possesses

high robustness while operating in real-time. Compared with the representa-

tive Siamese network based tracker, i.e., SiamFC, our OA-LSTM-ADA achieves

significant performance improvements under all the eleven challenge attributes.

This clearly proves that the proposed object-adaptive LSTM network is able to

effectively utilize the sequential dependencies among successive frames and learn

the object appearance variations with high online adaptability. OA-LSTM-ADA

outperforms the reccurent trackers, i.e., MemTrack and RFL, under most at-

tributes, which demonstrates the robustness of our LSTM network for classi-

fication, compared with the LSTM networks for object template management
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Success plots of OPE - background clutter (31)
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Success plots of OPE - deformation (44)

OA-LSTM-ADA (ours) [0.582]
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Success plots of OPE - fast motion (39)
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Success plots of OPE - in-plane rotation (51)

MemTrack (2018) [0.606]
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Success plots of OPE - low resolution (9)
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Success plots of OPE - illumination variation (38)
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Success plots of OPE - motion blur (29)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - out-of-plane rotation (63)

OA-LSTM-ADA (ours) [0.612]
MemTrack (2018) [0.605]
TRACA (2018) [0.593]
SiamFC-tri (2018) [0.563]
SiamFC (2016) [0.558]
CFNet2-tri (2018) [0.552]
CNN-SVM (2015) [0.548]
CSR-DCF (2017) [0.547]
RFL (2017) [0.547]
ACFN (2017) [0.543]
CFNet (2017) [0.542]
Staple (2016) [0.534]
DLSSVM (2016) [0.531]
KCF (2015) [0.453]
CNT (2016) [0.431]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE - out of view (14)

OA-LSTM-ADA (ours) [0.580]
TRACA (2018) [0.557]
MemTrack (2018) [0.549]
SiamFC-tri (2018) [0.543]
CFNet2-tri (2018) [0.537]
RFL (2017) [0.532]
CSR-DCF (2017) [0.513]
ACFN (2017) [0.508]
SiamFC (2016) [0.506]
CNN-SVM (2015) [0.488]
Staple (2016) [0.481]
DLSSVM (2016) [0.475]
CFNet (2017) [0.414]
KCF (2015) [0.393]
CNT (2016) [0.351]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE - scale variation (64)

OA-LSTM-ADA (ours) [0.609]
MemTrack (2018) [0.602]
CFNet2-tri (2018) [0.578]
SiamFC-tri (2018) [0.563]
RFL (2017) [0.559]
TRACA (2018) [0.557]
SiamFC (2016) [0.552]
ACFN (2017) [0.551]
CFNet (2017) [0.534]
CSR-DCF (2017) [0.531]
Staple (2016) [0.525]
CNN-SVM (2015) [0.490]
DLSSVM (2016) [0.466]
CNT (2016) [0.407]
KCF (2015) [0.394]

Figure 9. The success plots on the OTB-2015 dataset for eleven challenging

attributes: background clutter, deformation, fast motion, in-plane rotation, low

resolution, illumination variation, motion blur, occlusion, out-of-plane rotation,

out of view and scale variation.

used in MemTrack and RFL. OA-LSTM-ADA obtains much better performance

than other compared trackers in the presence of fast motion, occlusion and out

of view. This is because that OA-LSTM-ADA can memorize the previous object

appearance and ignore the distracting similar objects via the object-adaptive

LSTM network. For the attributes of in-plain rotation and low resolution, OA-

LSTM-ADA performs worse than MemTrack. The reason may be that the
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ACFN Staple CFNet SiamFCOA-LSTM-ADA

Figure 10. Qualitative results of our OA-LSTM-ADA, ACFN [58], Staple [30],

CFNet [9] and SiamFC [5] on five challenging sequences (from top to down:

CarScale, Ironman, Matrix, MotorRolling and Skiing, respectively).

object template used for similarity computing lacks effective updating and thus

deviates from the temporal object under such disturbances at the later stage

of tracking. Even so, OA-LSTM-ADA obtains a higher tracking accuracy than

MemTrack on the whole dataset.

5.2.5 Qualitative Comparison

Fig. 10 qualitatively compares the performance obtained by our OA-LSTM-

ADA, ACFN, Staple, CFNet and SiamFC on five challenging sequences.

For the most challenging sequences, most trackers fail to locate the tar-

get position or incorrectly estimate the target scale, while our OA-LSTM-ADA

accurately tracks the object in terms of both position and scale. For the se-

quence of CarScale (row 1), the compared trackers are able to correctly locate

the target position, but they only discriminate a part of the object instead of

the whole object when the object undergoes large scale variation. In spite of

the challenging scale variation, our OA-LSTM-ADA correctly estimates both

the position and scale of the object. For the sequences of Ironman and Matrix

(row 2 and row 3), the most compared trackers drift away because of the sig-
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Figure 11. Precision plots and success plots showing the performance of our

OA-LSTM-ADA compared with other state-of-the-art trackers on the TC-128

dataset.

nificant illumination variation and occlusion. In contrast, our OA-LSTM-ADA

successfully handles these challenges and accurately tracks the object despite

the complex backgrounds. In the sequences of MotorRolling and Skiing (row

4 and row 5), the compared trackers struggle when encountering fast motion

and significant rotation, while our OA-LSTM-ADA keeps robust tracking of the

object throughout the sequence.

5.3 Evaluation on TC-128

5.3.1 Dataset and Evaluation Metrics

The TC-128 [15] dataset contains 128 fully annotated color video sequences with

many challenging factors. Similar to the evaluation on OTB (Section 5.2.1), we

also use the performance evaluation method of OPE and metrics of precision

plots and success plots for the evaluation on TC-128.

5.3.2 Quantitative Comparison

We quantitatively compare our OA-LSTM-ADA with several state-of-the-art

trackers including CF2 [64], HDT [65], Staple [30], MEEM [66], MUSTer [67],

Struck [68], KCF [29], DSST [28] and CSK [69]. Fig. 11 shows the comparative

results in terms of precision plots and success plots on the TC-128 [15] dataset.

We can observe that our OA-LSTM-ADA achieves the best performance in

both precision plots and success plots among all the compared trackers. OA-

LSTM-ADA outperforms the other two trackers which also use deep features,
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Table 2. The precision score, the AUC (Area Under the Curve) score and speed

(fps, * indicates GPU speed, otherwise CPU speed) on the TC-128 dataset. The

best and second best results are displayed in red and blue fonts, respectively.

Tracker Precision AUC Speed

OA-LSTM-ADA 72.18 50.16 32.5*

CF2 [64] 70.30 48.40 10.8

HDT [65] 68.56 48.04 9.7

Staple [30] 66.46 49.76 50.8

MEEM [66] 63.92 45.86 11.1

MUSTer [67] 63.57 47.13 4.0

Struck [68] 61.22 44.11 17.8

KCF [29] 54.86 38.39 170.4

DSST [28] 53.99 40.65 12.5

CSK [69] 41.71 30.73 269.0

i.e., CF2 and HDT, with relative improvements of 1.88% (1.76 %) and 3.62%

(2.12%), respectively. Compared with the trackers based on the hand-crafted

features, such as Staple and MEEM, our OA-LSTM-ADA achieves higher track-

ing accuracy and obtains a real-time speed on the GPU.

Table 2 presents the precision scores, AUC scores and speeds obtained by

our OA-LSTM-ADA and other compared state-of-the-art trackers.

As shown in Table 2, our OA-LSTM-ADA performs favorably against other

state-of-the-art trackers in terms of both precision scores and AUC scores while

maintaining a real-time speed. Compared with fast correlation filter based track-

ers such as KCF [29] and Staple [70], which can operate at high speeds on a

CPU, our OA-LSTM-ADA achieves noticeably accuracy improvements in both

precision scores and AUC scores. Compared with the correlation filter based

trackers using deep features, such as CF2 and HDT, our OA-LSTM-ADA shows

the performance superiority. This indicates that the proposed object-adaptive

LSTM network can effectively adapt to the temporarily changing object and is

well suited for the visual tracking task. In addition, the proposed fast proposal

selection strategy provides high efficiency for our deep model, which allows our

tracker to be performed at real-time speed. MEEM exploits a multi-expert

restoration scheme to handle the drift problem during online tracking. MUSTer

adopts cognitive psychology principles to design an adaptive representation for

visual tracking. Although these trackers can be performed on a CPU, there still
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Figure 12. Precision plots and success plots showing the performance of our

OA-LSTM-ADA compared with other state-of-the-art trackers on the UAV-123

dataset.

exists a gap between their tracking accuracy and that of our OA-LSTM-ADA.

5.4 Evaluation on UAV-123

5.4.1 Dataset and Evaluation Metrics

The UAV-123 [16] dataset consists of 123 fully annotated video sequences cap-

tured from a low-altitude aerial perspective for UAV target tracking. Similar to

the evaluations on OTB in Section 5.2 and TC-128 in Section 5.3, we use the

OPE performance evaluation method and metrics of precision plots and success

plots to conduct the experiments on UAV-123.

5.4.2 Quantitative Comparison

Fig. 12 shows the quantitative comparison of our OA-LSTM-ADA and several

state-of-the-art trackers that have publicly available results on the UAV-123

dataset, including SRDCF [70], CFNet [9], SiamFC [5], Staple [30], MEEM

[66], SAMF [71], MUSTER [67], DSST [28] and KCF [29]. In terms of both pre-

cision and success plots, our OA-LSTM-ADA outperforms all the other trackers

with a real-time speed. Compared with the Siamese network based trackers,

i.e., SiamFC [5] and CFNet [9], our OA-LSTM-ADA achieves a higher track-

ing accuracy owing to the effectiveness of the proposed object-adaptive LSTM

network and data augmentation technique. Compared with the hand-crafted
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Figure 13. Expected Average Overlap (EAO) ranking on the VOT-2017 real-

time challenge. We compare our OA-LSTM-ADA with the top 9 trackers on

this challenge.

feature based trackers, such as SRDCF [70] and Staple [30], our OA-LSTM-

ADA, which uses deep features and adopts an efficient object-adaptive LSTM

network with fast proposal selection, achieves better performance while main-

taining a real-time speed.

5.5 Evaluation on VOT-2017

5.5.1 Dataset and Evaluation Metrics

The VOT-2017 [17] dataset contains 60 fully annotated video sequences. The

performance evaluation metric is the Expected Average Overlap (EAO) score,

which takes both accuracy and robustness into account. The speed is reported

in terms of EFO, which normalizes speed measurements obtained over different

hardware platforms. VOT-2017 introduces a new real-time challenge, where

trackers are required to deal with the video frames at real-time speeds. We

evaluate the proposed method on the VOT-2017 real-time challenge.

5.5.2 Quantitative Comparison

We compare our OA-LSTM-ADA with the top 9 trackers on the VOT-2017

real-time challenge, including CSR-DCF-plus [61], CSR-DCF-f [61], SiamFC

[5], ECOhc [72], Staple [30], KFebT [73], ASMS [74], SSKCF and UCT [76].

Fig. 13 presents the Expected Average Overlap (EAO) ranking on the VOT-
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Table 3. The Expected Average Overlap (EAO) score and speed (in EFO units)

on the VOT-2017 real-time challenge. The best and second best results are

displayed in red and blue fonts, respectively.

Tracker OA-LSTM-ADA CSR-DCF-plus [61] SiamFC [5] ECOhc [72] KFebT [73]

EAO 0.216 0.212 0.182 0.177 0.170

EFO 3.12 4.59 5.33 4.69 30.22

Tracker Staple [30] ASMS [74] SSKCF [75] CSR-DCF-f [61] UCT [76]

EAO 0.169 0.167 0.164 0.158 0.144

EFO 8.19 34.03 7.99 2.88 3.09

2017 real-time challenge. Table 3 illustrates specific EAO scores and speeds (in

EFO units) of the compared trackers. Our OA-LSTM-ADA ranks first with the

EAO score of 0.216 in this challenge, while maintaining a real-time speed. In

particular, OA-LSTM-ADA shows a significant improvement over its baseline

SiamFC, which verifies the effectiveness and efficiency of the proposed object-

adaptive LSTM network and data augmentation technique.

6 Conclusions and Future Work

In this paper, we propose a novel object-adaptive LSTM network for real-time

tracking, which can effectively capture temporal dependencies in the video se-

quence and dynamically adapt to the temporarily changing object. The LSTM

network is learned online based on the sequence-specific information. Thus,

it is able to robustly track an arbitrary object without the risk of over-fitting

to the tracking datasets. In order to improve the computational efficiency,

we also propose a fast proposal selection strategy. This strategy utilizes the

matching-based tracking method to pre-estimate the dense proposals and select

high-quality ones to feed to the LSTM network for further evaluation. In this

way, the computational burden rendered by the irrelevant proposals is alleviated

so that the proposed method can operate in real-time. Moreover, to handle the

problems of sample inadequacy and class imbalance during the online learning

of the LSTM network, we also use GAN to augment the available training data.

This data augmentation technique facilitates the training of the LSTM network

and improves the tracking performance. Extensive experiments on the OTB
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[11], TC-128 [15], UAV-123 [16] and VOT-2017 [17] benchmarks demonstrate

the superior performance of the proposed method at the real-time speed com-

pared with several state-of-the-art trackers. This exhibits great potentials of

recurrent structures for visual tracking.

Future work will be directed towards incorporating attention prediction and

aesthetics assessment into our current tracking model, since such mechanisms

may help to generate more high-quality proposals making full use of saliency

information. This can be achieved by designing a new attention-based recurrent

network, and thus the performance of our tracking method may be further

improved.
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