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ABSTRACT
Person re-identification (person Re-Id) aims to retrieve the pedestrian images of the same person that
captured by disjoint and non-overlapping cameras. Lots of researchers recently focused on this hot
issue and proposed deep learning based methods to enhance the recognition rate in a supervised or
unsupervised manner. However,there are two limitations that cannot be ignored: firstly, compared
with other image retrieval benchmarks, the size of existing person Re-Id datasets is far from meeting
the requirement, which cannot provide sufficient pedestrian samples for the training of deep model;
secondly, the samples in existing datasets do not have sufficient human motions or postures coverage
to provide more priori knowledges for learning. In this paper, we introduce a novel unsupervised pose
augmentation cross-view person Re-Id scheme called PAC-GAN to overcome these limitations. We
firstly present the formal definition of cross-view pose augmentation and then propose the framework
of PAC-GAN that is a novel conditional generative adversarial network (CGAN) based approach to
improve the performance of unsupervised corss-view person Re-Id. Specifically, the pose generation
model in PAC-GAN called CPG-Net is to generate enough quantity of pose-rich samples from original
image and skeleton samples. The pose augmentation dataset is produced by combining the synthesized
pose-rich samples with the original samples, which is fed into the corss-view person Re-Id model
named Cross-GAN. Besides, we use weight-sharing strategy in the CPG-Net to improve the quality
of new generated samples. To the best of our knowledge, we are the first to enhance the unsupervised
cross-view person Re-Id by pose augmentation, and the results of extensive experiments show that
the proposed scheme can combat the state-of-the-arts with recognition rate.

1. Introduction
In recent years, person re-identification (person Re-Id)

problem has attracted attention of lots of researchers with
the wide application of video surveillance system [1, 2, 3].
This problem is a specific computer vision task that is to
retrieve the target images from the gallery by a query that
contains the same pedestrian in the targets through spatially
disjoint camera views, as shown in Fig 1. Cross-view per-
son Re-Id aims to make up for the visual limitations of the
current location-fixed cameras, and can be combined with
pedestrian detection/tracking techniques. It can be widely
used in many applications such as intelligent video surveil-
lance networks [4], intelligent security and forensic search
system [5].

Deep learning techniques [7, 8, 9, 10], especially deep
convolutional neural networks [11] (CNNs), show a great
superiority on the tasks of computer vision and image re-
trieval [12]. A growing number of deep learning basedmeth-
ods are proposed to address cross-view person Re-Id in two
main aspects: feature extraction [13] and metric learning.
The first category of methods [14, 15, 16, 17, 18, 19, 20]
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Figure 1: An example of person Re-Id task. The samples
shown in this figure are chosen from Market-1501 [6].

aims to generate effective discriminative representations via
learning common or relevant visual features from cross-view
samples to combat the view variations. The other category
of approaches [21, 22, 23, 24, 25, 26] employs a variety
of different hand-crafted visual features such as color his-
togram, local maximal occurrence and local binary patterns
to learn a similarity metric to measure the visual similar-
ity between samples. Lately more deep learning based ap-
proaches are designed as a unified framework that consists of
both feature learning method and metric learning technique,
which is to extract deep visual features from cross-view sam-
ples by coupled CNNs and a metric learning module mea-
sure the similarity of inputs.

Motivation. Although great progress has been made
in cross-view person Re-Id research, there are still two un-
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Figure 2: Pose Augmentation for Person Re-identification. The original person Re-Id dataset has ordinarily not enough sufficient
poses coverage, which is a limitation for person Re-Id task. To overcome this challenge, we propose to generate a pose-rich
dataset that contains enough quantity of new samples by using skeleton samples and original pedestrian samples. The pose
augmented dataset that includes original samples and new produced pose-rich samples can provide more priors for cross-view
person Re-Id training.

deniable limitations. The first is the existing person Re-Id
datasets such asVIPeR [27], CUHK03 [28], Market-1501 [6]
are far from large enough compared with other image re-
trieval benchmarks, which cannot provide sufficient pedes-
trian samples for the training of deep model. The second
is that the samples in existing datasets do not have abun-
dant human motions or poses coverage to provide more pri-
ori knowledge for learning. Even through MARS [29], an
extension of the Market-1501, has been proposed for human
motion analysis and person Re-Id, the number of pedestrian
identities in this benchmark is still not large enough. Zheng
et al [30] utilized DCGAN [31] to produce more pedestrian
samples to improve the discriminative ability, but they just
focused on the number of samples, rather than the richness
of human poses in datasets.

To combat these limitations, this work proposes to ex-
tend existing personRe-Id datasets by developing a novel un-
supervised data augmentation approach that aims to generate
enough quantity of pose-rich pedestrian samples. As illus-
trated in Fig. 2, the generated samples are produced accord-
ing to original pedestrian samples that provide foreground
information of person appearance and skeleton samples that
provide the sufficient poses information. These synthesized
pose-rich samples are combined with these benchmarks can
provide much more priors for training. Integrated with an
unsupervised cross-view person Re-Id model, a novel unsu-
pervised pose augmentation person Re-Id framework is cre-
ated. To the best of our knowledge, we are the first to en-
hance the performance of unsupervised cross-view person
Re-Id by pose augmentation.

Our Approaches. To implement aforementioned ideas,

we propose a novel unsupervised pose augmentation person
Re-Id framework named PAC-GAN based on generative ad-
versarial networks (GAN). This framework consists of two
main models: one is calledCross-view PoseGenerationNet
(CPG-Net) that is a conditional GAN based network with
a coupled structure to generate pose-rich samples to aug-
ment the person Re-Id dataset in the aspect of human mo-
tions or postures. This model includes two branches, named
PG-Net-V1 and PG-Net-V2, for two different camera views
respectively. Each of them receives paired inputs of skele-
ton samples and pedestrian appearance samples. To further
improve the quality of new produced cross-view samples,
we apply weight-sharing strategy across the coupled gener-
ative networks and discriminative networks in CPG-Net to
capture the co-occurrence visual patterns of original cross-
view images. The generated pose-rich samples is combined
with the original cross-view person Re-Id dataset as the pose
augmented dataset to support unsupervised person Re-Id.

The other part of PAC-GAN is an effective unsupervised
cross-view personRe-Idmodel namedCross-GAN presented
in our privous work. A coupled variational auto-encoder
(VAE) with a cross-view alignment is used to map the cross-
view images into latent variables, and a coupled GAN layer
receives the corss-view codes to learn the joint distribution
of cross-view samples.

For the skeleton samples generation, two skeleton gen-
eration modules with the same structure are employed in
this framework to generate the skeleton samples from image
datasets that have a wide range of human poses coverage,
one per camera view. To achiegve better generation perfor-
mance, we utilize the realtime human pose estimator method
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introduced by [32], which is the state-of-the-art method of
human pose estimation.

Contributions. The contributions of this work are three-
fold:

• We introduce the definition of the cross-view pose aug-
mentation for person Re-Id task in formal and propose
a novel scheme of pose augmentation for unsupervised
cross-view person Re-Id. To the best of our knowl-
edge, this work is the first time to improve the per-
formance of unsupervised corss-view person Re-Id by
pose augmentation.

• We propose a novel cross-view pose generation model
named CPG-Net. This Conditional GAN based model
can generate new samples that have various poses and
the same visual appearance from skeleton and pedes-
trian samples. Besides, we propose to apply weight-
sharing strategy in the generator and discriminator of
CPG-Net to learn the co-occurrence visual patterns
from inputs, which can effectively improve the quality
of sample generation.

• We compare our approach with semi/un-supervised
and supervised state-of-the-arts on VIPeR, CUHK03
andMarket-1501 benchmark datasets. The results show
that our approach can improve the recognition rate ef-
fectively.

Roadmap. The remainder of this paper is organized
as follows: We review the related work in Section 2. Sec-
tion 3 introduces the definition of person Re-Id and cross-
view pose augmentation, as well as the basic theories and
techniques involved in this paper. We propose a novel cross-
view pose augmentation personRe-Id framework named PAC-
GAN in Section 4. Section 5 discusses the extensive exper-
iments of the proposed approach and the state-of-the-arts,
and finally we draw our conclusion of this paper in Section 6.

2. Related Work
In this section, we introduce an overview of previous

studies of person Re-Id, generative adversarial networks and
pose estimation, which are related to this work. To the best
of our knowledge, there is no existing work to improve the
accuracy of cross-view person Re-Id in an unsupervised or
semi-supervised manner by using a pose augmentation pro-
cess for each camera view.
2.1. Person Re-identification

Person Re-Id [33, 34, 35, 36] is a hot issue in the field
of visual recognition and image processing. It is a task to
associate and match pedestrians across camera views at dif-
ferent geo-locations and times in a distributed multi-cameras
surveillance system [35]. With the widespread application
of multi-cameras networks and video surveillance systems,
lots of researchers paid more attentions on this problem in
the past few years by using supervised learning, unsuper-
vised learning and semi-supervised learning techniques.

2.1.1. Person Re-Id via Supervised learning
Supervised learning techniques are the most commonly

used to solve the person Re-Id problem, which are adopted
by lots of researchers in the aspects of invariant feature learn-
ing and metric learning [37] to deal with this challenge. For
feature extraction and learning, Gray et al. [38] proposed
to utilize the ensemble of localized features (ELF), an ef-
ficient object representation to realize viewpoint invariant
pedestrian recognition. To overcome the adversarial effect
by pose variation, Chen et al. [14] proposed a novel simi-
larity framework consisting of multiple sub-similarity mea-
surements, which is based upon polynomial feature map to
describe the matching within each subregion. This frame-
work can collaborate both local and global similarity to ex-
ploit their complementary strength. Yang et al.[15] intro-
duced a novel salient color names based color descriptor
called SCNCD for person Re-Id task. They formulated the
person Re-Id task as a color distribution matching problem,
and the effect of background information is utilized to im-
prove the accuracy of recognition. To handle the problem
of lighting condition changes across different camera views,
Rahul Rama Varior et al. [16] proposed a novel framework
for learning color patterns from across view. In this scheme,
color feature generation is modeled as a learning problem
by jointly learning a linear transformation and a dictionary
to encode pixel values. Nanda et al. [39] presented a novel
multi-shot person Re-Id framework to solve the illumination
variations problem by a images preprocessing step. In or-
der to improve the performance of pedestrian discrimination,
Zheng et al. [40] proposed to combine verification and iden-
tification models to generate more discriminative pedestrian
descriptors. A siamese network architecture was designed,
which can recognize the two inputs which are belong to the
same identity or not. Zhao et al. [41] proposed to generate
mid-level filters from automatically discovered patch clus-
ters for person Re-Id task, which can identify specific visual
patterns and have fine cross-view invariance.

Recently, deep learning [33, 7, 8, 42, 43, 44, 45, 46] tech-
nique as a kind of exceedingly powerful and efficient tool
is applied for the tasks of person Re-Id. Combining hand-
crafted histogram features and CNN features, Wu et al. [17]
presented a novel feature extractionmodel called Feature Fu-
sion Net (FFN) to generate a novel deep feature representa-
tion which is more discriminative and compact. Based on
deep convolutional neural networks, Chen et al. [47] formu-
lated person Re-Id as a learning-to-rank problem and intro-
duced a unified deep ranking framework to learns a simi-
larity metric. Chen et al. [21] proposed to jointly learn dis-
criminative scale-specific features andmaximize multi-scale
feature fusion selections to improve the performance of dis-
crimination. They designed a novel Deep Pyramid Feature
Learning (DPFL) CNN architecture to fuse multi-scale ap-
pearance features. Ahmed et al. [18] presented a new deep
neural network architecture that formulates the problem of
person re-identification as binary classification. This model
has two novel layers: one is a cross-input neighborhood dif-
ferences layer, and the other is a subsequent layer that sum-
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marizes these differences. Wu et al. [45] introduced a novel
deep siamese architecture that jointly learns spatio-temporal
video representations and similarity metrics. They used at-
tentionmechanism to select themost relevant features during
the recurrence to attend at distinct regions in cross-view. In
another work of them [44], a deep hashing framework with
Convolutional Neural Networks (CNNs) for fast person re-
identification was developed. By this scheme, both CNN
features and hash functions are simultaneously learned to get
robust yet discriminative features and similarity-preserving
hash codes. Yu et. al proposed a suite of efficient optimize
techniques [48, 49, 50, 51, 52, 53] for fast and dynamic la-
bel propagation, which can be applied for automatic image
annotation, such as randomwalk based proximities [51] and
pairwise graph-based similarity search [48, 53].

The supervised learning frameworks above-mentioned
have to rely on labelled images to generate discriminative vi-
sual features. However, in practical environment, it is very
expensive to annotate images in a large-scale video surveil-
lance system, which is a limitation for the scalability of their
application.
2.1.2. Person Re-Id via Unsupervised learning

To directly utilize unlabeled data for person Re-Id task,
unsupervised learning [54, 47, 55] has been used as a rea-
sonable and ingenious technique in many studies. Ma et
al. [56] proposed a novel Fisher Vectors based descriptor
to solve person Re-Id problem in an unsupervised manner.
Liu et al. [57] introduced a novel unsupervised method for
learning a bottom-up feature importance, which is based on
the idea that under different circumstances certain visual fea-
tures are more important than others for distinguishing one
person from others. Inspired by the idea that some small
salient visual information can be used to discriminate dif-
ferent person, Zhao et al. [58] proposed to a novel frame-
work to learn human salience in an unsupervised way to ad-
dress person Re-Id problem. Farenzena et al. [36] developed
an appearance-based method which extracts visual features
from three complementary aspects of the pedestrian appear-
ance. This scheme is robust to low resolution, occlusions and
pose, changes of viewpoint and illumination. Based on prob-
abilistic generative theme modeling, Wang et al. [59] pres-
neted a novel unsupervised modeling approach to saliency
detection, which can discover localised person foreground
appearance saliency and remove busy background clutter sur-
rounding a person simultaneously. Liang et al. [60] adopted
probabilistic model to organize and depict the spatial feature
distribution of person images, which is a robust approach
against environment changes and external interference. Ma
et al. [61] proposed a novel video based person Re-Id ap-
proach tomatch pedestrian across views. A novel space-time
person representation in form of sequence is generated based
on existing action space-time features and spatio-temporal
pyramids. Wang et al. [62] introduced a novel person Re-Id
setting in an unsupervisedmanner namedOneShot-OpenSet-
ReID, and proposed an unsupervised subspace learningmodel
named RKSL that can learn cross-view identity discrimi-

native information from unlabeled data. Different from the
studies above-mentioned, Peng et al. [63] proposed a novel
cross-dataset unsupervised method named UMDL without
any labelled matching pairs of target data by using cross-
dataset transfer learning. To realize this model, they devel-
oped a new asymmetric multi-task learning approach that
transfer a view-invariant representation from existing labelled
datasets.

The other crucial fundamental problem, namely metric
learning, is studied by many other works by using unsuper-
vised techniques. Liao et al. [22] presented a subspace and
metric learning method named Cross-view Quadratic Dis-
criminant Analysis (XQDA). In this solution, a discriminant
low dimensional subspace is learned by XQDA and simul-
taneously, a QDAmetric is learned on the derived subspace.
Yu et al. [64] proposed an unsupervised asymmetric met-
ric learning model to learn specific projection for each view
based on asymmetric clustering for cross-view person Re-Id.
Zhou et al. [23] proposed to shift part of the metric learn-
ing to online local metric adaptation, which only uses neg-
ative data from a negative sample database. Besides, this
approach can achieve an adaptive nonlinear metric by com-
bining a global metric with local metric adaptation. Bak et
al. [24] presented a novel one-shot learning method to learn
a metric containing texture and color components in an un-
supervised manner. They address the problem of color dif-
ferences across camera views by using a single pair of Col-
orChecker images to learn a color metric.

Different from the aforementioned works, our previous
work [65] proposed a novel model called crossing Genera-
tive Adversarial Network (Cross-GAN) for learning a joint
distribution for cross-image representations in an unsuper-
vised manner. As the practical configurations of pedestrian
images are multi-modal and view-specific even if they are
observed under the same camera, we proposed to integrate
variational auto-encoder with a cross-view alignment pro-
cess into our model to encode the image pair into respective
latent variables, which can reduce the view differences ef-
fectively. Besides, we used cross GAN with weight-sharing
rather than the siamese convolutional neural networks (siame-
se CNNs) [19] becasue they are composed of fixed receptive
fields which may not be flexible to capture the various local
patterns.
2.1.3. Person Re-Id via Semi-supervised learning

Many semi-supervised learning [66, 67] based studies
for person Re-Id challenge have emerged in recent years.
Figueira et al. [68] proposed a novel solution consisting of
a semi-supervised multi-feature learning strategy. This so-
lution exploits multiple features independently and does not
require training a classifier for each pair of cameras. To com-
bat the issue of the variations in human appearances from
different camera views, Liu et al. [69] proposed an efficient
semi-supervised coupled dictionary learning method that re-
quires only a small number of labeled images to carry the re-
lationship between appearance features from different cam-
eras. Abundant unlabeled training images are used to exploit
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the geometry of the marginal distribution. Ma et al. [70]
manifested that positive prior in the rank-one matching sub-
set is much larger than that in all the unlabeled data. Ac-
cording to this idea, a novel semi-supervised ranking ap-
proach was developed to utilize unlabeled data to improve
the discrimination performance. In order to break the limi-
tation of labeled image pairs available for training, Chen et
al. [71] presented a new semi-supervised KISS metric learn-
ingmethod. Zhu et al. [72] introudced a novel semi-supervised
cross-view projection-based dictionary learning (SCPDL)
method for video person Re-Id task.

The studies aforementioned in both aspects of feature
learning and metric learning are devoted to improve the per-
formance of person Re-Id. However, the poses of the person
in the existing benchmarks, e.g., VIPeR [27], CUHK03 [28],
Market-1501 [6], etc. are not rich enough compared with the
actual situation. Moreover, to the best of our knowledge, no
attempt has beenmade to boost the accuracy of unsupervised
person Re-Id via data augmentation process that makes the
poses or motions of pedestrians more multifarious. In this
paper, we propose a novel framework named PAC-GAN to
effectively enhance the recognizing ability, which consists
of two parts: (1) a new GAN based generative model named
cross-view pose generation net (CPG-Net) and (2) Cross-
GAN with weight sharing. The former is to generate pose-
augmented visual data for two different camera views and
the latter is to discriminate whether the persons in cross-view
images are the same.
2.2. Generative Adversarial Networks

Generative Adversarial Networks (GAN for short) pro-
posed by Goodfellow et al. [73] is one of the most promi-
nent deep generative models. This powerful technique and
its varieties such as CoGAN [74], Triple-GAN [75], Ada-
GAN [76], AL-CGAN [77], CGAN [78], BiGAN [79], Cy-
cleGAN [80], DCGAN [43], etc. are often utilized to solve
wide variety of computer vision and pattern recognition prob-
lems, such as image-to-image translation and person Re-Id.

For the task of image-to-image translation that has at-
tracted a lot of attention, Isola et al. [81] used conditional ad-
versarial networks as a general-purpose approach for image-
to-image translation tasks. In their work [80], they proposed
an approach to translate an image from a source domain to
a target domain without paired images. Yi et al. [82] pre-
sented a novel unsupervised learning approach called dual-
GAN to train image translators from two sets of unlabeled
images from two domains. Liu et al. [83] made an intensive
study of CycleGAN [80] and introduced two novel models
named Long CycleGAN and Nest CycleGAN respectively
to address the image-to-image translation problem. For the
image-to-image translation task in a multi-modal scenario,
Cherian et al. [84] proposed a semantically-consistent GAN
framework called Sem-GAN with a segmentation module.

For the task of person Re-Id, Zheng et al. [30] proposed
to utilize deep convolutional generative adversarial network
(DCGAN) [43] to generate unlabeled samples for their novel
approach named label smoothing regularization for outliers

(LSRO). Their work shows that the usage of GAN-generated
data can effectively improves the discriminative ability of
the model. To address the problem of Scale-Adaptive Low
Resolution Person Re-identification (SALR-REID), Wang et
al. [85] proposed a new framework named Cascaded Super-
Resolution GAN (CSRGAN) which is composed of multi-
ple SRGANs [86] in series. Wei et al. [87] developed a new
model called Person Transfer Generative Adversarial Net-
work (PTGAN) to narrowed-down the domain gap that com-
monly exists between different datasets.
2.3. Human Pose Estimation

Human pose estimation is an significant problem that has
enjoyed considerable attention in the are of computer vision
and image processing. It has lots of applications such as
video surveillance, criminal investigation via video search-
ing and human-computer interaction. Human pose estima-
tion task aims to study the algorithms and systems that re-
cover the pose of an articulated body, which consists of joints
and rigid parts using image-based observations 1. The most
commonway to tackle this issue is to perform a single-person
pose estimation for each detection [32]. For example, John-
son et al. [88] developed an extension of the pictorial struc-
ture model [89] that incorporates richer models of appear-
ance and prior over pose without introducing unacceptable
computational expense. Tompson et al. [90] introduced a
novel hybrid framework by combining a Convolutional Net-
work Part-Detector with a MRF inspired Spatial-Model to
address the problem of articulated human pose estimation.
which can utilize geometric relationships between body joint
locations. Ouyang et al. [91] proposed a novel model to
extract the global and high-order human body articulation
patterns from different aspects of information sources, such
as mixture type, appearance score and deformation. Toshev
and Szegedy [92] formulated the pose estimation problem
as a DNN-based regression problem towards body joints.
Besides, a cascade of DNN-based pose predictors was pro-
posed, which allows for increased precision of joint local-
ization. Newell et al. [93] introduced a new approach called
"stacked hourglass" network to capture and consolidate in-
formation across all scales of the image. Enlightened by [93],
a CNNbasedmodel [94] was proposed to regresse a heatmap
representation for each body keypoint, which combines a
feed forward module with a recurrent module. Based on
CNN, Wei et al. [95] designed a novel pose machine frame-
work with a sequential architecture for learning image fea-
tures and image-dependent spatial models.

In this paper, inspired by [32] that proposed an efficient
approach to detect the 2D pose of multiple people in an im-
age by using a non-parametric representation named PAFs,
we utilize this technique to generate skeleton representations
from a pose-rich dataset. These skeleton representations are
treated as source of pose augmentation process. Besides, we
introduce a novel GAN based model named siamese pose
augmentation net to generate new images from skeleton sam-
ples motivated by the work [96], in which paired inputs con-

1https://en.wikipedia.org/wiki/Articulated_body_pose_estimation

Chengyuan Zhang et al.: Preprint submitted to Elsevier Page 5 of 25

                  



PAC-GAN

taining human skeleton and appearance are used to new mo-
tion frames via conditional GAN (CGAN) [78].

3. Preliminaries
In this section, the definitions of person re-identification

and cross-view pose augmentation are given firstly, and then
we review respectively the Generative Adversarial Networks
(GAN) and Variational Autoencoder (VAE) in theory, which
are two basic techniques of this work. Table 1 summarizes
the mathematical notations used throughout this paper to fa-
cilitate the discussion of our work.
3.1. Problem Definition

Given a video frame dataset of a surveillance system and
an image which contains a target pedestrian, a person re-
identification (Re-Id) task aims to retrieve all videos or im-
ages captured by surveillance cameras, which contain the
same person. In the real case, a surveillance system is equipped
with a number of cameras in different positions. Videos
recorded by these cameras have different height, views, light
and etc.. If the query image and the target images are recorded
by different cameras, the pedestrian recognition task can be
called cross-view person Re-Id. To describe the cross-view
person Re-Id task clearly, we give the formal definition as
follows.
Definition 1. Person Re-identification. Suppose that there
is a video surveillance system  equipped with || cameras,
denoted by  = {V1, V2, ..., V||}. The set of video frames or
images shot by cameraVi is denoted asi = {I (1)i , I (2)i , ..., I (n)i }.
For the whole system, the database of surveillance images is
denoted as  = {1,2, ...,||}. If a video frame or im-
age I (l)i contains a pedestrian, the person identification is
denoted as Δ(I (l)i ).

Let i and j be the image sets of camera view Vi and Vj
respectively. Given any one surveillance image I (�)i ∈ i,
the person re-identification problem is to search out the im-
ages of camera Vj containing the same pedestrian, namely,

 =
{
I (l)j |Δ(I (�)i ) = Δ(I (l)j ), I

(�)
i ∈ i, I (l)j ∈ j

}
(1)

where  is the result set.

As a pedestrian in a real scenario always have differ-
ent motions or poses (e.g., Bend, trot, waving hands, etc.)
when he or she is walking on the road. In addition, the
images of a person with the same posture look very differ-
ent under disjoint cameras. That means for person Re-Id
task, how to capture the common visual representations of a
same pedestrian with many different motions or postures is
a key challenge. However, the existing benchmarks such as
VIPeR [27], CUHK03 [28], Market-1501 [6] cannot provide
abundant enough poses or motions of pedestrians to train the
model. To overcome this challenge, in this work we intro-
duce a cross-view pose augmentation approach for unsuper-
vised cross-view personRe-Id by generating pose-rich visual

Table 1
The summary of notations

Notation Definition a video surveillance system
Vi the ith camera view in  the image database of a video surveillance sys-

temi the image or video frames set of camera view
Vi

I (l)i the l-th sample in set i of camera view Vi
Δ(I (l)i ) the person identification of the pedestrian in

sample I (l)i the result set of person Re-Id task
Ω a skeleton sample set
!(�) the �-th sample in Ω
Mi the skeleton-to-appearance mapping for view i
I(l)
i,k a new visual sample generated by l-th image

from ith camera view and k-th skeleton samplei the pose-augmented dataset of camera view Vi
�(�)i the �-th samples in the pose-augmented

dataset of camera view Vi
G the generator of a GAN
D the discriminator of a GAN
Pn(I) the natrual random distribution of I
�g the model parameters of a generator
�d the model parameters of a discriminatorGAN the GAN loss
� the iterations number of training
� the learning rate
En the encoder of a VAE
De the decoder of a VAE
z a latent variable
z(�)�1 the latent variable generated from �1
z(�)�2 the latent variable generated from �2
�En the model parameters of an encoder
�De the model parameters of an decoder
P (z) the distribution of z
P�En (z|I) the distribution estimated by the encoder
P�De (Î|z) the distribution estimated by the decoder
DivKL Kullback-Leibler divergenceV AE the VAE loss
N(0, I) the multivariate Gaussian distribution
 the model parameters of alignment model
Ï the visual representation of image I generated

by CNN
⨝ the vector concatenation operator
y(�)i the �-th groundtruth sample of view V1
�(�)i the representation that is concatenated by fea-

ture vector of skeleton sample !(�)1 and appear-
ance sample I (�)1

� the weight for L1 loss
� the threshold in the loss of Align model

samples to improve the performance of discrimination. The
definition of cross-view pose augmentation is described in
the following.
Definition 2. Cross-View Pose Augmentation. Cross-view
pose augmentation is a specific data augmentation that aims
to generate pose-rich samples from a skeleton sample set to
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augment the source cross-view dataset.
Let i and j be two person image sets recorded by cam-

era Vi and Vj respectively, andΩ = {!(1),!(2), ...,!(|Ω|)} be
a skeleton sample set, |Ω| denotes the size of this set. LetMi
and Mj be a skeleton-to-appearance mapping from a pair
of human appearance samples I (l)i and I (l)j and a skeleton
sample !(�) to new produced paired samples I(l)

i,� and I(l)
j,�

which have the same appearance of I (l)i and the same pose
of !(�), namely,

Mi ∶
(
I (l)i ,!

(�)
)
⟶ I(l)

i,� (2)

Mj ∶
(
I (l)j ,!

(�)
)
⟶ I(l)

j,� (3)

or they can be denoted asMi(I
(l)
i ,!

(�)) = I(l)
i,� andMj(I

(l)
j ,

!(�)) = I(l)
j,� . Cross-view pose augmentation aims to gener-

ate new cross-view datasets i and j for view Vi and Vj
from i and j by using skeleton-to-appearance mapping,
formally,

i =
{i ∪ {I(l)

i,�}|I(l)
i,� =Mi(I

(l)
i ,!

(�))
}

(4)

j =
{i ∪ {I(l)

j,�}|I(l)
j,� =Mj(I

(l)
j ,!

(�))
}

(5)

where {I(l)
i,�} and {I

(l)
j,�} are the visual sample sets gener-

ated from skeleton samples and human appearance samples
for view Vi and Vj respectively. It is obvious that the pose-
augmented datasetsi andj consist of the source dataseti and the new generated set {I(l)

i,�}, j and the new gener-
ated set {I(l)

j,�} respectively. Therefore, datasetsi andj
cover more poses than i and j , which are able to provide
much more information of poses for pedestrian matching.
To facilitate description, in this paper we denote the pose
augmented dataset uniformly asi = {�

(1)
i ,�(2)i , ...,�(|i|)

i }
and j = {�(1)j ,�(2)j , ...,�(|j |)

j } without any distinction of
original images and newly synthesized samples.

To support the discussion, in the next two subsections we
review the basic theories of generative adversarial networks
(GAN) and variational autoencoder (VAE), which are used
in the proposed approach.
3.2. Review of Generative Adversarial Networks

Generative Adversarial Networks (GAN for short) [73]
is a generative model consisting of two components: a gen-
erator and a discriminator. It has superior performance in
image generation, patterns of motion modeling, 3D objects
reconstruction, etc. Specifically, the generator is to produce
forged images according to real visual samples, and the dis-
criminator’s duty is to discriminate whether the inputs are
forged by generator or from natural image distribution. The
architecture of a GAN is illustrates in Fig. 4.

Noise
Distribution

Discriminator

Generator

Real Sample

Fake 
Sample

Real
Or

Fake

Fine Tuning

Figure 3: The architecture of GAN. It has two neural networks:
a generator and a discriminator. The former is to generate
a image from the input, e.g., Gaussian noise signals. While
the inputs of the latter are the real sample and the synthetic
sample. The results of discrimination are used to fine tune
these two components.

For the convenience of discussion herein, the genera-
tor and discriminator are denoted as G and D respectively.
In the whole training process, the generator G strenuously
make the synthetic samples more similar to the real samples,
while the discriminatorD tries its best to identify whether an
input is from the generative model distribution or the natural
distribution. In other words, this process is equivalent to a
two-player zero-sum game. Along with the training the dis-
criminator D and the generator G are diametrically against
to each other. At last these two adversaries achieve a dy-
namic equilibrium: the generated sample is highly close to
the natural distribution, while the discriminator D cannot
distinguish true or false samples.

Let a real pedestrian sample I obey natural random dis-
tribution Pn(I), and z be a random sample from distribution
Pz(z) in the form of a 
-dimension vector, namely z in ℝ
 .
The generatorG(I ;�g) plays a role as a mapping from z to a
synthetic sampleG(z;�g), and the generative distribution of
G(z;�g) is denoted as Pg . The discriminator D(I ;�d), onthe other hand, receives the real sample I and the synthetic
sample G(z;�g) as input, and outputs the discriminant re-
sult D(G(z;�g);�d) which is the probability that G(z;�g)is synthesized from G. This game process can be formu-
lated as an minimax optimization of the following objective
function GAN (G,D):

argmin
G
max
D

GAN (G,D) =
EI∼Pn(I)[logD(I ;�d)]+
Ez∼Pz(z)[log(1 −D(G(z;�g);�d))]

(6)

where �g and �d are the network parameters of G and
D. EI∼Pn(I)[⋅] and Ez∼Pz(z)[⋅] are the expectations. Thus,

EI∼Pn(I)[logD(I ;�d)] =

∫I Pn(I)log(D(I ;�d)) dI
(7)
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Ez∼Pz(z)[log(1 −D(G(z;�g);�d))] =

∫z Pz(z)log(1 −D(G(z;�g);�d)) dz
(8)

The generatorG and discriminatorD are trained in an al-
ternate and iterative manner. For the generator G, the train-
ing is to minimize the loss function to generate more authen-
tic images to deceive the discriminator whose aim is to dis-
tinguish the synthetic samples. Therefore, for the discrimi-
nator D, the objective is to maximize the loss. To make it
more formal, the training of G and D can be denoted as:

argmin
G

GAN (G,D) =
∫I Pn(I)log(D(I ;�d)) dI

(9)

argmax
D

GAN (G,D) =
∫z Pz(z)log(1 −D(G(z;�g);�d)) dz

(10)

During the course of the algorithm realized, the opti-
mization of Equation 6 is implemented by using a stochastic
gradient descent method [97, 98]. The gradient update steps
are shown as follows:

for the discriminator D:

��+1d = ��d − �
�∇�d

1
m

m∑
�=1

[
log(D(I (�);��d)) + log(1 −D(G(z

(�);��g);�
�
d))

] (11)

for the generator G:

��+1g =��g − �
�∇�g

1
m

m∑
�=1

[
log(1 −D(G(z(�);��g);�

�+1
d ))

] (12)

where m is the number of samples, � is the learning rate, �
is the number of iterations. Obviously, in this process, the
network parameters update via back-propagation only from
discriminator, rather than model the reconstruction loss of
the generator in a explicit manner.

In this work, GAN is considered as the main technique
to construct the model of cross-view pose generation net
(CPG-Net) that is to generate pose-rich images from exist-
ing datasets. Moreover, one of the key components in Cross-
GANmodel proposed by our previouswork is based onGAN
to learn a joint distribution of cross-view representations from
multi-modal view-specific samples.
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Figure 4: The architecture of VAE. The encoder receives an
input I and maps it to a low-dimensional latent variable z
by learning the posterior distribution of z. The decoder is to
generates samples Î as similar as possible to the original inputs
from the latent variable.

3.3. Review of Variational Autoencoder
Variational Autoencoder (VAE) is extended from autoen-

coder, which is introduced by Kingma et al. [99]. Like GAN,
it is a commonly used deep generative model focused by lots
of researchers in recent years.

A VAE generally consists of two parts: one is an en-
coder En(I), which maps a high-dimensional input I =
(I (1), I (2), ..., I (n)) to a low-dimensi-onal latent variable z,
and the other is a decoder De(z), which maps from a low-
dimensional latent variable to a high-dimensional sample Î
that is a reconstruction of I , namely,

z ∼ En(I ;�En) = P�En (z|I),
Î ∼ De(z;�De) = P�De (Î|z)

(13)

where �En and �De are the model parameters of encoder and
decoder respectively. P�En (z|I) is the posterior probability
of z estimated by encoder, and P�De (Î|z) is the posterior of
Î by decoder.

The optimization of VAE is to estimate a maximum like-
lihood probability distribution between the original input I
and the reconstructed sample Î after mapping I to the latent
variable, namely P (I) ≃ P�De (z). The difference between
these two distributions ismeasured byKullback-Leibler (KL)
divergence. Let P (z) be the distribution of latent variable z,
P (z) is assumed to be a Gaussian distribution with a mean
of 0 and a variance of 1, i.e., z ∼ N(0, 1). Specifically,
the KL divergence DivKL can be transformed according to
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Bayesian formula as follows:

DivKL(P�En (z|I)||P (z))

= ∫z P (z)log
(

P (z)
P�En (z|I)

)
dz

= ∫z P (z)[log(P (z)) − log(P�En (z|I))] dz
= ∫z P (z)[log(P (z)) − log

(
P�De (I|z)P (I)

P (z)

)
] dz

= ∫z P (z)[log(P (z)) − log(P�De (I|z)) − log(P (z))] dz
+ log(P (I))

(14)
this equation can be transformed by exchanging the left part
and the right part as follows:

log(I) −DivKL(P (z|I)||P�En (z|I))
= ∫z P (z)log(P�De (I|z)) −DivKL(P�En (z|I)||P (z))

(15)
According to equation 15, the loss function of VAE can

be derived as follows:

V AE(En(I ;�En),De(z;�De)) =
−DivKL

(
P�En (z|I)||P (z)

)

+ Ez∼P�En (z|I)
[
log(P�De (I|z))

] (16)

where the first term on the right side of the above equation is
KL divergence between the prior distribution of latent vari-
able P (z) and the encoded distribution P�En (z). The secondterm is the reconstruction loss whichmeasures the difference
between original inputs and reconstructed samples.

In our Cross-GAN model, a coupled VAE structure is
applied to learning multi-modal distributions of cross-view
visual samples without corresponding labeling. This com-
ponent encodes the paired input into the latent variables that
are fed into the coupled GAN after a cross-view alignment
process.

4. Methodology
As pose is one of the significant modalities of the pedes-

trian images. which should be considered in the training pro-
cess to capture the co-occurrence statistic patterns more pre-
cisely across different views. However, the existing bench-
marks, like VIPeR [27], CUHK03 [28], Market-1501 [6] do
not provide adequate enough poses variations in pedestrian
images, which is a limitation for the model training. To over-
come this challenge, we propose a novel PoseAugmentation

scheme for Cross-view person Re-Id based on GAN called
PAC-GAN. In this section, we introduce this framework in
detail. At first, the overview of this framework is presented
in Subsection 4.1. Then we introudce the technique of skele-
ton generation applied in this work in Subsection 4.2 and
a novel CGAN based model for pose augmentation is pro-
posed in Subsection 4.3. In subsection 4.4, we describe the
unsupervised person Re-Id model that is integrated in this
scheme.
4.1. Overview of our Framework: PAC-GAN

The overview of PAC-GAN is illustrated in Fig. 5. This
framework consists of two main models: (1) a coupled deep
generative model named Cross-view Pose Generation Net
(CPG-Net) which aims to generate new pose-rich pedestrian
images from skeleton samples and person appearance sam-
ples, and (2) a coupled VAE and GAN model named Cross-
GAN [65] to address cross-view person Re-Id problem in an
unsupervised manner.

CPG-Net. Specifically, the pose augmentation model
shown in the left part of Fig. 5, namely CPG-Net, is used
to produce new samples with various poses according to in-
puts: the original cross-view samples and skeleton samples.
This model is a coupled architecture. Each of the nets corre-
sponds to a camera view. For each view, a human motion or
posture image dataset is employed as the source to generate
skeleton samples. In our experiments, MARS dataset [29]
is chosen to undertake this task. To achieve good perfor-
mance, we utilize the image generation technique proposed
by [32] to implement image-to-skeleton generation for each
view. The key part of the pose generation net is a specific
coupled GAN which is inspired by [96]. Paired skeleton
samples and original samples are fed into the generator with
siamese structure, and the outputs are new images containing
the poses from skeletons and the appearances from the orig-
inal human images. The discriminator with a stack structure
receives a triple: a real sample, a skeleton sample and a gen-
erated sample and discriminate that the input is real or not.
The synthesized image set from PG-Net-V1 and PG-Net-V2are denoted as {I1} and {I2} respectively. Each of them
combines with its original datasets 1 and 2 as the final
pose augmented datasets 1 and 2. It is clear that com-
paring with the original cross-view dataset,1 and2 havemuch more various pose coverage.

Cross-GAN. The other main model of this framework,
shown in the right part, is called Cross-GAN which is an
unsupervised model to estimate a joint distribution of multi-
modal cross-view visual samples to recognise the co-occurre-
nce statistic patterns. Each of this coupled network consists
of a paired VAE and GAN. The coupled VAE is used to en-
code the inputs into latent variables and a cross-view align-
ment is implemented over the latent variables to reduce the
view disparity. This alignment operation generates a shared
latent space by learnig the statistical correlation of the cross-
view latent representation. The coupled GAN with weight-
sharing is to capture the co-occurrence visual patterns ap-
pearing across the paired inputs.
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Figure 5: The framework of PAC-GAN. This framework has two main models: (1) a coupled deep generative model named
cross-vew pose generation net (CPG-Net) and (2) a coupled VAE and GAN model named Cross-GAN with cross-view alignment.
The CPG-Net has two branches for two camera view V1 and V2, which are named Pose Generation Net for V1 (PG-Net-V1) and
Pose Generation Net for V2 (PG-Net-V2). Weight-sharing strategy is applied across PG-Net-V1 and PG-Net-V2 to capture the
co-occurrence visual patterns in cross-images to improve the performance of image generation. The input of them consists of
two parts: one is the original pedestrian samples and the other is the skeleton sample produced by a skeleton generation process
from a human motion image dataset. The new produced samples {I1} and {I2} have the poses from skeleton samples and the
appearances from original pedestrian images, which are used to synthesize the pose augmented datasets 1 and 2 respectively.
The unsupervised cross-view person Re-Id model consists of two branches of VAE and GAN denoted as (VAE1, GAN1) for view
V1 and (VAE2, GAN2) for view V2. It receives the pose augmented datasets 1 and 2 as input to enhance the performance of
identification. A cross-view alignment is employed on the latent variables of the coupled VAE to learn the statistic relationships
between generative variables. The Crossing GAN is used to produce the joint view-invariant distribution of the inputs.

In general, the combing CPG-Net with Cross-GAN can
create a more powerful generative model for unsupervised
cross-view personRe-Id. TheCPG-Net is a competitive deep
generative model to overcome the challenge of pose aug-
mentation. It can strongly support Cross-GAN to learn the
joint distribution of multi-modal cross-view images by pro-
ducing numerous new pedestrian imageswith abundant enou-
gh pose coverage.
4.2. Skeleton Generation Process

Before the pose-rich pedestrian images generation, the
skeleton samples have to be produced. To tackle this issue
efficiently, we adopt the pose estimation approach designed
by [32], in which a novel notion called part affinity fields
is proposed. This technique uses a two branch CNN archi-
tecture to generate skeleton samples from images containing
multiple person.

Specifically, let Ï be the visual representation of a im-

age produced by the first 10 layers of VGG-19 [100]. One
of the branch network denoted by Conv�(Ï ;#(�)) learns aset of confidence maps � = {�1,�2, ...,�|�|} which rep-
resents body part locations. Each of the elements �i ∈ �corresponds one part of the body. The other branch of this
model, Conv�(Ï ;'(�)) is to output a set of vector fields � =
{�1,�2, ...,�|�|} of part affinities to represent the associa-
tion betwen parts, each �j ∈ � corresponds one limb of the
body. #(�) and '(�) are the network parameters of these two
CNN in the stage � respectively.

The skeleton generation process consists of several stages
denoted as � ∈ {1, 2, ..., n} to refine the results in an iterative
manner. In the first stage, namely � = 1, the inputs of both
the two branches are the original feature vectors Ï , and the
outputs are a set of confidence maps �(1) = Conv�(Ï ;#(1))and a set of affinity fields �(1) = Conv�(Ï ;'(1)). Then thesetwo sets and the original visual representation are concate-
nated as a new vector denoted as Ï⨝�(1)⨝�(1) which is
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fed into the next stage, where ⨝ is the vector concatena-
tion operator. Overall, this iterative process can be formally
described as follows:

�(�) =
⎧⎪⎨⎪⎩

Conv�
(
Ï ;#(�)

)
, � = 1,

Conv�
(
Ï⨝�(�−1)⨝�(�−1);#(�)

)
, � ≥ 2,

(17)

�(�) =
⎧⎪⎨⎪⎩

Conv�
(
Ï ;'(�)

)
, � = 1,

Conv�
(
Ï⨝�(�−1)⨝�(�−1);'(�)

)
, � ≥ 2,

(18)
Two loss functions are used to refine the confidencemaps

and affinity fields in the end of each stage. For each branch, a
weightedL2 loss between the outputs and the groundtruth isemployed. In the stage �, the loss functions applied after two
convolutional networks are shown respectively as follows:

(�)� =
|�|∑
i=1

∑
�
W (�) × ∥ �(�)i (�) − �̃

(�)
i (�) ∥

2
2 (19)

(�)� =
|�|∑
j=1

∑
�
W (�) × ∥ �(�)j (�) − �̃

(�)
j (�) ∥

2
2 (20)

where � is a location of an image and W (�) is the weight
at the location �, which is used to avoid penalizing the cor-
rect prediction during the training. �̃(�)i and �̃(�)j (�) are thegroundtruth confidence map and affinity field at �. Thus, for
the overall process, the objective is the sum of loss in each
branch:

overall =
T∑
�=1

((�)� + (�)�
)

(21)

where T is the number of stages.
4.3. The Pose Augmentation Model: CPG-Net

We propose to synthesize new pose-rich samples by us-
ing a novel generativemodel namedCPG-Net. The source of
CPG-Net for each view consists of two parts: one is the sam-
ples from original dataset and the other is the skeleton sam-
ples generated from the skeleton generation process. The
two branches of this coupled deep network are named Pose
GenerationNet for viewV1 (PG-Net-V1) andPoseGeneration
Net for view V2 (PG-Net-V2) based on Conditional GAN
(CGAN) [78]. The generatorG outputs the synthesized sam-
ples which have the poses from the skeleton samples and the
appearances from the original pedestrian images. The dis-
criminator D is against to G by recognising the fake sam-
ples.
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Figure 6: The network architecture of the CPG-Net. It is a
coupled network structure that is based on CGAN [78]: the
branch for V1 is called PG-Net-V1 and the other is named PG-
Net-V2. Each of the generators G1 and G2 has an encoder
with siamese structure implemented by deep convolutional net-
works, whcih aim to generate representations of skeleton sam-
ples !(�1)1 and !(�2)2 , as well as pedestrian appearance samples
I (�)1 and I (�)2 respectively. For PG-Net-V1 (the same as PG-
Net-V2), these two feature vectors are concatenated into a new
code that is fed into the decoder which is implemented by de-
convolution networks to generate the new samples I(�)

1,�1
(I(�)

2,�2
for PG-Net-V2). The discriminator D1 receives two triples:
the synthesized ⟨!(�)1 , I (�)1 ,I(�)

1,�1
⟩ and the real ⟨!(�)1 , I (�)1 , y(�)1 ⟩,

and then distinguishs the real from fake, where y(�)1 is the
groundtruth sample. In order to generate the more authen-
tic paired samples from two different camera views, we enforce
last layers of En(I)1 and En(I)2 , the first layers of De1 and De1,
the last layers of discriminators D1 and D2 have duplicate net-
work structure and parameters respectively, which is to capture
the common high-level semantic features.

4.3.1. The Generator
Structure of Generator. Inspired by [96], we design the

generators of PG-Net-V1 and PG-Net-V2 denoted by G1 and
G2 as a siamese structure "U-Net" [101] with weight-sharing
across some layers, shown in Fig. 6. LetΩ1 = {!(1)1 ,!(2)1 , ...,
!(|Ω1|)1 } andΩ2 = {!(1)2 ,!(2)2 , ...,!(|Ω2|)2 } be the sets of skele-
ton samples for viewV1 andV2 respectively, 1 = {I (1)1 , I (2)1 ,
..., I (|1|)1 } and2 = {I (1)2 , I (2)2 , ..., I (|2|)2 } be the sets of pedes-
trian appearance samples of view V1 and V2. For the gener-ator G1 (same as G2), a siamese structure encoder namely
En!1 andEnI1 are utilized to model the skeleton samples and
appearance samples. For a paired input ⟨!(�)1 , I (�)1 ⟩, they are
encoded byEn!1 andEnI1 in a convolution manner and then
are concatenated into a new representation �(�)1 , namely

�(�)1 = En!1 (!
(�)
1 )⨝EnI1 (I

(�)
1 ) (22)
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where ⨝ is the concatenation operator. The decoder maps
�(�)1 to a new sample I(�)

i,�1
= De1(�

(�)
1 ) which has the same

pose information of !(�)1 and inherits the appearance of I (�)1 .
Thus, the generators of G1 and G2 are represented formally
as:

G1(!1, I1) = De
(n)
1 (De

(n−1)
1 (...De(1)1 (�1))),

�1 = En
!(m)
1 (En!(m−1)1 (...En!(1)2 (!1)))⨝

EnI(m)1 (EnI(m−1)1 (...EnI(1)1 (I1)))

(23)

G2(!2, I2) = De
(n)
2 (De

(n−1)
2 (...De(1)2 (�2))),

�2 = En
!(m)
2 (En!(m−1)2 (...En!(1)2 (!2)))⨝

EnI(m)2 (EnI(m−1)2 (...EnI(1)2 (I2)))

(24)

whereDe(i)1 ,De(i)2 ,En!(i)1 ,EnI(i)1 ,En!(i)2 andEnI(i)2 are the
i-th layer of De1, De2, En!1 , EnI1 , En!2 and EnI2 , respec-tively. n and m are respectively the number of their layers.
All layers of the encoders are implemented by convolutional
operation which encode the visual representations layer-by-
layer from more detailed features to more abstract concept.
The decoding process is the opposite, namely the decoder
produce the new samples from �1 or �2 by a series of de-
convolution operations. The first layer is to decode the high-
level semantic concept and the last layer decode the low-level
visual elements.

Weight-Sharing in Generator. As the cross-view im-
ages of a same person collected by disjoint cameras con-
tains typically view-invariant high-level semantic features
but different visual details, we use weight-sharing strategy in
the encoder and decoder. Let �De(i)1 , �De(i)2 , �En!(i)1

, �EnI(i)1
,

�En!(i)2
and �EnI(i)2

be the i-th layers parameters of the net-
works above, we propose to employ weight-sharing strategy
across the last layers of EnI(i)1 and EnI(i)2 , and the first lay-
ers of De1 and De2. In other words, the last layers of en-
coders En!1 and En!1 , and the first layers of decoders De1and De2 have duplicate network structure and parameters
respectively, namely, �EnI(i)1

= �EnI(i)2
, i ∈ {1, 2, ..., p}, and

�De(j)1
= �De(j)2

, j ∈ {1, 2, ..., q}, where p and q are the num-
bers of weight-shared layers in the encoders for appearance
samples and the decoders, respectively.
4.3.2. The Discriminator

Structure of Discriminator. As shown in Fig. 6, the
discriminator in PG-Net-V1 and PG-Net-V2 receives paired
triples respectively: ⟨!(�)1 , I (�)1 ,I(�)

1,�1
⟩ and ⟨!(�)1 , I (�)1 , y(�)1 ⟩

for V1, as well as ⟨!(�)2 , I (�)2 ,I(�)
1,�1

⟩ and ⟨!(�)2 , I (�)2 , y(�)2 ⟩ for
V2. Then it discriminates the input that is real or synthesized
by implementing a stack structure. In other words, the triples
are stacked as a 9-dimensional inputs and the discriminator
extracts their features gradually and respectively, which are
used to make a decision.

LetD(i)
1 andD(i)

2 be the i-th layer of the discriminatorD1and D2 for view 1 and view 2 respectively, i ∈ {1, 2, ..., r},
r be the number of the layers. The D1 and D2 can be given
by

D1(⟨!1, I1, y1⟩)
= D(r)

1 (D
(r−1)
1 (...D(1)

1 (⟨!1, I1, y1⟩)))
(25)

D2(⟨!2, I2, y2⟩)
= D(r)

2 (D
(r−1)
2 (...D(1)

2 (⟨!2, I2, y2⟩)))
(26)

Weight-Sharing in Discriminator. The cross-view dis-
criminators are implemented by convolutional networks that
extract the visual features layer-by-layer and at last output
a probability score. The first layers of D1 and D2 extract
low-level visual features and the last layers are used to per-
ceive high-level semantic concept. Similar to the generator,
we enforce the D1 and D2 have the identical network pa-
rameters to capture the co-occurrence abstract semantic con-
cept from cross-image of the same pedestrian. On the other
hand, weight-sharing can also contribute to reduce the num-
ber of model parameters. This constraint can be denoted as
�D(r−i)

1
= �D(r−i)

2
, where i = 1, 2, ..., s− 1, s is the number of

weight-sharing layers, �D(r−i)
1

and �D(r−i)
2

are the parameters
of (r − i)-th layers of D1 and D2 respectively.
4.3.3. The Loss of CPG-Net

As discussed above, the proposedmodel CPG-Net is based
on CGAN, in which each branch of network receives paired
inputs: skeleton sample ! and pedestrian appearance sam-
ples pedestrian sample I . According to the loss of CGAN,
we give the loss functions of PG-Net-V1 and PG-Net-V2 asfollows:

PG-Net-V1 (G1(�G1 ),D1(�D1 ))
= E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[logD1(!, I , y;�D1 )]
+ E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[log(1 −D1(!, I ,G1
(!, I , z;�G1 );�D1 ))]

(27)

PG-Net-V2 (G2(�G2 ),D2(�D2 ))
= E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[logD2(!, I , y;�D2 )]
+ E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[log(1 −D2(!, I ,G2
(!, I , z;�G2 );�D2 ))]

(28)

In order to generate better samples, we propose to combine
the CGAN loss with L1 loss:

L11 (G1(�G1 ))
= E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[∥ y −G1(!, I , z;�G1 ) ∥1]

(29)

L12 (G1(�G2 ))
= E⟨!,I⟩∼P (⟨!,I⟩),z∼P (z)[∥ y −G2(!, I , z;�G2 ) ∥1]

(30)

Chengyuan Zhang et al.: Preprint submitted to Elsevier Page 12 of 25

                  



PAC-GAN

Therefore, the overrall loss function of the CPG-Net is:
CPG-Net(G1(�G1 ),G2(�G2 ),D1(�D1 ),D2(�D1 ))

= PG-Net-1(G1(�G1 ),D1(�D1 ))
+ PG-Net-2(G2(�G2 ),D2(�D2 ))
+ � (L11 (G1(�G1 )) + L12 (G1(�G2 )))

(31)

where � is the weight for L1 loss.
4.4. Unsupervised Person Re-Id: Cross-GAN

The other part of the proposed scheme is called Cross-
GAN that is introduced in our previous work [65]. It is a
deep generative model to estimate the joint distributions of
the multi-modal visual samples which have co-occurrence
visual patterns for cross-view person Re-Id. This model is a
coupled structure: each of the branches consists of a paired
VAE and GAN, which are denoted as (VAE1, GAN1) cor-responding to V1 and (VAE2, GAN2) corresponding to V2.The coupled VAEs aim to encode the cross-view input into a
latent representation and a alignment process is applied over
these latent variables of these two VAEs to reduce the view
disparity. The coupled GANs with weight-sharing estimate
the joint view-invariant distribution.

Let �(�)1 ∈ 1 and �(�)2 ∈ 2 be the paired samples of
pose augmented datasets1 and2 which are generated bythe pose augmentation model. To simplify the description,
here we assume the number of samples in1 and2 are the
same, namely |1| = |2| = m. The tuple ⟨�(�)1 ,�(�)2 ⟩ is
fed into the coupled VAE and then encoded into latent vari-
ables z(�)�1 and z(�)�2 . In our model, the encoders and decoders
of the coupled VAE are implemented by multi-layered per-
ceptions. The prior of the latent variables are assumed to
be multivariate Gaussian, namely P (z�1 ) = N1(z�1 , 0, I)andP (z�2 ) = N2(z�2 , 0, I), and the variational approximate
posterior beN1(z�1 ;�

(�)
1 ,�2(�)1 I) andN2(z�2 ;�

(�)
2 ,�2(�)2 I),

where N1 and N2 are estimated by V1 and V2 encoders re-spectively, and I is an identity matrix rather than a pedes-
trian image. Thus, according to the principle of VAE, the
loss function for the V1 is:

V AE(�(�)1 )

≃ 1
2

J∑
j=1

(
1 + log((�(�)1,j )

2) − ((�(�)1,j )
2) − ((�(�)1,j )

2)
)
,

z(�)�2 = �
(�)
1 + �(�)1 × �, � ∼ N(0, I)

(32)

and the loss function for the view 2 is:

V AE(�(�)2 )

≃ 1
2

J∑
j=1

(
1 + log((�(�)2,j )

2) − ((�(�)2,j )
2) − ((�(�)2,j )

2)
)
,

z(�)�2 = �
(�)
2 + �(�)2 × �, � ∼ N(0, I)

(33)

Therefore, the loss function of the coupled VAE with m
paired inputs (�(�)1 ,�(�)2 ) is:

V AE(�(�)1 ,�(�)2 )

= 1
m

m∑
�=1

(V AE(�(�)1 ) + V AE(�(�)2 )
) (34)

To reduce the impact of view disparity, a cross-view align-
ment process is implemented over the latent variables of cou-
pledVAE. This process can reveal underlying invariant prop-
erties among different views, andmodel themulti-modal dis-
tributions of cross-view data space. The loss of the align-
ment is shown as follows:

Align( ) = 1
m

m∑
�=1

max
(
∥ z(�)�1 − Align(z

(�)
�2
; ) ∥22, �

)

(35)
whereAlign(⋅) is the alignment model to produce a mapping
across P (z�1 ) and P (z�2 ),  is the parameters of alignment
model, and � is the threshold.

The coupled GANs consisting of GAN1 and GAN2 areutilized to learn the joint distribution of cross-view images.
The generators of two branchesG1(z�1 ;�g1 ) andG2(z�2 ;�g2 )decode the visual information from the latent representations
z�1 and z�2 layer-by-layer via deconvolution, where �g1 and
�g2 are the model parameters ofG1 andG2. The discrimina-
torsD1(G1(z�1 ;�g1 );�d1 ) andD2(G2(z�2 ;�g2 );�d2 ) extractvisual features from low-level to high-level by convolution,
and learn the likelihood that the input is real or fake. �d1and �d2 are the parameters of D1 and D2. Both of the gen-
erator and discriminator in this two branches have weight-
sharing, which can reduce the model parameters and derive
view-invariant features across �1 and �2. Therefore, the lossfunction of the coupled GAN is:

GAN (G1(�g1 ),G2(�g2 ),D1(�d1 ),D2(�d2 ))
= 1
m

m∑
�=1

[
logD1(�

(�)
1 ;�d1 )

]

+ 1
m

m∑
�=1

[
log(1 −D1(G1(z(�)�1 ;�g1 );�d1 )

]

+ 1
m

m∑
�=1

[
logD2(�

(�)
2 ;�d2 )

]

+ 1
m

m∑
�=1

[
log(1 −D2(G2(z(�)�2 ;�g2 );�d2 )

]

(36)

and the overall loss of Cross-GAN is:
Cross-GAN = V AE + Align + GAN (37)

5. Experiments
In this section, the datasets and evaluation protocol of

experiments are introduced at first. Then we describe the
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VIPeR CUHK03 Market-1501

Figure 7: Some examples from person Re-Id datasets: VIPeR, CUHK03 and Market-1501

implementation details of our method. We evaluate the ef-
fect of weight-sharing in CPG-Net on three benchmarks and
discusse the comparison of the proposed approach and the
semi/un-supervised and supervised state-of-the-arts. The re-
sults of experiments illustrate that our pose augmentation
scheme for unsupervised personRe-Id can enhance the recog-
nition accuracy effectively.
5.1. Datasets and Evaluation Protocol

Datasets. Our experiments are performed on three bench-
marks: VIPeR [27], CUHK03 [28], Market-1501 [6]. The
detailed descriptions are given as follows:

• VIPeR dataset consists of 1264 images of 632 pedes-
trians taken from arbitrary viewpoints under varying
illumination conditions. Each pedestrian has two im-
ages. The size of each image is adjusted to 128×48.

• CUHK03 dataset contains 13164 cross-view samples
of 1360 pedestrians collected by 6 surveillance cam-
eras. The images of each pedestrian are taken from
two different camera views. CUHK03 includes two
subsets that contain manually labeled bounding boxes
and automatically detected bounding boxes respectively.
In this work, we perform experiments on labeled sub-
set.

• Market-1501 dataset includes 32643 images of 1501
pedestrians collected by 6 cameras. The boxes of pedes-
trians are obtained by a state-of-the-art detector of De-
formable Part Model (DPM). The training set includes
750 identities and the testing set has 751 subjects.

Some examples of these three datasets are shown in Fig. 7.
Each column indicates the images of the same pedestrian.

Evaluation Protocol. In our experiments, we use single-
shot mode as the evaluation protocol. We calculate the rank
that the query image is matched to the gallery images cor-
rectly. The rank-k matching rate is the expectation of the
matches at rank k, and the Cumulative Matching Character-
istic (CMC) values at all ranks are reported.

Figure 8: The samples of MARS dataset. Mars has 1,261
identities and around 20,000 video sequences, which is one of
the largest video person Re-Id datasets. Each row in this figure
represents the images of the same person.

5.2. Implementation Details
In this subsection, we introudce the implementation de-

tails of the main conmponents of this pose augmentation
cross-view person Re-Id framework, namely skeleton gen-
eration model, CPG-Net and Cross-GAN respectively.

Skeleton Generation. We apply the real-time human
pose estimator method [32] to produce the skeleton samples
from human images, which is the state-of-the-art of pose es-
timation. In our experiments, we use MARS dataset [29] as
the data source to produce skeleton samples due to its wide
rang of poses coverage. It is an extension of theMarket-1501
dataset, which consists of 1,261 different pedestrians and
around 20,000 video sequences. Some samples of MARS
are shown in Fig. 8. We feed the images of MARS into the
pre-trained two-branchesmodel mentioned above to produce
the skeleton samples which is one of the sources of our pose
augmentation model. However, MARS is not the only op-
tion.

CPG-Net. The details of network architecture of the

Chengyuan Zhang et al.: Preprint submitted to Elsevier Page 14 of 25
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Table 2
The Network Architecture of Coupled Generator of CPG-Net.

Layer Encoder
View 1 View 2 Weight-sharing

1 Conv (N=64, K=5 × 5, S=2), LeakyReLU Conv (N=64, K=5 × 5, S=2), LeakyReLU No
2 Conv (N=128, K=5 × 5, S=2), BN, LeakyReLU Conv (N=128, K=5 × 5, S=2), BN, LeakyReLU No
3 Conv (N=256, K=5 × 5, S=2), BN, LeakyReLU Conv (N=256, K=5 × 5, S=2), BN, LeakyReLU No
4 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU No
5 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Yes
6 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Yes
7 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Yes
8 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Yes

Layer Decoder
View 1 View 2 Weight-sharing

1 FConv (N=512, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=512, K=5 × 5, S=2), BN, Dropout (0.5), ReLU Yes
2 FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU Yes
3 FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU Yes
4 FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU Yes
5 FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=1024, K=5 × 5, S=2), BN, Dropout (0.5), ReLU No
6 FConv (N=512, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=512, K=5 × 5, S=2), BN, Dropout (0.5), ReLU No
7 FConv (N=256, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=256, K=5 × 5, S=2), BN, Dropout (0.5), ReLU No
8 FConv (N=128, K=5 × 5, S=2), BN, Dropout (0.5), ReLU FConv (N=128, K=5 × 5, S=2), BN, Dropout (0.5), ReLU No

Table 3
The Network Architecture of Coupled Discriminator of CPG-Net.

Layer Discriminator
View 1 View 2 Weight-sharing

1 Conv (N=64, K=5 × 5, S=2), LeakyReLU Conv (N=64, K=5 × 5, S=2), LeakyReLU No
2 Conv (N=128, K=5 × 5, S=2), BN, LeakyReLU Conv (N=128, K=5 × 5, S=2), BN, LeakyReLU No
3 Conv (N=256, K=5 × 5, S=2), BN, LeakyReLU Conv (N=256, K=5 × 5, S=2), BN, LeakyReLU No
4 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU No
5 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU No
6 Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Conv (N=512, K=5 × 5, S=2), BN, LeakyReLU Yes

generator and discriminator are reported in Table 2 and Ta-
ble 3, respectively. As discussed above, CPG-Net contains
two network branches: PG-Net-V1 and PG-Net-V2, each of
which is a CGAN based model. The encoder with siamese
structure in coupled generator is implemented by the combi-
nation of Convolutional (Conv) layers, Batch Normalization
(BN) layers and Leaky Rectified Unit (LeakyReLU) layers.
The decoder of generator consists of Fractional Length Con-
volutional (FConv) layers, Batch Normalization (BN) lay-
ers, Dropout layers and ReLU layers. The objective of cou-
pled discriminators is to discriminate the natural triples and
generated triples of two disjoint views. We implement this
model by a stack structure, which includes Convolutional
(Conv) layers, BN layers and LeakyR-eLU layers. The out-
puts of the generator and the real training samples are fed
into the discriminator.

For the model training, we train the discriminators and

generators alternatively by stochastic gradient descent, and
the Adam algorithm [102] is used to optimize the training.
The learning rate is set to 0.0002, themomentum is set to 0.5,
the batch size is set to 10, and the models are trained for 30
epochs. In our experiments, the training dataset is MARS,
and the input samples of the generators are resized into a fix
size 256 × 256.

Cross-GAN. The architecture of Cross-GAN is reported
in detail in Table 4. The generators in Cross-GAN have 5
convolutional layers and no spatial pooling layer is used in
this model. In our experiments, we exploit the convolutions
of ResNet-50 network to realize the generators. This strategy
allows themodel to learn its own spatial down-sampling [29].
The discriminator is composed of Convolutional (Conv) lay-
ers, max pooling (MAX-POOL) layers, and LeakyReLU lay-
ers. In its last two layers, we use two fully connected (FC)
layers with ReLU and Sigmoid respectively. It receives the

Table 4
The Network Architecture of Cross-GAN.

Layer Generator
View 1 View 2 Weight-sharing

1 Conv (N=20, K=5 × 5, S=1), BN, ReLU Conv (N=20, K=5 × 5, S=1), BN, ReLU Yes
2 Conv (N=20, K=5 × 5, S=1), BN, ReLU Conv (N=20, K=5 × 5, S=1), BN, ReLU Yes
3 Conv (N=20, K=5 × 5, S=1), BN, ReLU Conv (N=20, K=5 × 5, S=1), BN, ReLU Yes
4 Conv (N=20, K=3 × 3, S=1), BN, ReLU Conv (N=20, K=3 × 3, S=1), BN, ReLU Yes
5 Conv (N=20, K=3 × 3, S=1), BN Conv (N=20, K=3 × 3, S=1), BN No

Layer Discriminator
View 1 View 2 Weight-sharing

1 Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU No
2 Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU No
3 Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5 × 5, S=1), MAX-POOL (S=2), LeakyReLU No
4 FC (N=1024), ReLU FC (N=1024), ReLU No
5 FC (N=1024), Sigmoid FC (N=1024), Sigmoid Yes
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(c) Market-1501

Figure 9: The Euclidean distance measurements between two samples from VIPeR, CUHK03 and Market-1501 with different
weight-sharing layers in CPG-Net. In this experiment, we set the numbers of weight-shaing layers in encoder and decoder are the
same. The results show that the performance of image generation gradually increases with the rising the number of weight-sharing
layers in generator (encoder and decoder). By comparison, the impact of weight-sharing in discriminator is relatively less.

batches consisting of the output of the generator and the sam-
ples of training dataset. This model is pre-trained onMarket-
1501 dataset, which is equally divided into two non-overlapping
subsets to train twoGANs respectively. During the pre-training,
the Adam algorithm [102] is employed, and the learning rate
is set to 0.002, the momentum is set to 0.5, the mini-batch
size is set to 128. The training is performed 30000 iterations.

Weight-sharing. By default, for CPG-Net, we set the
number of weight-sharing layers in encoder and decoder is
4, which mainly aims to capture the common visual regions
of cross-view images to improve the quality of synthesized
pose-rich samples. In discriminator, the last two years share
the weights. Likewise, the weight-sharing strategy is applied
in Cross-GAN as well to enhance the performance of person
matching. In the experiments discussed below, we evaluate
how the weight-sharing strategy affects the performance of
pose augmentation and pedestrians matching by varying the
number of weight-sharing layers on different benchmarks.
5.3. The Effect of Weight-Sharing in CPG-Net

Weemployweight-sharing strategy on some specific lay-
ers of generator and discriminator in CPG-Net to learn co-
occurrence visual pattern for pose-rich cross-view samples
generation. The siamese encoders in the coupled generators
with last layers weight-sharing encode the common visual
regions of cross-view samples and the decoders with first
layers weight-sharing synthesize pose-rich samples from the
intermediate code. The coupled discriminators with last layer
weight-sharing are able to capture the common visual pat-
terns and prompt generators to produce more authentic im-
ages with new postures.

We evaluate the effect of weight-sharing in CPG-Net dur-
ing the pose augmentation process by changing the number
of weight-sharing layers of generator and discriminator. The
experiments are conducted onVIPeR, CUHK03 andMarket-
1501, and the results are shown in Fig. 9.

It can be seen from Fig. 9 that the quality of generated
cross-view samples is improved significantly with the in-
crease of the number of weight-sharing layers in coupled

generators (here we let the encoder and decoder have the
same number of weight-sharing layers). By comparison, the
performance of cross-view sample generation is not so much
influenced by varying the number of weight-sharing layers in
the coupled discriminators. For example, in Fig. 9 (a), when
the encoder and decoder have one weight-sharing layer, the
Euclidean distance between generated paired samples I1 and
I2 decreases from 0.305 to 0.237 with the number of weight-
sharing in discriminator from 1 to 4 (illustrated by the red bar
in each column), which is evidently less than the variation
(from 0.305 to 0.173) with the change of number of weight-
sharing layers in generator (shown by the red bar and ma-
genta bar in column 1). The results on the other two datasets
also have the same trends, as shown in Fig. 9 (b) and Fig. 9
(c) respectively. Although increasing the number of weight-
sharing layers of the coupled discriminator contributes little
to performance improvement of cross-view sample gener-
ation, this strategy still can reduce the number of network
parameters in discriminative model to improve the training
efficiency.
5.4. Comparison with State-of-the-arts

In the following, we compare the proposed approach PAC-
GAN and Cross-GAN [29] with the following state-of-the-
arts semi/un-supervised and supervised approaches onVIPeR,
CUHK03 andMarket-1501. The semi/un-supervised approac-
hes include: SDALF [36], eSDC [58], t-LRDC [103], OSML [24],
LSRO [30], CAMEL [64], UMDL [63], BoW [6] and PUL [104].
The supervised approaches include: DM3 [105], DeepList [106],
DDDM[107], Locally-Aligned [108], JointRe-id [18], SCSP [14],
Multi-channel [109], DNSL [25], JSTL [110], SI-CI [111],
S-CNN [19], SpindleNet [112], Part-Aligned [113], S-LSTM [114],
E-Metric [115], Deep-Embed [20], SSM [116], MSCAN [117],
CADL [118], LADF [26], XQDA [22], OL-MANS [23],
SalMatch [119] and PDC [120]. Note that not all the ap-
proaches above report the results of experiments in all three
datasets.

The Rank-1, Rank-10, Rank-20 recognition rate of these
methods on VIPeR, CUHK03 andMarket-1501 are reported
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Figure 10: The CMC curves of our approach and some state-of-the-art on three benchmarks: VIPeR, CUHK03 and Market-1501.
To show these curves and their trends clearly, we just draw out the typical state-of-the-arts.

in Table 5, Table 6 and Table 7 respectively. The CMC
curves of PAC-GAN, Cross-GAN and state-of-the-arts are
illustrated in Fig. 10. For the convenience of showing the
comparison, we just draw out the typical state-of-the-arts,
rather than all the methods aforementioned.
5.4.1. Experiments on VIPeR dataset

We evaluate our method PAC-GAN and Cross-GAN and
state-of-the-arts in terms of CMC values, and the results are
shown in Table 5 and Fig. 10 (a). It is obvious that the
proposed approach PAC-GAN has nice performance when
R = 1. The recognition rate of it is 50.21% that is higher than
other unsupervised and semi-supervised methods. Besides,
when R = 10 and R = 20, PAC-GAN achieves 91.70%
and 95.17% respectively, which outperforms the semi/un-
supervised mehtods including our previous method Cross-
GAN (Rank-1 rate is 49.28% , Rank-10 rate is 91.66% and
Rank-20 rate is 93.47%) due to the performance boosting
from pose augmentation.

To evaluate the effectiveness of the proposed pose aug-
mentation scheme on VIPeR dataset, we combine CPG-Net
with two unsupervisedmethods, eSDC [58] andCAMEL [64]
respectively. Obviously, the Rank-1, Rank-10 and Rank-20
rate of CPG-Net+eSDC [58] are 29.18%, 61.51% and 75.52%
respectively, which are higher than eSDC [58] (Rank-1=26.31%,
Rank-10=58.86% andRank-20=72.77%). Similarly, the per-
formance of CAMEL [64] is boosted by combinating with
CPG-Net, the recognition rates of Rank-1, Rank-10 andRank-
20 are increased from 30.90%, 52.00% and 72.50% to 33.45%,
54.78% and 75.32%, respectively.

Compared with the supervised state-of-the-arts, such as
SpindleNet [112] (Rank-20 rate is 96.10%), Deep-Embed [20]
(Rank-20 rate is 96.20%), the performance of our method is
not the highest. However, PAC-GAN can still outdo themost
competitors by attaining Rank-10 rate 91.70% and Rank-20
95.17%. It is particularly noteworthy that when we combine
PAC-GAN and KISSME [121] which is a supervised met-
ric learning approach, the performance of recognition is im-
proved substantially, higher than the matching rate of combi-
nation of Cross-GAN and KISSME. That means this novel
unsupervised pose augmentation model can generate more

Table 5
The comparison results (Recognition rate: R = 1, R = 10, and
R = 20, test person= 316) with state-of-the-arts on VIPeR
dataset. The best performance values are in bold-font.

Method (Semi/Un-
supervised)

R = 1 R = 10 R = 20

PAC-GAN 50.21 91.70 95.17
PAC-GAN+KISSME [121] 56.33 95.15 98.04
CPG-Net+eSDC [58] 29.18 61.51 75.53
CPG-Net+CAMEL [64] 33.45 54.78 75.32
Cross-GAN 49.28 91.66 93.47
Cross-GAN+KISSME [121] 54.25 94.30 97.05
SDALF [36] 19.87 49.37 65.73
eSDC [58] 26.31 58.86 72.77
t-LRDC [103] 27.40 46.00 75.10
OSML [24] 34.30 - -
CAMEL [64] 30.90 52.00 72.50
Method (Supervised) R = 1 R = 10 R = 20
PDC [120] 51.27 84.18 91.46
Locally-Aligned [108] 29.60 69.30 86.70
JointRe-id [18] 34.80 74.79 82.45
SCSP [14] 53.54 91.49 96.65
Multi-channel [109] 47.80 84.80 91.10
DNSL [25] 42.28 82.94 92.06
JSTL [110] 38.40 - -
SI-CI [111] 35.80 83.50 -
S-LSTM [114] 42.40 79.40 -
S-CNN [19] 37.80 77.40 -
SpindleNet [112] 53.80 90.10 96.10
Part-Aligned [113] 48.70 87.70 93.00
Deep-Embed [20] 49.00 91.10 96.20
LADF [26] 29.34 75.98 88.10
OL-MANS [23] 44.90 74.40 93.60
SalMatch [119] 30.16 62.50 75.60
DM3 [105] 37.52 80.85 88.90
DeepList [106] 40.36 81.20 91.08
DDDM [107] 22.35 66.08 76.32

effective visual representations for metric learning.
Fig. 10 (a) demonstrates the CMC curves of PAC-GAN

and other semi/un-supervised and supervised state-of-the-
arts on VIPeR dataset. Here we do not show all the ap-
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Table 6
The comparison results (Recognition rate: R = 1, R = 10, and
R = 20, test person= 100) with state-of-the-arts on CUHK03
dataset. The best performance values are in bold-font.

Method (Semi/Un-
supervised)

R = 1 R = 10 R = 20

PAC-GAN 85.66 97.71 99.54
PAC-GAN+KISSME [121] 89.84 98.98 99.75
CPG-Net+eSDC [58] 10.88 40.36 55.45
CPG-Net+LSRO [30] 86.57 98.26 99.87
CPG-Net+CAMEL [64] 34.13 78.86 82.80
Cross-GAN 83.23 96.73 99.40
Cross-GAN+KISSME [121] 88.90 98.36 99.50
OSML [24] 45.61 85.34 88.50
LSRO [30] 84.62 97.64 99.80
eSDC [58] 8.76 38.28 53.44
CAMEL [64] 31.90 76.62 80.63
UMDL [63] 1.64 8.34 10.24
Method (Supervised) R = 1 R = 10 R = 20
MSCAN [117] 74.21 97.54 99.25
SSM [116] 71.82 92.54 96.64
PDC [120] 88.70 99.24 99.67
DNSL [25] 58.90 92.45 96.30
JointRe-id [18] 54.74 91.50 97.31
E-Metric [115] 61.32 96.50 97.50
S-LSTM [114] 57.30 88.30 -
S-CNN [19] 61.80 88.30 -
Deep-Embed [20] 73.00 94.60 98.60
SpindleNet [112] 88.50 98.80 99.20
Part-Aligned [113] 85.40 98.60 99.90
XQDA [22] 52.20 92.14 96.25
OL-MANS [23] 61.70 92.40 98.52
DM3 [105] 56.16 91.31 96.74
DeepList [106] 54.84 92.56 96.61
DDDM [107] 19.58 49.64 63.25

proaches in Table 5. The matching rate of PAC-GAN and
Cross-GAN increase gradually from Rank-1 to Rank-6 and
then the growth is slowdown, which is much higher than
SDALF [36], eSDC [58], SalMatch [119] and CAMEL [64].
The trends of SpindleNet [112] and Deep-Embed [20] are
very close to the proposed method, but they never surpass
the combination of PAC-GAN and KISSME from Rank-1 to
Rank-20.
5.4.2. Experiments on CUHK03 dataset

Table 6 shows the matching rates of these approaches on
CUHK03 dataset. The Rank-1 matching rate of PAC-GAN
is higher than all these semi/un-supervised methods, and it
is just lower than two supervised state-of-the-arts, namely
PDC [120] (Rank-1=88.70%) and SpindleNet [112] (Rank-
1=88.50%). Like the situation on VIPeR dataset, the perfor-
mance can be boosted obviously by using KISSME [121] as
auxiliary enhancement with PAC-GAN. That is, the recogni-
tion rate of this combination is improved fromRank-1=85.66%
to 89.84%. The Rank-10 and Rank-20 matching rates of
PAC-GAN combing with KISSME are 98.98% and 99.54%,
which is higher than most of these methods and just a bit less
than PDC [120] (Rank-10=99.24%) and Part-Aligned [113]

(Rank-20=99.90%), respectively. However, PAC-GAN does
not need any labeled data for training, which is a major ad-
vantage for common person Re-Id task.

On CUHK03 dataset, we evaluate the performance boost
by using pose augmentation via three combinations: CPG-
Net+eSDC [58], CPG-Net+LSRO [30] andCPG-Net+CAM
-EL [64]. It is as expected that all these three unsupervised
approaches are boosted under the support of CPG-Net. Specif-
ically, the recognition rates of eSDC [58] are improved to
Rank-1=10.88%, Rank-10=40.36% and Rank-20=55.45%;
the rates of LSRO [30] are boosted to Rank-1=86.57%, Rank-
10=98.26% andRank-20=99.87%; the rates of CAMEL [64]
are raised to Rank-1=34.13%, Rank-10=78.86% and Rank-
20=82.80%.

The CMC curves of the proposed method and the com-
petitors on CUHK03 dataset are shown in Fig. 10 (b). The
trends of PAC-GAN, Cross-GAN, SpindleNet [112], and LS
RO [30] are very similar, which grow step-by-step from 84%
around to about 96% in the interval of Rank-1 to Rank-6.
After that the change of them tends to be gentle and the
peak CMC values of them are very close, much higher than
OSML [24] amd CAMEL [64].
5.4.3. Experiments on Market-1501 dataset

The comparison results onMarket-1501 dataset reported
in Table 7 shows that thematching rate of the proposedmethod
(Rank-1=75.34, Rank-10=95.71, Rank-20=98.45) is higher
thanCross-GAN (Rank-1=72.15, Rank-10=94.31, Rank-20=
97.50) as the more priors are provided by pose augmenta-
tion. However, the performance of PAC-GAN is lower than
LSRO [30] when R = 1 because, on one hand, many pedes-
trian samples in Market-1501 dataset have similar appear-
ance, and on the other hand, LSRO can produce more au-
thentic pedestrian samples for discrimination. It is undeni-
able that the computation for a great quantity ofmore authen-
tic samples generation is very expensive. By contrast, our
method has an obvious advantage that PAC-GAN achieves
good performance via pose augmentation but it does not re-
quire any labeled data for training. Similar to the above-
mentioned results, with the assistance of supervised metric
learning technique, KISSME [121], the combined solution
(PAC-GAN+KISSME) can ourperform all these semi/un-
supervised and supervised approaches with higher matching
rates Rank-10=97.02% and Rank-20=98.94%.

Similar to the experiments on CUHK03, we use the same
combinations to evaluate the performance enhancement by
CPG-Net. In Rank-1, we can clearly observe the enhance-
ment of +3.07% (eSDC [58]), +2.75% (LSRO [30]) and+2.80%
(CAMEL [64]). In Rank-10, the performance improvement
are +2.97% (eSDC [58]), +1.21% (LSRO [30]) and +2.13%
(CAMEL [64]). In Rank-20, we can also observe perfor-
mance boost of +2.67% (eSDC [58]), +0.60% (LSRO [30])
and +2.19% (CAMEL [64]). Therefore, with the support of
CPG-Net, the performance of these unsupervised solutions
are improved to varying degrees.

The CNC curves of PAC-GAN and other methods on
Market-1501 dataset are shown in Fig. 10 (c). Like the eval-
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Table 7
The comparison results (Recognition rate: R = 1, R = 10, and
R = 20, test person= 751) with state-of-the-arts on Market-
1501 dataset. The best performance values are in bold-font.

Method (Semi/Un-
supervised)

R = 1 R = 10 R = 20

PAC-GAN 75.34 95.71 98.45
PAC-GAN+KISSME [121] 80.06 97.02 98.94
CPG-Net+eSDC [58] 36.52 63.58 70.20
CPG-Net+LSRO [30] 86.72 96.85 98.16
CPG-Net+CAMEL [64] 57.36 86.80 89.22
Cross-GAN 72.15 94.31 97.50
Cross-GAN+KISSME [121] 78.03 96.25 97.50
eSDC [58] 33.45 60.61 67.53
SDALF [36] 20.53 - -
LSRO [30] 83.97 95.64 97.56
CAMEL [64] 54.56 84.67 87.03
PUL [104] 45.53 72.75 72.65
UMDL [63] 34.54 62.60 68.03
BoW [6] 34.40 - -
Method (Supervised) R = 1 R = 10 R = 20
JSTL [110] 44.72 77.24 82.00
SSM [116] 82.21 - -
CADL [118] 73.84 - -
PDC [120] 84.14 94.92 96.82
MSCAN [117] 80.31 - -
SCSP [14] 51.90 - -
DNSL [25] 61.02 - -
S-CNN [19] 65.88 - -
Deep-Embed [20] 68.32 94.59 96.71
SpindleNet [112] 76.90 - -
XQDA [22] 43.79 75.32 80.41
OL-MANS [23] 60.72 89.80 91.87
DM3 [105] 72.26 90.67 94.10
DeepList [106] 71.39 89.40 94.55
DDDM [107] 74.42 93.75 95.20

uation on CUHK03, the growths of LSRO [30], PAC-GAN,
Cross-GAN and their combination solutoins are very close,
which are fast in the interval Rank-1 to Rank-5 and gradually
slow down with rank increasement. No doubt, in Market-
1501 dataset, the performance of the proposed method is on
the whole the best among them.

6. Conclusion
In this paper we propose to enhance the performance

of unsupervised cross-view person Re-Id by introducing a
novel pose augmentation cross-view person Re-Id scheme
called PAC-GAN. In this scheme, a novel deep generative
model, named CPG-Net, is developed to produce new sam-
ples that have various poses from skeleton samples and orig-
inal pedestrian samples. A pose augmented dataset is gen-
erated by combing the new samples and original samples,
which are fed into the person Re-Id model, named Cross-
GAN, to improve the identification accuracy. The results of
our experiments illustrate that the performance of unsuper-
vised cross-view person Re-Id can be improved substantially
by using PAC-GAN.
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