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 Highlights  

 Unsupervised framework for depth estimation and camera motion prediction  

 Depth CNN and pose CNN are trained jointly and can be used respectively  

 Only monocular images are required during testing  

 Construct the supervision signal based on spatial and temporal geometry 

constraints  

 A novel left-right geometric consistency loss is added to the objective function  

 Results outperform previous unsupervised methods and some supervised methods  

 A model which is trained on the Euroc dataset is used to test the algorithm’s 

generalization capability.  
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Abstract 

Depth estimation from monocular video plays a crucial role in scene perception. 

The significant drawback of supervised learning models is the need for vast amounts 

of manually labeled data (ground truth) for training. To overcome this limitation, 

unsupervised learning strategies without the requirement for ground truth have 

achieved extensive attention from researchers in the past few years. This paper 

presents a novel unsupervised framework for estimating single-view depth and 

predicting camera motion jointly. Stereo image sequences are used to train the model 

while monocular images are required for inference. The presented framework is 

composed of two CNNs (depth CNN and pose CNN) which are trained concurrently 

and tested independently. The objective function is constructed on the basis of the 

epipolar geometry constraints between stereo image sequences. To improve the 

accuracy of the model, a left-right consistency loss is added to the objective function. 

The use of stereo image sequences enables us to utilize both spatial information 

between stereo images and temporal photometric warp error from image sequences. 

Experimental results on the KITTI and Cityscapes datasets show that our model not 

only outperforms prior unsupervised approaches but also achieving better results 

comparable with several supervised methods. Moreover, we also train our model on 

the Euroc dataset which is captured in an indoor environment. Experiments in indoor 

and outdoor scenes are conducted to test the generalization capability of the model.  

Keywords: Unsupervised deep learning; Depth estimation; 

 Camera motion prediction; Convolutional neural network. 

 

1. Introduction 

 

Depth estimation based on images has received much attention in recent years due 

to the properties such as convenience and real-time process which offer important 

information for simultaneous localization and mapping [1], self-driving platforms and 

interactive collaborative robotics [2], etc. The purpose of depth estimation is to 

predict the distance from a scene to the camera based on the image directly. This topic 

is divided into two technical strategies: traditional methods and deep learning models. 

Traditional methods include structured light [3], time-of-flight [4], 

structure-from-motion [5], photometric stereo method [6], stereo matching [7,8] and 

symmetric models for 3D object structure estimation [9,10], etc. These methods 
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typically formulate depth estimation as multi-views problems. Stages of traditional 

methods such as feature extraction, feature description, feature matching and bundle 

adjustment are time-consuming. In addition, some regions such as the motorway and 

building facade are smooth on the surface so that few matching points can be 

extracted. In fact, extracting features from these non-texture regions which lack of 

high-quality features such as feature points or edges. Therefore, this problem has not 

been resolved in the traditional way. 

To overcome these shortcomings, convolutional neural networks (CNNs) [11–14] 

have been widely used in monocular depth estimation tasks, and they have achieved 

considerable improvement against traditional methods. One of the main reasons for 

this improvement is big data which makes CNNs obtain pixel-wise semantic 

information in all regions of images. The other reason is that the generated CNN 

models compute the scene depth much faster than traditional methods in practical 

application. 

CNN models attempt to estimate the scene pixel-wise depth map which 

corresponding to the image directly. This strategy has received much attention over 

the past several years due to its properties such as real-time processing, therefore 

predicting the scene depth from a single image without prior information has become 

a fundamental topic in computer vision. Recently, deep learning methods have been 

divided into two types: supervised deep learning methods which require ground truth 

for training and unsupervised deep learning methods without the need for ground 

truth. 

Supervised deep learning methods require vast amounts of labeled training data 

(ground truth) which is usually obtained by active RGB-D cameras in the indoor 

setting and 3D laser scanners [15] in the outdoor scenes. However, the supervised 

strategy bears several shortcomings because of the need for ground truth. Firstly, the 

network may be influenced by the sensors’ own error and noise. Secondly, these 

sensors’ measurements are typically sparser than images so that they cannot capture 

high-resolution information as well as images. Finally, in some places, ground truth 

cannot be obtained by those sensors. Therefore, unsupervised methods that rely only 

on training data have captured more attention from the researchers. 

Our method is based on the fact that supervision signals can be generated through 

image rendering. This paper introduces an end-to-end approach for monocular depth 

estimation and camera motion prediction. It is a novel scheme that uses stereo image 

sequences for training. Then we can use the generated model to estimate the depth of 

monocular images during the testing process. In addition, we can also obtain the 

camera motion of the monocular image sequences. It is an unsupervised framework 

which can be trained simply using stereo image sequences without ground truth. 

Moreover, we construct a left-right consistency loss function as a part of the objective 

function to improve the accuracy and robustness of the model.  

In summary, we propose a novel monocular depth estimation and camera motion 

prediction scheme in an unsupervised way. The CNN structure and objective function 

are discussed in this paper, then we use BGD (Batch Gradient Descent) to calculate 

the network’s parameters through iterative computing. After all, the generated model 

                  



 

is utilized to obtain the monocular image’s depth map and its corresponding camera 

motion in an end-to-end way. Our main contributions are as follows: 

 This paper presents a novel framework that uses stereo image sequences as 

input data to learn an unsupervised model for depth estimation and camera 

motion jointly.  

 We present a novel composition framework with left-right consistency. The 

framework utilizes the spatial and temporal geometry constraints to construct 

the objective function. 

 The experiments on the KITTI and Cityscapes datasets demonstrate that our 

model outperforms previous unsupervised methods and some supervised 

methods. 

 The experiments on the Euroc dataset are completed to test the generalization 

capability of the presented technique. 

The remainder of this paper is organized as follows: 

Section 2 gives a review of related works. Section 3 gives the detail of our 

end-to-end model and implementation details. Section 4 shows experimental results 

on the KITTI, Cityscapes and Euroc datasets. Finally, we give a conclusion of this 

paper in Section 5. 

 

2. Related works 

 

There is plenty of published papers that pay close attention to depth estimation 

from images, either using stereo image pairs, temporal image sequences or multi-view 

images. It is inconceivable to understand the structure of a scene from single-view 

images in traditional methods. Fortunately, deep learning has achieved great 

prosperity in computer vision since the breakthrough work of [16]. The vast majority 

of depth estimation algorithms based on CNNs are supervised. These approaches need 

more than one labeled dataset to learn parameters. To address this issue, here we 

concentrate on an unsupervised method to estimate scene depth and predict camera 

motion. In the following, we give a brief introduction to the most closely related 

work. 

 

2.1 Traditional depth and camera pose recovery methods 

Recovering scene depth and camera pose have been studied by computer vision 

researchers for many years. Konrad et al. [17] propose a 2D-to-3D image conversion 

for depth estimation from examples. In [18], a plausible depth generation technique 

from videos which used non-parametric depth sampling as auxiliary information was 

proposed. This technique outperformed all the state-of-the-art traditional depth 

methods. As another fundamental research topic of the computer vision community, 

camera pose recovery has been very successful in traditional strategy. The most 

famous traditional algorithm for camera pose recovery methods from images is 

ORB-SLAM [19], which is a feature-based simultaneous localization and mapping 

system from monocular images. Stages of ORB-SLAM include tracking, mapping, 

re-localization, and loop closing. However, all the stages must be designed carefully. 

                  



 

Based on the fact that the structures of many man-made objects are symmetric, Gao 

et al. [9] extended this information from 2D images to 3D object reconstruction, and 

used symmetry to improve non-rigid structure from motion algorithms. In [10], a 3D 

structure and camera projection estimating method was proposed. The input of this 

model came from various intra-class object instances and the symmetry was extended 

to the multiple-image case. Ma et al. [20] proposed a locally linear transforming 

model to match both rigid and non-rigid features of remote sensing images. All the 

above methods either reconstruct the underlying 3D geometry or establish the 

correspondent relationships per-pixel among input views to obtain the scene depth. 

Nevertheless, these methods use multi-view images as input data. 

 

2.2 Supervised learning from monocular image 

The task of estimating scene depth from a monocular image is a challenging topic 

since we cannot get the geometric structure by only one view image. Recently, some 

researchers have treated depth estimation as a supervised learning process. Eigen et al. 

[11] proposed a network which consisted of two components, the first one estimates 

the global structure of the scene, then the other uses neighborhood information to 

refine it. To the best of our knowledge, it is the first paper that predicts scene depth 

from monocular images based on deep CNN. On the basis of previous work, Eigen et 

al. [12] addressed a framework to process three different computer vision tasks (depth 

estimation, surface normal prediction, semantic labeling) simultaneously. Laina et al. 

[21] proposed a fully convolutional architecture to model the ambiguous mapping 

between monocular images and depth maps. Li et al. [22] presented a fast-to-train 

multi-streamed CNN architecture for depth estimation. Yan et al. [23] used surface 

normal as a reference to assist the task of monocular depth estimation. 

Until now, some works have tackled monocular depth estimation combined CNNs 

and Random Forests. Li et al. [24] coped with this problem by regression on deep 

CNNs features, combines with a post-processing refining step using conditional 

random fields. Roy et al. [25] presented a novel neural regression forest that combines 

random forests and CNNs for depth estimation from a single image. Liu et al. [26] 

formulated depth estimation into a continuous conditional random field learning 

problem based on the continuous characteristic of the depth values. Even though the 

above methods have achieved accurate results for monocular depth estimation, these 

approaches rely on ground truth for training, which restricts the generalization ability 

of the model. 

 

2.3 Unsupervised learning from monocular image 

In order to overcome the limitation of ground truth, some unsupervised learning 

frameworks for the task of monocular depth estimation were presented recently. Garg 

et al. [13] used pairs of images with known camera motions as input data, to learn a 

CNN to model the complex non-linear transformation which converts the images to 

depth-maps. Based on Garg’s work, Ren et al. [27] and Yu et al. [28] constructed a 

spatial smoothness loss to add to the total loss function for unsupervised optical flow 

learning. Their works and results are similar. Godard et al. [29] treated depth 

                  



 

estimation as an image reconstruction problem during training. A loss function is 

constructed to learn the correspondence between the rectified stereo images by using 

epipolar geometry constraints. Kuznietsov et al. [30] used predicted inverse depth and 

sparse ground-truth depth as input to estimate scene depth in a semi-supervised way. 

Their models require an accurate extrinsic calibration between the 3D laser sensor and 

the camera. Yan Hua and Hu Tian [31] proposed Convolutional Conditional Random 

Field Network (CCRFN) for feature learning and depth estimation. CCRFN has two 

advantages, one is it does not need hand-crafted features and the other is it makes use 

of the relationship between individual features for depth estimation. 

Zhou et al. [32] proposed an unsupervised learning framework for the monocular 

depth estimation and camera motion prediction synchronously. To our best knowledge, 

it is the first paper that uses monocular image sequences for training and testing. On 

the basis of Zhou’s work, Yin et al. [33] proposed an unsupervised learning 

framework named GeoNet [33], which predicts monocular depth, optical flow and 

detect dynamic objects jointly. Luo et al. [34] come from SenseTime Research 

presented a method that reformulates the monocular depth estimation problem as two 

sub-problems followed by stereo matching. Pilzer et al. [35] presented an 

unsupervised depth estimation framework which is the first paper that uses cycled 

generative networks. Moreover, it is the first paper that utilizes cycled generative 

networks to estimate the scene depth. Tulsiani et al. [36] proposed an unsupervised 

framework which without using ground truth directly for learning single-view shape 

and pose prediction of indoor instances. 

These unsupervised learning models have used pairs of images captured from a 

stereo camera with accurate calibration or monocular image sequences as supervision. 

Stereo images cannot take full advantage of temporal information. Monocular images 

suffer from an inherent problem, depth ambiguity, which means different depths may 

correspond to the objects with similar appearances in the image. However, although 

these unsupervised models have achieved the goal that estimated scene depth without 

ground truth, little attention has been paid to the strategy of jointly uses stereo image 

pairs and image sequences for depth estimation. 

 

3. Method  

 

In this section, we describe the unsupervised framework for depth estimation and 

camera motion prediction from monocular videos. During training, we use stereo 

image sequences captured by a moving binocular camera as input data of the depth 

and pose CNNs. In spite of being jointly trained, these two CNNs can be used 

independently in the practical application. 

 

3.1 Overview of our method 

The presented an unsupervised learning model can be divided into two parts: depth 

estimation and camera motion prediction, which can be trained jointly. The 

photometric warp error between the synthesized and input image is selected to 

construct the supervision signal. 

                  



 

The overview of our model is shown in Fig. 1. It is composed of two parts, one for 

depth estimation and the other one for camera motion prediction. The first part 

estimates scene depth maps through the depth CNN and the second part is conducted 

by the pose CNN to compute the camera pose between the images of an image 

sequence. Furthermore, in the second part, we use stereo image sequences and the 

scene depth obtained from the first part as input for training. Considering the 

constraints of stereo image pairs and monocular image sequences, we obtain more 

robust results than other methods. Last but not least, during training, a geometric 

consistency check which improves the accuracy of the algorithm is added to the 

objective function. 

 
Fig. 1. Overview of our method. Training samples consist of unlabeled stereo image sequences 

captured from a binocular camera which does not provide the pose of image sequences. This 

model consists of depth CNN to estimate scene depth and pose CNN to predict camera motion. 

These two CNNs use image reconstruction instead of ground truth for training. They are training 

synchronously and operate independently, one for single view depth estimation and the other for 

camera motion prediction. 

 

3.2 Depth estimation 

Given a single image during testing time inference, our purpose is to learn a 

function 𝑑 = 𝑓(𝐼) which can estimate the per-pixel depth map corresponding to the 

input image. 

This function is actually a CNN which has numerous fixed parameters for depth 

estimation of a single RGB image. While CNN is used, the depth map can be 

computed in an end-to-end way through a series of non-linear operations of CNN’s 

layers. All the parameters of these layers have been already calculated during the 

training process. Therefore, the goal of training is to get all CNN’s parameters.  

In order to achieve this purpose, we use stereo image pairs as input data for training. 

It is an iterative process with the use of BGD (Batch Gradient Descent). We construct 

a loss function for this BGD process and use six stereo image pairs as a batch. Each 

training sample is a stereo image pair which is composed of 𝐼𝑙 and 𝐼𝑟, they are 

corresponding to the left and right color image which captured from a moving 

binocular camera synchronously. 

We use the disparity map estimated from the depth CNN instead of trying to 

estimate the scene depth map directly. We assume that all the stereo images are 

                  



 

rectified [37] and the surface is Lambertian (make the photo-consistency error is 

meaningful). For a stereo image pair, we denote the disparity map which 

corresponding to the left image of this stereo image pair is 𝐷𝑙, the right synthesized 

image is reconstructed by the formula 𝐼𝑟̃ = 𝐼𝑙(𝐷𝑙). The reconstruction function we 

have just used can be expressed as: 

 𝐼𝑟̃(𝑖, 𝑗 + 𝐷𝑖,𝑗
𝑙 ) = 𝐼𝑙(𝑖, 𝑗), (𝑖, 𝑗) ∈ Ω𝑙 ( 1 ) 

where 𝐼𝑙 is the left image of the input stereo image pair, Ω𝑙 is the image pixel space 

corresponding to 𝐼𝑙, 𝐼𝑟̃ is the right synthesized image generated from the left image 

and the right disparity map, (𝑖, 𝑗) is the coordinates of a pixel in the image. The left 

synthesized image 𝐼𝑙̃ = 𝐼𝑟(𝐷𝑟) can be reconstructed similarly. 

Depth estimation using stereo image pairs obey primary geometric constraint, 

therefore, this model can be learned without ground truth. Stereo images are captured 

from binocular cameras that have good synchronization and calibration so that the 

pixels in the two images of the stereo image pair have a strong correspondence.  

These synthesized images are key components of the loss function for our depth 

CNN. After obtaining the predicted disparity maps, the depth map 𝑑(𝑖, 𝑗) can be 

computed by the following linear mapping: 

 𝑑(𝑖, 𝑗) = 𝑏𝑓/𝐷(𝑖, 𝑗) ( 2 ) 

where 𝑏 is the binocular camera’s baseline, 𝑓 is the camera’s focal length, (𝑖, 𝑗) is 

the pixel coordinate of an image. 

The baseline and camera’s focal length of the binocular camera are changeless so 

that the use of stereo image pairs during training allows us to get the absolute scale of 

monocular depth estimation. Specifically, for a stereo image pair, each pixel in the 

overlapped area of one image can find its corresponding pixel in the other image of 

the stereo image pair with horizontal distance (disparity) [13]. The binocular camera’s 

baseline 𝑏  and the camera’s focal length 𝑓  establish the absolute correlation 

between the scene depth and the disparity map, and the disparity map determines the 

image reconstruction effectiveness which has a significant influence on the 

construction of the loss function. Our model relies on the loss function based on the 

spatial geometry constraints (formula (1) and (2)) to recover the absolute scale for the 

monocular depth estimation and camera motion prediction during training. In the 

testing time, our model can be used to estimate absolute depth for monocular images. 

During training, six stereo image pairs are treated as a mini-batch. Our goal is to 

learn a depth CNN model which generates disparity maps corresponding to the input 

images. The key insight of this method is that the stereo image pairs are fed through 

the depth CNN layers, they can produce the left-to-right and right-to-left disparity 

maps simultaneously. Then we use these disparity maps and original input stereo 

image pairs to reconstruct the synthesized stereo images. The loss function is 

constructed based on the difference between the synthesized stereo images and the 

original stereo images. Therefore, the accuracy of disparity maps generated by our 

depth CNN has a decisive effect on image reconstructing results. The architecture of 

the depth CNN is as follows: 

                  



 

 
Fig. 2. Architecture of depth CNN. It is an encoder-decoder model, the width and height of each 

cube indicate the spatial dimensions of the output feature map respectively. The cube channel 

indicates the channels of the output feature map at the corresponding layer. Each reduction or 

increase in scale indicates a change by the factor of 2. We adopt the residual net architecture with 

four scales side predictions. The kernel size is 7 for the first convolutional layer and others are 3. 

The number of output channels for the first convolutional layer is set to 64 and the last is 2.  

 

The network of the depth CNN is composed of two stages namely encoder and 

decoder (as shown in Fig. 2). We select ResNet50 as an encoder to extract high-level 

features and use deconvolution as a decoder to output disparity maps at four different 

scales. The resolution of the output disparity map is twice that of the previous image. 

At each output scale s, we define an item of the loss function as 𝐿_𝑑𝑒𝑝𝑡𝑕 for 

evaluating the loss of the depth CNN at this specified scale. 

Taking account of the fact that images are subordinate to a great diversity of 

distortions during acquisition and processing, a structural similarity index [38] is 

selected for measuring photometric loss after image synthesizing. This image 

similarity measurement maintains an appropriate assessment between appearance 

similarity and modest resilience for image distortions. In addition, an L1-loss is added 

to the photometric image reconstruction cost 𝐿_𝑎𝑝  at each scale. The ultimate 

purpose of our appearance loss function is to measure the difference between the 

original input image and its corresponding synthesized image. We suppose the right 

synthesized image from the left image is 𝐼𝑟̃, the appearance difference at scale s 

between 𝐼𝑟̃ and the original right image 𝐼𝑟 is formulated as: 

 𝐿_𝑎𝑝𝑠
𝑟𝑖𝑔𝑕𝑡

=
1

𝑁
∑ 𝛼

1 − 𝑆𝑆𝐼𝑀(𝐼𝑖𝑗
𝑟 , 𝐼𝑖𝑗

𝑟̃ )

2
𝑖,𝑗

+ (1 − 𝛼)‖𝐼𝑖𝑗
𝑟 − 𝐼𝑖𝑗

𝑟̃ ‖
1
 ( 3 ) 

where 𝑁 is the number of total pixels in the image, 𝛼 is a weight parameter, 𝑖, 𝑗 

indicate the abscissa and ordinate of each image pixel respectively. 

Similarity, the appearance difference at scale s between the left synthesized image 

𝐼𝑙̃ and the original left image 𝐼𝑙 is formulated as: 

 𝐿_𝑎𝑝𝑠
𝑙𝑒𝑓𝑡

=
1

𝑁
∑ 𝛼

1 − 𝑆𝑆𝐼𝑀(𝐼𝑖𝑗
𝑙 , 𝐼𝑖𝑗

𝑙̃ )

2
𝑖,𝑗

+ (1 − 𝛼)‖𝐼𝑖𝑗
𝑙 − 𝐼𝑖𝑗

𝑙̃ ‖
1
 ( 4 ) 

                  



 

The final appearance difference at scale s is: 

 𝐿_𝑎𝑝𝑠 =
1

2
(𝐿_𝑎𝑝𝑠

𝑙𝑒𝑓𝑡
+ 𝐿_𝑎𝑝𝑠

𝑟𝑖𝑔𝑕𝑡
) ( 5 ) 

According to the formula (5), it is locally smooth on the disparity gradient. 

However, depth discontinuity often exists at image gradients in intuition. In order to 

filter out outliers and preserve sharp details, we use image gradient to construct an 

edge-aware depth smoothness cost term for the left image below: 

 𝐿_𝑑𝑖𝑠𝑝𝑠
𝑙𝑒𝑓𝑡

=
1

𝑁
∑ (|

𝜕𝑑𝑖𝑗
𝑙

𝜕𝑥
| 𝑒

−‖𝜕𝑥𝐼𝑖𝑗
𝑙 ‖

1 + |
𝜕𝑑𝑖𝑗

𝑙

𝜕𝑦
| 𝑒

−‖𝜕𝑦𝐼𝑖𝑗
𝑙 ‖

1)

𝑖,𝑗

 ( 6 ) 

The edge-aware depth smoothness cost term for the right image can be constructed 

as same as the left image, the formula is: 

 𝐿_𝑑𝑖𝑠𝑝𝑠
𝑟𝑖𝑔𝑕𝑡

=
1

𝑁
∑ (|

𝜕𝑑𝑖𝑗
𝑟

𝜕𝑥
| 𝑒

−‖𝜕𝑥𝐼𝑖𝑗
𝑟 ‖

1 + |
𝜕𝑑𝑖𝑗

𝑟

𝜕𝑦
| 𝑒

−‖𝜕𝑦𝐼𝑖𝑗
𝑟 ‖

1)

𝑖,𝑗

 ( 7 ) 

Therefore, the final edge-aware depth smoothness cost term at scale s is the average 

of the above loss items. According to the formulas (6) and (7), the last cost term with 

the consideration of the edge-aware depth smoothness is as follows: 

 𝐿_𝑑𝑖𝑠𝑝𝑠 =
1

2
(𝐿_𝑑𝑖𝑠𝑝𝑠

𝑙𝑒𝑓𝑡
+ 𝐿_𝑑𝑖𝑠𝑝𝑠

𝑟𝑖𝑔𝑕𝑡
) ( 8 ) 

In order to improve the accuracy and robustness of our model, we introduce a 

left-right consistency part based on the coherence of disparity maps between the left 

and right images. Considering the fact that disparities of the left and right images on 

the same pixel locations are not equal, we use the left and right disparity maps which 

generated from the depth CNN to synthesize each other. We denote 𝐷𝑙 is the left 

estimated disparity map and 𝐷𝑟 is the right estimated disparity map. The same image 

reconstruction function as formula (1) is used to reconstruct the synthesized disparity 

maps. These reconstruction functions are expressed as: 

 𝐷𝑟̃(𝑖, 𝑗 + 𝐷𝑖,𝑗
𝑙 ) = 𝐷𝑙(𝑖, 𝑗), (𝑖, 𝑗) ∈ Ω𝑙

𝑑𝑖𝑠𝑝
 ( 9 ) 

where 𝐷𝑙  is the left estimated disparity map, Ω𝑙
𝑑𝑖𝑠𝑝

 is the image pixel space 

corresponding to 𝐷𝑙, 𝐷𝑟̃ is the right synthesized disparity map generated from the 

left estimated disparity map and the right disparity map, (𝑖, 𝑗) is the coordinates of a 

pixel in the disparity map. The left synthesized image 𝐷𝑙̃  can be reconstructed 

similarity. 

The calculation procedure at scale s is as follows: 

 𝐿_𝑙𝑟𝑠 =
1

𝑁
∑ √(𝐷𝑙̃ − 𝐷𝑟̃)

22

 ( 10 ) 

In the summary, the total loss for stereo image pairs at all scales considers the 

difference between the synthesized image and the original input image, the 

edge-aware depth smoothness and the left-right consistency between the disparity 

maps. The loss function for depth CNN is as follows: 

                  



 

 𝐿_𝑑𝑒𝑝𝑡𝑕 = ∑ 𝜇1 ∗ 𝐿_𝑎𝑝𝑠 +

4

𝑠=1

𝜇2 ∗ 𝐿_𝑑𝑖𝑠𝑝𝑠 + 𝜇3 ∗ 𝐿_𝑙𝑟𝑠 ( 11 ) 

where 𝜇1, 𝜇2 and 𝜇3 are weight parameters. 

 

3.3 Camera motion prediction 

The purpose of camera motion prediction is to learn a function 𝑝 = 𝑔(𝐼) which is 

a CNN for predicting the camera motion of the input image. During training, the 

depth and pose CNNs are trained simultaneously. The architecture of our pose CNN is 

shown in Fig 3. The disparity maps and their corresponding original images are used 

as input data for predicting the camera motion. With a view to the fact that each image 

of an image sequence is captured in a very short time, and the two cameras of a 

binocular camera are extremely close to each other, we assume that the scene is static 

without dynamic objects, such as moving cars and pedestrians.  

 

Fig. 3. Network architecture of the pose CNN. It is an encoder model, the output of this network is 

four matrices corresponding to the transformations from the source images to the target images. 

Each reduction in scale indicates a change by the factor of 2. The kernel size is 5 for the first 

convolutional layer and others are 3. The number of output channels for the first convolutional 

layer is set to 16. 

 

The input stereo image sequence is decomposed into the left and right image 

sequence. Each of these two image sequences is composed of three frames, we 

specify that the second image is the target image and the other two images are the 

source images. The camera motions of the left and right image sequences are 

computed respectively. 

The key supervision signal of the pose CNN comes from image synthesize. As 

similar to the depth CNN, assume the frames of a sequence are rectified. Let us 

denote *𝐼1, 𝐼2, 𝐼3+ as the consecutive frames of the left image sequence, the middle 

frame of the sequence is the target image 𝐼𝑡 and the rest are the source images 

𝐼𝑛(𝑛 = 1,3). We define the disparity map corresponding to each frame of an image 

sequence as 𝐷𝑖(𝑖 = 1,2,3), and the relative camera motion estimated by the pose 

CNN from the source image to the target image is defined as 𝑇𝑠⟶𝑡. The relative 3D 

transformation from the source image 𝐼𝑠 to the target image 𝐼𝑡 can be represented 

by 

 𝑝𝑡 ≜ 𝐾𝑇𝑠⟶𝑡𝐷𝑠(𝑝𝑠)𝐾−1𝑝𝑠 ( 12 ) 

                  



 

where 𝐾  is the binocular camera intrinsic matrix, 𝐷𝑠 is the disparity map 

corresponding to the source image, 𝑝𝑠 and 𝑝𝑡 denote the pixels of the source image 

and the target image respectively. 

Based on the formula (12), we denote 𝐼𝑠1⟶𝑡  is the synthesized target image 

reconstructed from the source image 𝐼1 , 𝐼𝑠2⟶𝑡 is the synthesized target image 

reconstructed from the source image 𝐼3. 

The formulas of these synthesizing process are: 

 𝐼𝑠1⟶𝑡(𝑝𝑡) = 𝐼𝑡(𝐾𝑇𝑠1⟶𝑡𝐷𝑠1(𝑝𝑠1)𝐾−1𝑝𝑠1) ( 13 ) 

 𝐼𝑠2⟶𝑡(𝑝𝑡) = 𝐼𝑡(𝐾𝑇𝑠2⟶𝑡𝐷𝑠2(𝑝𝑠2)𝐾−1𝑝𝑠2) ( 14 ) 

where 𝑇𝑠𝑛⟶𝑡 is the transform metrics of the camera motion from the source image to 

the target image, 𝐷𝑠𝑛(𝑝𝑠𝑛)is the depth maps corresponding to the source image. As 

similar to the depth estimation CNN, the apparent difference between 𝐼𝑡 and the 

synthesized target images 𝐼𝑠𝑛⟶𝑡(n = 1,2) at scale 𝑠 can be formulated as: 

 
𝐿𝑝𝑠

𝑙𝑒𝑓𝑡 =
1

2𝑁
∑ 𝛽

1 − 𝑆𝑆𝐼𝑀(𝐼𝑡, 𝐼𝑠𝑛⟶𝑡)

2
𝑛=1,2

+ 

(1 − 𝛽)‖𝐼𝑡 − 𝐼𝑠𝑛⟶𝑡‖1 

( 15 ) 

where 𝑁 is the number of total pixels of the image, 𝛽 is a weight parameter, divided 

by 2 at last because it is the loss of the synthesizes from the two source images to the 

target image. 

In the process of forward-backward propagation of this CNN, gradient descent is 

the main calculation method. For image, the gradients are mainly computed by the 

pixel intensity difference between a pixel and its nearby pixels. However, some pixels 

are located in a low-texture region. In order to overcome this drawback and preserve 

the sharp details, we prefer a depth smoothness loss part as follows: 

 𝐿_𝑠𝑠
𝑙𝑒𝑓𝑡

= ∑ |
𝜕𝐷(𝑝𝑡)

𝜕𝑝𝑡
| ∙ (𝑒

−|
𝜕𝐼(𝑝𝑡)

𝜕𝑝𝑡
|
)

𝑇

𝑝𝑡

 ( 16 ) 

The final pose loss function at a special scale 𝑠 of the left image sequence is:  

 𝐿_𝑝𝑜𝑠𝑒𝑠
𝑙𝑒𝑓𝑡

= 𝜈1 ∗ 𝐿_𝑝𝑠
𝑙𝑒𝑓𝑡

+ 𝜈2 ∗ 𝐿_𝑠𝑠
𝑙𝑒𝑓𝑡

 ( 17 ) 

where 𝜈1and 𝜈2 are weight parameters. 

As same as the left pose loss function, the pose loss function at scale 𝑠 of the right 

image sequence is: 

 𝐿_𝑝𝑜𝑠𝑒𝑠
𝑟𝑖𝑔𝑕𝑡

= 𝜈1 ∗ 𝐿_𝑝𝑠
𝑟𝑖𝑔𝑕𝑡

+ 𝜈2 ∗ 𝐿_𝑠𝑠
𝑟𝑖𝑔𝑕𝑡

 ( 18 ) 

In summary, the total loss for stereo image sequence at scale s is the average of the 

above loss items. According to the formulas (17) and (18), the last cost term at all 

scales is as follows: 

 𝑝𝑜𝑠𝑠_𝑙𝑜𝑠𝑠 = ∑
1

2
(𝐿_𝑝𝑜𝑠𝑒𝑠

𝑙𝑒𝑓𝑡
+ 𝐿_𝑝𝑜𝑠𝑒𝑠

𝑟𝑖𝑔𝑕𝑡
)

4

𝑠=1

 ( 19 ) 

 

 

                  



 

 

 

3.4 The objective function 

The overview of our objective function as shown in Fig. 4.  

 
Fig. 4. For depth CNN, we use stereo image pairs as input data to generate corresponding 

disparity maps. In the process of image reconstruction, for example, we use the left input image 

and its corresponding depth map to synthesize the right image, then we utilize the generated right 

image and the right input image to construct the right loss part. The left loss part is similar to the 

right loss part. Stereo image sequences are fed into the pose CNN to compute transformation 

matrices from the source images to the target images, then we take advantage of the depth maps, 

the transformation matrices and the original input images to construct the objective function. 

 

According to the formulas (10) and (18), with the consideration of the constraints 

of the stereo image pairs and the image sequences, the final objective function at all 

scales is defined as follows: 

 𝐿 = 𝜆1𝑑𝑒𝑝𝑡𝑕_𝑙𝑜𝑠𝑠 + 𝜆2𝑝𝑜𝑠𝑒_𝑙𝑜𝑠𝑠 ( 20 ) 

where 𝜆1 and 𝜆2 are the weight parameters for the depth estimation and camera 

pose prediction.  

This article uses a stereo image sequence as input data for training, to construct the 

depth CNN and pose CNN for estimating the scene depth and predicting the camera 

pose simultaneously. Since the model has been generated, we use monocular images 

as input for testing. 

 

4. Experiments 

 

In order to evaluate the performance of our framework, comprehensive experiments 

are conducted on the publicly available KITTI [39] and Cityscapes [40] datasets. The 

Euroc dataset is also used to train the model, and various datasets are used to test the 

generalization capability of the presented framework. We compare our approach with 

a group of state-of-the-art schemes which include supervised and unsupervised 

frameworks. We also deploy our method on two widely-used CNNs (VGG-16 [41] 

                  



 

and ResNet50 [42]) to discuss the effects of these two network structures. In addition, 

we conduct an ablation study to prove that the use of left-right consistency loss during 

training can improve the accuracy of depth estimation. To give the qualitative and 

quantitative analysis of our model, five commonly measures are selected to quantify 

our results in the task of monocular depth. Moreover, we use images that come from 

various datasets that include indoor and outdoor environments as input to the models 

which are trained on the KITTI and Euroc datasets to test the generalization capability. 

At last, we compare the results of our camera pose prediction with that of 

ORB-SLAM [19] and an unsupervised method [33]. 

In this section, we firstly give a brief description of the datasets we have used. Then 

we introduce the five common measurements and our training details. Lastly, the 

qualitative and quantitative results are displayed. 

 

4.1 The experimental datasets 

In order to compare with prior related works on monocular depth estimation, here 

we mainly use the KITTI dataset for evaluation. We also use the Cityscapes dataset 

for the benchmarking of cross-dataset generalization ability. In addition, we use the 

Euroc dataset to retrain our model for indoor environment depth estimation.  

The KITTI dataset has been created by Karlsruhe Institute of Technology (KIT) and 

Toyota Technological Institute at Chicago in 2012 and it has been updated in 2015. 

The data was captured by a driving platform around the mid-size city of Karlsruhe, in 

rural areas and on highways. Up to 15 cars and 30 pedestrians are visible per image. 

The raw form of this dataset contains 42382 rectified stereo image pairs from 61 

scenes with a typical image size being 1242*375 pixels. Considering consistent 

comparison, we take the split of Eigen et al. that 697 images come from 29 scenes are 

chosen for testing. We keep 29000 stereo image pairs for training. The Velodyne 

laser-scanned 3D points are projected onto the image planes in order to generate the 

ground truth to evaluate the model’s performance. 

The Cityscapes dataset has been created mainly by Benz. This large-scale dataset 

contains a diverse set of stereo image sequences recorded in street scenes from 50 

different cities of Germany, with high-quality pixel-level annotations of 5000 frames 

and a larger set of 20000 weakly annotate frames. Because of the unsupervised 

method, the sub-datasets of Cityscapes dataset namely 

leftImg8bit_sequence_trainvaltest and rightImg8bit_sequence_trainvaltest are chosen 

for training. These two sub-datasets contain about 15000 stereo image pairs. At 

training time, we optionally pre-train the model on the two sub-datasets of the 

Cityscapes dataset. 

The Euroc dataset consists of stereo images, synchronized IMU measurements, 

accurate motion and structure ground truth. Data of the Euroc dataset are captured in 

an indoor environment and only stereo images are required for our model. The stereo 

images are captured by an Aptina MT9V034 global shutter which is equipped to an 

AscTec Firefly unmanned aerial vehicle (UAV). All the stereo images are 

monochrome, which are different from those of the KITTI and Cityscapes datasets. 

The sub-datasets which are ASL dataset format are used to train and test our model. 

                  



 

 

 

 

4.2 Measurements 

To evaluate the accuracy of the proposed method in monocular image depth 

estimation, we use these five scale-invariant metrics as follows to measure the error 

between our results and ground truth projected from the 3D laser. 

 Abs Relative difference(Abs Rel): 
1

|𝑁|
∑ |𝑦 − 𝑦∗|/𝑦∗

𝑦∈𝑁  

 Squared Relative difference(Sq Rel):
1

|𝑁|
∑ ‖𝑦 − 𝑦∗‖2/𝑦∗

𝑦∈𝑁  

 RMSE(linear): √
1

|𝑁|
∑ ‖𝑦𝑖 − 𝑦𝑖

∗‖
2

𝑦∈𝑁  

 RMSE(log10): √
1

|𝑁|
∑ ‖𝑙𝑜𝑔𝑦𝑖 − 𝑙𝑜𝑔𝑦𝑖

∗‖
2

𝑦∈𝑁  

 Threshold: % of 𝑦𝑖 𝑠. 𝑡. 𝑚𝑎𝑥 (
𝑦𝑖

𝑦𝑖
∗ ,

𝑦𝑖
∗

𝑦𝑖
) = 𝛿 < 𝑡𝑕𝑟, 𝑡𝑕𝑟 = 1.25, 1.252, 1.253. 

where 𝑁 is the total number of pixels on the ground truth image, 𝑦 is the value of 

the predicted depth and 𝑦∗is the value of ground truth. 

The first four metric measures the difference compares with ground truth, and the 

last metric measures the percentage of the predicted depth value which is within 

specified thresholds from the correct value. In addition, the maximum depth in the 

KITTI dataset is about 80 meters, so we set our maximum predictions of this value.  

Here we must state that measuring the error in depth space leads to a precision 

result. Especially, the metrics without threshold measure may be sensitive to the large 

errors caused by estimated errors at small disparity values. 

 

4.3 Training details 

The networks of this article are implemented by TensorFlow. The ResNet50 

contains about 65 million trainable parameters, and takes more than 23 hours for 

training; the VGG16 contains about 32 million trainable parameters and takes more 

than 16 hours for training. All the models are trained on a single NVIDIA GTX1080Ti 

GPU, and the number of iteration is 450 thousand. For fair comparisons with other 

frameworks, we train our model on the same dataset as [32]. In order to prevent 

overfitting, we perform random resizing, cropping and color augmentations for each 

image before training. Inference takes less than 25ms per image. 

In the process of optimization, we set the weight parameters as follows: 

𝜇1 = 1.0, 𝜇2 = 0.1/𝛾, 𝜇3 = 1.0 

𝜈1 = 1.0, 𝜈2 = 0.1/γ, 𝜆1 = 1.0, 𝜆2 = 0.8 

α = 0.85, β = 0.85 

where γ is the downscaling factor of the layer which corresponds to the resolution of 

the input image. We use Adam for optimization with 𝛽1 = 0.9, 𝛽2 = 0.999 , 

ϵ = 10−8. The initial learning rate is 0.0002 for the first 250 thousand iterations and 

halving it until the end. For the activation function in the network, we find that 

                  



 

exponential linear units (ELU) can improve the accuracy compares with rectified 

linear units (ReLU). The batch size is set to 2 with each training sample is a stereo 

image sequence which the length is set to 3.  

Additional, an identical weighting is used for the loss of each scale but led the 

network to an unstable convergence. Moreover, we also employ batch normalization 

in order to improve the performance but find that it is useless. In the final experiment, 

we exclude identical weighting and batch normalization ultimately. 

 

4.4 Depth estimation 

Nowadays, ResNet50 and VGG-16 networks have become the most famous CNN 

architectures. In order to compare the effects of these two networks, we use them as 

encoders to generate the disparity maps respectively (as shown in Fig. 5) and give the 

quantitive results in Table 1. 

 

Table 1. 

Results of our monocular depth estimation method with the use of ResNet50 network and VGG 

network for training. 

Network 
lower is better  higher is better 

Abs Rel Sq Rel RMSE REMS lg10 δ ≤1.25 δ ≤ 1.252 δ ≤ 1.253 

ResNet50 0.142 1.259 5.768 0.229  0.801 0.933 0.976 

VGG-16 0.146 1.304 6.021 0.242  0.785 0.928 0..965 

 

(a) input images            (b) results of ResNet50         (c) results of VGG-16 

Fig. 5. The performance of monocular depth estimation between Resent50 and VGG-16. 

 

As shown in Table 1, the difference between the ResNet50 and VGG-16 networks 

reveal that the results of ResNet50 outperform that of the VGG-16. Qualitative 

                  



 

comparisons can be visualized in Fig. 5. Therefore, we choose ResNet50 as an 

encoder of our network architecture. 

It is important to select a suitable activation function for the design of a CNN. The 

most commonly used activation function is the rectified linear unit (ReLU). However, 

through experiments, we found that the network with the exponential linear unit (ELU) 

has a more precise prediction compared with the network with ReLU. 

 

Table 2. 

Results of our method with the use of ReLU and ELU as the activation function for training. 

Activation 

function 

lower is better  higher is better 

Abs Rel Sq Rel RMSE REMS lg10 δ ≤1.25 δ ≤ 1.252 δ ≤ 1.253 

ReLU 0.151 1.325 5.957 0.242  0.793 0.905 0.967 

ELU 0.142 1.259 5.768 0.229  0.801 0.933 0.976 

 

(a) input images                  (b) ReLU                   (c) ELU 

Fig. 6. Qualitative visual results on the KITTI dataset. Note that the estimation of the model with 

ELU as its activation function is better than the model with ReLU as its activation function. 

 

Table 2 shows the qualitative comparisons on the KITTI dataset and the results can 

be visualized in Fig. 6. 

Moreover, a left-right consistency loss part is put forward. We use stereo image 

pairs as input data for training and each of them produces a disparity map. To achieve 

more precise disparity maps, the absolute value of the left disparity map should be 

equal to that of the right disparity map. In order to proof the left-right consistency loss 

part can improve the accuracy of the proposed model, we use the objective function 

without the left-right consistency to train the model. Table 3 shows the qualitative 

comparisons on the KITTI dataset and Fig. 7 gives the visual results. 

                  



 

 

 

 

Table 3.  

Qualitative comparisons between the model with and without the left-right consistency. 

left-right 

consistency 

lower is better  higher is better 

Abs Rel Sq Rel RMSE REMS lg10 δ ≤1.25 δ ≤ 1.252 δ ≤ 1.253 

with 0.142 1.259 5.768 0.229  0.801 0.933 0.976 

without 0.147 1.285 5.902 0.235  0.785 0.912 0.958 

 

 
(a) input images                (b) with                    (c) without  

Fig. 7. Qualitative visual results between the model with and without the left-right consistency 

 

We compare our proposed method with some state-of-the-art depth estimation 

approaches including (1) Eigen et al. [11]Coarse (Eigen1); (2) Eigen et al. [12] Fine 

(Eigen2); (3) Liu et al. [26]; (4) Yan Hua et al. [23] ; (5) R. Garg et al. [13]; (6) Zhou 

et al. [32] (Zhou1); (7) Zhou et al. updated (Zhou2) [32]; (8) Geonet [33] ; (9) 

UndeepVo [43]; (10) GASDA [44]; (11) ACA (attention-based context aggregation 

method) [45]; (12) depth-SLAM [46]; (13) Cycle-Gan [35].These methods include 

several supervised methods and some unsupervised methods. The performance is 

shown in Table 4. 

 

Table 4 

Monocular depth estimation results on KITTI 2015 dataset. 

Method 
Super-v

ision 

lower is better  higher is better 

Abs Rel Sq Rel RMSE RMSE lg10 δ ≤1.25 δ ≤ 1.252 δ ≤ 1.253 

                  



 

Eigen1 Yes 0.214 1.605 6.563 0.292  0.673 0.884 0.957 

Eigen2 Yes 0.203 1.548 6.307 0.282  0.702 0.890 0.958 

Liu Yes 0.202 1.614 6.523 0.275  0.678 0.895 0.965 

Yan Hua Yes 0.336 - 10.70 -  - - - 

ACA Yes 0.083 0.437 3.599 0.127  91.9 98.2 99.5 

R. Garg No 0.177 1.169 5.285 0.282  0.727 0.896 0.958 

Zhou1 No 0.208 1.768 6.856 0.283  0.678 0.885 0.957 

Zhou2 No 0.183 1.595 6.709 0.270  0.734 0.902 0.959 

Geonet No 0.155 1.296 5.875 0.233  0.793 0.931 0.973 

Li’s No 0.183 1.73 6.57 0.268  - - - 

GASDA No 0.149 1.003 4.995 0.227  0.824 0.941 0.973 

D-SLAM No 0.180 1.510 6.349 0.256  0.741 0.906 0.966 

Cycle Gan No 0.190 2.556 6.927 0.353  0.751 0.895 0.951 

Ours No 0.142 1.259 5.768 0.229  0.801 0.933 0.976 

 

As shown in Table 4, our unsupervised approach performs comparably with several 

supervised methods such as Eigen et al. and Yan et al. we also compare our method 

with some unsupervised methods as baselines. As shown in Table 4, our model 

outperforms most approaches but inferior to ACA [45] which introduces self-attention 

to a supervised framework in all measurements. We are also inferior to GASDA [44] 

which is based on the geometry-aware symmetric domain adaptation in part of the 

measurements. Moreover, for the visual SLAM approach [46] that added 

unsupervised learning-based depth estimation, we achieve a better result than it. Fig. 7 

provides some comparable visual examples between our result and these baselines.  

 

                  



 

(a) input images   (b) ground truth      (c) Zhou’s       (d) Geonet        (e) ours 

Fig. 7. Comparisons of the monocular depth estimation results between ground truth, Zhou et al. 

[32], Geonet [33] and ours.  

To evaluate the generalization ability of our monocular depth estimation method, 

we apply our initial model which trained on KITTI dataset to estimate the disparity 

maps of the images selected from the Cityscapes dataset. The Cityscapes dataset we 

have used consists of stereo RGB image pairs, thus our method can train on this data 

directly. Here we train the model on the Cityscapes dataset solely and show the 

sample predictions by this initial Cityscapes model, the test images come from the 

KITTI dataset. Then we use the KITTI dataset and the Cityscapes dataset to train a 

new model. Moreover, we also give the depth estimation results of Zhou’s [32] and 

Geonet [33] that trained on these two datasets. Quantitative results on the test set of 

the KITTI dataset are shown in Table 5. In the table, ours (K) denotes the model 

trained on the KITTI dataset, ours (CS) denotes the model trained on the Cityscapes 

dataset, ours (K+CS) denotes the model trained on the KITTI dataset and the 

Cityscapes dataset. 

 

Table 5.  

Quantitative results on the test set of the KITTI dataset for the models trained on the KITTI 

dataset, the Cityscapes dataset and the KITTI + Cityscapes datasets. 

Training 

dataset 

lower is better  higher is better 

Abs Rel Sq Rel RMSE R E M S  l o g 1 0 δ ≤1.25 δ ≤ 1.252 δ ≤ 1.253 

Ours(K) 0.142 1.259 5.768 0.229  0.801 0.933 0.976 

CS 0.209 1.704 6.985 0.285  0.739 0.867 0.923 

Ours(K+CS) 0.122 1.079 4.998 0.211  0.854 0.941 0.978 

Zhou’s 0.198 1.836 6.565 0.275  0.718 0.901 0.960 

Geonet 0.153 1.328 5.737 0.232  0.802 0.934 0.972 

                  



 

 
(a) input images          (b) ours           (c) Cityscapes     (d) Kitti + Cityscapes 

Fig. 8. Comparisons of the monocular depth estimation results between the models trained on the 

KITTI dataset, the Cityscapes dataset, the KITTI + Cityscapes datasets. 

Fig.8 provides the results of the proposed model that trained on the two datasets. 

Fig. 8 (a) is the raw input images selected from the KITTI dataset, Fig. 8 (b) and (c) 

are the visual results of our model that trained only on the KITTI dataset and the 

Cityscapes dataset respectively, Fig. 8 (c) is the visual results of our model that 

trained on the KITTI dataset and the Cityscapes dataset. These pictures show that the 

model trained on the two datasets produces superior results on thin structures such as 

trees and lamppost. The model trained only on the Cityscapes dataset cannot capture 

the details on the boundaries such as cars. The experimental results show that the 

generalization ability of the model needs to be strengthened. In addition, we use the 

images selected from the Cityscapes dataset to test our models which trained on the 

KITTI dataset and the Cityscapes dataset. The results are shown in Fig. 9. 

                  



 

 

(a) input images       (b) ground truth          (c) KITTI          (d) Cityscapes 

Fig. 9. Comparisons of the monocular depth estimation results between the models trained on the 

KITTI dataset, the Cityscapes dataset, the KITTI + Cityscapes datasets. 

 

As shown in Fig. 9, (a) is the raw input images selected from the Cityscapes dataset, 

(b) is the ground truth corresponding to the raw input images, (c) and (d) are the 

visual results of our model that trained on the KITTI dataset and the Cityscapes 

dataset respectively.  

 

4.5 Training on the Euroc dataset  

Until now, all the models are trained on the KITTI and Cityscapes datasets, images 

of these two datasets are captured on cars in outdoor environments. To expand the 

application range of our algorithm, we use the Euroc dataset to train the model. We 

downloaded all the raw data from the official website of the Euroc dataset. For the 

sub-dataset named MH_01_easy.zip of the Euroc dataset, the number of left images is 

3682, but the number of right images is 2273, hence, we only use images of 

MH_01_easy subdataset for inference. The rest stereo images of the dataset are 

chosen to train and test our model. 

We use the same architecture to train the model for the indoor environment. 22977 

stereo images are used for training, and the total number of iteration steps is about 280 

thousand. During training, different image enhancement technologies are utilized to 

increase the diversity of the training data. Because of all the images of the Euroc 

dataset are monochrome, single-channel images are employed to inference. 

                  



 

 

(a) Input images         (b) Depth maps (E)      (c) Depth maps (K) 

Fig. 10. Monocular depth estimation results. (a) Input images: input images come from the Euroc 

dataset randomly; (b) depth maps (E): the generated depth maps by the model which is trained on 

the Euroc dataset, (c) depth maps (K): the generated depth maps by the model which is trained on 

the KITTI dataset. 

As shown in fig. 10, only single images of the Euroc dataset are required to 

generate the depth maps. We use two models that are trained on the Euroc and KITTI 

datasets respectively to infer the depth maps. The visual results of the model which is 

trained on the Euroc dataset (fig. 10(b)) are superior to that of the model which is 

trained on the KITTI dataset (fig. 10(c)). From fig. 10(c), we can hardly get depth 

information from the depth maps but the objects such as desk, door, whiteboard are 

clear in fig. 10(b). The results demonstrate that the model which are trained on a 

relatively fixed scene can be only tested on the very similar scene. 

 

4.6 Generalization capability tests 

Dataset plays an important role in the performance of the trained model. To test the 

                  



 

generalization capability of the proposed algorithm, we first use several images 

selected from the KITTI dataset as input to the models, the visual results are shown in 

fig. 11. Then we use some images come from various datasets as input to the different 

models respectively. The used datasets include the ICLNUIM dataset [46], SUN3D 

dataset [47] and TUM RGBD dataset [48] for indoor environments, and the nuScenes 

dataset [49] for outdoor environments. Experimental results for generalization 

capability tests are shown in fig. 12. 

 

(a) Input images         (b) Depth maps (K)      (c) Depth maps (E) 

Fig. 11. Monocular depth estimation results. (a) Input images: input images come from the Euroc 

dataset randomly; (b) depth maps (K): the generated depth maps by the model which is trained on 

the KITTI dataset, (c) depth maps (E): the generated depth maps by the model which is trained on 

the Euroc dataset. 

 

As shown in fig. 11, we use the model which is trained on the KITTI dataset to 

estimate the outdoor scene depth, the visual results are superior to the depth maps 

which are generated by the model trained on the Euroc dataset. Combined with the 

results of fig. 10, it is further proved that the testing scene should be similar to the 

training scene. 

                  



 

 

(a) Input images       (b) Depth maps(E)    (c) Depth maps(K) 

Fig. 12. Generalization capability tests. (a) input images denote the input images 

come from the different dataset, (b) depth maps(E) denote the generated depth maps by the 

model which is trained on the Euroc dataset, (c) depth maps(K) denote the generated depth maps 

by the model which two-loss on the KITTI dataset. 

 

 

                  



 

As shown in fig. 12(a), the input images are come from the ICL-NUIM, SUN3D, 

TUM RGB-D and nuScenes datasets, from top to bottom. Two images of each dataset 

are chosen for display. The generated depth maps by the two models which are trained 

on the Euroc and KITTI datasets can be obtained in fig. 11(b) and fig. 11(c), 

respectively. For images that come from the datasets that are collected in indoor 

environments, depth maps(E) are obviously superior to the depth maps(K) and vice 

versa.  

The experiments of fig. 12 reveal that the performance of the model displays strong 

correlations with the trained dataset. Even though the presented technique has some 

advantages such as real-time process, pixel-wise generated depth images, only a 

single image is required for inference, its generalization capability cannot compare 

with the traditional methods. 

 

4.7 Camera pose estimation 

In order to evaluate the performance of our pose CNN, we apply our network to the 

official KITTI odometry split that containing 11 driving sequences with ground truth 

odometry. The ground truth odometry is obtained through the IMU and GPS. We 

divide these 11 sequences into two parts: the 00-08 sequences for training and the 

09-10 sequences for testing. We compare our camera pose estimation with two 

monocular ORB-SLAM namely full ORB-SLAM(using all frames of the driving 

sequence) and short ORM-SLAM(using 5 frames snippets). Moreover, we also 

compare our method with a state-of-the-art unsupervised framework which has done 

anything like working for depth estimation and camera prediction. As shown in Table 

6, even though we use short sequences for training, our method outperforms these two 

competing baselines.  

 

Table 6. 

Absolute Trajectory Error on KITTI 2015 odometry dataset. 

Method Seq.09 Seq.10 

ORB-SLAM(full) 0.014±0.008 0.012±0.011 

ORB-SLAM(short) 0.064±0.141 0.064±0.130 

GeoNet 0.012±0.007 0.012±0.009 

D-SLAM 0.017±0.008 0.015±0.017 

Ours 0.012±0.006 0.012±0.007 

 

By comparing with traditional methods such as ORB-SLAM, we establish an 

end-to-end model to compute all frames of a video while ORB-SLAM creates 

keyframes to meet the real-time requirement. In addition, the multi-octave structure of 

CNN makes us extract high-level features of each frame in an automatic way. 

Therefore we can obtain dense image information while ORB-SLAM only used the 

sparse map. However, there are a few problems we are unable to solve now. 

ORB-SLAM can process monocular image sequences for indoor and outdoor scenes 

but we can only deal with scenarios similar to our training set. Because the strategy of 

analyzing big data to construct the model, the generalization ability of ORB-SLAM 

                  



 

outperforms our model. Consequently, in our opinion, our model and ORB-SLAM are 

two different strategies and each method works better for different application types. 

Maybe the combination of these two strategies is the future research direction. In fact, 

there are already some methods [46] take advantage of deep learning technologies to 

extend the source of the scene depth information and improve the performance of the 

visual SLAM system. 

 

5. Conclusion 

 

In this work, we propose a jointly unsupervised learning framework for depth 

estimation and camera motion estimation. Stereo image sequences are used for 

training and monocular images are used for testing. The utilization of stereo image 

sequences cannot only overcome scale ambiguity for monocular depth estimation but 

also improve the accuracy of camera motion prediction for temporal image sequences. 

Compare with the previous works, the performance of our method is close to 

supervised learning approaches and better than most unsupervised methods. Moreover, 

experiments for generalization capability tests of the presented technique are 

conducted on multiple datasets. 

There are still a few challenges to be mentioned. Although the results show that our 

method has superior accuracy compared to some existing unsupervised methods, but 

do not achieve state-of-the-art in all metrics. In addition, our unsupervised framework 

assumes the scene is static and there is no occlusion in the scene so that this method 

cannot handle dynamic objects. In the future, an extensive study of the objective 

function for depth estimation and CNN architecture for tackling dynamic objects will 

be taken into consideration. 
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