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Abstract

Ensemble Model is a tool that has attracted attention due to its capability to
improve the outcome performance of emerging techniques to solve the modelling
and classifying problem. However, the feasibility of applying intelligent algo-
rithms to build the Ensemble Model presents a challenge of its own. In this work,
an Extreme Learning Machine ensemble is applied to the Time Series modelling
problem. We develop a thorough study of the models that will be candidates
to compose the ensemble, obtaining statistical results of optimal topologies to
solve each Time Series problem. The proposed method for the ensemble is the
weighted averaging method, where the parameters (weights) are tuned with the
Particle Swarm Optimization algorithm. Lastly, the ensemble is tested first in
the well known Santa Fe Time Series Competition benchmark. Given the ob-
tained satisfactory results, the ensemble is secondly tested in a real problem of
Spain’s electric consumption forecasting. It is demonstrated that the PSO is a
suitable algorithm to optimize Extreme Learning Machine ensemble and that
the proposed strategy can obtain good results in both Time Series problems.

Keywords: Ensemble, ELM, PSO, Time-Series, Electric Consumption
Forecasting

1. Introduction

Time Series consist of sequences of observations collected over time. The
forecasting of future data sequences based on past data is a challenge not only
in engineering [1], but in finance [2], physics [3] or biology [4] as well. In all
these fields, an accurate model that represents the dynamics is fundamental to
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successfully infer properties of the system. As an established procedure to ini-
tially validate the new proposals of modelling, the research community studies
the new strategies testing them with known datasets as Santa Fe [5], UCI [6],
or CATS [7], among others. The methods to obtain a prediction of Time Se-
ries vary in each field, but to mention some of them these include [8, 9, 3, 10]:
Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Mov-
ing Average (ARIMA), Support Vector Machine (SVM), k-Nearest Neighbors
(KNN), Artificial Neural Networks (ANN), Fuzzy Logic (FL), Deep Learning
(DL), Bayesian Neural Networks (BNN), Simple Exponential Smoothing (SES),
Wavelet Transform (WT), Holt-Winters (HW) models, and Gaussian Process
(GP), along with different combinations between them.

Among the methods listed, the ANN have the interesting features of being an
universal approximation for nonlinear functions, their strong prediction perfor-
mance and ability to tackle unknown system modelling [11]. These properties
have made the ANN a well established technique for time series forecasting,
even more so in problems that present nonlinearities [3, 8]. A specific type of
ANN are the Extreme Learning Machines (ELMs). An ELM is a feed-forward
ANN, in a single layer configuration, with a random initialization of the input
layer parameters (weights and biases), that Huang et al. introduced in their
work [12]. This way, the parameters of the output layer can be easily calculated
minimizing the output error of the ANN. The ELMs have been used in time
series forecasting in [13], where a one step ahead predictions are performed for
non-stationary time series. In [14], an online sequential ELM is also employed
for non-stationary time series.

These and many other techniques work reliably and accurately, but in many
cases the path to get the desired results is full of discarded models [3, 15] that
do not work properly or as expected. Besides, in Time Series modelling and
forecasting, accuracy is one of the most important factors that should be opti-
mized. Nevertheless, it is usually difficult to reach acceptable accuracy ratios
with a single model [16, 17, 18, 19, 20]. Many recent studies show that the
combination of multiple predictions of weaker models can perform more ac-
curately than any individual model of the ensemble [21, 22]. The Ensemble
Models (EMs) emerge as a method for reuse the already trained models that
do not perform globally as expected, but that can contribute to increase the
global accuracy of ensemble [23]. EMs have been used in different contexts
and with many different types of models [24]. An EM is composed of a set of
models also known as ’members’ or ’experts’ [25], which preferably represent
the diversity of solutions to the time series forecasting problem. The EMs must
consider each of the members’ solution and how much they should weigh for
the final solution. This final solution weighting is performed with methods such
as Simple Averaging, Majority Voting, Ranking or Weighted Averaging. It has
been shown that weighted methods, due to their capability of emphasizing an
expert among the others, yields better results [26]. However, the computation
of the weights is a difficult task on account of the complexity of the solution
space. Evolutionary and swarm optimization algorithms have been proposed in
order to solve these difficulties. For example, in [27] a Genetic Algorithm (GA)
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was used for the tuning of the ensemble weights to build a robust committee
of neural networks, and in [28] the same weight tuning task is performed by a
Particle Swarm Optimization (PSO) for peer-to-peer credit score classification.

The aim of this paper is to present and validate a suitable technique for com-
puting the weights of a EM composed by ELM models for time series forecasting.
This work is based on our previous results in [29], but going beyond by consider-
ing current tendencies where these techniques are combined to propose different
solutions. For example, [30] where a new hybrid method combining ELM with
other ML techniques is proposed to estimate electricity market prices, [31] where
an ELM model optimized by the PSO algorithm is applied to directly estimate
landslides, [32] solving the problem of the prediction of software defects develop-
ing an alternative hybrid fault prediction system based on PSO and Ensemble
ELMs, [13] where an EM of ELMs is proposed, or [33] where an ensemble of
ELMs is built with PSO.

Firstly, an introductory section will present the techniques and methods to
be used. The section finalizes with the proposed ensemble that will be tested
in the third section called ”Experiments and Results”. This section explore
the methodology involved in order to select the different parameters of the EM
in each presented experiment. The validation phase is carried out with two
experiments; the well known Santa Fe laser benchmark and the Spanish electric
consumption forecast problem. Finally, in the forth section, the discussion of
the performance reached as well as the conclusions of using this methodology
are presented.

2. Background

The foundation of this work is the hybridization of techniques. Each tech-
nique has its own mission: ELM will be used to create individual models of
the Time Series. EM will gather different ELMs to fit into one unique model.
Finally, PSO will be used to tune the weights of each model of the EM.

2.1. Extreme Learning Machines

The Extreme Learning Machine is a learning algorithm for Single Hidden
Layer Feed-forward Neural Networks (SLFN) [12]. ELM randomly establishes
the weights that connects the inputs and the hidden layer nodes. Once those
weights are set, the output layer weights are analytically calculated. A generic
ELM topology is represented in Fig.1. Being the input vector:

XM×1 = [x1, . . . , xM ]T . (1)

The weight matrix connecting the input vector and the hidden layer nodes is
represented by

W1
N×M =

w
1
1,1 . . . w1

1,M
...

. . .
...

w1
N,1 . . . w1

N,M

 . (2)
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Figure 1: ELM general scheme

And the hidden layer bias vector as

b1
N×1 = [b11, . . . , b

1
N ]T . (3)

The activation function of the hidden layer is denoted by σ() and can be almost
any nonzero function. The weight matrix connecting the hidden layer nodes
with the output layer nodes is represented by

W2
O×N =

w
2
1,1 . . . w2

1,N
...

. . .
...

w2
O,1 . . . w2

O,N

 . (4)

The relation of the ELM output (ŶO×1) and the input (XM×1) is obtained by

ŶO×1 = W2
O×N · σ

(
W1

N×M ·XM×1 + b1
N×1

)
. (5)

Given D training samples (XM×D,YO×D), with M ×D dimensional input
matrix, the ELM output can be described as

ŶO×D = W2
O×N ·

[
σ
(
W1

N×M ·XM×D + b1
N×D

)]
. (6)

Defining HN×D as

HN×D = σ
(
W1

N×M ·XM×D + b1
N×D

)
. (7)

Substituting (7) in (6), the output layer weights can be analytically calculated

with (8), where the smallest norm H†D×N denotes the Moore-Penrose generalized
inverse matrix of HD×N :

W2
O×N = ŶO×D ·H†D×N . (8)
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2.2. Ensemble Models

An Ensemble Model is a combination of different single models which aims
the improvement of the final prediction. To create an EM, machine learning
techniques could be used as they provide good individual forecasting perfor-
mances. Among the most used are Support Vector Machines [34], Artificial
Neural Networks [35] or Decision Trees [36].

The work carried out by various researches confirms the improvement of
using EM. This improvement has been mathematically formalized in [25], where
it is shown that the variance of the ensemble is lower than the average variance
of all the individual models. They proved that the error of an ensemble is given
by

Eens =
1

k
Eavg, (9)

where k is the number of models in the ensemble and the EM error is clearly
lower than that of the individual models. This expression suggests that the
average error of an ensemble model can be reduced by k introducing more
models into the ensemble, but this is only true when the individual model’s
errors are uncorrelated [11]. Moreover, [25] states that in practice, with large
number of models in the ensemble, (9) does not hold. Despite this drawback,
the improvement of the EM over the individual model can be proven, leading
to a research interest in creating better ensembles.

There are diverse techniques to create the combination of models in the
ensemble. The technique to use depends on the problem to solve, leading to
some techniques more suitable for classification as majority voting or weighted
majority, and others for regression problems, such as weighted averaging or
ranking [27].

2.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [37] is one of the most spread swarm
optimization algorithms. It was developed to mimic the movements of bird
flocks or fish schools. PSO has been successfully applied to many problems:
neural network training, function optimization, pattern classification and so on.
[38] presents an up to date review of applications and research trends in PSO.

Particle position update formula is given by

pl+1 = pl + vl+1, (10)

where pl is the particle position and vl the particle velocity in the l-th iteration.
The velocity can be calculated by

vl+1 = a · vl + c1 · r1(pl − pb) + c2 · r2(pl − pg), (11)

being a the inertia weight, c1 and c2 the acceleration coefficients, r1 and r2 two
coefficients randomly generated each iteration. pb and pg represent the personal
best value for each particle and the best known swarm position respectively at
iteration l.

The update process for all particle position is sequentially performed until
the target criteria or the maximum number of iterations is reached.
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2.4. Proposed Ensemble

The hybridization of these three techniques was proposed in [33] for a online
sequential system, and in [29] for a time series problem. In this work, we
apply a hybridization of the three techniques, performing previously a thorough
analysis of the models introduced into the EM. The ensemble is built with PSO.
The result is then tested in a benchmark and, as a practical example, a real
problem to forecast the consumption of a Spanish electrical system is solved.
To understand the proposed strategy, a clear picture of each techniques role will
be drawn firstly. The ELM role in the ensemble is modelling of the data. Several
ELMs are trained with the data available in order to have different members in
the ensemble that would potentially provide diversity in the predictions. More
details on the topology of the ELMs are given in the experiments section below.

The ensemble is constructed using the weighted averaging method. The
weighted method adds complexity to the ensemble building since one of the most
challenging task is to weigh the contribution of each member to the ensemble.
Despite this increased complexity, the created ensembles have more adaptabil-
ity and yield better results [26]. To overcome this increased complexity, some
authors propose heuristic approaches as Genetic Algorithms to optimize the
initial weights (the weights assigned before training) of an ensemble of neural
networks [39]. In the present work, PSO has been used as it converges faster
and presents more density of the search space. Another favorable feature of the
PSO comparing to other methods is that it presents the ability to reach good
solution without local search [40]. In [33], the selection of the models to build
the ensemble is done with a PSO algorithm and combines the ensemble with
an averaging method. The idea presented in [29], which we follow in this work,
is to employ a ranking-based selection combined with PSO weighted averaging.
This selection has been made due to the best performance shown by the PSO
weighted averaging over the simple averaging.

The output of the ensemble is computed in weighted averaging by

Ŷens(XM×1) =

k∑
j=1

αjŶj(XM×1), (12)

where αj is the weight assigned to the j-th model or expert in the ensemble,

Ŷj() is the output of the j-th expert to the XM×1 input. It is assumed that
the sum of all the weights sum to one [24]:

k∑
j=1

αj = 1. (13)

The weight assigned to each member of the ensemble is tuned with the PSO
algorithm. In order to obtain these weights the PSO needs a loss function to
evaluate its performance. The loss function will assess how good is a particle
in the search space, and in the type of problem that this work handles this
means how well the time series is predicted. The selected loss function is the
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Root Mean Squared Error (RMSE) of the predicted samples. This loss function
is widely used in the time series forecasting. The expression for obtaining the
RMSE is

RMSE =

√√√√ 1

F

F∑
h=1

(Ŷh −Yh)2, (14)

where F is the total amount of forecasted samples, Ŷh is the prediction of the
model to a XM×1 input and Yh is the hth real value.

The PSO, by definition, explores the whole search space without any con-
straint [41]. In this work, a constraint has been set in equation (13) leading
to a reduction of the search space. In order to respect this constraint, the
weights that the algorithm calculates are normalized (Anormalized) before being
evaluated by the loss function using

Anormalized =
A∑k

j=1 αj

, (15)

where A represents the vector of weights A = [α1, . . . , αk] and αj stands for
the individual weight of the jth model or expert in the ensemble. With this
approach, the PSO can explore the whole search space with the subsequent
minimal modification of the weights to fulfill the imposed constraint.

The final step to build the ensemble is the tuning of the parameters of the
PSO algorithm described in equation (11). These three parameters are the
inertia weight a and the two acceleration coefficients, c1 and c2. Due to the
practical approach of the present work, the parameters have been set to values
suggested by other authors. This way, according to [42] the weight inertia has
been set to a = 0.7298 as the authors claim to be the best relation between the
velocity of the particle and the swarm dependence velocity. The acceleration
coefficients have been set c1 = c2 = 1.49618 as it was experimentally shown to
be one of the best options [43].

3. Experiments and Results

The PSO boosted ELM ensemble is used to perform a benchmark and a real
case application. In this section the most important aspects of the experiments
will be detailed.

In the first part of the experiment, some dataset characteristics will be ex-
tracted to ease the design phase. In this step, an autocorrelation analysis will
be performed to obtain the number of significant past samples on which the sig-
nal depends. Despite the information obtained with the autocorrelation, which
informs on the range of inputs to use, a methodological procedure has been
followed to determine the best ELM’s topology.

The procedure consists of a batch training of ELMs within a range defined by
the input vector (XM×1) and the range for the number of hidden nodes. A total
of 10 ELMs are created for a specific combination, giving the performance results
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(a) Santa Fe’s Laser dataset
(b) Autocorrelation plot of Santa Fe
time series

Figure 2: Santa Fe benchmark

a more reliable statistical base. The step size in the range is also 10, i.e, the
number of inputs within a range between 10 and 100 will be [10, 20, . . . , 90, 100].
The performance of each topology leads to a ranking that contains the best 100
ELMs and is used to build the ensemble. An aspect that remains in the topology
along the experiments is the activation function of the hidden and output layer
nodes, which is set to Sigmoid and Linear, respectively.

Once the ELMs are tuned, the ensemble building process is carried out
following the next steps:

1. The ELMs are sorted by their prediction error in ascending order.

2. The first model in the sorted list is added to the ensemble with a weight
of 1.

3. The following model in the list is added to the ensemble, and the PSO is
called in order to compute the best weights.

4. Repeat step 3 until the maximum number of experts in the EM is reached.

The PSO in both experiments has 100 particles composed by all the weights
assigned to each ELM in the ensemble. These weights are randomly initialized
in the beginning of the search and the PSO performs 100 iterations to find the
best possible ensemble weights.

In the following subsections, two experimental applications are presented.

3.1. Santa Fe Benchmark

Santa Fe time series benchmark was created in 1991 for the purpose of with
other interesting time series benchmarks to facilitate open data to work with [5].
As time series forecasting is a multidisciplinary research field, advisors from the
most relevant disciplines helped creating these datasets. The dataset selected
in this work is the Santa Fe laser benchmark that consists of a 1000 points of
the fluctuations in a far-infrared laser, obtained in a clean physics laboratory
experiment. The Santa Fe laser dataset is presented in Fig.6a, where the first
1000 samples (blue line) is the data provided for training and the 1000 to 1100
sample range (orange line) is the data to forecast.
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The objective of this benchmark is to perform a 100 sample prediction start-
ing in sample 1000. The error calculation is determined by the normalized mean
square error (NMSE) represented by

NMSE(F ) =

∑
h∈T ( observation h − prediction h)

2∑
h∈T ( observation h −meanT )

2 ≈ 1

σ̂2
T

1

F

∑
h∈T

(xh − x̂h)
2
,

(16)
where h = 1 . . . F denotes number of samples to calculate the error, meanT and
σ̂2
T denote average and variance of the target values in T

For training the ELMs the first 1000 points have been used. Those points
are pre-processed using the Gaussian normalization function. The inputs of the
ELM are the past samples of the signal appending the signal value at time step
h, and the output will be the forecasted value at h+ 1. The forecasted output
serves as input to generate the following h + 2 output, repeating this process
until the h+ 100 prediction is completed.

To help determine the ELM topology and the number of inputs represented
by past samples of the dataset, an autocorrelation plot is presented in Fig.2b.
With this analysis, it can be concluded that the most significant past samples
that the signal depends on are between 1 and 10 previous samples because of
the change of the correlation sign and its seasonality.

In addition to the autocorrelation plot, a series of experiments are carried out
in order to identify the best ELM topology. These experiments search for more
hints on the selection of ELMs number of inputs as well as the ELMs number
of hidden nodes. To gain statistical significance, each tested topology has 10
different ELMs, creating an experiment where plenty of the ELM combinations
are covered in the selected range. The results of the batch experiments carried
out to obtain the best ELM topology are represented in Fig.3, where the RMSE
of the 10 ELMs of each topology is presented.

According to the results, the more inputs are involved in the ELM, the higher
RMSE become and the more the hidden layer nodes reduce this error. With
this characteristic in mind, we are able to select the best topologies not only to
obtain the best model but to build a proper ensemble.

The best ELMs are classified and presented in Table.1, where the ’ELM
Name’ tag represents the ELMs configuration; with the number following the
’M’ representing the number of ELM inputs and the number after ’N’ standing
for the number of nodes in the hidden layer (see Fig.1). Note that only the best
5 out of 300 ELMs are listed in the table.

Once the ranking is completed, the ensemble building takes place. The
PSO algorithm computes the weights searching to minimize the loss function
represented in (16). An interesting yet predictable result is shown in Fig.4,
where the evolution of the RMSE can be seen as more ELMs are introduced in
the ensemble. There is a clear trend to decrease the RMSE while introducing
more ELMs in the ensemble. The PSO algorithm is most of the times capable
of finding weights that produce a lower RMSE.

The last figure in Santa Fe benchmark, Fig.5, represents the comparative
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Figure 3: ELM topology analysis for Santa Fe benchmark

ELM Name RMSE
M-10-N-160 29
M-10-N-170 29
M-10-N-150 29
M-10-N-110 30
M-10-N-100 31

Table 1: Best ELM prediction error
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Figure 4: Root Mean Squared Error vs number of ELMs in the ensemble

of the Real or Expected output vs. the prediction of the Best ELM vs. the
prediction made by the Ensemble.

The numerical results for PSO, mean and median are NMSE = 0.4575 ,
NMSE = 0.8877, NMSE = 1.3099 respectively and show that the PSO algorithm
performs better than the other methods. The result provided by PSO can be
considered as good comparing to the Santa Fe competition results (see Table
2 in [5]), although the EM can not reproduce appropriately the collapse point
around sample 70. This is one of the hardest issue in the benchmark as in the
dataset this collapse phenomenon occurs twice. The prediction has degradation
along the samples but it does not present a remarkable phase degradation.
No emphasize has been done in the collapse data range and this lack of data
preparation prior to the ELM training may have some influence in the results
obtained.

3.2. Electric consumption model

The power consumption forecasting has become a must due to the increasing
demand of electricity worldwide. One of the main objectives of a supply com-
pany of electric power is to have reliable short-term consumption forecasts, in
order to optimize the management of that consumption through the resources
available. A correct prediction improves the operations plan management of the
supply companies, a task that is carried out not only based on available resources
but also on the expected demand to supply and on the fulfillment of contractual
commitments with supplying, distributing and marketing companies. There are
many factors that may influence the electric consumption such as geographical
location or regional temperature [44]. The temperature is considered one of the

11



Figure 5: Santa Fe benchmark 100 sample prediction

most influential factor in the case that this experiment addresses, but not only,
as other climate factors are also very influential. Despite the foregoing, as first
step in the electric consumption experiment presented in this work, the main
goal is to create a model that could be able to forecast the global electricity
demand in Spain for a 24-hours temporal window with hourly predictions. To
that end, only the previous consumption data will be used. This prediction is
needed by the company in order to be able to auction, as is done quarterly, in
a more efficient manner the price of the energy. The published predictions that
are currently used in this context by Spanish Electrical Network company (Red
Eléctrica Española), a corporation exclusively involved in electricity system op-
eration, transportation and supplying in Spain, have these horizons of up to 24
hours.

To analyse the accuracy and feasibility of the proposed strategy, the inte-
gration of an ELM ensemble boosted by PSO, a 12-month dataset provided by
Spanish Electrical Network company has been used. The consumption distri-
butions analyzed is shown in Fig.9. The dataset is composed of hourly power
consumption data (MW) provided by Red Eléctrica Española in its website.
Dataset consists of data from Jan 1st 2014 00:00h to Nov 5th 2016 11:00h, di-
vided in a train set of 5.000 samples and a test set of 19, 203 samples. The
dataset is pre-processed using the Gaussian normalization function.

As stated in the Santa Fe benchmark, an autocorrelation plot has been car-
ried out to help determine the ELM topology. The results of the autocorrelation
plot is presented in Fig.6b. In this case, the plot presents a 24 hourly repeat
pattern of the data, with a change each 7 peaks. Hence, around 175 samples
the plot presents another repeat pattern that in this case will be attributed to
weekly pattern. With this analysis, it can be concluded that the most signifi-
cant past samples that the signal depends on, are between 24 to 175 previous
samples because of the change of the correlation sign and its seasonality.

In addition to the autocorrelation plot, an ELM topology sweep has been
performed in a range from 10 to 300 inputs and from 10 to 300 hidden layer
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(a) Electric consumption dataset
(b) Autocorrelation plot

Figure 6: Electric consumption data analysis

ELM Name RMSE
M-40-N-140 3488
M-60-N-130 3830
M-90-N-120 3957
M-30-N-140 4033
M-60-N-140 4067

Table 2: Best ELM prediction error

nodes. The results of the batch experiments carried out to obtain the best ELM
topology are represented in Fig.7, where the RMSE of the 10 ELMs of each
topology is presented.

According to the results, less inputs involved in the the ELM lead to a
higher RMSE and more hidden layer nodes increase this error. Analogously to
the procedure followed in the Santa Fe benchmark, the top five best ELMs are
classified and presented in Table.2.

Considering the best ELM Table.2, the EM building is carried out leading
to the Fig.8, where the evolution of the RMSE can be seen as more ELMs are
introduced in the ensemble. In this case, not all the added ELMs reduce the
error, but still a clear RMSE reduction trend is shown. The figure plots the
ensemble building for different methods as mean and median compared to PSO,
showing how the PSO obtains a better result in comparison to cited methods.

Fig.9 represents the comparative of the electric consumption prediction in
MW. The Real output (in blue) represents the electric consumption in a 24h
window. The orange and green lines represent the prediction performed by the
best ELM and by the PSO ensemble, respectively. The red and purple signals
represent the prediction of the mean ensemble and the median ensemble.

The prediction performed by the PSO EM has a good performance consid-
ering the resulting RMSE, and clearly outperforms the best ELM,the mean EM
and the median EM.
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Figure 7: ELM topology analysis for electric consumption case

Figure 8: Root Mean Squared Error vs number of ELMs in the ensemble
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Figure 9: 24 hour electric consumption prediction

4. Conclusions

In this work, the application of the Particle Swarm Optimization algorithm
for ELM based Ensemble Model tuning is proposed. The validation of the pro-
posed strategy consists in the evaluation of a time series benchmark and a real
application based in electrical power consumption prediction. The combination
method selected to build the ensemble is the weighted averaging. This selection
implies that the sum of the weights assigned to each model in the ensemble must
sum one, and to respect this constrain, the weights calculated by the PSO are
normalized. It has been demonstrated that the PSO is a suitable algorithm to
optimize Extreme Learning Machine ensemble and that the strategy can obtain
good results in both benchmarks analyzed in this work. Notwithstanding the
selection of weighted averaging is discouraged over simple averaging by some re-
searchers due to its tendency to overfit, the applications presented in this work
has not shown such a problem. Moreover, PSO based weight tuning has shown
better results than the mean and median weight calculation for the ensemble in
both experiments.

Notwithstanding some inaccuracies in predictions in the Santa Fe bench-
mark, mainly attributable to the ELM training and its capacity to perform the
task undertaken, the EM created with these ELMs has carried out a satisfactory
prediction with good numerical results comparing to the Santa Fe competition
results [5].

The electric power consumption prediction application has a promising per-
formance, though it is on the first stages of the project. Obviously, the seasonal-
ity, the temperature, the climate and many other factors would arise in a more
wide context prediction. Nevertheless, the main objective of the application of
PSO in the ensemble building has also been fulfilled in this experiment.

One of the main aspects that this work benefits of is the methodological
approach to the ELM topology selection. This approach has been used in other
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works, producing several ELMs that can be reused instead of discarding them
all. Creating a ranking of the best ELMs helps the EM building although some
problems, not found in the presented experiments, could arise. The problem
of reduced diversity in the model’s prediction and the problem of overfitting
have to be analysed in future works. The usage of alternative ranking and
ensemble building strategies are also interesting for the improvement of the
proposal presented in this work.
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