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Abstract

Traditional sketch segmentation methods mainly rely on handcrafted features

and complicate models, and their performance is far from satisfactory due to

the abstract representation of sketches. Recent success of Deep Neural Net-

works (DNNs) in related tasks suggests DNNs could be a practical solution

for this problem, yet the suitable datasets for learning and evaluating DNNs

are limited. To this end, we introduce SketchSeg, a large dataset consisting

of 10,000 pixel-wisely labeled sketches. Besides, due to the lack of colors and

textures in sketches, conventional DNNs learned on natural images are not op-

timal for tackling our problem. Therefore, we further propose the Multi-column

Point-CNN (MCPNet), which (1) directly takes sampled points as its input to

reduce computational costs, and (2) adopts multiple columns with different fil-

ter sizes to better capture the structures of sketches. Extensive experiments

validate that the MCPNet is superior to conventional DNNs like FCN. The

SketchSeg dataset is publicly available on https://drive.google.com/open?

id=1OpCBvkInhxvfAHuVs-spDEppb8iXFC3C.
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1. Introduction

Free-hand sketches can be considered as a convenient and intuitive tool for

human-computer interaction and communication, especially with the widely-
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Figure 1: Sketching styles can vary from complex, realistic ones (top) to simple, abstract

ones(bottom).

used portable devices such as multi-touch tablets and smart phones. Segmenting

sketches is an important preprocessing step for many applications, e.g., sketch

recognition [1, 2], sketch-based modeling [3, 4, 5, 6, 7, 8], and free-hand sketch

synthesis [9, 10]. However, the main existing works on sketch segmentation are

relied on hand-crafted features and sophisticate models, such as Radial Basis

Functions [11], Graph Construction [12], Mixed Integer Programming [13] and

Conditional Random Field (CRF) [14]. Such methods are not robust enough

for modeling individual varieties in artistic skills and styles. For instance, some

people tend to draw an object with only its contour, while others may give us

the exquisite depictions (Fig. 1).

Inspired by the recent success of Deep Neural Networks (DNNs) in vari-

ous semantic segmentation problems [15, 16, 17], we believe DNNs have the

potential to solve the above problem. However, traditional DNNs are more

suitable for processing natural images with rich color and texture information,

while sketches are just the combination of highly iconic and abstract curves.
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body

tail

wing
0,64,128
128,0,0

0,128,0
windows 128,128,0

foottread 0,64,0
tire          255,128,0

handle          128,0,128
body           0,64,128
seat          192,0,0

chain          128,64,0

base 0,255,0

candle 0,128,128

fire 128,128,128
handle 128,0,128

limb 64,128,128

back 64,0,0
seat 192,0,0

body 0,64,128

head 64,128,0

limb 64,128,128

tail 0,128,0

head 64,128,0
body 0,64,128

uplimb 0,192,0
lowlimb 128,192,0

tube 255,0,0
base 0,255,0

shade        0,0,255

lip 192,128,128
handle 128,0,128

body 0,64,128
base 0,255,0

body 0,64,128
handgrip 128,255,0

trigger 192,128,0
magazine 0,255,255

top 192,0,128
handle 128,0,128

base 0,255,0

Figure 2: Samples of sketches and their corresponding labels from the SketchSeg database.

More importantly, to the best of our knowledge, there is limited sketch datasets

available for learning and evaluating DNNs.

To overcome the above challenges, in the paper, we first contribute our sketch

segmentation (SketchSeg) database. We follow a previous dataset [13] to collect

sketches belonging to 10 categories, including chair, table, airplane, bicycle,

fourleg, lamp, vase, human, candelabrum and rifle. Each category has 1,000

sketches and each sketch is manually labeled with several semantic components.

That is, we collect a dataset of 10,000 sketches and their pixel-wise labels, which

we believe is large and various enough for perform deep learning. Examples

of sketches in our dataset are shown in Fig. 2. With the proposed dataset,

we conduct extensive experiments to evaluate the performance of conventional

DNNs, including U-Net [18], LinkNet [19], FCN [15] and PointNet [16], so to

provide the authentic baselines for sketch segmentation.

Furthermore, we design a Multi-column Point-CNN (MCPNet) that operates

directly on the point set sampled from a given sketch and outputs the semantic

label of each point. The intention behind our network is that using point set can

significantly reduce the computational cost and the side-effect of blank space.

Besides, with the proper sampling strategy, we can gather points with similar

geometric characteristic together, and maintain the local visual structures of

sketches as well. Note that, there might exist sketches with various sizes, and

strokes with incomplete adhesion and distortion. Hence the proposed MCP-

Net adopts multiple columns with filters of different sizes (e.g., large, medium,

small,...), so that small filters can better capture the local subtle yet important

details, while the large filters prone to model the holistic structure of sketch and
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be robust to noisy. Consequently combining these filters within the MCPNet

makes it a practicable solution for sketch segmentation.

In summary, the contributions of this paper are threefold: (i) A large new

dataset consisting up to 10,000 sketches and their pixel-wise labels is proposed.

We believe it will greatly support many interesting researches for sketch analysis.

(ii) We contrive the MCPNet that operates directly on the sampled point set,

which can naturally omit the vast blank space in sketches and greatly improve

its efficiency. (iii) The multiple columns in MCPNet adopts filters with different

receptive fields, which is able to capture the structural information on various

scale levels.

The rest of this paper is organized as follows. In the next section we review

the related work. Section 3 describes the SketchSeg database and our data

preprocessing step. Detailed procedure of learning MCPNet is presented in

Section 4. Section 5 demonstrates experimental results. Lastly, we conclude

this paper by discussing limitations and possible future applications.

2. Related work

In this section, we will first introduce the conventional methods for sketch

segmentation. And then we will briefly present the recent progress of utilizing

DNNs in relevant tasks, including sketch segmentation, image segmentation and

3D shape analysis.

2.1. Sketch segmentation

Segmenting sketches on the semantic level could facilitate applications like

sketch-based 3D shape retrieval [5], scene modeling [8], part assembly [20] and

free-hand sketch synthesis [9]. And most early study on this topic rely on hand-

crafted features with various models from the field of machine learning. For

instance, Sun et al. [12] propose a sketch segmentation framework by combining

both the low-level perception and high-level knowledge. Huang et al. [13]

propose a data-driven approach, which uses temporal ordering of strokes as
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a soft grouping constraint. Schneider et al. [14] first estimate the likelihood

of each segment belong to a certain component, and then apply the CRF to

generate the final global prediction. Li et al. [21] present a simple and efficient

approach based on CNN for semantic segmentation and labeling. They train a

DNN to transfer existing segmentations and labeling from 3D models to freehand

sketches without requiring numerous annotated sketches.

As to the datasets for sketch segmentation , [22] and [23] are highly related

to our work. What differentiates our dataset from them is our purpose or

segmentation level: [22] focus on the stroke based sketch segmentation, and

hence they assume the orders, starting / end points and lengths of all strokes

are provided (while sketches are stored as images in our dataset). On the other

hand, the aim of [23] is to distinguish sketchy objects in a given scene, namely,

their annotations are collected on the object-level. Therefore, in order to locate

the semantic components in sketches, it is necessary to build our own dataset.

2.2. DNNs for image segmentation

DNNs have been applied into image segmentation successfully, e.g., given a

DNN for image classification, one can simply replace its fully connected layers

with the fully convolutional ones, and do the fine-tuning to obtain the satisfying

performance [15]. Such Fully Convolutional Network (FCN) can be further im-

proved by incorporating new computational blocks: Zheng et al. [24] propose to

implement CRF via several basic computational blocks within the framework

of DNN; U-Net and its variants [18] modify FCN by constructing a strictly

symmetric convolution-deconvolution architecture; Chen et al. [25] introduce

the idea of atrous operation, e.g., the astrous convolution and atrous spatial

pyramid pooling, to adjust the receptive fields of their DNNs without extra

parameters or computations; Mask R-CNN [26] simply adds a branch for pre-

dicting the mask of its target and generates high-quality results. Although the

above DNNs have achieved promising results, there is still room for improve-

ment when we considering about utilizing them in sketch segmentation, e.g.,

the vast blank space in sketches could be omitted.
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2.3. DNNs for 3D shape analysis

A large variety of DNNs for 3D shape analysis have been developed by the

computer vision and graphics community. For instance, Maturana et al. [27]

and Qi et al. [28] both consider the volumetric representations of 3D shapes and

define their own 3D convolutional filters. Yet these methods was constrained

and costly if the data is sparse (e.g., point clouds). Hence, a novel DNN directly

taking the coordinates of points as its input, a.k.a. PointNet is proposed [16].

Even though the accuracy of PointNet is inferior to volumetric based or view

based DNNs, its efficiency is notable and has many follow-up methods, such as

PointNet++[29], PointNetVLAD[30] and PointSIFT[31]. Our MCPNet derives

from PointNet as well, since handling sketches and point clouds have lots in

common: one the one hand, we only have the coordinates of the sampled points,

neither intensity or texture are available; On the other hand, the sampled points

are sparse. Therefore, we propose to tackle our problem within the framework

of PointNet. Besides, as we will see in the experimental section, our MCPNet

can even outperform traditional DNNs for image segmentation.

3. The SketchSeg Database

Table 1: Statistic of number of labeled pixels in SketchSeg, “C” and “S” denote component

and sketch respectively.

C-min C-max C-mean C-std S-min S-max S-mean S-std

airplane 39 3556 665.0 350.1 1146 7400 2660.2 24.7

bicycle 43 4334 497.6 441.9 1154 7967 2985.7 28.9

candelabra 48 2791 453.1 314.1 564 5175 1812.3 26.6

chair 80 5967 739.9 525.7 536 9235 2219.6 35.1

fourleg 22 2910 704.2 429.8 1049 5886 2816.7 26.3

human 63 3463 659.3 318.6 608 7442 2637.3 29.9

lamp 62 2155 561.7 222.3 928 3432 1685.2 19.5

rifle 23 15458 630.7 737.0 487 17600 2522.8 38.9

table 26 5988 732.5 556.7 528 9114 2197.4 31.2

vase 56 3515 459.8 349.2 703 5085 1839.1 25.4
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In this section, we introduce the SketchSeg dataset in detail. Our SketchSeg

dataset contains sketches of various categories, and each categories has its own

semantic components. Specifically, we select the 10 categories defined in [13], in

order to meet the following criteria: (i) All sketches are from common objects

and can be classified clearly, because it is hard for users to draw a “Godzilla”

or tell the difference between pasta and noodle based on sketch. (ii) Each

category contains sketches with large intra-diversity, so that we can evaluate

the performance of different methods thoroughly.

The 10 categories we selected are chair, table, airplane, bicycle, fourleg,

lamp, vase, human, candelabrum and rifle. We then define the semantic compo-

nents for each categories, which are summarized in Fig. 2. All categories have

at least 3 semantic components and most of them have 4 components.

With the pre-defined categories and component settings, we recruit 20 vol-

unteers to draw sketches with the Microsoft Paint. Among these volunteers,

there are 4 professionals, while the others do not have good painting skills. Ev-

ery volunteer needs to draw 50 sketches for each category, and to encourage the

diversity of their drawings, we do not provide the reference images. The specific

drawing settings and procedures are listed as follows:

(i) The volunteer creates a blank canvas of 800× 800 pixels.

(ii) Given a category, we define a unique color (RGB value) for each of its

components. Take the “lamp” class for an example. A lamp can be divided

into tube, base and shade, and we denote them by (255, 0, 0), (0, 255, 0) and

(0, 0, 255), accordingly.

(iii) The volunteer selects the “brush tool” with the defined colors to draw

the object. The size, position and order of strokes are not restricted, but the

volunteer must complete a sketch with all the corresponding components.

(iv) For the convenience of subsequent processing, we crop and pad all

sketches to ensure them locate at the center of the canvas. We also perform

the morphological thinning operation to ensure the line width of every sketch is

1 pixel, as shown in Figure 3.

In this way, we have labeled 24 semantic components, and 10 × 20 × 50 =
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（a）Sketch

（b）Cropped Sketch

（c）Centralized Sketch

Cropping Thinning

(d) Processed sketch

Padding

Figure 3: Our work flow of sketch preprocessing.

10, 000 sketches. One interesting fact we have observed from our gathered data

is that sketches drawn by professionals are much more realistic than those from

ordinary people, for example, the chair and table shown in the fourth column of

Fig. 2. To quantify the diversity of sketches in our dataset, we propose to cal-

culate the number of labeled pixels with respect to component and sketch. The

result is shown in Table 1, which does reflect the arbitrary nature of sketches:

for instance, the minimum number of pixel of a sketch in the “rifle” class is

487, while the maximum value in the same class can reach 17,600. Such char-

acteristic sketches also makes our dataset become a valuable study target. Our

SketchSeg dataset can be accessed on Google Drive, and we hope it could inspire

researchers from related communities.

4. MCPNet Framework

In this section, we proposed the Multi-Column Point-CNN network (MCP-

Net) for sketch segmentation. The framework of MCPNet is shown in Fig. 5: the

input sketch is sampled into a 2D point set, which will then be fed into MCPNet

to generate the component labels of all sampled points, and thus we obtain the

sketch segmentation result. The multi-column architecture is adopted in MCP-

Net to learn and aggregate multi-scale feature representations. The details of

our network will be described in the following subsections.
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4.1. Sketch as arrays

The freehand sketch is probably the most sparse type of visual image. Its

biggest difference from the natural image is that it contains very little image

information and is composed of simple curves. Hence utilizing 2D convolutional

filters exhaustively on sketch is irrational and unnecessary. Inspired by the

work [16] that utilizes point clouds for 3D model segmentation, we propose to

learn feature representation from point sets directly. But our method requires

to covert the sketch image into 2D point set rather than 3D point cloud.

Nx2

y

0

Sketch as N×2 arrays

1 2 3       4  

1

2

3

x

 ,
i i

x yi

N-2

N-1

N

Figure 4: The sketch points are sampled from top-to-bottom and left-to-right.

The position and neighborhood relationships of points on the sketch reflect

spatial structure information, which are important factors that should not be

ignored in sketch segmentation. For example, in Fig. 4, the lamp has a globally

symmetrical structure (points 1 and 4, points 2 and 3). And it also has locally

symmetrical structures (points 1 and 2, points 3 and 4), which have similar

contour structure and relative position information. Therefore, in this work we

collect the coordinates information of sketch by sampling points from left to

right and from top to bottom. Namely, a given sketch is represented as a set

of 2D points P = {pi ∈ R2, i = 0, ..., N − 1}, where pi is a 2D coordinate and

N is the number of sampled points. Note that extra visual information like

intensity can also be incorporated into pi, yet in this paper we only consider 2D

coordinates for simplicity.
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4.2. Deep Representation Learning on Point Sets

Before we introduce the details of our network, we briefly overview the theo-

retical background of utilizing deep learning on point sets. According to [16], let

P = RN×2 denote the domain of P , and then ∀ε > 0, a continuous set function

f : P → R can be approximated as follows:

|f(P )− γ(MAX(h(p1), h(p2), ..., h(pN )))| < ε, (1)

where γ and h are both continuous functions, MAX is the element-wise maxi-

mum pooling function. Eq.(1) actually indicates that a small perturbation on

the order of input points can be neglected by using the MAX function. In our

case, it means we can use the basic components of DNNs, such as the convo-

lutional layers to implement γ and h, and combine them with the max pooling

layers to learn our target function f .

Specifically, as shown in Fig. 5, a single column of our MCPNet consists

of 3 convolution layers and 1 max pooling layer. All the 3 convolution layers

use kernels of the same size but are with different numbers of channels (i.e.,

64, 128 and 1024). After being processed by each of the 3 convolution layers

sequentially, the point set P is turned into feature maps fc1 with size of N × 64,

fc2 with size of N × 128, and fc3 with size of N × 1024, respectively. Then

the feature map fc3 is passed through a max pooling layer to output a feature

vector fg with size of 1024. fg is supposed to capture the global characteristic

of the point set P . Then we further combine it with the point-wise information

to obtain the feature representation fP of the point set P . To be concrete, we

duplicate fg for N times to form a feature map of size N×1024, and concatenate

it with the feature map fc1 to produce the feature map fP with size of N×1088.

With the concatenation operation, fP is able to model not only local structural

information, but also global and high-level semantic information.

4.3. Multi-column Architecture for Sketch Segmentation

Each sketch has a unique structural form, that is, the combination of points

and lines in a two-dimensional plane. However, filters with receptive fields of
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Max Pool

Conv:3x2x64 Max Pool

Max Pool

Output scores
NxC

Conv:1x64x128

Nx1024 Nx512
Nx256

Nx128

Nx(1088x3)

Nx64 Nx128 Nx1024 Nx1024 Nx(1024+64)

Nx64 Nx128 Nx1024 Nx1024 Nx(1024+64)

Duplication

Duplication

Duplication

X

Y

O

N
x2

4

(x,y) 
2D array

Nx2

Conv:3x64x128

Conv:5x64x128 Conv:5x128x1024

Conv:3x128x1024

Conv:1x128x1024

Nx64 Nx128 Nx1024 Nx1024 Nx(1024+64)

Conv:1x3264x1024

Concatenation

Figure 5: Our network takes coordinates of sketch points as its input, and then aggregates

features from multiple columns to generate the segmentation map.

the same size are unlikely to capture the structural characteristics of sketches.

Hence it is more natural to use filters with local receptive fields of different sizes

to learn the feature representation from the point set to produce accurate and

detailed segmentation.

Motivated by the success of Multi-column Deep Neural Networks (MDNNs)

[32], we incorporate multiple columns into MCPNet, as illustrated in Fig. 5.

Intuitively, filters with large receptive fields are more useful for modeling the

symmetric and holistic structure of sketches, while those with small receptive

fields are sensitive to the subtle and local information.

Assume there are K columns in our MCPNet. Let the feature map extracted

by the k-th column be fkP , k = 1, 2, . . . ,K. We concatenate the K feature maps

{fkP }Kk=1 and obtain a feature map faP with size of N × 1088K. The feature map

faP is then passed through several convolutional layers and a softmax layer to

generate the final score matrix SP = (spn,c
) ∈ RN×C , where C is the number

of semantic component labels, spn,c denotes the probability of the n-th point

belonging to the c-th semantic component. The prediction label of each point
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is determined by the semantic component with the highest probability.

More details of our MCPNet architecture are described below: 3 columns are

used in MCPNet, whose filter sizes are 1×2, 3×2 and 5×2, respectively. The five

convolutional layers near the output end use kernel of 1× 1, and their channel

numbers are 1024, 512, 256, 128 and C, respectively. To encourage faster and

more stable learning process, batch normalization [33] with the Rectified Linear

Unit (ReLU) is used after all the convolutional layers except the last one in our

network.

4.4. Optimization of MCPNet

Given a dataset with M training sketch samples {Xm, Y m}Mm=1, where Xm

is the m-th sketch image and Y m is its corresponding segmentation ground

truth, we first turn the training sketch samples into the point set format. That

is, the m-th training sample is represented as {pmn , ymn }Nn=1, where {pmn }Nn=1 is

the point set sampled from the m-th sketch and {ym}Nn=1 are the corresponding

label. ymn ∈ {1, ..., C} indicates point pmn belongs to which of the C components.

For point pmn , we further define a C-dimensional one-hot vector ŷm
n , in which

the c-th element ŷmn,c is 1 if its label ymn = c and all the other elements are 0. Our

MCPNet is trained via minimizing the following cross entropy loss function:

L = −
M∑

m=1

N∑
n=1

C∑
c=1

ŷmn,c log smn,c, (2)

where smn,c is the (n, c) element of the score matrix Sm
P for the m-th training

sample. We optimize the above loss L by the batch-based stochastic gradient

descent (SGD) algorithm.

5. Experiments

In this section, we will conduct extensive experiments on the proposed

SketchSeg dataset. We will compare the proposed MCPNet with several state-

of-the-art methods, and provide the detailed ablation study of our network.
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5.1. Setup

All our experiments are performed on a desktop with a i5 3GHz cpu, 16G

RAM and a GTX 1080Ti graphic card. 7,500 sketches from our dataset are used

for training while the rest are for testing. We implement 4 cutting-edge methods

for comparison, including U-Net [18], LinkNet [19], FCN [15] and PointNet [16].

All these networks are trained with their default architecture and parameter

settings. We adopt two metrics [13] to evaluate the segmentation performance:

(i) Pixel-based accuracy (P-metric), which is the fraction of pixels that are

assigned with the correct labels; (ii) Component-based accuracy (C-metric),

which evaluates the percentage of correctly labeled segments. A component is

correctly labeled if 75% of its pixels are assigned the correct label. Note that

for the fair of comparison, all evaluations are performed on the sample points,

instead of using the whole sketch images.

Our network is trained for 50 epochs with the SGD algorithm with momen-

tum, where the size of mini-batch, initial learning rate, momentum and weight

decay are set to 10, 0.01, 0.9 and 0, respectively. All these parameters are fixed

throughout this paper. We use “MCPNet-x” to denote our network with x

columns.

5.2. Quantitative Analysis

The segmentation performance evaluated by the P-metric is presented in

Table 2. From this result we can see the proposed network can outperform state-

of-the-art methods significantly, as it raises the average accuracy from 80.2% to

87.0%. Besides, we observe that our performance gain is mostly gained from

the “airplane”, “chair”, “human”, “rifle” and “table” classes. Considering that

the average numbers of labeled pixels of these five classes are larger than those

of the rest classes (see Table 1), we can conclude that the proposed network can

handle complicate sketches well.

The proposed network is superior to conventional methods considering the

C-metric as well. As demonstrated in Table 3, MCPNet raises the baseline

by 1.5%. As we know, the C-metric emphasizes on how well a segmentation
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Table 2: Segmentation performance of MCPNet against state-of-the-art methods with the

P-metric.

Method U-Net LinkNet FCN PointNet MCPNet-3

airplane 68.9 78.0 78.2 81.0 85.8

bicycle 68.1 65.3 71.4 78.0 78.3

candelabra 89.3 88.3 90.8 81.1 89.8

chair 84.0 89.1 86.9 81.0 90.2

fourleg 74.1 76.7 80.3 75.5 84.2

human 71.9 74.5 75.6 69.2 79.5

lamp 92.2 91.2 92.8 86.2 93.2

rifle 54.8 59.9 65.2 83.2 87.1

table 79.6 82.5 81.4 82.0 92.6

vase 89.9 93.8 94.4 84.8 88.9

Average 77.3 79.9 81.7 80.2 87.0

method could capture the structural information of a sketch, because it requires

that the majority of the predicted labels in the same component is correct.

However, Taking discrete 2D points directly will lose the structural information

to a certain extent, and hence the performance of PointNet is worse than other

DNNs. But the multi-column strategy in the proposed network helps us to

overcome such disadvantage, and eventually we obtain a performance gain of

9.3%, compared with PointNet.

To further investigate the robustness of the proposed MCPNet, we consider

to change the ratio of training sketches in our experiments. Specifically, we have

conducted experiments selecting 2,500, 5,000 and 7,500 sketches from each class

as the training examples, and the results are presented in Figure 6. The overall

performance of MCPNet is improved steadily as we increase the number of

training sketches. The average segmentation accuracy of MCPNet evaluated by

the P-metric is about 68% when we use 1/4 sketches in our dataset for training,

while that with 3/4 sketches is about 87%. Similar results can be observed using

the C-metric. These experiments do indicate that the proposed MCPNet can

generalize well and is a pragmatic solution for sketch segmentation.
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Table 3: Segmentation performance of MCPNet against state-of-the-art methods with the

C-metric.

Method U-Net LinkNet FCN PointNet MCPNet-3

airplane 52.6 67.7 66.5 67.3 78.8

bicycle 49.7 55.7 59.2 50.9 54.3

candelabra 90.3 89.0 94.5 67.9 80.5

chair 81.9 89.2 84.8 77.6 91.1

fourleg 54.5 67.2 73.5 60.9 74.8

human 62.6 67.9 72.1 56.6 67.8

lamp 92.4 92.4 92.5 86.1 95.5

rifle 38.9 44.5 54.7 59.7 72.8

table 70.1 80.3 75.3 67.5 87.4

vase 90.7 96.6 98.1 78.9 83.1

Average 68.4 75.0 77.1 67.3 78.6
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vase

Average

Figure 6: Segmentation performance of MCPNet with training sets of different sizes, evaluated

by the P-metric (left) and C-metric (right).

5.3. Ablation Study

One evident advantage of the proposed MCPNet is that it has adopted the

multi-column strategy to extract effective features on different scale levels. To

demonstrate this, we evaluate the performance of MCPNet with different num-

bers of columns, as shown in Table 4. It is easy to see that the segmentation

accuracy is positively related to the number of columns, especially when we

consider the C-metric: the average score of MCPNet-1 is 70.8% while that of

MCPNet-3 is 78.6%, and on the “rifle” class we get the highest performance gain

beyond 20%. Furthermore, the concatenation of inner features from the front
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Table 4: Accuracy (%) of the proposed network with the different numbers of column.

Pixel Metric Component Metric

MCPNet-1 MCPNet-2 MCPNet-3 MCPNet-1 MCPNet-2 MCPNet-3

airplane 82.8 77.4 85.8 60.6 70.9 78.8

bicycle 72.4 75.2 78.3 44.3 59.9 54.3

candelabra 86.2 86.0 89.8 73.9 80.3 80.5

chair 87.1 88.8 90.2 90.9 85.5 91.1

fourleg 82.6 82.1 84.2 72.3 76.8 74.8

human 74.0 77.5 79.5 60.4 66.5 67.8

lamp 91.4 91.5 93.2 92.5 91.2 95.5

rifle 82.2 86.4 87.1 52.6 66.7 72.8

table 87.5 88.1 92.6 77.6 78.0 87.4

vase 85.8 86.9 88.9 78.3 79.2 83.1

Average 83.2 84.0 87.0 70.8 74.5 78.6

end and back end works well, as MCPNet with only one column outperforms

PointNet by averagely 3% and 3.5% with P-metric and C-metric, respectively.

Table 5: Time efficiency evaluated by the average processing time of one sketch (in ms).

Method U-Net LinkNet FCN PointNet MCPNet-1 MCPNet-2 MCPNet-3

airplane 125.6 165.2 168.4 94.8 74.4 153.2 236.8

bicycle 93.6 178 172.8 81.6 77.2 122.4 208.8

candelabra 129.6 205.6 153.2 81.2 81.6 149.2 247.6

chair 160 169.6 164 85.2 70.4 145.6 190.4

fourleg 159.2 205.2 163.6 93.2 75.6 162.8 192.8

human 136 195.2 151.2 86 82.4 159.2 181.2

lamp 129.6 188.8 144.4 84.8 74.8 180.8 225.6

rifle 126.4 212.8 164.4 82 77.6 166 224.4

table 130 172.4 159.2 86.8 77.6 149.2 203.2

vase 133.6 190.8 138 86.8 83.6 120.4 182

Average 132.36 188.36 157.92 86.24 77.52 150.88 209.28

Furthermore, taking point sets as input can reduce the computational cost

and eventually make the multi-columns strategy become acceptable. For com-

parison, we calculate the average time of processing a sketch via different net-
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works. From the results shown in Table 5, we can see that the computational

cost of traditional DNNs designed for natural images is about twice that of

PointNet and MCPNet-1. Nevertheless, their P-metric values are similar to

that of PointNet. This validates our opinion that processing the blank space

in sketch is unnecessary. Also, the computational cost of MCPNet-1 is slightly

smaller than that of PointNet, that is because our MCPNet does not include

the spatial transformation blocks in the PointNet. By comparing the results

of MCPNets, we can find that the computational cost of the proposed network

mainly depends on the number of columns, and adding one column will increase

the processing time by about 70 ms. To achieve the balance between efficiency

and effectiveness, MCPNets with two or three columns are the considerable

choice.

5.4. Qualitative Analysis

At the end of this section, we demonstrate some segmentation results for

qualitative analysis. We select one example from each of the 10 classes on

SketchSeg, and draw the results of baselines and MCPNet in Figure 7. Note that

in our experiments, sketches from all 10 classes are used together for training,

thus it is unavoidable that a semantic component would be erroneously detected

in sketch belonging to unrelated class. For example, FCN mistakenly considers

the tail of a horse as the tube of a lamp, and the LinkNet considers part of the

candle in a candelabra sketch as the magazine of a rifle. However, our MCPNet

has fused features with various scales, which helps to alleviate such problem

significantly. Our MCPNet even achieves a C-metric value of 1 on the examples

of horse, human and lamp.

At last, considering that in real-life applications, sketches could be disrupted

due to various factors, such as missing components, or abrupt, salt-and-pepper

like noise, we further conduct an experiment on sketches with noise. We generate

noisy sketches by the following two steps: we (i) manually remove one part of

a sketch, and (ii) randomly add dots in the background, as shown in Figure

8. Such synthetic noisy sketches are typical, yet the proposed MCPNet still
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Figure 7: Qualitative examples of the proposed MCPNet. Each semantic component is anno-

tated by a unique color, best viewed on a high-resolution screen.

handles these sketches well. This result suggests that MCPNet is robust to

outliers, and it is a desirable solution for the sketch segmentation problem.

6. Conclusion and Future Work

We have introduced a new MCPNet for sketch segmentation, along with a

new large SketchSeg dataset for training and evaluating deep learning-based

methods. Our MCPNet is able to capture the sparse spatial structure infor-

mation of sketches by learning and aggregating multi-scale deep representations

on the sampled point sets, and extensive experimental results on the SketchSeg

dataset have validated its effectiveness. In the future, we will further improve

the SketchSeg dataset by introducing more categories and developing new eval-

uation metrics. We will also explore the new possible network architecture, e.g.,

encoding the order of strokes, to better tackle the sketch segmentation problem.
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vase                        chair                     bicycle                     human                    table

1(a)                                                  2(a)                                                   3(a)                                               4(a)                                                 5(a)

1(b)                                      2(b)                                    3(b)                                   4(b)                                    5(b)

1c)                                                   2(c)                                                       3(c)        4(c)                                                 5(c)

Figure 8: Exemplar segmentation results of noisy sketches. From top to bottom are original

sketches, noisy sketches and segmentation results generated by our method, respectively.
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