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Abstract

This work focuses on combining nonparametric topic models with Auto-Encoding
Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the
topics are treated as trainable parameters and the document-specific topic propor-
tions are obtained by a stick-breaking construction. The inference of iTM-VAE is
modeled by neural networks such that it can be computed in a simple feed-forward
manner. We also describe how to introduce a hyper-prior into iTM-VAE so as to
model the uncertainty of the prior parameter. Actually, the hyper-prior technique
is quite general and we show that it can be applied to other AEVB based models
to alleviate the collapse-to-prior problem elegantly. Moreover, we also propose
HiTM-VAE, where the document-specific topic distributions are generated in a
hierarchical manner. HiTM-VAE is even more flexible and can generate topic
distributions with better variability. Experimental results on 20News and Reuters
RCV1-V2 datasets show that the proposed models outperform the state-of-the-
art baselines significantly. The advantages of the hyper-prior technique and the
hierarchical model construction are also confirmed by experiments.

1 Introduction

Probabilistic topic models focus on discovering the abstract “topics” that occur in a collection of
documents, and represent a document as a weighted mixture of the discovered topics. Classical topic
models [4] have achieved success in a range of applications [40, 4, 32, 34]. A major challenge of
topic models is that the inference of the distribution over topics does not have a closed-form solution
and must be approximated, using either MCMC sampling or variational inference. When some small
changes are made on the model, we need to re-derive the inference algorithm. In contrast, black-box
inference methods [31, 26, 18, 33] require only limited model-specific analysis and can be flexibly
applied to new models.

Among all the black-box inference methods, Auto-Encoding Variational Bayes (AEVB) [18, 33] is
a promising one for topic models. AEVB contains an inference network that can map a document
directly to a variational posterior without the need for further local variational updates on test data, and
the Stochastic Gradient Variational Bayes (SGVB) estimator allows efficient approximate inference
for a broad class of posteriors, which makes topic models more flexible. Hence, an increasing number
of models are proposed recently to combine topic models with AEVB, such as [24, 37, 7, 25].
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Although these AEVB based topic models achieve promising performance, the number of topics,
which is important to the performance of these models, has to be specified manually with model
selection methods. Nonparametric models, however, have the ability of adapting the topic number
to data. For example, Teh et al. [38] proposed Hierarchical Dirichlet Process (HDP), which models
each document with a Dirichlet Process (DP) and all DPs for the documents in a corpus share a base
distribution that is itself sampled from a DP. HDP has potentially an infinite number of topics and
allows the number to grow as more documents are observed. It is appealing that the nonparametric
topic models can also be equipped with AEVB techniques to enjoy the benefit brought by neural
black-box inference. We make progress on this problem by proposing an infinite Topic Model with
Variational Auto-Encoders (iTM-VAE), which is a nonparametric topic model with AEVB.

For nonparametric topic models with stick breaking prior [35], the concentration parameter α plays
an important role in deciding the growth of topic numbers1. The larger the α is, the more topics
the model tends to discover. Hence, people can place a hyper-prior [2] over α such that the model
can adapt it to data [9, 38, 5]. Moreover, the AEVB framework suffers from the problem that the
latent representation tends to collapse to the prior [6, 36, 8], which means, the prior parameter α
will control the number of discovered topics tightly in our case, especially when the decoder is
strong. Common heuristic tricks to alleviate this issue are 1) KL-annealing [36] and 2) decoder
regularizing [6]. Introducing a hyper-prior into the AEVB framework is nontrivial and not well-done
in the community. In this paper, we show that introducing a hyper-prior can increase the adaptive
capability of the model, and also alleviate the collapse-to-prior issue in the training process.2

To further increase the flexibility of iTM-VAE, we propose HiTM-VAE, which model the document-
specific topic distribution in a hierarchical manner. This hierarchical construction can help to
generate topic distributions with better variability, which is more suitable in handling heterogeneous
documents.

The main contributions of the paper are:

• We propose iTM-VAE and iTM-VAE-Prod, which are two novel nonparametric topic models
equipped with AEVB, and outperform the state-of-the-art models on the benchmarks.

• We propose iTM-VAE-HP, in which a hyper-prior helps the model to adapt the prior
parameter to data. We also show that this technique can help other AEVB-based models to
alleviate the collapse-to-prior problem elegantly.

• We propose HiTM-VAE, which is a hierarchical extension of iTM-VAE. This construction
and its corresponding AEVB-based inference method can help the model to learn more
topics and produce topic proportions with higher variability and sparsity.

2 Related Work

Topic models have been studied extensively in a variety of applications such as document modeling,
information retrieval, computer vision and bioinformatics [3, 4, 40, 30, 32, 34]. Recently, with the im-
pressive success of deep learning, the proposed neural topic models [11, 20, 26] achieve encouraging
performance in document modeling tasks. Although these models achieve competitive performance,
they do not explicitly model the generative story of documents, hence are less explainable.

Several recent work proposed to model the generative procedure explicitly, and the inference of the
topic distributions in these models is computed by deep neural networks, which makes these models
explainable, powerful and easily extendable. For example, Srivastava and Sutton [37] proposed
AVITM, which embeds the original LDA [4] formulation with AEVB. By utilizing Laplacian
approximation for the Dirichlet distribution, AVITM can be optimized by the SGVB estimator
efficiently. AVITM achieves the state-of-the-art performance on the topic coherence metric [22],
which indicates the topics learned match closely to human judgment.

Nonparametric topic models [38, 15, 1, 23], potentially have infinite topic capacity and can adapt the
topic number to data. Nalisnick and Smyth [28] proposed Stick-Breaking VAE (SB-VAE), which is
a Bayesian nonparametric version of traditional VAE with a stochastic dimensionality. iTM-VAE

1Please refer to Section 3.1 for more details about the concentration parameter.
2The hyper-prior technique can also alleviate the collapse-to-prior issue in other scenarios, an example is

demonstrated in Appendix 1.2.
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differs with SB-VAE in 3 aspects: 1) iTM-VAE is a kind of topic model for discrete text data. 2)
A hyper-prior is introduced into the AEVB framwork to increase the adaptive capability. 3) A
hierarchical extension of iTM-VAE is proposed to further increase the flexibility. Miao et al. [25]
proposed GSM, GSB, RSB and RSB-TF to model documents. RSB-TF uses a heuristic indicator to
guide the growth of the topic numbers, and can adapt the topic number to data.

3 The iTM-VAE Model

In this section, we describe the generative and inference procedure of iTM-VAE and iTM-VAE-Prod
in Section 3.1 and Section 3.2. Then, Section 3.3 describes the hyper-prior extension iTM-VAE-HP.

3.1 The Generative Procedure of iTM-VAE

Suppose the atom weights π = {πk}∞k=1 are drawn from a GEM distribution [27], i.e. π ∼ GEM(α),
where the GEM distribution is defined as:

νk ∼ Beta(1, α) πk = νk

k−1∏
l=1

(1− νl) = νk(1−
k−1∑
l=1

πl). (1)

Let θk = σ(φk) denotes the kth topic, which is a multinomial distribution over vocabulary, φk ∈ RV
is the parameter of θk, σ(·) is the softmax function and V is the vocabulary size. In iTM-VAE, there
are unlimited number of topics and we denote Θ = {θk}∞k=1 and Φ = {φk}∞k=1 as the collections
of these countably infinite topics and the corresponding parameters. The generation of a document
x(j) = w

(j)

1:N(j) by iTM-VAE can then be mathematically described as:

• Get the document-specific G(j)(θ;π(j),Θ) =
∑∞
k=1 π

(j)
k δθk(θ), where π(j) ∼ GEM(α)

• For each word wn in x(j): 1) draw a topic θ̂n ∼ G(j)(θ;π(j),Θ); 2) wn ∼ Cat(θ̂n)

where α is the concentration parameter, Cat(θ̂i) is a categorical distribution parameterized by θ̂i, and
δθk(θ) is a discrete dirac function, which equals to 1 when θ = θk and 0 otherwise. In the following,
we remove the superscript of j for simplicity.

Thus, the joint probability of w1:N = {wn}Nn=1, θ̂1:N = {θ̂n}Nn=1 and π can be written as:

p(w1:N ,π, θ̂1:N |α,Θ) = p(π|α)

N∏
n=1

p(wn|θ̂n)p(θ̂n|π,Θ) (2)

where p(π|α) = GEM(α), p(θ|π,Θ) = G(θ;π,Θ) and p(w|θ) = Cat(θ).

Similar to [37], we collapse the variable θ̂1:N and rewrite Equation 2 as:

p(w1:N ,π|α,Θ) = p(π|α)

N∏
n=1

p(wn|π,Θ) (3)

where p(wn|π,Θ) = Cat(θ̄) and θ̄ =
∑∞
k=1 πkθk.

In Equation 3, θ̄ is a mixture of multinomials. This formulation cannot make any predictions that
are sharper than the distributions being mixed [11], which may result in some topics that are of
poor quality. Replacing the mixture of multinomials with a weighted product of experts is one
method to make sharper predictions [10, 37]. Hence, a products-of-experts version of iTM-VAE (i.e.
iTM-VAE-Prod) can be obtained by simply computing θ̂ for each document as θ̂ = σ(

∑∞
k=1 πkφk).

3.2 The Inference Procedure of iTM-VAE

In this section, we describe the inference procedure of iTM-VAE, i.e. how to draw π given a document
w1:N . To elaborate, suppose ν = [ν1, ν2, . . . , νK−1] is a K − 1 dimensional vector, where νk is a
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random variable sampled from a Kumaraswamy distribution κ(ν; ak, bk) parameterized by ak and
bk [19, 28], iTM-VAE models the joint distribution qψ(ν|w1:N ) as: 3

[a1, . . . , aK−1; b1, . . . , bK−1] = g(w1:N ;ψ) (4)

qψ(ν|w1:N ) =

K−1∏
k=1

κ(νk; ak, bk) (5)

where g(w1:N ;ψ) is a neural network with parameters ψ. Then, π = {πk}Kk=1 can be drawn by:

ν ∼ qψ(ν|w1:N ) (6)

π = (π1, π2, . . . , πK−1, πK) = (ν1, ν2(1− ν1), . . . , νk−1

K−2∏
n=1

(1− νn),

K−1∏
n=1

(1− νn)) (7)

In the above procedure, we truncate the infinite sequence of mixture weights π = {πk}∞k=1 by K
elements, and νK is always set to 1 to ensure

∑K
k=1 πk = 1. Notably, as is discussed in [5], the

truncation of variational posterior does not indicate that we are using a finite dimensional prior, since
we never truncate the GEM prior. Hence, iTM-VAE still has the ability to model the uncertainty of
the number of topics and adapt it to data [28].

iTM-VAE can be optimized by maximizing the Evidence Lower Bound (ELBO):

L(w1:N |Φ, ψ) = Eqψ(ν|w1:N ) [log p(w1:N |π,Φ)]− KL (qψ(ν|w1:N )||p(ν|α)) (8)

where p(ν|α) is the product of K − 1 Beta(1, α) probabilistic density functions. The details of the
optimization can be found in Appendix 1.3.

3.3 Modeling the Uncertainty of Prior Parameter

In the generative procedure, the concentration parameter α of GEM(α) can have significant impact on
the growth of number of topics. The larger the α is, the more “breaks" it will create, and consequently,
more topics will be used. Hence, it is generally reasonable to consider placing a hyper-prior on α
to model its uncertainty.[9, 5, 38]. For example, Escobar and West [9] placed a Gamma hyper-prior
on α for the urn-based samplers and implemented the corresponding Gibbs updates with auxiliary
variable methods. Blei et al. [5] also placed a Gamma prior on α and derived a closed-form update
for the variational parameters. Different with previous work, we introduce the hyper-prior into the
AEVB framework and propose to optimize the model by stochastic gradient decent (SGD) methods.

Concretely, since the Gamma distribution is conjugate to Beta(1, α), we place a Gamma(s1, s2) prior
on α. Then the ELBO of iTM-VAE-HP can be written as:

L(w1:N |Φ, ψ) = Eqψ(ν|w1:N ) [log p(w1:N |π,Φ)] + Eqψ(ν|w1:N )q(α|γ1,γ2)[log p(ν|α)]

−Eqψ(ν|w1:N )[log qψ(ν|w1:N )]− KL(q(α|γ1, γ2)||p(α|s1, s2)) (9)

where p(α|s1, s2) = Gamma(s1, s2), p(vk|α) = Beta(1, α), q(α|γ1, γ2) is the corpus-level varia-
tional posterior for α. The derivation for Equation 9 can be found in Appendix 1.4. In our experiments,
we find iTM-VAE-Prod always performs better than iTM-VAE, therefore we only report the per-
formance of iTM-VAE-Prod with hyper-prior, and refer this variant as iTM-VAE-HP. Actually, as
discussed in Section 1, the hyper-prior technique can also be applied to other AEVB based models to
alleviate the collapse-to-prior problem. In Appendix 1.2, we show that by introducing a hyper-prior
to SB-VAE, more latent units can be activated and the model achieves better performance.

4 Hierarchical iTM-VAE

In this section, we describe the generative and inference procedures of HiTM-VAE in Section 4.1 and
Section 4.2. The relationship between iTM-VAE and HiTM-VAE is discussed in Section 4.3

3Ideally, Beta distribution is the most suitable probability candidate, since iTM-VAE assumes π is drawn
from a GEM distribution in the generative procedure. However, as Beta does not satisfy the differentiable,
non-centered parameterization (DNCP) [17] requirement of SGVB [18], we use the Kumaraswamy distribution.
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4.1 The Generative Procedure of HiTM-VAE

The generation of a document by HiTM-VAE is described as follows:

• Get the corpus-level base distributionG(0): β ∼ GEM(γ);G(0)(θ;β,Θ) =
∑∞
i=1 βiδθi(θ)

• For each document x(j) = w
(j)

1:N(j) in the corpus:

– Draw the document-level stick breaking weights π(j) ∼ GEM(α)

– Draw document-level atoms ζ(j)k ∼ G0, k = 1, · · · ,∞; Then we get a document-
specific distribution G(j)(θ;π(j), {ζ(j)k }∞k=1,Θ) =

∑∞
k=1 π

(j)
k δ

ζ
(j)
k

(θ)

– For each word wn in the document: 1) draw a topic θ̂n ∼ G(j); 2) wn ∼ Cat(θ̂n)

To sample the document-level atoms ζ(j) = {ζ(j)k }∞k=1, a series of indicator variables c(j) =

{c(j)k }∞k=1 are drawn i.i.d: c(j)k ∼ Cat(β). Then, the document-level atoms are ζ(j)k = θ
c
(j)
k

.

Let D and N (j) denote the size of the dataset and the number of word in each document x(j),
respectively. After collapse the per-word assignment random variables {{θ̂(j)n }N

(j)

n=1 }Dj=1, the joint
probability of the corpus-level atom weights β, documents X = {x(j)}Dj=1, the stick breaking
weights Π = {π(j)}Dj=1 and the indicator variables C = {c(j)}Dj=1 can be written as:

p(β,X ,Π, C|γ, α,Θ) = p(β|γ)

D∏
j=1

p(π(j)|α)p(c(j)|β)p(x(j)|π(j), c(j),Θ) (10)

where p(β|γ) = GEM(γ), p(π(j)|α) = GEM(α), p(c(j)|β) = Cat(β), p(x(j)|π(j), c(j),Θ) =∏N(j)

n=1 p(w
(j)
n |π(j), c(j),Θ) =

∏N(j)

n=1 Cat(w(j)
n |θ̄(j)) =

∏N(j)

l=1 Cat(w(j)
n |

∑∞
k=1 π

(j)
k θ

c
(j)
k

).

4.2 The Inference Procedure of HiTM-VAE

Setting the truncation level of the corpus-level and document-level GEM to T and K, HiTM-VAE
models the per-document posterior q(ν, c|w1:N ) for every document w1:N as:

[a1, . . . , aK−1; b1, . . . , bK−1;ϕ1, . . . ,ϕK ] = g(w1:N ;ψ) (11)
q(ν, c|w1:N ) = qψ(ν|w1:N )qψ(c|w1:N ) (12)

qψ(ν|w1:N ) =

K−1∏
k=1

κ(νk; ak, bk); qψ(c|w1:N ) =

K∏
k=1

Cat(ck;ϕk) (13)

where g(w1:N ;ψ) is a neural network with parameters ψ, and ϕk = {ϕki}Ti=1 are the multinomial
variational parameters for each document-level indicator variable ck. Then, π = {πk}Kk=1 can be
constructed by the stick breaking process using ν.

As we shown in Section 4.1, the generation of the corpus-level atom weights β is as follows:

β′i ∼ Beta(1, γ); βi = β′i

i−1∏
l=1

(1− β′l) (14)

The corpus-level variational posterior for β′ with truncation level T is q(β′) =
∏T−1
i=1 Beta(β′i|ui, vi),

where {ui, vi}T−1i=1 are the corpus-level variational parameters.
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The ELBO of the training dataset can be written as:

L(D|Φ, ψ) = Eq(β′)[log
P (β′|γ)

q(β′|u,v)
] +

D∑
j=1

{Eq(ν(j))[log
P (ν(j)|α)

q(ν(j))
] +

K∑
k=1

E
q(β′)q(c

(j)
k |ϕ

(j)
k )

[log
P (c

(j)
k |β)

q(c
(j)
k |ϕ

(j)
k )

] + Eq(ν(j))q(c(j))[P (x(j)|ν(j), c(j),Φ)]}

(15)

where β = {βi}Ti=1, ν(j) = {ν(j)k }
K−1
k=1 , c(j) = {c(j)k }Kk=1, ϕ(j)

k = {ϕ(j)
ki }Ti=1. The details of the

derivation of the ELBO can be found in Appendix 1.5.

Gumbel-Softmax estimator [14] is used for backpropagating through the categorical random variables
c. Instead of joint training with the NN parameters, mean-field updates are used to learn the corpus-
level variational parameters {ui, vi}T−1i=1 :

ui = 1 +

D∑
j=1

K∑
k=1

ϕ
(j)
ki ; vi = γ +

D∑
j=1

K∑
k=1

T∑
l=i+1

ϕ
(j)
kl (16)

4.3 Discussion

In iTM-VAE, we get the document-specific topic distribution G(j) by sampling the atom weights
from a GEM. Instead of being drawn from a continuous base distribution, the atoms are modeled as
trainable parameters as in [4, 37, 25]. Thus, the atoms are shared by all documents naturally without
the need to use a hierarchical construction like HDP [38]. The hierarchical extension, HiTM-VAE,
which models G(j) in a hierarchical manner, is more flexible and can generate topic distributions
with better variability. A detailed comparison is illustrated in Section 5.3.

5 Experiments

In this section, we evaluate the performance of iTM-VAE and its variants on two public benchmarks:
20News and RCV1-V2, and demonstrate the advantage brought by the variants of iTM-VAE. To
make a fair comparison, we use exactly the same data and vocabulary as [37].

The configuration of the experiments is as follows. We use a two-layer fully-connected neural
network for g(w1:N ;ψ) of Equation 11, and the number of hidden units is set to 256 and 512 for
20News and RCV1-V2, respectively. The truncation level K in Equation 7 is set to 200 so that the
maximum topic numbers will never exceed the ones used by baselines. 4 The concentration parameter
α for GEM distribution is cross-validated on validation set from [10, 20, 30, 50] for iTM-VAE and
iTM-VAE-Prod. Batch-Renormalization [13] is used to stabilize the training procedure. Adam [16] is
used to optimize the model and the learning rate is set to 0.01. The code of iTM-VAE and its variants
is available at http://anonymous.

5.1 Perplexity and Topic Coherence

Perplexity is widely used by topic models to measure the goodness-to-fit capability, which is defined
as: exp(− 1

D

∑D
j=1

1
|x(j)| log p(x(j))), whereD is the number of documents , and |x(j)| is the number

of words in the j-th document x(j). Following previous work, the variational lower bound is used to
estimate the perplexity.

As the quality of the learned topics is not directly reflected by perplexity [29], topic coherence is
designed to match the human judgment. We adopt NPMI [22] as the measurement of topic coherence,
as is adopted by [25, 37].5 We define a topic to be an Effective Topic if it becomes the top-1 significant
topic of a sample among the training set more than τ ×D times, where D is the training set size

4In these baselines, at most 200 topics are used. Please refer to Table 1 for details.
5We use the code provided by [22] at https://github.com/jhlau/topic_interpretability/
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Table 1: Comparison of perplexity (lower is better) and topic coherence (higher is better) between
different topic models on 20News and RCV1-V2 datasets.

Methods Perplexity Coherence

20News RCV1-V2 20News RCV1-V2

#Topics 50 200 50 200 50 200 50 200
LDA [12]† 893 1015 1062 1058 0.131 0.112 −
DocNADE 797 804 856 670 0.086 0.082 0.079 0.065
HDP [39]† 937 918 − −
NVDM† 837 873 717 588 0.186 0.157 −
NVLDA 1078 993 791 797 0.162 0.133 0.153 0.172
ProdLDA 1009 989 780 788 0.236 0.217 0.252 0.179
GSM† 787 829 653 521 0.223 0.186 −
GSB† 816 815 712 544 0.217 0.171 −
RSB† 785 792 662 534 0.224 0.177 −
RSB-TF† 788 532 − −
iTM-VAE 877 1124 0.205 0.218
iTM-VAE-Prod 775 508 0.278 0.3
iTM-VAE-HP 876 692 0.285 0.311
HiTM-VAE 912 747 0.29 0.27

†: We take these results from [25] directly, since we use exactly the same datasets. The symbol "−"
indicates that [25] does not provide the corresponding values. As this paper is based on variational inference,
we do not compare with LDA and HDP using Gibbs sampling, which are usually time consuming.

and τ is a ratio. We set τ to 0.5% in our experiments. Following [25], we use an average over topic
coherence computed by top-5 and top-10 words across five random runs, which is more robust [21].

Table 1 shows the perplexity and topic coherence of different topic models on 20News and RCV1-V2
datasets. We can clearly see that our models outperform the baselines, which indicates that our
models have better goodness-to-fit capability and can discover topics that match more closely to
human judgment. We can also see that HiTM-VAE achieves better perplexity than [39], in which
a similar hierarchical construction is used. Note that comparing the ELBO-estimated perplexity
of HiTM-VAE with other models directly is not suitable, as it has a lot more random variables,
which usually leads to a higher ELBO. The possible reasons for the good coherence achieved by our
models are 1) The “Product-of-Experts” enables the model to model sharper distributions. 2) The
nonparametric characteristic means the models can adapt the number of topics to data, thus topics
can be sufficiently trained and of high diversity. Table 1 in Appendix 1.1 illustrates the topics learned
by iTM-VAE-Prod. Please refer to Appendix 1.1 in the supplementary for more details.

5.2 The Effect of Hyper-Prior on iTM-VAE

In this section, we provide quantitative evaluations on the effect of the hyper-prior for iTM-VAE.
Specifically, a relatively non-informative hyper-prior Gamma(1, 0.05)is imposed on α. And we
initialize the global variational parameters γ1 and γ2 of Equation 9 the same as the non-informative
Gamma prior. Thus the expectation of α given the variational posterior q(α|γ1, γ2) is 20 before
training. A SGD optimizer with a learning rate of 0.01 is used to optimize γ1 and γ2. No KL
annealing and decoder regularization are used for iTM-VAE-HP.

Table 2 reports the learned global variational parameter γ1, γ2 and the expectation of α given the
variational poster q(α|γ1, γ2) on several subsets of 20News dataset, which contain 1, 2, 5, 10 and 20
classes, respectively.6 We can see that, once the training is done, the variational posterior q(α|γ1, γ2)
is very confident, and Eq(α|γ1,γ2)[α], the expectation of α given the variational posterior, is adjusted to
the training set. For example, if the training set contains only 1 class of documents, Eq(α|γ1,γ2)[α] after
training is 3.68, Whereas, when the training set consists of 10 classes of documents, Eq(α|γ1,γ2)[α]

6Since there are no labels for the 20News dataset provided by [37], we preprocess the dataset ourselves in
this illustrative experiment.
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Figure 1: Topic coverage w.r.t number of used
topics learned by iTM-VAE-HP.

Table 2: The posterior distribution of α learned
by iTM-VAE-HP on subsets of 20News dataset.

#classes γ1 γ2 Eq(α)[α]
1 16.88 4.58 3.68
2 23.03 3.68 6.25
5 31.43 2.88 10.93

10 39.64 2.69 14.71
20 48.91 2.98 16.39

after training is 14.71. This indicates that iTM-VAE-HP can learn to adjust α to data, thus the number
of discovered topics will adapt to data better. In contrast, for iTM-VAE-Prod (without the hyper-prior),
when the decoder is strong, no matter how many classes the dataset contains, the number of topics
will be constrained tightly due to the collapse-to-prior problem of AEVB, and KL-annealing and
decoder regularizing tricks do not help much.

Figure 5.2 illustrates the training set coverage w.r.t the number of used topics when the training set
contains 1, 2, 5, 10 and 20 classes, respectively. Specifically, we compute the average weight of
every topic on the training dataset, and sort the topics according to their average weights. The topic
coverage is then defined as the cumulative sum of these weights. Figure 5.2 shows that, with the
increasing of the number of classes, more topics are utilized by iTM-VAE-HP to reach the same level
of topic coverage, which indicates that the model has the ability to adapt to data.

5.3 The Evaluation of HiTM-VAE

In this section, by comparing the topic coverage and sparsity7 of iTM-VAE-Prod and HiTM-VAE, we
show that the hierarchical construction can help the model to learn more topics, and produce posterior
topic proportions with higher sparsity.

The model configurations are the same for iTM-VAE-Prod and HiTM-VAE, except that α is set to 5
and 20 for iTM-VAE-Prod, and γ = 20, α = 5 for HiTM-VAE. For HiTM-VAE, the corpus-level
updates are done every 200 epochs on 20News, and 20 epochs on RCV1-V2.

As shown in Figure 2, HiTM-VAE can learn more topics than iTM-VAE-Prod (α = 20), and the
sparsity of its posterior topic proportions is significantly higher. iTM-VAE-Prod (α = 5) has higher
sparsity than iTM-VAE-Prod (α = 20). However, its sparsity is still lower than HiTM-VAE with
the same document-level concentration parameter α, and it can only learn a small number of topics,
which means that there might exist rare topics that are not learned by the model. The comparison
of HiTM-VAE and iTM-VAE-Prod (α = 5) shows that the superior sparsity not only comes from a
smaller per-document concentration hyper-parameter α, but also from the hierarchical construction
itself.

6 Conclusion

In this paper, we propose iTM-VAE and iTM-VAE-Prod, which are nonparametric topic models that
are modeled by Variational Auto-Encoders. Specifically, a stick-breaking prior is used to generate
the atom weights of countably infinite shared topics, and the Kumaraswamy distribution is exploited
such that the model can be optimized by AEVB algorithm. We also propose iTM-VAE-HP which
introduces a hyper-prior into the VAE framework such that the model can adapt better to data. This
technique is general and can be incorporated into other VAE-based models to alleviate the collapse-
to-prior problem. To further diversify the document-specific topic distributions, we use a hierarchical
construction in the generative procedure. And we show that the proposed model HiTM-VAE can
learn more topics and produce sparser posterior topic proportions. The advantage of iTM-VAE
and its variants over traditional nonparametric topic models is that the inference is performed by
feed-forward neural networks, which is of rich representation capacity and requires only limited

7To compare the sparsity of the posterior topic proportions of each model, we sort the topic weights of every
training document and average across the dataset. Then, the logarithm of the average weights are plotted w.r.t
the topic index.
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(a) Coverage (b) Sparsity

Figure 2: Comparison of the topic coverage (a) and sparsity (b) between iTM-VAE-Prod (α = 5),
iTM-VAE-Prod (α = 20) and HiTM-VAE (γ = 20, α = 5). We can see that HiTM-VAE can
simultaneously discover more topics and produce sparser posterior topic proportions.

knowledge of the data. Hence, it is flexible to incorporate more information sources to the model,
and we leave it to future work. Experimental results on two public benchmarks show that iTM-VAE
and its variants outperform the state-of-the-art baselines.
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