
Hetero-Center Loss for Cross-Modality Person Re-Identification 

Yuanxin Zhua, Zhao Yanga,*, Li Wanga, Sai Zhaoa, Xiao Hua, Dapeng Taob 
aSchool of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, China 

bSchool of Information Science and Engineering, Yunnan University, Kunming, China 

Abstract –Cross-modality person re-identification is a 

challenging problem which retrieves a given pedestrian 

image in RGB modality among all the gallery images in 

infrared modality. The task can address the limitation of 

RGB-based person Re-ID in dark environments. 

Existing researches mainly focus on enlarging inter-class 

differences of feature to solve the problem. However, few 

studies investigate improving intra-class cross-modality 

similarity, which is important for this issue. In this paper, 

we propose a novel loss function, called Hetero-Center 

loss (HC loss) to reduce the intra-class cross-modality 

variations. Specifically, HC loss can supervise the 

network learning the cross-modality invariant 

information by constraining the intra-class center 

distance between two heterogenous modalities. With the 

joint supervision of Cross-Entropy (CE) loss and HC 

loss, the network is trained to achieve two vital 

objectives, inter-class discrepancy and intra-class 

cross-modality similarity as much as possible. Besides, 

we propose a simple and high-performance network 

architecture to learn local feature representations for 

cross-modality person re-identification, which can be a 

baseline for future research. Extensive experiments 

indicate the effectiveness of the proposed methods, 

which outperform state-of-the-art methods by a wide 

margin.  

Index Terms: Cross-modality person re-identification, 

Hetero-Center loss, local feature. 

I. INTRODUCTION 

Person re-identification is an image retrieval problem, 

aiming to match pedestrian images across multi-cameras 

views [1]. Most of the existing works [2] [3] [4] [5] [6] [7] 

focus on matching RGB images. However, there are some 

limitations for the RGB based images re-identification task. 

For example, criminals often gather information in the day 

and execute crimes in the night. Fortunately, most the recent 

surveillance cameras can capture infrared images at night, 

which can provide valid information for some related tasks. 

In this case, the traditional method can not address this kind 

of problem properly, because there is a huge gap between 

infrared (IR) images and RGB images, as shown in Figure 1. 

Comparing to RGB images, IR images lose rich color 

information, which is important in RGB-based person 

Re-ID methods. In addition, the spectrum between IR and 
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RGB images is different. So, the method for RGB-based 

person Re-ID can not be adopted in RGB-IR cross-modality 

person Re-ID problem effectively [8]. 

 
Figure 1. Examples of RGB images and infrared images in SYSU-MM01 
RGB-IR [8] dataset. 

To address this issue, some methods have been 

proposed in this field. Wu et al. [8] released a large-scale 

cross-modality person Re-ID dataset and proposed a deep 

one-stream architecture named zero-padding network. In the 

training stage of zero-padding network, Cross-Entropy (CE) 

loss function is used to supervise the network. Then Ye et al. 

[9] proposed a two-stream network architecture called 

TONE, in which CE loss and contrastive loss are used for 

training. As a ranking loss, contrastive loss is 

complementary to CE loss. Then, Ye et al. [11] used triplet 

loss instead of contrastive loss to train an improved 

two-steam model named BDTR based on TONE, because 

contrastive loss is of weak flexibility in the feature 

embedding learning. Contemporarily, Dai et al. [10] also 

adopted the joint supervision of triplet loss and CE loss to 

train a generative adversarial network named cmGAN 

which can learn modality-invariant feature representation. 

However, most of the above-mentioned methods focus 

on enlarging inter-class discrepancy of features and ignore 

improving the intra-class cross-modality similarity. The two 

objectives are equally important for this issue. In this paper, 

we design a novel loss function specifically for the problem, 

called Hetero-Center (HC) loss, which constrains the 

intra-class center distance between two heterogenous 

modalities. The loss function can force the network 

extracting the invariant modality-shared information rather 

than inconstant modality-specific information from 

heterogeneous images to form the feature descriptors. To 

achieve the two aims simultaneously, we adopt the joint 

supervision of the HC loss and CE loss to train the network. 

Both of them can be minimized by standard optimize 

algorithms, e.g. Stochastic Gradient Descent (SGD) [13]. 

RGB camera  
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IR camera 
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Besides, we propose a network framework called 

Two-Stream Local Feature Network (TSLFN) which learns 

local feature representations to solve the problem. The 

architecture is divided into two individual branches to 

extract features in two modalities. Each branch contains a 

backbone network, which outputs a feature map with rich 

image information. Then, conventional average pooling 

layers are employed to uniformly split the feature maps into 

several stripes for local feature extraction. To project the 

features from different modalities into the same subspace, 

we use a share-weight fully-connected layer for 

corresponding stripes in two branches. The experiments 

demonstrate that TSLFN with HC loss achieves 

state-of-the-art performance in this field, which far exceeds 

other methods. 

The main contributions of this paper can be 

summarized as follows: 

1. We design a novel loss function (named HC loss) to 

constrain the distance between two centers of 

heterogenous modality. HC loss forces the network 

improving the intra-class cross-modality similarity. 

With the joint supervision of HC loss and CE loss, the 

network extracts modality-shared information to form 

discriminative feature descriptors. 

2. We present a network structure to learn local feature 

representation. To the best of our knowledge, it is the 

first attempt to learn local feature representations in the 

field of cross-modality person Re-ID. Due to its simple 

and effective architecture, the network can be a strong 

baseline for future research. 

II. RELATED WORK 

In the field of person Re-ID, most of the works focus on 

dealing with the matching problem in RGB domains. Those 

methods could be divided into three categories: hand-craft 

feature representation [3] [6] [14] [15] [16] [17] [23], 

distance metric learning [18] [19] [20] [21] [22] and deep 

learning [24] [25] [26]. A detailed literature review for 

RGB-based person Re-ID can be found in [1]. However, the 

performance of the above methods on RGB-IR 

cross-modality person Re-ID problem is poor, because there 

is a large gap between RGB domains and IR domains. To 

deal with the cross-modality retrieval problem, the 

following approaches were proposed. 

Wu et al. [8] firstly defined the problem of 

cross-modality person Re-ID, and released a large-scale 

cross-modality person Re-ID dataset, named SYSU-MM01. 

To address the problem, they discussed the difference 

between three commonly used cross-domain models: 

asymmetric FC layer, one-stream, and two-stream network 

structures. Based on the discussions, they proposed an 

improved one-stream network architecture named 

zero-padding network, which converted images from RGB 

color space to gray color space in the preprocessing phase. 

Then, a gray image was placed in the first channel and a 

zero-padding image was placed in the second channel. By 

contrast, an infrared image was placed in the second channel 

and a zero-padding image was placed in the first channel. 

The purpose of zero-padding network was to increase 

domain-specific nodes in the network, which provided extra 

flexibility for the network. 

Ye et al [9] [11] pointed out that cross-modality person 

Re-ID suffered from cross-modality and intra-modality 

variations simultaneously. Based on the point of view, Ye et 

al. [9] proposed a hierarchical metric learning method called 

HCML for cross-modality matching. The objective of 

HCML was to learn a kernel matrix. By the matrix, features 

were projected into a subspace, in which the two variations 

were minimized as much as possible. To learn the matrix, 

the formula of HCML contained two optimization terms, 

which were modality-specific metric term and 

modality-shared metric term. The aim of the first term was 

to constrain the features extracted from the same modality 

as compact as possible, which could reduce the 

intra-modality variations. For the second term, the aim was 

to improve the discriminative power of the features 

extracted from two modalities for pedestrian identity. 

Besides, Ye et al. [9] proposed a two-stream 

convolution network structure named TONE. In the training 

stage of TONE, the joint supervision of contrastive loss and 

CE loss was adopted to train TONE. Based on TONE 

framework, Ye et al. [11] proposed an improved two-stream 

network structure named BDTR. The difference between the 

two networks was that BDTR used triplet loss [27] to 

supervise the training of network instead of contrastive loss. 

Since contrastive loss used a fixed margin for all negative 

images, which was quite restrictive for the feature 

distribution, damaging its robustness for noisy samples in 

feature embedding learning [43]. Comparing with 

contrastive loss, triplet loss only forced negative images to 

be farther away than positive images, which was more 

robust for distortions.  

Dai et al [10] proposed a novel method termed as 

cmGAN, which achieved the advanced performances in the 

field. The method was based on generative adversarial 

network (GAN) [28] [40], which consisted of a generator 

and a discriminator. In cmGAN, generator extracted features 

from two modalities, which were input into the 

discriminator. The aim of the discriminator was to 

distinguish whether the input features were from RGB 

modality or infrared modality. In contrast, the aim of the 

generator was to extract features which could not be 

correctly judged by the discriminator. By training the two 

networks with opposite aims, cmGAN could learn 

modality-invariant feature representations. In the training 

phase, cmGAN adopted the joint supervision of triplet loss 

and CE loss as [11]. 

III. METHODS 

A. Problem description 

In heterogenous images, the appearance of a person 

consists of modality-shared information (e.g. contours, 



textures) and modality-specific information such as colors. 

The former information is the invariant information existing 

in two modalities, which should be extracted by the network 

to form the feature descriptor, due to its robustness for 

modality changes. The latter information only exists in 

specific modality or is inconstant with modality changes, 

which reduces the feature similarity between two 

heterogenous samples of the same identity. 

Since cross-modality person re-identification is a 

verification problem, we compute the similarity of features 

extracted by the network to match the pedestrian images 

between two modalities. Hence, the aims of the network in 

the training procedure are to enlarge the inter-class 

discrepancy and to improve the intra-class cross-modality 

similarity. So, the features should contain modality-shared 

information as much as possible to bridge the gap between 

two modalities, which improves the intra-class 

cross-modality similarity. However, traditional loss 

functions can not supervise the network to extract 

modality-shared information. For instance, CE loss function 

is computed as 
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where K  denotes the batch size, ix  denotes the features 

extracted by 
thi  sample belonging to the iy class, 

jW

denotes the 
thj  column of the weights, and b  is the bias 

term. From the definition of Cross-Entropy, we can observe 

that the objective of Cross-Entropy is to extract 

identity-specific information for classification. However, the 

loss function does not constrains the network to extract 

modality-shared information effectively to form the feature 

descriptor, because some modality-specific information is 

also the identity-specific information conducting the 

network to correctly predict identity. For example, clothes 

color attribution is a strong signal to predict the true label, 

which is probably extracted by the network with the 

supervision of CE loss to form the descriptors. However, the 

color attribution is inconstant with modality changes, and 

the operation of extracting the information to form the 

descriptors is contradictory with the aim of improving 

intra-class cross-modality similarity. Therefore, CE loss can 

not achieve the vital objective, intra-class cross-modality as 

much as possible. Analogously, most of the conventional 

loss functions can not meet the request of cross-modality 

person Re-ID. 

To intuitively demonstrate the disadvantage of 

conventional loss functions, in Figure 2 we show typical 

feature distributions with the supervision of CE loss. From 

the figure, we observe the phenomenon that the features of 

different classes are separated correctly. However, the 

feature distributions of different modalities exist a huge gap 

in each class, which is reflected from the considerable 

center distance between two modalities in the figure. 

 
Figure 2. The distribution of features extracted by the baseline model (its 

architecture is the baseline model which will be mentioned in III section) 

only with CE loss. The feature is from 770 RGB images and 300 infrared 
images of 8 identities in SYSU-MM01, whose dimension of features is 

reduced to 2 by t-SNE [42]. Points with different colors denote features 

belonging to different identities. Points of different shapes denote features 
extracted from images of different modalities. The red points with different 
shapes denote the feature centers of different modalities in each identity. 

B. Hetero-Center Loss 

In this subsection, we propose our loss function to 

improve the intra-class cross-modality similarity. Intuitively, 

we want to constrain the distance between two modality 

feature distributions in each class. However, it is hard to 

compute the distance between two feature distributions, so 

we penalize the center distance between two modality 

distribution instead of the distance between two modality 

distribution. To this end, we propose Hetero-Center (HC) 

loss as formulated in the following equation 
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classes, M  and N  are the numbers of RGB images and 

infrared images in the 
thi  class. 
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the thj  RGB image and infrared image in the
thi  class. 

Ideally, the centers of two modalities in every class are 

supposed to be updated when the weights of the model are 

updated in each epoch. In this case, we need to consider 

every sample to learn the two centers of each class in each 

iteration, which requests massive and unpractical 

computational cost.  

To solve the problem, we conduct two efficient 

modifications inspired by [29] [12]. First, we compute two 

modality centers of each class in a mini-batch rather than in 

the total training set. Consequently, the constraint on center 

distance comes into force in the mini-batch, instead of the 
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entire training set. Second, to make the constraints 

equivalent in different ranges, we propose an improved 

mini-batch sampling strategy based on Ye et al [11]. In each 

iteration, we randomly choose L identity from the training 

set. Then, we randomly select T RGB images and T infrared 

images of each chosen identity to form a mini-batch, so its 

size is 2  L  T=K. In this way, the modality centers in a 

mini-batch are computed from multiple features and the 

sample size of each class is the same, which is important to 

avoid the perturbations caused by class imbalance. And, due 

to the random sampling in multiple iterations, the local 

constraint in the mini-batch has the same effect as the global 

constraint in the entire training set. 

 
(a). 0.001 =                                    (b). 0.01 =  

 
(c). 0.1 =                                (d). 1 =  

Figure 3. The feature distribution extracted by the baseline model with the joint supervision of CE loss and HC loss. The points with different colors and 
different shapes denote features of different modality belonging to different identities. The red points denote the feature centers of different modalities in 
each identity. Different   leads to different feature distributions. We can observe that with the increase of  , the feature distributions of different 

modality are pulled closer and the distance between two feature centers of different modalities is smaller. 

 

Since HC loss only constrains the center distance in 

each class to improve the intra-class cross-modality 

similarity, it can not supervise the network learning 

discriminative feature representation to enlarge the 

inter-class discrepancy. By considering the two key 

objectives for cross-modality person Re-ID, we adopt the 

joint supervision of HC loss and CE loss. The overall loss 

function is given as 
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where   is a hyperparameter for balancing the two loss 

functions, which is regarded as the weight of HC loss in the 

overall loss. Figure 3 shows the feature distributions with 

different  , from which we can intuitively observe the 

influence of HC loss in the course of training. With the 

increase of  , the feature distributions of different 

modality are pulled closer and the distance between two 

feature centers of different modalities is smaller, which 

means that the learned feature representations are more 

consistent for different heterogenous images and the 

network is more inclined to extract modality-shared 

information to form the feature representations. The trend 
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demonstrates that the intra-class cross-modality similarity is 

increased with the supervision of HC loss. 

The overall loss can be optimized with standard 

optimization algorithms (e.g. SGD), because the gradients 

of HCL  with respect to ix  can be directly solved as 
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By the same principle, the gradient of 
,2,i jx can be also 

computed. When the models achieve convergence, the 

network can learn discriminative feature representations 

with two vital characteristics, inter-class discrepancy, and 

intra-class cross-modality compactness. 

C. Two-Stream Local Feature Network 

A typical approach [26] [30] in RGB-based person 

Re-ID is partitioning pedestrians into horizontal stripes to 

extract local feature which is concatenated to represent the 

body structure. Since the body structure is an intrinsic 

property of pedestrian, its representation is invariant for 

modality changes. Thus, the information about body 

structure is modality-shared, which can be used to learn the 

modality-invariant feature representation.  

To this end, we propose the Two-Stream Local Feature 

Network (TSLFN), whose architecture is shown in Figure 4. 

The network contains two parts, feature extractor and 

feature embedding. 

 
Figure 4. The architecture of the proposed Two-Stream Local Feature Network (TSLFN) with the supervision of CE loss and HC loss. The network 
contains two branches for two modalities. In each branch, the input images go forward the Resnet-50 backbone. Then, the feature map outputted from the 

backbone is split into p stripes by a conventional average pooling layer. For each stripe, a weight-sharing FC layer reduces the dimension of features. 

Afterward, the dimension-reduced features are input into L2-Norm layers and FC layers to compute HC loss and CE loss. In the testing phase, all the 
dimension-reduced features are concatenated to form the final descriptor. 

Feature Extractor. Feature extractor captures 

information from heterogenous images to form the final 

feature descriptor. As the inputs of the network include 

RGB images and infrared images, we adopt two individual 

branches to extract the information from the two modalities. 

With consideration of limited data, each branch contains a 

pre-trained backbone which inherits the architecture of 

Resnet50 [31] before the global average pooling layer with 

a slight change. The difference is that we remove the last 

down-sampling operation in Resnet50, which can enlarge 

the areas of reception fields to enrich the granularity of 

feature. This method has been successfully implemented in 

[32] [33]. Then, the feature map outputted from the 

backbone is uniformly partitioned into p  stripes in the 

horizontal orientation. Each stripe is averaged into a local 

feature vector. Afterward, we adopt a fully connected (FC) 

layer to reduce the dimension of each local feature vector. 

To bridge the gap between two modalities, corresponding 

fully connected layer in two branches shares the same 

weights. For each FC layer, we adopt a Leaky ReLU 

activation layer and a batch normalization layer [34] to 

solve the internal covariate shift problem. In the testing 

stage, the images are input into corresponding branches 

according to the modality. Then, each local feature vector 

undergoes L2 normalization. At last, all the feature vectors 

are concatenated to form the final feature descriptors. In the 

process of testing, given a probe image, we extract the 

feature descriptor of the probe and all the heterogenous 

gallery images. Because the identities of training images 

and testing images (consisting of gallery and probe images) 

FC layer 
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do not overlap, we can not directly predict the labels of 

those gallery images. The next step is that we rank the 

gallery images according to the Euclidean distance of 

feature descriptors between the probe and all the gallery 

images. In the ideal condition, the heterogenous 

intra-class gallery images have the highest similarity. In 

the next section, we will use two indicators to quantitatively 

evaluate the performance of models. 

Feature Embedding. The aim of feature embedding is 

to supervise the network learning the feature representations, 

which achieves the two objectives: enlarging the inter-class 

discrepancy and improving the intra-class cross-modality 

similarity as much as possible. So, we adopt HC loss and 

CE loss to supervise the training of the network. For HC 

loss, feature vectors go through L2 normalization before 

computing the loss value as Equation (2). With regard to CE 

loss, a local feature vector is inputted into a classifier, which 

is composed of a FC layer and a softmax activation layer. 

There are p local feature vectors that need to be inputted to 

different classifiers with independent parameters. Then, the 

classifiers predict the identity of each feature vector, 

individually. For each branch, we compute CE loss 

according to the predicted value by the classifier and the 

identity of the input image. The loss for each branch is used 

to update the parameters of the corresponding branch in the 

training stage. 

IV. EXPERIMENTS 

A. Dataset description 

As the first large-scale dataset for cross-modality 

person Re-ID, SYSU-MM01 is adopted to evaluate the 

effectiveness of our methods. It contains 287,628 RGB 

images and 15,792 IR images which are captured by 6 

cameras, including four RGB cameras (Cam 1, 2, 4, 5) and 

two infrared cameras (Cam 3, 6). The former group works 

in light scenarios (day time) while the latter works when the 

environment is dark (night time). Except for Cam 2 and 

Cam 3, all the cameras are placed in different locations 

which can be divided into indoor and outdoor scenes. Cam2 

and Cam3 are placed in the same indoor scenes. The dataset 

contains 491 available identities, each identity is observed 

by at least one RGB camera and one infrared camera. Due 

to the great variation among heterogenous modalities, 

environments, human pose, and camera viewpoint changes, 

the dataset is very challenging. Some examples from 

SYSU-MM01 are shown in Figure 1. 

B. Evaluation protocol 

The experiments adopt the evaluation protocol in 

[8][11]. The training set consists of 22258 RGB images and 

11909 infrared images of 395 persons. The testing set 

contains the RGB and infrared images of 96 identities. 

During the testing phase, RGB images in the testing set are 

for gallery set while infrared images are for the probe set. 

We adopt two testing mode to fully evaluate our methods. 

The first mode is all-search mode, for which all the cameras 

are used in the testing stage. The second mode is 

indoor-search, for which the cameras placed in the indoor 

environment are used to build the gallery set. Obviously, 

all-search mode is more difficult than indoor-search mode, 

due to the scene diversity. However indoor-search mode can 

evaluate the performance of cross-modality retrieval better, 

and the mode is more similar to the ideal condition without 

the drastic disturbance of environments. Therefore, the two 

modes are used for evaluation. 

For each mode, there are two settings to form the 

gallery set, single-shot setting, and multi-shot setting. The 

difference between the two settings is the image quantity of 

each identity in the gallery set. One image of each identity is 

randomly selected to constitute the gallery set in the 

single-shot setting, while in the multi-shot setting, each 

identity contains ten images in the gallery set. Since Cam 2 

and Cam 3 are placed in the same scenes, probe images 

captured by Cam 3 ignore the gallery images of Cam 2 in 

the testing phase. For each image in the probe set, we 

compute the feature similarity between the infrared image 

and every RGB image in the gallery set to match the 

pedestrian. We use the Euclidean distances to measure their 

similarity. Ideally, images of the same identity have the 

highest similarity. We introduce Cumulative Matching 

Characteristic curve (CMC) and mean Average Precision 

(mAP) to quantitatively evaluate the methods. Each 

experiment is repeated ten times with the random testing set 

to get average performance. 

C. Implementation details 

The experiments are deployed on an NVIDIA GeForce 

1080Ti GPU with Pytorch. The pedestrian images are 

resized to 288×144. Random cropping and random 

horizontal flip are used for data augmentation. The batch 

size is 64. To realize our proposed sampling strategy, the 

quantity of identity in a batch is set to 4. So, in a batch, each 

identity contains 8 RGB images and 8 infrared images. The 

output feature map of the backbone is equally split into 

6p =  stripes. The dimension of feature is reduced to 512 

by the first FC layer. Thus, the dimension of the final 

descriptor is 6×512=3072. To balance the two loss functions, 

  is set to 0.5. SGD with momentum is adopted for 

optimization, in which the momentum is set to 0.9. We use 

decayed learning rate schedule. The learning rate is set to 1 

 10-2 in the first 30 epochs and is decayed to 1  10-4 after 

the 30th epoch. 

D. Comparison with state-of-the-art methods 

We compare the proposed methods with traditional 

handcrafted feature based methods and deep learning based 

methods. The handcrafted feature based method includes 

HoG [35] and LOMO [3] features with different metrics: 

KISSME [2], LFDA [36], CCA [37], CDFE [38], GMA [41]. 

And the deep learning based methods are GSM [39], 

Zero-padding [8], TONE+HCML [9], BCTR/BDTR [11], 

cmGAN [10], eBDTR [44], D2RL [45], DPMBN [46], 



HPILN [47]. For the comparative methods, we directly copy 

the results from the original papers and ‘-’ denotes the 

corresponding results are not reported in the original paper. 

The backbone used in those methods has been written in 

brackets. What should be mentioned is that we compare our 

methods with BDTR on ResNet-50 reported in [44]. 

The comparative results on Rank-1, 10, 20 accuracy of 

CMC and mAP are shown in Table 1. The results of six 

rows on the bottom show the performance of the proposed 

methods. “TSLFN(w s)+HC” refers to the Two-Stream 

Local Feature Network with the joint supervision of 

Cross-Entropy loss and Hetero-Center loss, which is the full 

version of the proposed methods. The denotations of the 

other five rows are explained in the next subsection. From 

Table 1, we clearly observe the superior performance of the 

proposed method, which greatly outperforms the existing 

methods in all modes. Specifically, in the most difficult 

mode, all-search single-shot mode, the performance of our 

method exceeds the state-of-the-art methods in term of 

Rank1, 10, 20 and mAP by 29.99%, 23.99%, 16.26%, and 

27.15%, respectively. 

TABLE I. COMPARISON WITH STATE-OF-THE-ART WORKS ON SYSU-MM01 DATASETS. 

Method 

All-search Indoor-search 

Single-shot Multi-shot Single-shot Multi-shot 

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP 

HoG+Euclidean 2.76 18.25 31.91 4.24 3.82 22.77 37.63 2.16 3.22 24.68 44.52 7.25 4.75 29.06 49.38 3.51 

HoG+KISSME 2.12 16.21 29.13 3.53 2.79 18.23 31.25 1.96 3.11 25.47 46.47 7.43 4.10 29.32 50.59 3.61 

HoG+LFDA 2.33 18.58 33.38 4.35 3.82 20.48 35.84 2.20 2.44 24.13 45.50 6.87 3.42 25.27 45.11 3.19 

LOMO+CCA 2.42 18.22 32.45 4.19 2.63 19.68 34.82 2.15 4.11 30.60 52.54 8.83 4.86 34.40 57.30 4.47 

LOMO+CDFE 3.64 23.18 37.28 4.53 4.70 28.22 43.05 2.28 5.75 34.35 54.90 10.19 7.36 40.38 60.33 5.64 

LOMO+GMA 1.04 10.45 20.81 2.54 0.99 10.50 21.06 1.47 1.79 17.90 36.01 5.63 1.71 18.11 36.17 2.88 

GSM 5.29 33.71 52.95 8.00 6.19 37.15 55.66 4.38 9.46 48.98 72.06 15.57 11.36 51.34 73.41 9.03 

Asymmetric FC 9.30 43.26 60.38 10.82 13.06 52.11 69.52 6.68 14.59 57.94 78.68 20.33 20.09 69.37 85.80 13.04 

Two-stream 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92 

One-stream 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04 

Zero-padding 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64 

TONE+HCML 14.32 53.16 69.17 16.16 - - - - - - - - - - - - 

BCTR(AlexNet) 16.12 54.90 71.47 19.15 - - - - - - - - - - - - 

cmGAN(ResNet50) 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76 

BDTR(ResNet50) 27.32 66.96 81.07 27.32 - - - - 31.92 77.18 89.28 41.86 - - - - 

eBDTR(ResNet50) 27.82 67.34 81.34 28.42 - - - - 32.46 77.42 89.62 42.46 - - - - 

D2RL(ResNet50) 28.9 70.6 82.4 29.2 - - - - - - - - - - - - 

DPMBN(ResNet50) 37.02 79.46 89.87 40.28 - - - - 44.47 87.12 95.24 54.51 - - - - 

HPILN(ResNet50) 41.36 84.78 94.51 42.95 47.56 88.13 95.98 36.08 45.77 91.82 98.46 56.52 53.05 93.71 98.93 47.48 

Baseline(w/o S) 24.34 68.37 82.59 26.67 28.18 72.72 85.97 20.19 25.48 76.64 90.95 37.30 28.01 80.97 92.60 26.86 

Baseline(w S) 28.52 72.39 85.26 30.37 34.18 77.02 88.47 23.51 27.79 76.92 90.53 38.89 32.42 83.82 94.66 28.58 

Baseline(w s)+HC 41.06 84.40 93.90 41.88 46.01 88.17 95.60 33.99 44.04 90.74 97.58 54.29 53.36 94.18 98.85 44.90 

TSLFN(w/o S) 37.20 81.99 91.50 38.81 40.74 85.30 93.93 31.86 39.48 85.44 94.20 49.79 45.52 90.24 96.98 40.06 

TSLFN(w S) 46.78 86.13 93.18 46.13 53.18 90.30 95.84 39.10 47.39 87.09 94.08 55.76 57.14 93.03 97.70 46.91 

TSLFN(w s)+HC 56.96 91.50 96.82 54.95 62.09 93.74 97.85 48.02 59.74 92.07 96.22 64.91 69.76 95.85 98.90 57.81 

 

E. Ablation experiments 

Our method consists of two parts, HC loss, and TSLFN. 

In addition, the proposed sampling strategy can improve the 

performance of the model supervised by CE loss. To prove 

the effectiveness of each component, we conduct several 

ablation experiments. In each experiment, unrelated settings 

are consistent. The results are shown in Table 1. 

“baseline (w/o S)” refers to TSLFN with p=1, meaning 

that it does not partition the feature map outputted by the 

backbone. So, the baseline network extracts global features 

from input images, instead of local features. What’ more, 

the model is only supervised by CE loss function and we 

adopt the sampling strategy proposed in [11], instead of our 

proposed sampling strategy. “baseline (w S)” refers to the 

baseline network with CE loss, in which we adopt the 

sampling strategy in the training stage. “baseline(w s)+HC” 

refers to the baseline network with the joint supervision of 

HC loss and CE loss, in which our sampling strategy is used 

to train the model. “TSLFN (w/o S)” refers to the 

Two-Stream Local Feature Network with p=6, in which the 

proposed sampling strategy and HC loss are not used in the 

training stage. “TSLFN (w S)” refers to TSLFN with the 

sampling strategy in the training phase, but we do not use 

the supervision of HC loss to train the model. 

The comparative results between baseline and TSLFN 

show the performance of TSLFN outperform the baseline, 



which indicates TSLFN is effective for cross-modality 

person Re-ID. Moreover, the comparative results between 

baseline and baseline+HC loss, TSLFN and TSLFN+HC 

demonstrate that HC loss is conducive to address the task. 

The results prove that HC loss can supervise the network to 

extract modality-shared information and improve the 

intra-class cross-modality similarity. Notice that the value of 

  in baseline+HC is set to 1 while   in TSLFN+HC is 

set to 0.5, because a local feature vector contains less 

modality-shared information than a global feature vector. In 

this case, the value of   achieving the optimal 

performance of baseline model is improper for TSLFN. The 

comparative results between baseline(w/o s) and baseline (w 

s), TSLFN(w/o s) and TSLFN(w s) demonstrate the 

sampling strategy is not only applicable for HC loss but also 

for CE loss. 

V. DISCUSSION 

A. Impact of   

In this section, we conduct several experiments to 

investigate the influence of  , which controls the weight of 

HC loss in the overall loss function. In those experiments, 

we vary   from 0.1 to 0.6, using 0.1 as the interval. The 

performances of different   on SYSU-MM01 with 

all-search single-shot mode are shown in Figure 5(a). We 

can observe that about 0.5 is the optimal value of  . 

Besides, when the value of   is greater than 0.6, we find 

that the performance of model drops sharply. We speculate 

that the content of modality-shared information in local 

feature is not enough so that the network can not pull two 

modality centers closer to optimize HC loss in a correct 

direction, which may result in overfitting. 

To verify that local features lead to the decline of the 

performance when   is set to a large value, we inquire 

about the impact of   on the baseline network as controls. 

The baseline network learns global feature representations, 

instead of local features. In the experiments on the control 

group, the unrelated settings are kept consistent with the 

experimental group and we vary   from 0.1 to 1, using 0.1 

as the interval. The results are shown in Figure 5(b), and we 

can observe the phenomenon that the performance of the 

baseline model is improved with the increase of  , which 

is different from TSLFN. Since the baseline model extracts 

global features and its performance is not declined with the 

increase of  , the phenomenon proves our inference. 

   

(a). Impact of   on TSLFN                     (b). Impact of   on baseline 

   
   (c). Impact of T                                (d). Impact of   
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Figure 5. Parameter analysis. (a) the performance of TSLFN with different weights   of HC loss in the overall loss function. (b) the impact of   on 

baseline, in which the value range of   is different from (a). (c) the performance of TSLFN with different number of T. (d) the performance trends of 

TSLFN with different values of  . 

B. The number of T 

In this subsection, we conduct several experiments to 

investigate the influence of T in the sampling strategy for 

the performance of model. In those experiments, the batch 

size is fixed to 64. So, the number of RGB images and 

infrared images in each batch are 32. To ensure the sample 

quantity of each class is equal in a batch, the value of T is 

only set to 2, 4, 8, since the sample quantity of some class is 

less than 16. Because when   is set to 0.5, TSLFN with 

T=2, 4 can not achieve convergence, we set =0.1  for 

those experiments. The reason for the non-convergence may 

be that the computed center with too few samples can not 

truly reflect the center of the modality when the number of 

sampled images T is set to a small value. In this case, setting 

a too big value of   may be inappropriate. The 

experimental results are shown in Figure 5(c). However, 

what should be mentioned is that, when =0.1 , the model 

with T=8 can not get the best performance according to 

Figure 5(a). The setting of the best performance of the 

model is =0.5 , T=8. In this situation, we can observe 

that the performance is improved as the increase of T, 

because the centers of modality in each class can be 

computed correctly when T is set to a large value. 

C. The risk of overfitting 

To investigate whether HC loss brings the extra risk of 

overfitting. we add a relaxation term in the definition of HC 

loss. The formula of modified HC loss is as 

 
2

,1 ,2 2
1

U

HC i i

i

L 
+=

 = − −
   c c , (5) 

where   denotes the margin of HC loss, [ ]x +  denotes 

max( ,0)x . When the distance between two modality 

centers is less than  , the value of HC loss is zero. Thus, 

with the increase of  , HC loss is easier to achieve the 

minimum value, the risk of overfitting is lower. The original 

HC loss can be regarded as the modified HC loss with 

0 = . So, we vary   from 0.1 to 1, using 0.1 as interval, 

to evaluate the risk of overfitting. The experimental results 

are shown in Figure 5(d), and we observe the performance 

of model is decreased with the improvement of  , which 

indicates adopting the supervision of HC loss does not lead 

to overfitting of the model. 

D. Comparison among the distance metric 

In HC loss, we measure the distance between two 

modality centers by Euclidean metric. So, the proposed 

formula of HC loss can be defined as 
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L D
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where 
2

,1 ,2 ,1 ,2
2

( , )i i i iD c c = −c c . To investigate the impact 

of distance metrics, we use cosine similarity instead of 

Euclidean metric in HC loss. The following equation is the 

definition of cosine similarity used in HC loss, 
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c c . (7) 

We compare the performance of HC loss between Euclidean 

metric and cosine similarity on all-search single-shot mode, 

and the results are shown in Figure 6(a). The comparative 

results indicate that Euclidean metric is more suitable than 

cosine similarity for HC loss, partly because cosine 

similarity only constrains the direction of two center vectors 

while Euclidean metric constrains the distance between two 

centers. 

E. Comparison between strong and weak constraints 

In HC loss, we constrain the center distance between 

two modality feature distributions. In the subsection, we 

constrain both the variance and the center to further reduce 

the difference between two modality distributions, which is 

known as the strong constraint. On the contrary, the weak 

constraint denotes HC loss. The strong constraint is defined 

as 

 
2 2

,1 ,2 ,1 ,22 2
1

K

HC i i i i

i

L 
+=

 = − + − −
   c c v v , (8) 

where ,1iv and 
,2iv  are the variances of two modality 

distributions in a mini-batch. 

We conduct experiments to compare the performance of 

two constraints. In these experiments, other unrelated 

settings are consistent. We report the comparative results 

between strong and weak constraint on all-search 

single-shot mode in Figure 6(b). From the comparative 

results, we observe that the performance of strong 

constraints is slightly lower than the performance of weak 

constraints. Moreover, the computational cost for strong 

constraints is more expensive than it for weak constraints. 

 



    

(a). Comparison of the distance metrics               (b). Comparison between strong and weak constraints 

Figure 6. The comparative results with different distance metrics and constraints. (a) shows the comparative results between cosine similarity and 
Euclidean metric, (b) demonstrates the performance difference between strong constraints and weak constraints. 

 

F. The number of parts 

In the subsection, we evaluate the number of parts p  

which determines the granularity of local feature. When p

=1, TSLFN degenerates into baseline network which 

extracts global feature from input images. whose 

performance is reported in Table 1. To reduce the influence 

of irrelevant variable, we adopt CE loss to train the models 

with different p , as the optimal   is different for 

different p . The experimental results are shown in Figure 

7.  

 
Figure 7. The impact of p . We demonstrate the performance of TSLFN 

with different p . When 1p = , TSLFN is degraded to the baseline 

model. 

We can observe that the performance of the network 

improves as p  increases at first, because the narrower 

granularity of local features leads to the fact that network 

pays more attention to the detail. However, the performance 

drops when p  is greater than 6, partly because the network 

can not extract efficient information with such small 

granularity to form a discriminative feature descriptor. 

G. The effectiveness of the proposed sampling strategy 

The sampling strategy is proposed to realize HC loss, 

and we find that it can effectively avoid overfitting and 

improve the performance, especially for the model learning 

local feature representation. To investigate the impact of the 

sampling strategy for local feature learning, we use the 

models adopting our sampling strategy as the experimental 

group and the model using the sampling strategy proposed 

in [11] as the control group. In those experiments, we vary 

the number of parts p , using 2 as the interval. 

To demonstrate the effectiveness of the sampling 

strategy, we only use CE loss function to train the models. 

The comparative results are shown in Figure 8. From the 

experimental results, we observe two phenomenon. First, 

the proposed sampling strategy is more effective comparing 

with the original sampling strategy [11]. Second, the benefit 

of the sampling strategy is enhanced with the increase of 
p . 
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(a). Comparison of Rank-1                     (b). Comparison of mAP 

Figure 8. The impact of the sampling strategy. We compare the performance of TSLFN with our sampling strategy and the original sampling strategy in 
[11]. (a) and (b) are the comparative results on different indicators, in those figures, “w/o s” denotes the original sampling strategy, “w s” denotes our 
sampling strategy. 

 

H. The Comparison between HC loss and Center loss 

HC loss and center loss [29] are different, in the 

aspect of their aims and realization. Center loss penalizes 

the distance between the intra-class sample and its 

corresponding intra-class center to make the intra-class 

sample compact. However, HC loss constrains the center 

distance between two modality distributions, which can 

pull the two modality distributions close to reduce 

cross-modality difference. For cross-modality person 

re-identification, improving cross-modality similarity is 

more important than reducing intra-class discrepancy, 

because the aim of cross-modality person re-identification is 

that, given a query image, the trained model can retrieval 

the heterogenous gallery images of the same identity 

according to the feature similarity between the query and 

each gallery images. In this case, HC loss is more 

pertinent than center loss to the problem. 

To intuitively show the difference, we illustrate the 

feature distribution supervised by center loss and HC loss 

in Figure 9. In the Figure, we observe that cross-modality 

difference of feature with center loss is bigger than that 

with HC loss, which is reflected by the comparison of the 

center distance between the two feature distributions. 

. 

 
(a). Feature distribution of center loss (left figure) and HC loss (right figure) with   = 0.001. 
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(b). Feature distribution of center loss (left figure) and HC loss (right figure) with   = 0.01. 

 
(c). Feature distribution of center loss (left figure) and HC loss (right figure) with   = 0.1. 

 
(d). Feature distribution of center loss (left figure) and HC loss (right figure) with   = 1. 

Figure 9. Feature distributions between center loss (left figure) and HC loss (right figure). We illustrate the changes of feature distribution with the increase 

of  , from 0.001 to 1. In those figures, we observe that the center distance between two modalities with the supervision of center loss is bigger than the 

supervision of HC loss with the same  . 
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(a). Impact of   with Baseline on Rank-1           (b). Impact of   with Baseline on mAP 

 

(c). Impact of   with TSLFN on Rank-1            (d). Impact of   with TSLFN on mAP 

Figure 10. The comparison between HC loss and center loss on baseline and TSLFN. (a) and (b) are the comparative results of different indicators (rank-1 

and mAP) on baseline, (c) and (d) are the comparative results of different indicators on TSLFN. In the figures, we observe that HC loss outperform center 

loss by a large margin and the margin is improved with the increase of  .

What’s more, to prove that HC loss is more suited to 

the task than center loss, we conduct the experiments to 

directly compare the performance between the two methods. 

The experiments adopt SYSU-MM01 dataset with the 

difficult mode, all-search single-shot mode. In the 

experiments, the learning rate   of center in center loss is 

set to 0.3, because we find that too big value of   cause 

non-convergence of models in the training phase. What’s 

more, the increase of   does not bring the improvement 

of model performance, which is also observed in [29]. For 

fairness and comprehensiveness, we compare the 

performance of the two methods on different network 

structures, baseline and TSLFN. And, we also compare the 

performance of the two loss functions with different  . We 

vary   from 0.1 to 1 in the experiments of baseline, and 

vary   from 0.1 to 0.5 in the experiments on TSLFN. The 

experimental results are shown in Figure 10, which 

demonstrates the performance of our methods exceeds 

center loss by a large margin. 

VI. CONCLUSIONS 

In this work, we propose a novel loss function called 

Hetero-Center (HC) loss for cross-modality person Re-ID 

task. With the joint supervision of CE loss and HC loss, the 

model directly learns feature representations achieving the 

vital aim, inter-class discrepancy and intra-class 

cross-modality similarity simultaneously. Moreover, we 

propose a network architecture named Two-Stream Local 

Feature Network (TSLFN) to learn discriminative local 

feature representations from heterogenous images. The 

framework has advanced performance and simple structure, 

proving itself as an excellent baseline for future work. 

Extensive experiments strongly demonstrate the 

effectiveness of the proposed methods, which greatly 

outperform state-of-the-art works. 
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