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Abstract

This paper proposes a new model based on Fuzzy k-Nearest Neighbors for
classification with monotonic constraints, Monotonic Fuzzy k-NN (MonFANN).
Real-life data-sets often do not comply with monotonic constraints due to
class noise. MonFENN incorporates a new calculation of fuzzy memberships,
which increases robustness against monotonic noise without the need for rela-
beling. Our proposal has been designed to be adaptable to the different needs
of the problem being tackled. In several experimental studies, we show sig-
nificant improvements in accuracy while matching the best degree of mono-
tonicity obtained by comparable methods. We also show that MonFANN
empirically achieves improved performance compared with Monotonic k£-NN
in the presence of large amounts of class noise.
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1. Introduction

Monotonic constraints are prior-knowledge of some ordinal classification
or regression problems about the order relationships between attributes and
class labels [9]. Consider the example of house pricing. The following con-
straints are applied: A bigger house in the same neighborhood is constrained
by higher prices as compared to smaller houses with the same features. That
is, the classifier decisions should not decrease in the presence of better fea-
tures while the rest remains the same. These prior constraints are required
by many real-life evaluation problems, such as credit risk modeling [12] and
lecturer evaluation [7]. These problems are known as Classification with
Monotonic Constraints or Monotonic Classification [3].

These learning tasks have additional objectives besides accurate models,
such as the monotonic consistency of predictions and minimization of the
misclassification costs. The latter is also relevant since the errors between
ordered classes do not hold the same importance. More metrics must be
used during the learning and validation of the models. However, these other
objectives may impair accuracy [4]. Hence, a fair balance must be sought
between the different needs of each problem.

Standard classifiers are discouraged for monotonic classification since they
do not contemplate these constraints and their predictions violate the mono-
tonicity required by certain applications. A classic example of these non-
monotonic models is the standard decision tree [3]. Standard k-Nearest
Neighbors algorithm also does not take these restrictions into account, which
may lead to further harm as a result of their presence in preprocessing tech-
niques [22].

In recent years, new algorithms have been designed to minimize the num-
ber of monotonic violations in their predictions [3, 23, [9], i.e. the number of
pairs of instances that break monotonicity [3]. To do so, some approaches
focus their entire learning mechanism just on monotonicity. This strategy
usually achieves completely monotonic models, but it could lead to wrong
generalizations being made that are different to the knowledge of the prob-
lem. Others infer monotonic relations from the training set while maximizing
their accuracy. These models have been adapted from different families of



classifiers [9], such as decision trees [3, B2 34], support vector machines [12],
fuzzy model based classifiers [Il, 29], neural networks [17, [40] and ensemble
learning [13], 36}, 23].

Instance-based learning has proven to be a good approach for monotonic
classification [2} [15] 31, [18]. However, some of these methods, such as Mono-
tonic k-Nearest Neighbors [15] (MANN), need to learn from a fully monotonic
set to ensure monotonic predictions. This is rarely the case in real-life sce-
narios, where class noise and discrepancies are common. Therefore, data
preprocessing [21], 33, B, 22] and relabeling strategies [35] [16] must be used
to remove non-monotonic samples or to change their class labels in order to
force a monotonic set.

In standard classification, Fuzzy k-Nearest Neighbors [25] is a very solid
method with high performance, thanks to its high robustness to class noise
[14]. This class noise robustness mainly lies in the extraction of the class
memberships for the crisp training samples by nearest neighbor rule. In this
process, the class memberships of noisy instances are shared with surrounding
classes and the incorrectly assigned class looses its influence. However, these
mechanisms do not consider monotonic constraints and Fuzzy k-NN cannot
deal with monotonic violations or monotonic noise in the training set.

In this paper, a new model designed on the basis of Fuzzy k-NN with
notions of MANN is proposed to take monotonic constraints into account,
and is called Monotonic Fuzzy k-Nearest Neighbors (MonFANN). MonFANN
has been designed with three desired features:

(i) Robustness against monotonic violations.
(ii) Monotonic predictions without a pure monotonic training set.

(iii) Flexibility in its configurations covering different needs of performance.

With these objectives in mind, MonFANN has been designed with new
mechanisms to manage monotonicity constraints and the monotonic viola-
tions in the training set. The main contributions of the MonFANN design
are:

(i) The initial robustness of Fuzzy k-NN has been redesigned to mitigate
the influence of monotonic violations. Firstly, the violations due to
sample replicas with different classes are joined to form one class mem-
bership. Then, our approach incorporates a strictly monotonic nearest



neighbor rule to the calculation of the memberships of the training ex-
amples.

(ii) These monotonically constrained memberships and their medians are
used in the prediction phase. The class memberships aggregation of
MonFkNN is also monotonically constrained by the nearest neighbor
extraction or a penalty to the contribution of non-monotonic instances.

(ili) MonFANN was built as a flexible classifier that covers different neces-
sities of monotonicity and accuracy by tuning its parameters. It can
be configured with a rigidly monotonic or standard k-NN rule if mono-
tonicity or precision is preferred in the predictions, respectively.

All these mechanisms reinforce the robustness of our proposal against
monotonic noise without the need for relabeling. We understand monotonic
noise as being the actual noise that can alter the class labels and, as a result,
change the monotonic constraints among the samples in the data. Their
parameters make our proposal adaptable to the different objectives of mono-
tonic classification. We distinguish two different parameter configurations: a
pure monotonic version in which monotonicity is prioritized, and an approx-
imate configuration that focuses more on the prediction accuracy.

We have performed several empirical studies to verify the desired features
of MonFENN. First, different behaviors of its two configurations are empir-
ically analyzed and compared to the original FAKNN. Then, our proposal is
compared with 7 methods from the state-of-the-art, exhibiting substantial
improvements in accuracy and maintaining the best degree of monotonicity.
Finally, the robustness of our method against monotonic noise, i.e. mono-
tonic violations, is shown in contrast to MANN. In this last experiment,
MonFENN performs considerably better than Monotonic k-NN in scenarios
with large amounts of class noise. The experimental framework used con-
sists of 12 data-sets commonly used in monotonic classification, 7 monotonic
classifiers and 3 metrics covering different aspects of performance: Accuracy,
Mean Absolute Error and Non-Monotonic Index. All results are additionally
validated with the non-parametric statistical Wilcoxon and Friedman rank
[20, 19] and Bayesian Sign tests [5].

The paper is organized as follows. In Section [2| we present the problem
of classification with monotonic constraints and the methods related to our
proposal: MENN and Fuzzy k-NN. Section |3| is dedicated to explaining our
model MonFANN in detail and its algorithmic differences as compared to
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FENN. The experimental framework used in the different empirical studies
is presented in Section [d] In Section [5 the previously mentioned empirical
studies are carried out and analyzed. Finally, the main conclusions of this
study are stated in Section [0]

2. Preliminaries

In this section, we introduce the preliminaries needed: Classification with
monotonicity constraints, Monotonic k-Nearest Neighbors and the original
Fuzzy k-Nearest Neighbors.

2.1. Monotonic Classification

Monotonic classification [9] is an ordinal regression problem with mono-
tonic constraints relating to the order of the variables and the class labels.
Ordinal regression and/or classification can be seen as a nonstandard clas-
sification problem [11], which attempts to minimize the difference between
the predicted labels and the real labels. Classification with monotonic con-
straints is also considered to be a nonstandard supervised learning problem
[11].

Formally, monotonic classification aims to predict the class label y from

input vector z with @ number of features, where y € Y = {ly,1ls,...,l.} and
x represents an individual of our classification problem. The categories Y
are arranged in an order relation < as l; < ls < ... < [.. And, as the main

property of monotonic classification, the attributes and class predictions are
monotonically constrained by the problem prior-knowledge, i.e. = = 2’ —
f(z) > f(2) [26], where z »= o' implies V1 g, 7; > ), that is, x dominates
2. Therefore, the main objective is to build classifiers that do not violate
these constraints, otherwise known as monotonic classifiers.

Two different types of monotonic classifiers can be distinguished: approx-
imate monotonic models, which minimizes the number of monotonic viola-
tions in their decisions and pure monotonic classifiers, whose predictions are
always monotonic concerning the training and future examples. The latter is
hard to achieve, particularly in real-life applications where the training data-
sets are rarely purely monotonic. To be considered monotonic, all of the pairs

of instances in a data-set must be monotonic [2]: x; = z; — v; > y;, V.



2.2. Monotonic k-Nearest Neighbors

MENN [I5] modifies the standard nearest neighbor rule of the well-known
lazy learning method to avoid monotonic violations in its predictions. To do
so, MkNN computes for each new example z; the range r; = [Ymin, Ymaz|
of valid class labels, which satisfies the monotonic constraints. The lower-
bound ¥, of r; is computed as the highest class label of all instances in the
training set D below the example x;. Analogously the upper-bound ¥4, is
the minimum class label of the instances in D that are higher than x; (see

Eq. .
. Ymin = max{y | (z,y) € DAz; = x} 0
Z ymam:mln{y|(l’,y) ED/\.%E.TZ}

Two different MANN variants can be distinguished depending on how
the neighbors are extracted for a new instance x;. The InRange variant
considers the k nearest examples x; with their class labels y; in the range
[Ymin, Ymaz). The OutRange version extracts first the k nearest neighbors z;
and then, those neighbors outside of the range r; are filtered out from the
decision. If all of them are removed, a random label in 7; is chosen. As in the
standard k-NN method, the majority class among the k neighbors is used as
the predicted label.

MENN is one of the methods that require monotonic data-sets to work
properly [15]. Since, with monotonicity violations, the range r; could not be
correctly computed, a relabeling technique should be used to transform the
non-monotonic training data into monotonic data. These techniques intend
to identify and remove the monotonicity violations by making the fewest
possible changes with minimum class difference. [15] 135, [16].

2.3. Fuzzy k-Nearest Neighbors

Fuzzy Sets [39] express the uncertainty of the example memberships to
each class label. The memberships of the example x; are represented as a
degree of each class belonging u; = (w;1, w2, . . ., u;.), where u; € [0, 1] and

Zuﬂ = 1. Nowadays, development in fuzzy sets and classifiers is still an
=1
ongoing process [37].

Fuzzy k-Nearest Neighbors algorithms [14] incorporate fuzzy concepts
into the classical k-NN decision rule to learn from fuzzy sets and produce
fuzzy classification rules. Recently, different approaches have been proposed
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based on distinct fuzzy set extensions. However, the original Fuzzy k-NN [25]
(FENN) is still one of the best approaches [14]. Recent approaches provide
for the optimization of parameters in FENN [6].

For a given new instance z;, Fuzzy k-NN [25] extracts its K nearest
neighbors in the same manner as the standard £-NN. Then, its memberships
for each class [ are computed with the following expression:

K

1
2 ulap ) ey

j=1

u(z,l) = = (2)
1

o= ;[

j=1

As shown in Eq. , the membership u(z;, 1) = uy of sample z; to class [ is
assigned with the product of the class membership w(z;,() of the neighbors
x; and the inverse of their distances to x;. The latter serves as a weight that
biases towards the memberships of nearer samples. The parameter m deter-
mines the degree of influence of the neighbor distances. The recommended
value m = 2 [25] makes the contributions of the neighboring samples recip-
rocal to their distances. A crisp class label for the example z; can be decided
as being the label [ with the greatest membership degree u;;.

Facing a labeled training set, Fuzzy k-NN [25] brings it into a fuzzy set
with sample memberships using the nearest neighbor rule. For each training
sample z;, k nearest neighbors are extracted using the leave-one-out scheme.
Then memberships u(x;, 1) for each class [ are computed according to Eq.
with the number of neighbors nn; found for each class [. This transformation
has proven useful against noisy samples as the memberships lose influence as
they are spread to the surrounding classes (not the assigned class).

(s, 1) = { 0.51 + 0.49 * (nn; /k) , .if Y =1 3)
0.49 % (nn;/k), otherwise

3. Monotonic Fuzzy k-Nearest Neighbors

In this section, we explain our approach in detail - MonFANN and all its
mechanisms that consider monotonicity constraints. In Subsection (3.1, we
explain how MonFENN gives a final class from class memberships in a more
proper manner according to monotonicity. Subsection [3.2)is dedicated to the



extraction of the class memberships from the training set and redesigned to
reduce the impact of monotonic noise without the need for monotonic relabel-
ing. In Subsection [3.3] the class membership aggregation built-in MonFANN
is explained and related to the robustness and flexibility of the classifier using

its parameters. Finally, we discuss the algorithmic differences between our
proposal and the original FENN in Subsection [3.4]

3.1. From class memberships to the final class label

Since FENN works with class memberships, a mechanism that respects
monotonicity is needed to get a final class from a vector whose elements sum
up to the value of one. The class with the greatest membership is the most
common decision in multiple classifiers. The original Fuzzy k-NN gives their
crisp predictions as the class label with the highest membership.

However, this might not be appropriate for scenarios with monotonic
constraints. For example, let ; < z; and their class memberships u;, =
(0.2,0.2,0.4,0.2,0.0) and u; = (0.0,0.4,0.3,0.2,0.1), then their final classes
chosen with the highest membership break the monotonicity: argmazx(u;) =
ls > ly = argmax(u;). Even though, the instance z; has more weight values
assigned to the higher labels than instance z;. In fact, u; weakly domi-
nates u; according to the first degree stochastic dominance relation (FSD)
[28] since the z; cumulative distribution function U; = (0.2,0.4,0.8, 1.0, 1.0)
is greater, element by element, than U; = (0.0,0.4,0.7,0.9,1.0), that is,
w; 2psp u; <= (VI € Y)(U;(l) > U;(l)). To make FSD applicable, class
membership vectors are normalized to sum up to the value of one and treated
as probability mass functions. Therefore, a cumulative distribution function
U can be computed for given normalized class memberships, where FSD is de-
fined. This transformation can be done thanks to the order relation between
classes in monotonic classification. FSD is useful for defining monotonic-
ity constraints in probabilistic classifications [31], B0], with the expression
r; < x; = U; 2psp Uj.

Therefore, the function that transfers a membership vector to a class
label must satisfy u; <psp u; = y; < y;. Centrality measures, such as
mean and median, have proven to be good solutions [28] [31]. Particularly, the
median is applicable to ordinal problems. Following the traditional definition
of median as the 50th percentile, the median is computed as the range [/,,,



ZM]Z

l, =min{l € Y |U{X <} >1/2} A
Iy =max{l e Y| U{X >1} >1/2} 4)

where [ is a class label of possible labels V), U{X < [} is the cumulative
membership/probability of belonging to a class smaller or equal to [ and
U{X > [} is the analogous definition for a class greater or equal to .
Going back to the previous example, the classes for z; and x; chosen
by the median does not break monotonicity: med(u;) = med(u;) = 3. For
lm # Ly, any class label [ which [, < [ < [y must have a membership u(l) = 0
and U(l,,) = U(lpr) = 1/2. For example, instance x; with class memberships
u; = (0.2,0.3,0,0.3,0.2) could be assigned to the classes med(u;) = [2,4] = 3.

3.2. Class memberships robust to monotonic noise

In this subsection, the class membership calculation redesigned to mono-
tonic classification is explained. The objective of this first stage is to fix or
reduce the influence of non-monotonic examples in the classification. Our
method uses the robustness of the traditional Fuzzy k-NN within the knowl-
edge of the monotonic relations between the neighbors. Algorithm [1| sum-
marizes the procedure of obtaining robust noise class memberships for the
training set.

First, we have to deal with the simplest monotonic violations, that is,
instances with the same input values and different classes (Lines of
Algorithm [1)). These mislabels frequently appear in traditional data-sets
[2] of classification with monotonic constraints as these sets are rankings or
evaluations made by different experts.

Therefore, MonFENN first substitutes the replicas of any example x with
one feature vector = and its memberships u(z). The membership u(x,!) of
the instance x to the class [ is computed with the frequency of duplicated
examples x; in the training set D belonging to class I (y; =), as shown in
the following expression:

{z; € Dlz; =2 Ny; =1} (5)
{z; € Dlx; = x}|

The class label of an instance z after the elimination of its replicas is
obtained by the median of the resulting memberships, as shown in Line [13] of

u(z,l) = |




Algorithm 1 Training class memberships extraction

1: function TRAINCLASSMEMBERSHIPS({D,y} - Training data-set, k -
Nearest neighbors considered, RCr - Real Class relevance)

2 for z; € D do
3 forl €)Y do
4: if z; duplicated-in D then
5: Compute u(z;,!) with expression
6 else
1y, =1
7 u(zq, 1) { 0
8: end if
9: end for

10: end for

11: D' = removeDuplicates(D)

12: for x; € D' do

13: y; = med(u;) > See expression
14: end for

15: for z; € D' do

16: if x; not-duplicated-in D then

17: Compute range r; with (D’,y’) and expression
18: > See Algorithm
19: nn = neighborsAsMiNN (z;, r;, k,inRange, D', y')
20: for l € Y do

21: Compute u(z;,!) with expression [6]

22: end for

23: end if

24: end for
25: output: (D', u)
26: end function
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Algorithm 2 Monotonic nearest neighbor rule

1: function NEIGHBORSASMKANN (z - tested sample, r - range of valid
classes, k - considered neighbors, typeRange - inRange or outRange,
{D, y} - Training data-set)

2 initialize: nn = {}

3 for z; € D do

4 if type Range == outRange or y; € r then
5: if Size(nn) < k then

6 Insert x; in nn

7 else

8 Tmaz = AT MAXy;cnn | [T — 25|

9 if ||z — xi]| < || — Timaz|| then
10: Replace x4, by x; in nn
11: end if

12: end if

13: end if

14: end for

15: output: nn

16: end function

Algorithm [T However, this vector will be used in the classification function
with the membership aggregation as stated in the next subsection.

Then, MonFENN estimates the memberships of the remaining instances,
which corresponds to Lines [13]- [24] of Algorithm [Ij This estimation is made
using the information of the nearest neighbors of each instance. However,
these nearest neighbors are extracted with a monotonic nearest neighbor rule
(MANN) instead of a traditional rule as we aim for memberships that respect
monotonic constraints as much as possible. Algorithm [2| exemplifies the
extraction of these monotonically constrained neighbors for a given instance
x as in MANN.

In this case, Algorithm [2|is configured as an inRange variant as pointed
out in Line [I6 of Algorithm [I} That is, the nearest neighbors of an example
x; are constrained to a range r; = [Ymin, Ymaz] Of possible classes (Line [17)),
which preserves the monotonicity of the data-set.

Once the nearest neighbors for each example z; are obtained, the infor-
mation of the neighbor classes is fused into z; class memberships (Line [20)).
For an instance x;, the membership u(x;,() to class [ is computed with the
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following expression:

(6)

w(z, 1) = { RCr+(nny/k) « (1 — RCr) if y; =1
) (nny/k) * (1 — RCr)

where nn; is the number of nearest neighbors of the class [, k the total number
of neighbors extracted for instance z; and y; is the original class label of the
example z;. RCris a new parameter called "Real Class relevance”.

Apart from the use of the monotonic nearest neighbor rule, the inclusion
of RCris another main difference between our approach MonFANN and the
original Fuzzy k-NN. RCr can be seen as the minimum membership assigned
to original class y; of the instance z;, in case there are no neighbors labeled
with y;. In FENN, RCr corresponds to the value of 0.51, that is, every
instance maintains its real class, even those noisy examples surrounded by
other classes. By being a parameter, our method lets the user control the
treatment of monotonic noise.

There are some values for RCrin the range [0, 1] that have very interesting
and distinct behaviors. In the case of a really noisy data-set where no labels
can be trusted, RCr could be set to 0. This leaves all the responsibility to the
calculation of the range of valid classes r; and the nearest neighbors. In the
presence of instances with the same input values and different classes, the
user could choose only to treat them with RCr = 1. Finally, if practitioners
want to consider the originally labeled instances, we recommend assigning
RCr to 0.5. This value ensures that the actual class is within the set of
medians. In contrast to Fuzzy k-NN and its 0.51, if all neighbors belong to
a same single class that is different to the current class, our method forces
to choose in between these two classes. Usually, this last value (RCr = 0.5)
is a good trade-off, mainly stable and with better performance.

During this process, the impact of monotonic inconsistencies will be ei-
ther reduced or fixed. The inconsistencies of instances with the same input
vectors and different classes are completely fixed by being substituted by
only a sample and class memberships with the information of their different
classes. The mislabeled samples, i.e. noisy or non-monotonic examples, will
have less influence towards their noisy class as they will be surrounded by
more appropriated classes and their class memberships will be shared into
classes in which they fit monotonically. This is the first mechanism of our
method to alleviate the presence of monotonic violations, without the need
for relabeling.
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3.3. Flexible membership aggregation

After estimating the class memberships of every training instance, our al-
gorithm is ready to predict new examples. This last phase has been designed
to cover different needs of monotonic scenarios. In addition to the control of
noise treatment, greater flexibility has been sought, allowing users to choose
between more accurate or pure monotonic predictions.

Algorithm [3| represents in pseudo-code the whole prediction procedure of
our proposal MonFANN. Particularly, the prediction of a new instance z;
is detailed after having previously computed the monotonically-constrained
class memberships of the training set as the previous Algorithm [1|is referred
in Line 2

Algorithm 3 MonFENN: Prediction stage

1: function MONFANN(z; - sample to predict, {D,y} - training data-set,
k - neighbors considered for training class memberships, RCr - Real Class
relevance, K - neighbors considered for prediction, type Range - inRange
or outRange, pOR' - out-of-range penalty)

2: (D', u) = TrainClassMemberships(D, y, k, RCr)

3: Obtain medians 3’ of each sample in D’ with «' and expression
4: Compute range r; with expression (1| and (D', y')

5: > See Algorithm

6: nn = neighborsAsMiNN (z;, r;, K, type Range, D', /)

7: for z; € nn do

8: if typeRange == inRange or y; € r, then

9: pORj =1

10: else > Neighbors nn out of range r, are penalized with pOR’
11: pOR; = pOR’

12: end if

13: end for

14: Compute class memberships u; of z; with expression

5. output: med(u;)
16: end function

As shown in Line [(] MonFANN embeds another MANN (Algorithm
to obtain the neighbors used in the membership aggregation and final pre-
diction. This MANN also has two versions, inRange and outRange versions.
They are, however, substantially different when compared to original vari-
ants.
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The inRange alternative is based on the same idea of the original MANN,
where the neighbors of an example must belong to a set of monotonically
valid classes. However, this range of classes is obtained using the medians
acquired from the class memberships of the training instances constrained
by monotonicity, as seen in Line [3] and Line [ This breakthrough improves
our method by increasing monotonic noise robustness. Firstly, an inRange
nearest neighbor rule removes monotonic inconsistencies in the known data-
set as previously shown in Algorithm [T Then, the second MENN uses this
fixed training set (D', ') to give monotonic predictions as seen in Algorithm
B3k

The outRange version of our method is completely different from the
previous outRange rule. It has been designed with the intention of prioritizing
to some extent the predictive ability of the classifier over monotonicity. With
this purpose in mind, our method considers any example as a valid neighbor
regardless of its class label. In contrast to the original model, no filtering or
removal of neighbors outside the valid range is performed. However, their
relevance in the membership aggregation can be reduced if needed, thanks
to a penalty factor introduced in the aggregation expression.

Then, for a new example z, its nearest neighbors are obtained according
to the chosen variant. Their memberships are aggregated with the origi-
nal FENN formula with the addition of the penalty factor for the outRange
version. The following expression shows how this parameter is integrated:

K
pOR;
Zl u(l’j, l) * W
u(z, 1) = = (7)
2l = a0+

As previously, the membership u(x,l) of the new sample x to the class
label [ is the result of the sum of the class memberships u(x;,[) of the neigh-
bors x; inversely weighted with their distance to z. In the outRange version
of our method, there is another weighting factor in the contribution to the fi-
nal memberships, the parameter referred to as "penalty of outRange” (pOR).
The factor pOR; is applicable only if the class y; of the neighbor z; is not
in the valid class range r, of x as exemplified in Lines [7] to [L3]. It can be
configured with continuous values from 0 to 1. When it is assigned to 1, no
penalty is applied. The value 0 means a full penalty, that is, neighbors with
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invalid classes will not participate in the membership aggregation. For all
practical purposes, this last behavior is equivalent to the outRange MENN.
We recommend using 0.5 since it is a good balance between reducing their
relevance and considering them in the decision.

Finally, the class prediction of the new example x is the median of the
resulting normalized class memberships.

As presented, MonFANN has been developed to be robust to monotonic
noise and versatile in many scenarios. The two versions inRange and out-
Range with the parameter pOR and the previously mentioned RCr help to
tune the algorithm according to the necessities of different kinds of problems.

Among the possibilities that offer these parameters, we have named two
configurations with very distinctive behaviors: Pure Monotonic (MonFANN-
PM or PM) and Approximate Monotonic (MonFANN-AM or AM) Fuzzy
kE-NN. The Pure Monotonic configuration corresponds to a value of 0.5 for
the RCr parameter and the use of inRange rule to obtain the memberships
of new instances. This approach aims to give predictions with the mini-
mum violations of monotonicity. In every part of the algorithm, it prioritizes
monotonicity over very accurate predictions.

MonFENN-AM prioritizes the predictive ability and relaxes the mono-
tonic constraints. The memberships of the training set are obtained by
the treatment of samples with the same feature values and different classes.
Those unique examples will have a membership of 1 to the actual class and
0 for the rest. This behavior is achieved with RCr = 1. Then, as we are
looking for more accurate predictions, all instances can be considered to be
valid neighbors and to contribute to the final aggregation. Those instances
with invalid class labels, however, will contribute with only half of their class
memberships (pOR = 0.5).

Our proposal MonFkNN is available at the GitHub Repositoryf]]

3.4. Differences between standard FkNN and MonFkNN: Theoretical discus-
s10n

Standard FEKNN and MonFANN have a similar mathematical formula-

tion. In other words, the expressions used by MonFANN in the training class

membership extraction (Eq. @ and in the membership aggregation (Eq. @
are the same as those used by FANN (Eq. [3l and Eq. [2), for RCr = 0.51

'https://github.com/sergiogvz/MonFkNN
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and pOR = 1. The global behavior of our method is however still completely
different to the standard FENN, due to significant algorithmic differences.
Table [Il summarizes the main differences between standard FANN and our
proposal MonFANN.

FENN MonFiNN
No special treatment of duplicates. Duplicates are reduced to a single instance.
Standard nearest neighbor rules. Monotonic nearest neighbor rules.
Standard training membership extraction. Monotonically constrained class memberships.
Conservation of original classes in the Loss of influence of original class towards
training class membership extraction. monotonicity with RCr <= 0.5.
Value 0.51 in Eq. Parameter RCr in Eq.

Standard class membership aggregation.  Monotonically constrained membership aggregation.
No penalty to any neighbors in Eq. pOR Penalty to out-of-range neighbors in Eq.
Final class as highest membership Final class as median of class memberships

Table 1: Summary of algorithmic differences between standard FAKNN and MonFANN.

Each of the differences mentioned in Table (1| is described and explained
below:

e The data-set used to compute the training class memberships is mod-
ified before applying the neighborhood rule. The inconsistencies of
duplicates are eliminated and reduced to a single instance. The classes
of the resultant instances are assigned to the median calculated with
the frequency of the appearance of duplicates for each class. This pro-
cedure could not even be considered in standard classification, where
there is no ordering relationship between classes.

e The neighborhood considered for each training instance is constrained
to the monotonicity of the data-set. Then, their resultant class mem-
berships are also monotonically constrained. These adaptations com-
pletely modify the neighbors contributing in Eq. [3|and the whole proce-
dure. In addition, the value of 0.51 for RCris discouraged in MonFANN
in favor of 0.5 due to its contribution to the medians of the samples,
above-mentioned in Section [3.2]

e The original FEKNN and MonFANN also share the same membership
aggregation, i.e. their expressions (Eq. (3| and Eq. @ are the same for
InRange and outRange (with pOR = 1) versions of MonFANN. How-
ever, their behavior and their predictions are completely different, due
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to the differences in the nearest neighbor rule, in the training set and
class memberships used in the aggregation procedure. As previously ex-
plained, the training class memberships extraction of MonFANN mod-
ifies the training set fixing some monotonic inconsistencies. Duplicates
are removed and some training samples might change their classes to
preserve the monotonicity of the data-set.

e In MonFENN;, the classes of the training samples determine the mono-
tonically valid classes of the unlabeled instances. Thus, training sam-
ples with classes not valid for an instance x will be discarded from
the neighborhood (inRange version) or penalized with the parameter
pOR (outRange version). The configuration outRange version with
pOR = 1 is also discouraged since the final purpose of MonFENN is to
take monotonic constraints into consideration, at least to some extent.

e These mechanics acquire different neighbors to those drawn by FEKNN
for the same test sample, that is, different class memberships and pre-
diction. Finally, the median as the final class of the class member-
ship vector already implies a significant change in the behavior of the
method.

These differences between our proposal and the traditional FENN are
clearly supported by the experiments carried out in Section [5.1]

4. Experimental framework

This section is devoted to introducing the experimental framework used
in the different empirical studies of the paper. In our experiments, we have
included 12 data-sets of a good variety of problems presenting real monotonic
constraints. The data-sets can be seen in Table [ where the number of
instances, attributes and classes are detailed for each data-set in the column
Ins., At. and Cl., respectively. The column At. Directions indicates the
monotonic direction of the relationship between each attribute and the class:
direct (4) or inverse monotony (-). This information is extracted from the
description of the problems involving the data-sets. The column Comparable
Pairs shows the percentage of pairs of comparable samples over the total
number of pairs. Two instances x; and x; are comparable if their inputs have
an order relation, i.e. x; = x; or z; X ;. On average, one-third of the total
number of pairs of these data-sets are comparable and potential violations of
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monotonicity in the classification process. This quite large amount cannot
be neglected.

These data-sets are chosen as the most frequently used in the monotonic
classification literature. The classical monotonic set FRA, ESL, LEV and
SWD [2] are also considered in the study. Additionally, the data-set ar-
tiset is employed for a comparative study on monotonic noise robustness of
MonFkNN (see Subsection [5.4). Artiset is an artificial data-set with two at-
tributes (x1, z2) and nCl number of classes. For attributes x, 25 € [0, 1], the
class is computed as the truncation of the outcome of the following formula:

2 .2
Fla1, 29) = (11 +%) «nCl

A 10-fold cross-validation scheme (10-fcv) is carried out to run the differ-
ent classifiers over these sets. Their partitions have been extracted from the
KEEL repository [3§].

Table 2: Description of the 12 data-sets used.

Data-set Ins. At. CL At. Directions Comparable Pairs
artiset 1000 2 10 All direct directions 49.79%
balance 625 4 3 {-, -, +, +} 25.64%

bostonhousingjcl 506 13 4 {4+, -+, -+ -} 14.85%
car 1728 6 4 All direct directions 14.36%

ERA 1000 4 9 All direct directions 16.77%

ESL 488 4 9 All direct directions 70.65%

LEV 1000 4 5 All direct directions 24.08%
machineCPU 200 6 4 {,+ + +, + +} 49.53%
qualitative_bankruptcy 250 6 2 All inverse directions 43.77%
SWD 1000 10 4 All direct directions 12.62%
windsorhousing 546 11 2 All direct directions 27.07%
wisconsin 683 9 2 All direct directions 58.04%

The classifiers involved in the empirical comparisons are:
e Monotonic A~-NN (MENN) [15]

Ordinal Stochastic Dominance Learning (OSDL) [31]

Ordinal Learning Module (OLM) [2]

Monotonic Multi-Layer Perceptron network (MonMLP) [27]

C4.5 decision tree for monotonic induction (MID) [3]
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e Rank Discrimination Measure Tree (RDMT) [32]

e Partially Monotonic Decision Tree (PMDT) [34]

Table 3] details the parameters chosen according to the recommendations
found in the original papers. As a requirement of MANN, a relabeling tech-
nique [16] is applied to training data-sets before fitting MANN. On the con-
trary, the rest of the algorithms, including MonFANN, do not need this re-
labeling procedure. Therefore, all the results shown for MkKNN are obtained
with relabeled training sets, while other methods are trained with the original

training data-sets.

Table 3: Parameters considered for the algorithms compared.

Algorithm Parameters

MENN [15] k = 5, distance = euclidean, neighborsType = inRange

OSDL [31] balanced = No, classificationType = median,
lowerBound = 0, upperBound = 1
tunelnterpolationParameter = No, weighted = No,
interpolationStepSize = 10, interpolationParameter = 0.5

OLM [2] modeResolution = conservative
modeClassification = conservative

MonMLP [27] default parameters, hiddenl = 8
iter.max = 1000, monotonic = all att

MID [3] R =1, confidence = 0.25, items per leaf = 2

RDMT [32] H = Pessimistic rank discrimination measure,
measureThreshold = 0, items per leaf = 2

PMDT [34] threshold 6 = 0, items per leaf = 2

FENN [25] k=5, K =9, distance = euclidean

MonFENN k=5, K =9, distance = euclidean

Pure Monotonic
Approximate Monotonic

RCr = 0.5, neighborsType = inRange
RCr =1, neighborsType = outRange, pOR = 0.5

In order to evaluate the classifiers’ proficiency, we have employed three
measures of different aspects of their performance: predictive capability, error
cost and monotonicity. Standard accuracy is used to evaluate the predictive
capability of the models. Mean Absolute Error (MAE) is computed as the
average differences of the true instance ranks and the predicted ranks. To
evaluate monotonicity, Non-Monotonic Index (NMI) [9] measures the ratio
of pairs of samples (NMP) that break monotonicity among the total of pairs,
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with N being the number of samples in the data-set:

NMP

NMI = ————
N2 - N

These measures are computed over a set merged from the test predictions
of 10-fcv sets for each data-set and classifier. Finally, the Wilcoxon statisti-
cal test, Friedman rank test [20, [19] with Holm post-hoc procedure [24] and
Bayesian Sign test [5] are used to validate the results of the empirical compar-
isons. In the Bayesian Sign test, a distribution of the differences of the results
achieved by methods A and B is computed thanks to the Dirichlet Process.
This distribution is shown in a graphical space divided into 3 regions: left,
rope and right. The location of the majority of distribution in these sectors
indicates the final decision of the pairwise Bayesian non-parametric sign test:
superiority of algorithm B (left sector), statistical equivalence (rope sector)
and superiority of algorithm A (right sector). For the accuracy and MAE re-
sults, we have set the inferior and superior limit of the rope region to —0.01
and 0.01, respectively. However, we have adjusted the limits to —0.0001
and 0.0001 for NMI since NMI values tend to be significantly smaller due
to the big difference between the numbers of comparable instance pairs and
all possible pairs. The R package rINPBST [10] has been used to extract the
graphical representations of the Bayesian Sign tests analyzed in the following
empirical studies.

5. Results and analysis

This section presents the results of the empirical studies and their analy-
ses. First, the two configurations of MonFANN are compared in Subsection
5.1, showing their different strengths. Then, our proposal is compared to
methods from the state-of-the-art in terms of prediction capability and mono-
tonicity in Subsection [5.3]and Subsection [5.3] respectively. In Subsection [5.4]
the last experiment tests the noise robustness of MonFANN in contrast to
MENN.

5.1. Evaluation of Monotonic Fuzzy k-NN approaches. Pure Monotonic vs
Approximate Monotonic

A comparison between the Pure and Approximate Monotonic version of
MonFkNN stresses the different behaviors and aspects of their performance.
Additionally, the performance differences between the original FEKNN and
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MonFkiNN are analyzed. Table [f] shows the results of FENN and the two
configurations of our proposal MonFANN in terms of Accuracy, MAE and
NMI. Bold-face font indicates the best results obtained for each data-set and
metric.

Table 4: Results for the Pure and Approximate Monotonic Fuzzy k-NN

Accuracy MAE NMI

FENN MonFANN-PM  MonFANN-AM ‘ FENN MonFANN-PM  MonFANN-AM ‘ FENN MonFANN-PM  MonFANN-AM
artiset 0.9339 0.9309 0.9349 | 0.0661 0.0691 0.0651 | 0.0000 0.0000 0.0000
balance 0.8896 0.9307 0.9008 | 0.1424 0.0853 0.1168 | 0.0000 0.0000 0.0001
bostonhousing/cl 0.7174 0.6561 0.7134 | 0.3241 0.3972 0.3261 | 0.0004 0.0000 0.0001
car 0.9311 0.9740 0.9834 | 0.0793 0.0295 0.0195 | 0.0002 0.0000 0.0000
ERA 0.1730 0.2420 0.2430 | 1.6660 1.2813 1.2993 | 0.0141 0.0052 0.0052
ESL 0.6783 0.7036 0.7131 | 0.3484 0.3149 0.3053 | 0.0014 0.0004 0.0003
LEV 0.6020 0.6377 0.6110 | 0.4330 0.3927 0.4223 | 0.0021 0.0004 0.0009
machineCPU 0.6699 0.7033 0.6699 | 0.3589 0.3158 0.3493 | 0.0058 0.0002 0.0017
qualitative_bankruptcy 0.9960 0.9960 0.9960 | 0.0040 0.0040 0.0040 | 0.0000 0.0000 0.0000
SWD 0.5350 0.5807 0.5833 | 0.5180 0.4370 0.4380 | 0.0027 0.0007 0.0003
windsorhousing 0.7857 0.7576 0.7839 | 0.2143 0.2424 0.2161 | 0.0062 0.0005 0.0051
wisconsin 0.9678 0.9653 0.9663 | 0.0322 0.0347 0.0337 | 0.0000 0.0000 0.0000
Auvg: 0.7400 0.7565 0.7583 | 0.3489 0.3003 0.2996 | 0.0027 0.0006 0.0012

In Table[d] the differences between both approaches (PM and AM) can be
seen clearly. Just as they were designed, MonFANN-AM has better accuracy
on average, while MonFENN-PM achieves monotonically reliable predictions.
Both have good, stable results in terms of MAE, with AM coming out slightly
on top.

AM configuration obtains the most accurate predictions for more than
50% of the benchmark used. On the other hand, the PM model achieves bet-
ter results according to monotonicity in 10 of the 12 data-sets used, with large
differences in Windsorhousing and MachineCPU problems. When compared
with FENN, MonFENN greatly improves the performance of the original al-
gorithm. Both versions of MonFENN (PM and AM) are better on average for
each of the three different measures. Particularly, there is an overwhelmingly
large difference between FENN and MonFANN-PM in terms of monotonicity.
FENN is better only for 3 data-sets when taking just accuracy and MAE into
consideration. However, it does not outperform the monotonic predictions
of MonFENN.

This improvement is also reflected in the Wilcoxon statistical test applied
to the results achieved using these methods. Table |5 presents the hypothesis
of equivalence of the Wilcoxon test for a = 0.1 on the pairwise comparison
of FENN (1) and our two proposals (MonFANN-PM (2) and MonFANN-AM
(3)). As shown in Table |5, MonFANN-AM is statistically better than FENN
in terms of accuracy and MAE with p-Values under 0.1. Considering mono-
tonicity, MonFANN-PM and -AM statistically outperform FENN with very
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low p-Values. Overall, MonFENN is clearly superior to FENN in scenarios
with monotonic constraints.

Table 5: Wilcoxon test applied to the results obtained by Fuzzy k-NN algorithms: FENN
(1), MonFANN-PM (2) and MonFANN-AM (3)

Comparison RT R~ Hypothesis (« =0.1) p-Value

Accuracy:
(2) vs. (1)  49.0 17.0 Not Rejected 0.1748
(3) vs. (1) 615 16.5 Rejected 0.0847
MAE:
(2) vs. (1)  51.0 15.0 Not Rejected 0.1230
(3) vs. (1)  57.0 9.0 Rejected 0.0322
NMI:
(2) vs. (1)  76.5 1.50 Rejected 0.0012
(3)vs. (1) 725 5.50 Rejected 0.0059

The reasons for these differences in results are clear and mainly due to
their algorithmic differences. MonFANN has learning procedures with no-
tions in the order relation of classes and the monotonic constraints between
input and output, which explain an overall better performance in terms of
MAE and NMI. Additionally, MonFANN has a greater awareness and treat-
ment of noisy data, which helps obtain better accuracy.

Since monotonicity is usually prioritized in classification with monotonic
constraints, we will use MonFANN-PM in the following empirical studies.

5.2. Comparison with the State-of-the-Art: Prediction capabilities

Here we evaluate the performance of our approach in comparison to meth-
ods from the state-of-the-art of monotonic classification. In this comparison,
we look for a balance between accurate and monotonic predictions. There-
fore, we compare the results obtained in terms of the selected metrics inde-
pendently. Then, we draw our conclusions and check if our approach behaves
well in the different aspects of classification with monotonic constraints.

First, we evaluate the prediction capability of our method. Table [6] gath-
ers the accuracy results for the different data-sets obtained by the tested
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algorithms. With these outcomes, MonFANN-PM performs overwhelmingly
better than the rest in terms of accuracy. Our approach achieves the most
accurate predictions on average with a wide margin. Additionally, it obtains
the best results for 5 data-sets, with particularly remarkable cases, such as
balance. PMDT is the second best method in terms of accuracy and it is the
only method that come close to the performance of MonFANN-PM. However,
it obtains the overall best results for one data-set only (bostonhousing).

Table 6: Results in terms of Accuracy achieved by the tested algorithms

MonFiENN-PM MENN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.9309  0.9199 0.1952 0.7948 0.9463  0.7237 0.8749 0.8539
balance 0.9307  0.8624 0.6352 0.8320 0.9131  0.7808 0.7216 0.7792
bostonhousingscl 0.6561  0.6126  0.2787 0.5277 0.3979  0.6739 0.6304 0.6739
car 0.9740 09711 0.9549 0.9543 0.8474  0.8027 0.7297  0.9682
ERA 0.2420  0.1990  0.2320 0.1690 0.2380 0.2760 0.2390 0.2430
ESL 0.7036  0.6332 0.6721 0.5738 0.7234 0.6414 0.5635 0.6598
LEV 0.6377  0.4630 0.6400 0.4250 0.6167  0.6070 0.5210 0.6370
machineCPU 0.7033  0.6890 0.2919 0.6746 0.6730  0.6220 0.6555 0.6507
qualitative_bankruptcy 0.9960 0.9960 0.9160 0.9800 0.6427  0.9840 0.9840 0.9920
SWD 0.5807  0.5200 0.5840 0.4160 0.5063  0.5540 0.5180 0.5830
windsorhousing 0.7576  0.5861  0.4927 0.7564 0.7790 0.8205 0.8022 0.7564
WisSCONSIn 0.9653  0.9649 0.9590 0.8873 0.8604  0.9517 0.9502 0.9561
Avg: 0.7565  0.7014 0.5710 0.6659 0.6787  0.7031 0.6825 0.7294

As mentioned before, we have used the Friedman rank test and the
Bayesian Sign test to corroborate the significance of the differences of our
approach and the selected methods. Table [7] includes the outcome of the
Friedman rank and Holm tests in relation to the obtained Accuracy results.
MonFENN-PM is ranked first with a high ranking value compared to others.
All the hypotheses of equivalence are rejected with small p-values with the
exception of PMDT, which would be rejected for « = 0.1. The distance
between the ranks of MonFANN-PM and PMDT is still quite large.

Figure[l|graphically represents the difference between MonFANN-PM and
other methods and its statistical significance in terms of accuracy. In order
to save space and avoid plotting 7 heat-maps for each metric, we have only
included PMDT, as it is the best and most recent algorithm among the
monotonic decision trees [34]. As mentioned before, the position of the ma-
jority of the distribution in these maps determines the decision of the test:
the right sector means the statistical superiority of MonFANN-PM over the
compared method, the rope sector is the statistical equivalency and the left
side indicates the superiority of the other algorithm.
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Table 7: Holm test applied to the Accuracy results among the tested algorithms

Control Method: MonFANN-PM (2.04)
Algorithm (Rank) Z p-Value Hypothesis (a = 0.05)

e

7 OLM (6.13) 4.083 0.00004 Rejected
6 OSDL (5.42) 3.375 0.00073 Rejected
5 RDMT (5.38) 3.333 0.00085 Rejected
4 MonMLP (4.67) 2.625 0.00866 Rejected
3 MID (4.42) 2375 0.01754 Rejected
2 MENN (4.21) 2.167 0.03026 Rejected
1 PMDT (3.75) 1.708 0.08757  Not Rejected

These heat-maps clearly indicate the significant superiority of MonFANN-
PM over all methods except PMDT as the computed distributions are always
located in the right region. The most significant outcome is the comparison
with OLM (Figure , even though it does not obtain the worst results.
For MENN (Figure and OSDL (Figure [1b)), there are a few cases where
their performances are statically equivalent to MonFANN-PM. On the con-
trary, MonMLP is significantly more accurate in a few data-sets, although
the MonFENN-PM is clearly superior (Figure . Considering the compar-
ison with PMDT (Figure , the majority of the distribution is located in
the statistical equivalence. However, it is still shifted to the right with a
large number of points, indicating a better performance for MonFANN-PM.
Almost none support the performance of PMDT.

Error costs could be essential for monotonic ranking problems. Table
shows the error in the form of MAE made by the evaluated classifiers. As
was the case in accuracy performance, MonFENN-PM clearly performs better
than the rest, with the smallest error on average and for 4 of the data-sets.
It also achieves similar results in problems where other algorithms come out
on top, such as LEV or wisconsin.

Table [0 shows the ranking of the methods and p-values obtained with the
post hoc test for the MAE comparison. As in the accuracy tests, our proposal
is once again ranked as the best method with a solid statistical significance
as compared to almost all algorithms. PMDT still achieves similar results
to MonFENN-PM with a p-value that does not reject the hypothesis for
a = 0.05, but does for a = 0.1. In this case, the p-value of PMDT is smaller
and its rank difference with our proposal is larger than that obtained in terms
of accuracy.
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(a) vs. MENN (b) vs. OSDL

(d) vs. MonMLP (e) vs. PMDT

Figure 1: Bayesian Sign Test heat-map for MonFANN-PM vs. the rest in terms of accuracy.

Figure 2| shows the Bayesian Sign test on pairwise comparison with our
method according to MAE. As shown by the distributions in the right part
of the majority of the figures, MonFANN-PM is definitely better when con-
sidering error costs. This is more statistically significant as compared to
OLM (Figure , where nearly the entire distribution is in the right region.
MonFANN, MENN and OSDL share some good results, but these last two
are not statistically better than the former in any circumstance as seen in
Figure and Figure As we have also seen in the accuracy compari-
son, Figure points out the statistical superiority of MonFANN-PM over
MonMLP, but the latter has a better MAE in some cases. Given Figure [2€]
MonFANN-PM and PMDT can be considered to be statistically the same in
terms of error costs. However, MonFANN-PM performs better statistically
than PMDT in an important part of the benchmark, as a fragment of the
distribution is located on the right side and almost none are found on the
left.
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Table 8: Results in terms of MAE achieved by the tested algorithms

MonFANN-PM MiINN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.0691  0.0771 1.6897 0.2082 0.0537 0.3123 0.1251 0.1471
balance 0.0853  0.1504 0.4912 0.1920 0.0992  0.3360 0.3840 0.2560
bostonhousingcl 0.3972  0.4901  0.9368 0.5988 0.7655  0.3893 0.4249 0.3676
car 0.0295  0.0359  0.0475 0.0538 0.1599  0.2506 0.3079 0.0365
ERA 1.2813  1.4270  1.2850 2.1500 1.2317  1.2970 1.3060 1.2870
ESL 0.3149  0.3791  0.3607 0.4734 0.2910 0.3934 0.4918 0.3750
LEV 0.3927  0.5740 0.3920 0.6680 0.4170  0.4290 0.5430 0.3940
machineCPU 0.3158  0.3301  0.9043 0.3589 0.3413  0.4211 0.3589 0.3732
qualitative_bankruptcy 0.0040 0.0040 0.0840 0.0200 0.3573  0.0160 0.0160 0.0080
SWD 04370  0.4840 0.4370 0.7630 0.5167  0.4750 0.4990 0.4340
windsorhousing 0.2424  0.4304 0.5073 0.2436 0.2210 0.1795 0.1978 0.2436
wisconsin 0.0347 0.0337 0.0410 0.1127 0.1396  0.0483 0.0498 0.0439
Avg: 0.3003  0.3680 0.5980 0.4869 0.3828  0.3790 0.3920 0.3305

Table 9: Holm test applied to the MAE results among the tested algorithms

Control Method: MonFANN-PM (2.00)
Algorithm (Rank) Z p-Value Hypothesis (a = 0.05)

e

7 OLM (6.17) 4.167 0.00003 Rejected
6 RDMT (5.54) 3.542  0.00040 Rejected
5 OSDL (5.29) 3.292 0.00099 Rejected
4 MID (4.96) 2.958 0.00309 Rejected
3 MonMLP (4.25) 2.250 0.02445 Rejected
2 MENN (4.04) 2.042 0.04119 Rejected
1 PMDT (3.75) 1.750 0.08011 Not Rejected

5.8. Comparison with the State-of-the-Art: Monotonicity

Now we will analyze the performance according to the monotonicity of
our proposal compared to methods chosen from the state-of-the-art. Table
shows the NMI results achieved by the selected models. In this case, the
competition is close. Monotonic decision trees (MID, RDMT, and PMDT)
clearly obtain less monotonic predictions. MID has the worst behavior con-
sidering only monotonicity and PMDT is the most monotonic decision tree
classifier. OLM and MonMLP are slightly better than PMDT, but they
still do not come close to the best methods. MonFANN-PM, MENN, and
OSDL perform similarly. MonFANN-PM and OSDL are slightly better on
average. It is worth mentioning the existence of simpler data-sets, such as
artiset and wisconsin, in relation to monotonicity as almost every algorithm
accomplishes the same good results. The best results for the more complex
sets are shared by the different methods.
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(a) vs. MENN (b) vs. OSDL

(d) vs. MonMLP (e) vs. PMDT

Figure 2: Bayesian Sign Test heat-map for MonFAENN-PM vs. the rest in terms of MAE.

Table [11| summarizes the comparison according to monotonicity with the
Friedman statistical test results. In this case, MonFANN-PM is barely se-
lected as the control method. For half of the benchmark (OSDL, MENN,
MonMLP and OLM), the hypotheses of equivalence are not rejected for
a = 0.05. On the contrary, all monotonic decision trees are statistically
worse than MonFANN-PM by a wide margin. The best monotonic decision
tree (PMDT) does not reach good performance in terms of monotonicity
of the best algorithms. This is probably due to the greedy construction of
monotonic constraints into the tree.

In Figure[3] the statistical comparisons of the NMI results are represented
with Bayesian Sign Test heat-maps. These plots show similar conclusions ex-
tracted from the previous table with NMI results. MonFANN is significantly
superior to PMDT (Figure . In Figure , the right-shifted distribution
points out that MonFANN-PM is better than OLM. Although they share a
part of the distribution in the rope section, OLM has too few individuals in
its left section (Figure [3d). When compared with MkNN (Figure [Ba), OSDL
(Figure and MonMLP (Figure , big parts of the distributions are lo-
cated in all the decision sectors. Even though their distributions are slightly
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Table 10: Results in terms of NMI achieved by the tested algorithms

MonFENN-PM MAiANN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 0.0000  0.0001
balance 0.0000 0.0001  0.0006 0.0000 0.0000 0.0017 0.0029 0.0010
bostonhousing4cl 0.0000 0.0000 0.0000 0.0003 0.0007  0.0022 0.0010  0.0010
car 0.0000 0.0000 0.0000 0.0000 0.0001  0.0046 0.0002  0.0000
ERA 0.0052  0.0056  0.0049  0.0063 0.0026  0.0082  0.0085  0.0058
ESL 0.0004  0.0012 0.0006 0.0025 0.0003  0.0021 0.0066  0.0032
LEV 0.0004 0.0010 0.0004 0.0043 0.0008  0.0018 0.0086 0.0006
machineCPU 0.0002 0.0000 0.0000 0.0014 0.0001  0.0037  0.0047  0.0028
qualitative_bankruptcy 0.0000 0.0000 0.0003 0.0000 0.0079  0.0002  0.0000 0.0000
SWD 0.0007  0.0005 0.0009 0.0015 0.0004 0.0020 0.0000  0.0010
windsorhousing 0.0005 0.0000 0.0000 0.0000 0.0000 0.0030 0.0002 0.0059
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0001 0.0000
Avg: 0.0006 0.0007 0.0006 0.0014 0.0011  0.0028 0.0027 0.0018

Table 11: Holm test applied to the NMI results among the tested algorithms

Control Method: MonFANN-PM (2.9583)
Algorithm (Rank) Z p-Value  Hypothesis (a = 0.05)

e

7 MID (7.00) 4.042  0.00005 Rejected
6 RDMT (6.33) 3.375 0.00074 Rejected
5 PMDT (5.75) 2.792  0.00524 Rejected
4 OLM (4.13) 1.167 0.24335 Not Rejected
3 MonMLP (3.63) 0.667 0.50499 Not Rejected
2 MENN (3.13) 0.167 0.86763 Not Rejected
1 OSDL (3.08) 0.125 0.90052 Not Rejected

shifted to the right (Figure [3aj and Figure , the core of the distributions
are found in the rope. Then, we can roughly assume statistical equivalence.

In summary, MonFANN-PM obtains significantly better results in terms
of accuracy and error cost than almost all of the considered methods. Our
approach also achieves the most monotonic predictions alongside OSDL.
MonFANN-PM is slightly and non-statistically better than PMDT in terms
of accuracy and error costs, but the former overwhelmingly outperforms
PMDT considering monotonicity. Therefore, MonFANN-PM is an overall
better method.

The main reason behind the remarkable performance of MonFANN is its
capability of not sacrificing any objective of monotonic classification. Usu-
ally, some classifiers, such as OSDL, sacrifice accurate predictions in order to
accomplish monotonic models. The results of OSDL for artiset and boston-
housing and the outcome of MEKNN for balance are good examples of this
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(a) vs. MENN

(d) vs. MonMLP (e) vs. PMDT

Figure 3: Bayesian Sign Test heat-map for MonFANN-PM vs. the rest in terms of NMI.

statement. On the other hand, other methods, such as monotonic decision
trees and particularly PMDT, achieve accurate predictions but break the
monotonic constraints in their predictions more frequently. However, the
MonFkENN procedure of training class membership extraction is designed
to mitigate the influence of non-monotonic noisy data, without the need to
aggressively modify the training data as done by relabeling in MANN. The
MonFkNN prediction stage offers the flexibility of choice for most accurate or
monotonic predictions. Additionally, MonFANN includes technologies that
are more appropriate for ordinal and monotonic classification, such as median
as a final class.

5.4. On the robustness of Monotonic Fuzzy k-NN to monotonic noise

With this last empirical study, we aim to test the robustness of MonFANN-
PM to the presence of monotonic violations or noise in the training sets as
compared to MENN. Thus, we have introduced different amounts of noisy
instances in the training partitions of the artificial data-set Artiset. Then,
the performance of MonFENN-PM and MANN is measured and compared in
terms of accuracy, MAE and NMI while the noise ratio increases.
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Figure 4: Impact of the addition of class noise in Artiset on monotonic violations measured
by NMI .

In order to increase the impact of class noise, we have randomly under-
sampled every training set to 25% of their instances. Then, a subset of
randomly selected instances is converted to noise by changing their class
labels. This label modification is done according to the adjacent classes
of the implicated instance. Specifically, a large number of neighbors are
computed for the future noisy example z;. 15 nearest neighbors were the
value used in this experiment. Next, the neighbors with the same class as z;
are removed and a new class is randomly obtained in relation to the presence
ratio of other classes in its filtered neighbors. This ensures a certain degree
of proximity between the changed sample and its new class.

This process is executed following the same cross-validation scheme men-
tioned earlier. Since the noise generation has a random component, the
experiment was repeated three times with different seeds, averaging the ob-
tained results. After the noise generation and before the execution of MANN,
a relabeling technique [I6] was applied to the resultant data-sets.

Figure [] shows the impact of increasing noise on the number of mono-
tonic violations in Artiset training sets. This effect is measured by the Non-
Monotonic Index (NMI) over the resulting training samples. As previously
mentioned, class noise significantly aggravates the monotonicity of the data-
sets. The increase in NMI is directly proportional to the increase in noise as
clearly shown in Figure [4]

Figure [5| shows the performance of MonFANN-PM and MANN (darker
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and lighter lines, respectively) on the basis of precision , MAE and
NMI , with the progression of noise. As expected, while the amount of
noise grows, the performance of both methods get worse, that is, their accu-
racy decreases and errors and non-monotonic predictions increases. However,
there are some big differences between classifiers.

Firstly, the behavior of MonFENN-PM facing noise is clearly better than
that of MANN in every tested aspect. The black lines are always located
above the lighter ones in Figure which indicates greater accuracy, and un-
der them in Figures[pb|and [5d, meaning better MAE and NMI for MonFANN-
PM. Usually, the distance between both methods is large, with the exception
of the NMI results obtained for the smallest values of noise. In addition,
while the noise ratio increases, their differences also increase.

The slope of deterioration of MonFANN-PM performance remains stable,
even being reduced in some cases, while the MANN slope becomes steeper
as the amount of noise increases. This last event can be clearly seen when
the noise ratio reaches the 25% of the instances, where the decline of MANN
is magnified, especially in terms of monotonicity (Figure . On the other
hand, the NMI results of MonFANN-PM seem to increase at a slower rate by
that point. This exhibits the great robustness of MonFANN-PM to mono-
tonic violations.

Next, the behavior of both methods in relation to noise are analyzed
using a graphical example. Figure [0 is a graphical representation of the
predictions and classification boundaries inferred by MANN and MonFkANN-
PM for Artiset with 35% noise. Figure[6arepresents the perfect class surfaces
defined by Artiset generation expression (see Section [f) and the training
samples. In Figure black points represent the noise artificially introduced
into the data-set. In Figures [6b] and [6d, the black examples are wrongly
classified instances, while the right predictions are colored in white.

The first clear difference between the MENN and MonFANN-PM perfor-
mances shown in Figures [6D] and [6d is the amount of black dots. MonFANN
has far fewer classification mistakes than MANN. Additionally, MonFkNN-
PM is better at conserving the right regions for the classes, while MANN can
lose nearly all the entire sections of some of them. The regions in lighter and
brighter yellow are shrunk by MANN in favor of their adjacent classes.

With these experiments, MonFANN has shown strong robustness to mono-
tonic noise preserving the decision boundaries as precisely as possible, and
hence, has performed well in terms of precision, error costs and monotonicity.
This robustness is the result of all the procedures included in MonFANN, but
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Figure 5: Comparison of MonFANN-PM and MENN performance on Artiset data-set with
the different amounts of noisy samples.

it may also be mainly due to the reduction of the impact of non-monotonic
noise during the extraction of the class memberships of the training instances.

32



06 0.8 10 06 038 1.0

(a) Exact decision surface for Artiset. (b) Decision surfaces inferred by
Black points represent noise. MENN.

0.6 038 10

(c) Decision surfaces inferred by
MonFiENN-PM.

Figure 6: Classification boundaries inferred by MENN and MonFANN-PM from the plotted
Artiset with 35% noisy instances. Black points represent the instances wrongly classified
by the decision surfaces shown.
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6. Conclusion

In this paper, we proposed a Fuzzy k-Nearest Neighbors model for classifi-
cation with monotonic constraints. The final class label obtained from mem-
bership functions has been revised to respect these constraints. MonFANN
has been designed with different mechanisms to reduce the influence of mono-
tonic violations. As a demonstration of its flexibility, two different model
configurations with different behaviors have been presented.

Over the course of the experimental analyses, the great potential of both
proposed versions, namely Pure and Approximate Monotonic Fuzzy k-NN,
has been shown in relation to monotonicity and accuracy, respectively. Com-
pared to other methods, MonFANNN is significantly better in terms of ac-
curacy and error cost, matching the best NMI results. In addition, it has
shown its robustness to large amounts of noise while preserving its good
performance.

Future proposals should be robust to monotonic noise in order to obtain
accurate and monotonic predictions. MonFANN, as an example, opens pos-
sibilities to other fuzzy approaches since they are also potentially reliable
against noise. Additionally, fuzzy techniques may be useful when defining
different levels of constraints between input and output attributes. That is,
some attributes may be more important than others regarding monotonicity.
This problem representation may be very useful for monotonic classifiers.
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