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Abstract

State-of-the-art Handwritten Text Recognition (HTR) systems allow transcribers
to speed-up the transcription of handwritten text images. These systems pro-
vide transcribers an initial draft transcription that can be corrected with less
effort than transcribing the handwritten text images from scratch. Currently,
even the draft transcriptions offered by the most advanced HTR systems con-
tain errors. Therefore, the supervision of this draft by a human transcriber
is still necessary to obtain the correct transcription of the handwritten text
images. This supervision can be eased by using interactive and assistive tran-
scription systems, where the transcriber and the automatic system cooperate in
the amending process.

In this paper, the draft transcription is provided by an HTR system based
on Convolutional and Recurrent Neural Networks with Bidirectional Long-Short
Term Memory units, and the assistive system is fed by lattices generated by
using Weighted Finite State Transducers. The influence of the lexicon and
language restrictions on the performance of our computer assisted transcription
system is evaluated on three historical manuscripts.

The transcriptions offered by the proposed HTR system present very low
error rates for the studied historical manuscripts. However, our assistive tran-
scription system without lexicon or language restrictions is able to provide an
additional reduction on the human effort required to correct the transcriptions
in more than 50% over the transcriptions offered by the HTR system.
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1. Introduction

Transcription of handwritten documents has become an important research
topic because it eases the textual access to the contents of manuscript docu-
ments. Transcription makes possible the textual search and it allows for various
applications such as information retrieval or document classification [1]. In par-5

ticular, the transcription of historical manuscripts is very useful for preserving
their contents, which is crucial for cultural and historical reasons, and for pro-
viding access to data on cultural heritage [2].

The transcription of historical handwritten documents is usually performed
by professional transcribers called paleographers, which are experts on ancient10

language and script. The transcription of historical handwritten documents is
a hard and time consuming task. However, the Handwritten Text Recognition
(HTR) technology has alleviated the transcription effort in the last years. In
this context, paleographers must correct the hypothesis offered by the HTR
system instead of transcribing from scratch. Additionally, the paleographer15

transcription effort can be even smaller by using computer assisted transcription
systems [3], where the paleographer and the interactive system collaborate to
obtain the correct transcript.

Currently, state-of-the-art HTR systems are based on deep learning [4].
These systems are usually composed of Convolutional and Recurrent Neural20

Networks (CRNN) [5]. Deep learning based HTR systems have shown to be
considerably better than systems based on Hidden Markov Models with Gaus-
sian Mixtures Models as output probability density function (HMM/GMM); for
example, in a previous work for the Spanish historical manuscript Rodrigo [6]
(see Section 5 for more information about this corpus) a CRNN system of-25

fered a transcript 64.8% better (in terms of word error rate) than the transcript
provided by an HMM based system [7]. In spite of the better transcription
quality they offer, those HTR systems are not perfect yet and the paleographer
supervision is still required for obtaining good quality transcripts. Therefore,
given that current HTR systems cannot replace paleographers, it is feasible that30

an interactive and assistive environment that uses the knowledge provided by
the HTR system and the paleographer feedback would reduce the transcription
work load even more. This can be possible even when the HTR system provides
hypotheses with very low error rates.

HTR systems based on neural networks are usually trained at the charac-35

ter level. With this approach, they present some advantages over word-based
systems, such as a reduced number of out-of-vocabulary units and a usually
higher accuracy. As we will see in this paper, assisted transcription systems can
take advantage of this potential to offer better hypotheses to the paleographers
without the restrictions imposed by lexical or language models.40

In this work, several contributions on the transcription of historical hand-
written documents are presented. In the first term, the best result for the
Rodrigo, the Cristo Salvador and the Bentham corpora reported in previous
works [7, 8, 9] are improved. Additionally, results highlight the importance
of assistive and interactive systems for transcribing historical manuscripts, be-45
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cause in spite of the fact that deep learning HTR systems provide quite accurate
transcripts, interactive systems still manage to reduce the required human ef-
fort. Apart from that, in order to employ the capabilities of CRNN models to
work without lexical or language constraints, the impact of using corrections at
character level without language model is studied.50

The rest of the paper is structured as follows: to improve the readership
in the pattern recognition and neural networks community and to demonstrate
the relevance of this work, recent related works are reviewed in the next section
(Section 2); the proposed HTR system is detailed in Section 3; an overview of
the assistive and interactive transcription system is presented in Section 4; the55

experimental framework is described in Section 5; the performed experiments
and the obtained results are reported in Section 6; finally, the conclusions and
future work lines are drawn in Section 7.

2. Related Work

Currently, the state of the art in pattern recognition systems is mainly60

marked by systems based on deep neural networks, which are capable of learn-
ing even the extraction of features from the original signals. This technology is
known as deep learning [10, 11].

The deep learning approach is having a good reception in the scientific com-
munity because, among other reasons, it allows to develop end-to-end pattern65

recognition systems which can be applied to a multitude of scenarios: au-
tonomous automotive [12, 13], action detection in videos [14], emotion recogni-
tion [15], people re-identification [16], and recognition of the human silhouette
and pose [17]. However, perhaps the main reason is that deep learning has al-
lowed to improve considerably the recognition accuracy compared with previous70

approaches, as it is the case for Handwritten Text Recognition (HTR) [7].
Regarding HTR, different approaches have been studied in the last years,

such as multidimensional neural networks [18]. However, in a recent study [19]
it was determined that best results could be achieved by HTR systems based on
bidirectional neural networks at line level. This is the HTR approach followed75

in this work. On the other hand, HTR, as a natural language technology, has
some limitations, such as those imposed by vocabulary constraints. One possible
solution to overcome this limitation is the use of external textual resources to
improve the linguistic models of the HTR system [20]. However, given the
accuracy of HTR systems based on deep learning, it is usual to perform the80

recognition without lexical restrictions [21, 22].
One of the practical utilities of the HTR technology is the transcription

of historical documents [23, 24, 4, 25]. This is a field of study that is cur-
rently booming for several reasons; firstly, there is a large number of historical
manuscript documents that libraries and historical archives are digitalising; sec-85

ondly, the historical or heritage information they contain is very important [26];
finally, the transcription of these archives and documents is needed in order to
facilitate the access to its contents. The difficulty of automating the process is
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an additional interesting issue. The importance of the preservation of histori-
cal manuscripts by using transcription led to the development of international90

projects, such as tranScriptorium1 or READ2.
Even the state-of-the-art HTR techniques based on deep learning [19] pro-

duce a considerable amount of errors in the transcription process of historical
manuscripts, which makes necessary the supervision of the obtained results by
a professional transcriber. Recently, several platforms have been developed in95

order to ease the transcription task (such as AnnoTate3, Transcribe Bentham4,
or Transkribus5).

Human-computer interactive protocols for pattern recognition [27], together
with the HTR technology, can be applied to the transcription task [28], causing
the required human effort to be considerably reduced. These interactive systems100

depend on the technology of the HTR system on which they are based; this
makes that the corrections are normally made at the word level [29, 30]. In
this work, interactive transcription without lexical or language constraints is
studied, which allows corrections at character level.

3. Handwritten Text Recognition105

The goal of HTR systems is to find the most likely word sequence ŵ given
a feature vector sequence x = (x1, x2, . . . , x|x|) that represents a segmented
handwritten text line image [23]. Usually, HTR systems are composed of three
statistical models: optical, lexicon, and language. Therefore, the traditional
HTR problem can be formulated as follows:110

ŵ = arg max
w∈W

Pr(w | x) = arg max
w∈W

Pr(x | w) Pr(w)

≈ arg max
w∈W

max
c∈Cw

Pr(x | c) Pr(c | w) Pr(w)
(1)

where W denotes the set of available word sequences, Cw the set of different
spellings of the word sequence w, Pr(x | c) is the probability of observing x by
assuming that c is the underlying character sequence for x, which is modelled
by the optical model, Pr(c | w) is the probability of the spelling of the word
sequence w, which is modelled by the lexicon model, and Pr(w) is the probability115

of the word sequence w = (w1, w2, . . . , w|w|), which is modelled by a word
language model.

In the lexicon model the spelling of each word w is modelled as a sequence
of characters c = (c1, c2, . . . , c|c|). In this way, the lexicon model links the
optical level representation with the word sequence output [31]. In this case,120

1http://transcriptorium.eu/
2http://read.transkribus.eu/
3https://anno.tate.org.uk/
4http://blogs.ucl.ac.uk/transcribe-bentham/
5https://transkribus.eu/Transkribus/
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the recognition is performed at word-level (with lexicon restrictions), because
the HTR system is restricted to recognise only sequences of the words contained
in the lexicon model.

Since words can be decomposed into sequences of characters, and usually
characters are used as the basic linguistic units to train the optical models, the125

HTR can be performed at character-level, i.e. without lexicon restrictions. It
would be equivalent to employ HTR at word level but using as lexicon model
the list of characters. In this case, the HTR problem can be reformulated as
finding the most likely character sequence ĉ given x, and Equation (1) becomes:

ĉ = arg max
c∈C

Pr(c | x) = arg max
c∈C

Pr(x | c) Pr(c) (2)

where C represents the set of all permissible character sequences, and Pr(c)130

is the probability of the character sequence c modelled by a character language
model.

Language models define all the possible sentences that can be recognised
by the HTR system. In the language models, the text properties are modelled
independently from the optical models [32] and they restrict the sequences of135

words or characters that can be recognised by the HTR system. However,
the HTR decoding can also be performed without language restrictions. For
instance, it can be done using zero-gram language models, where all the language
elements are equiprobable; this means that Pr(w) in Equation (1) for decoding
at word-level, and Pr(c) in Equation (2) for decoding at character-level, are140

constant and can be ignored in the maximisation.
The most traditional approaches to HTR approximate the language model

by n-grams and the optical modelling of characters by means of Hidden Markov
Models with Gaussian mixture emission distributions (HMM-GMM) [32]. How-
ever, in the last years, significant improvements have been achieved by using145

Recurrent Neural Networks (RNNs) for optical modelling. The current state-
of-the-art HTR technology is based on Convolutional and Recurrent Neural
Networks (CRNN) [33] for optical character modelling. This architecture is the
basis of the HTR systems used in this work (see Figure 1). It consist of a stack
of several convolutional layers followed by recurrent layers with Bidirectional150

Long-Short Term Memory (BLSTM) units [34, 35, 4, 36]. Finally, a softmax
output layer computes the probabilities of each character in the training alpha-
bet plus a non-character symbol (blank label).

The CRNN is trained by stochastic gradient descend with the RMSProp
method [37] on minibatches to minimise the Connectionist Temporal Classifi-155

cation (CTC) cost function [38]. In order to reduce overfitting in the training
process, dropout techniques [39], which have proved effectively to improve recog-
nition accuracy [35, 36], are also used.

The CTC labelling or best path decoding is based on the assumption that
the most probable path will correspond to the most probable labelling: [38]. In160

a first step, this method takes the best label per frame to compute the best
path. Then, it removes the blank and the repeated labels from the obtained
path.

5



Text line image

Text line image preprocess: Background removal + Height normalisation + . . .

Convolutional block: Convolutional layers + Batch normalisation + Leaky ReLU + Max pooling + . . .
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CTC decoding
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Figure 1: Convolutional recurrent neural network system architecture.

Finally, the linguistic context is explicitly modelled by means of statisti-
cal n-grams and, together with the lexical information, they are represented165

as Weighted Finite State Transducers (WFST). The CRNN output label prob-
abilities, scaled with label priors, are then incorporated into the transducer
edges [4].

The WFST decoding of a text line image can yield not only a single best
solution, but also a huge set of best solutions compactly represented into a170

lattice [40]. Lattices are directed, acyclic and weighted graphs with an initial
and a final node. The nodes correspond to the segmentation points between
the lexical units. Links are defined as the edges between a starting node and an
ending node, and each link represents a hypothesis lexical unit with the scores
given by the optical and language models. Figure 2 presents an example of a175

text line image and the lattices generated by a decoder at word and character
levels.

For the lattice generation, the search graph S is built by combining the
following three WFSTs:
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(a) Text line image.
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(c) Character lattice.

Figure 2: A text line image and the lattices generated by a decoder at word and character
levels. Character lattice is partially represented because of its excessive length.

• T : it is known as the “token” WFST, and it is designed to handle all the180

possible label sequences at the frame level. It allows the occurrence of the
blank label along with the repetition of non-blank labels. It can map a
sequence of frame-level CTC labels to a single character.

• L: it represents the “lexicon” WFST, and it models all the lexical units
contained in the vocabulary as a concatenation of characters. It can map185

a sequence of characters to a single lexical unit.

• G: it is the “grammar” WFST, and it can be built from an n-gram lan-
guage model. It restricts the decoding to the permissible sequences of
lexical units.

T , L, and G are compiled independently and combined as follows:190

S = T ◦min(det(L ◦G)) (3)
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Where ◦, det, and min denote composition, determination and minimisa-
tion, respectively. The determination and minimisation operations allow us to
compress the search space, yielding to a faster lattice generation.

4. Computer Assisted Transcription Overview

As previously commented, in the last few years, the use of natural lan-195

guage recognition systems has allowed us to speed up the manual transcription
of digitised documents, usually done by professional transcribers. However,
state-of-the-art natural language recognition systems are far from being perfect,
and human revision is required to produce a transcription of standard quality.
Therefore, once the full recognition process of one document has finished, heavy200

human expert revision is required to really produce a transcription of standard
quality. Such a post-editing solution is rather inefficient and uncomfortable for
the human corrector.

In order to reduce the time and human effort required for obtaining the
perfect transcription of digitised documents, transcribers can use interactive205

and assistive approaches, where the transcriber and the computer work together
to obtain the perfect transcription. This is the case of Computer Assisted
Transcription (CAT) of speech [41] or Computer Assisted Transcription of Text
Images (CATTI) [42], where the user is directly involved in the transcription
process, since he/she is responsible for validating and/or correcting the system210

hypothesis during the transcription process. The system takes into account
the feedback provided by the user in order to propose a new, hopefully better,
transcription. The corrections on this interactive transcription process can be
performed at different lexical units; for instance, in this work we compare the
performance of using words and characters as lexical units.215

The CATTI process starts when the system proposes a full transcription ŝ
of a text line image. Then, the user reads this transcription until finding a
mistake and makes a Mouse Action (MA) m (or equivalent pointer-positioning
keystrokes) to position the cursor at this point. By doing so, the user is already
providing some very useful information to the system: he is validating a prefix p220

of the transcription, which is error-free and, in addition, he is signalling that the
following lexical unit e located after the cursor is incorrect. Hence, the system
can already take advantage of this fact and directly propose a new suitable
suffix, i.e. a new ŝ in which in the position of the first wrong lexical unit of the
previous suffix a different lexical unit is proposed. In this way, many explicit225

user corrections are avoided [43]. If the new suffix ŝ corrects the erroneous
lexical unit, a new cycle starts. However, if the new suffix has an error in
the same position than the previous one, the user can make a new MA or can
enter a lexical unit v to correct the erroneous one. This last action produces
a new prefix p (the previously validated prefix followed by the new lexical unit230

v). Then, the system takes into account the new prefix to suggest a new suffix
and a new cycle starts. This process is repeated until a correct transcription is
accepted by the user.
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Text line image

ITER-0 p
ŝ la abadia de Toledo a mano de xpiānos segun el dicho es
m ⇑
p la

ITER-1 - - - - - - - - - - - - - - - - - - - - - – - - - - – - - - - - - - - - - - - - - - - - - - - - - - - -
ŝ deidad de Toledo a mano de xpiānos segun el dicho es
v c
p la cibdad de Toledo a mano de xpiānos segun el dicho es
ŝ la cibdad de Toledo a mano de xpiānos segun el dicho es

ITER-2 m ⇑
p la cibdad de Toledo a mano de xpiānos segun
ŝ d dicho es

FINAL v #
p ≡ T la cibdad de Toledo a mano de xpiānos segund dicho es

Figure 3: Example of CATTI operation using Mouse Actions at character level. Starting
with an initial recognised hypothesis ŝ from the text line image, the user validates its longest
well-recognised prefix p by making a Mouse Action (MA) m, and the system emits a new
recognised hypothesis ŝ. As the new suffix does not correct the mistake, the user types the
correct character v, generating a new validated prefix p. Taking into account the new prefix,
the system suggests a new hypothesis ŝ. As the new hypothesis corrects the first erroneous
character after the new validated prefix, a new cycle starts. Now, the user validates the new
longest prefix p, which is error-free, by making another MA m. The system provides a new
suffix ŝ taking into account this information. As the new hypothesis corrects the erroneous
character, a new cycle starts. This process is repeated until the final error-free transcription
T is obtained. The underlined boldface words in the final transcription are the two erroneous
words corrected by the assistive system, where only the character c was corrected by the user.
Note that in the iteration 1 two user interactions are needed (a MA and then, to type the
correct character). However, in the iteration 2 only one user interaction (one MA) is needed.

Figure 3 illustrates an example of the CATTI process. In this example,
without interaction with a CATTI system, a user should have to correct about235

three errors at word level and nine errors at character level from the original
recognised hypothesis: abadia should be changed by cibdad (5 characters), segun
by segund (1 character) and el should be deleted (3 characters counting with
the previous space character). Using CATTI at character level only one explicit
user-correction is necessary to get the final error-free transcription in two CATTI240

iterations: in the iteration 1 a single MA does not succeed and the correct
character needs to be typed, but in the iteration 2 only one MA is needed to
find the correct word and to remove the following erroneous word.

The CATTI framework can be defined as a traditional natural language
recognition problem -Equation (1)-. In this case, in addition to the given feature245

sequence x, a prefix p of the transcription is available, depending on the editing
operation that the user performed to correct the erroneous text. The editing
operations considered are substitution, insertion, deletion, and rejection [44].
Therefore, the CATTI system should try to complete the transcription from
this prefix p by searching for the most likely suffix ŝ:250

ŝ = argmax
s∈S

P(s | x, p) ≈ argmax
s∈S

P(x | p, s)P(s | p) (4)

where S represents the set of all possibles suffixes s of p.

9



(a) Page 579 of Rodrigo. (b) Page 41 of CS. (c) Page 115 of Bentham.

Figure 4: Page samples of the historical manuscripts used in this work.

Equation (4) is very similar to first part of Equation (1), being w the con-
catenation of p and s. The difference is that now a part of the transcription,
p, is given. As shown in [44], P(x | p, s) can be approximated by morphological
models and P(s | p) by a language model conditioned by p as in conventional255

HTR. Therefore, the search must be performed over all possible suffixes of p.
This search for s can be efficiently carried out by using the lattices obtained
from a neural network based HTR system during the WFST-based decoding of
the whole input signal representation x. In each interaction step, the decoder
parses the validated prefix p over the lattice and then it continues searching for260

a suffix which maximises the posterior probability according to Equation (4).
This process is repeated until a complete and correct transcription of the input
text line image is obtained.

5. Experimental Framework

This section presents the three historical manuscripts used in the experi-265

ments, the main features of the recognition system and modules, and the eval-
uation metrics.

5.1. Historical Manuscripts: The Rodrigo, the Cristo Salvador, and the Ben-
tham Corpora

The Rodrigo corpus [6] corresponds to the digitisation of the book “Historia270

de España del arçobispo Don Rodrigo”, which was written in old Castilian
(Spanish) in 1545 by a single author. As the page presented in Figure 4(a),
most pages consist of a single block of 25 well-separated lines of humanistic
script, similar to the italic script but with textual Gothic influences. This book
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(a) Some lines of the Rodrigo corpus.

(b) Some lines of the Cristo Salvador corpus.

(c) Some lines of the Bentham corpus.

Figure 5: Examples of separated text lines.

is composed of 853 pages that were semiautomatically segmented into lines such275

as the line examples shown in Figure 5(a).
The Cristo-Salvador (CS) corpus is a XIX century Spanish manuscript pro-

vided by Biblioteca Valenciana Digital (BiValDi). It is also a single writer book
with different image features that cause some problems, such as smear, back-
ground variations, differences in bright, and bleed-through (ink that trespasses280

to the other surface of the sheet). It is composed of 53 pages (similar to that
presented in Figure 4(b)) that were semiautomatically divided into lines (such as
the lines shown in Figure 5(b)). Rodrigo and CS corpora are publicly available
for research purposes on the website of the Pattern Recognition and Human
Language Technology (PRHLT) research center [45].285

The last corpus used in this paper corresponds to the dataset used in the
HTR competition organised in 2014 within the “International Conference on
Frontiers of Handwriting Recognition” (ICFHR-2014) [9]. The corresponding
dataset is a small part of the Bentham Papers corpus. The Bentham Papers
collection encompasses around 100,000 page images written in English by several290

writers. The collection includes documents authored by the philosopher and
reformer Jeremy Bentham over a period of sixty years. Some of them are written
by Bentham himself and other ones are fair copies handwritten by Bentham’s
secretarial staff. The dataset used here 6 is composed of 433 page images (similar
to the page presented in Figure 4(c)) that were semiautomatically transcribed295

and segmented into lines as the line examples shown in Figure 5(c).
In this work, we used the same partitions for Rodrigo that were used in

previous works [7]. The first 409 pages (10,000 text lines) were used for training
(9000 lines for training the optical and language models and 1000 for validation),

6It is publicly available at http://doi.org/10.5281/zenodo.44519
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Table 1: Description of the partitions of the Rodrigo corpus used in this work.

Training Validation Test Total
Lines 9000 1000 5010 15,010
Running words 102,631 11,387 56,797 170,815
Running OOV words – 682 4313 4995
Word lexicon size 10,778 2788 6668 14,437
OOV words lexicon size – 662 3087 3659
Running chars 493,128 54,936 272,132 820,196
Running OOV chars – 1 14 15
Char lexicon size 105 82 91 111
OOV chars lexicon size – 1 6 6

Table 2: Description of the partitions of the Cristo Salvador corpus used in this work.

Training Validation Test Total
Lines 662 78 473 1213
Running words 6680 873 5199 12,752
Running OOV words – 219 1357 1576
Word lexicon size 2216 410 1625 3451
OOV words lexicon size – 211 1056 1235
Running chars 32,814 4236 24,486 61,536
Running OOV chars – – 2 2
Char lexicon size 91 52 84 92
OOV chars lexicon size – – 1 1

and the last 205 pages (5010 text lines) were used for testing 7. For Cristo300

Salvador we followed the directrices of the hard partition defined in a previous
work [8]: the last 20 pages for test (473 text lines), and the rest of the pages
for training. The first 30 pages (662 text lines) were used for training and the
remaining 3 pages (78 text lines) for validation purposes. For the Bentham
corpus we used the partition defined in the HTR ICFHR-2014 competition [9].305

The 433 pages were divided into three subsets for training, development, and
test, respectively encompassing 350, 50, and 33 page images. Tables 1, 2, and 3
summarise the information contained in the partitions used for Rodrigo, Cristo
Salvador, and Bentham corpora, respectively. Word statistics were computed
separating the words and punctuation marks.310

Out-of-vocabulary (OOV) words is one of the challenges that can be found in
the first two corpora. In Rodrigo, there are many rare words and words in their
archaic forms, words that appear in distinct form in the training and test sets
(e.g., portugal and portuḡl), abbreviations, and words hyphenated differently in

7It is publicly available at http://doi.org/10.5281/zenodo.1490009.
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Table 3: Description of the partitions of the Bentham corpus used in this work. In this
corpus there are not OOV chars.

Training Validation Test Total
Lines 9198 1415 860 11,473
Running words 89,392 13,812 8021 111,225
Running OOV words – 778 428 1206
Word lexicon size 8235 2702 1929 9181
OOV words lexicon size – 605 375 946
Running chars 420,029 64,929 38,540 523,498
Char lexicon size 92 85 81 92

the training and test sets, yielding a 7.6% of OOV words. Moreover, some scarce315

OOV characters appear in the testing partition (such as \, ṕ, ḡ, } and w) that
do not belong to the training set. In the case of Cristo Salvador, this problem
is aggravated due to the shortage of samples, reaching a 26.1% of OOV words,
but very few OOV characters are present. Finally, the Bentham corpus presents
only 5.3% of OOV words and no OOV characters.320

In order to estimate what is the influence of the amount of data employed
for estimating the lexical and language models (i.e., the lexical and language
restrictions) in the final results, additional datasets for each corpora were used
to increase the textual data employed for inferring these models.

In the case of Rodrigo and Cristo Salvador, we used the validation partitions325

data due to the difficulty of finding adequate textual information for this kind of
historical documents. In order to check the effect of increasing data, we created
two different datasets: training plus half of the validation dataset, and training
plus the whole validation set.

We followed the same approximation in Bentham, but in this case it was330

possible to employ, apart from the validation partition, an additional corpus [46].
The statistics for the finally used datasets are presented in Tables 4, 5 and 6,
for Rodrigo, Cristo Salvador, and Bentham, respectively. In summary, adding
validation data increments the number of samples by 11.1% for Rodrigo and
11.8% for Cristo Salvador with respect to the original training data. In the case335

of Bentham, the increments from the training data are about 15.4% when using
only the validation data and more than a 200% when adding the extra dataset.

5.2. System Setup

The HTR systems used in this work are based on the technology described
in [19]. This approach has shown that using BLSTM provides a handwrit-340

ing recognition performance comparable to that obtained when using multi-
dimensional LSTM. This approach is implemented in the HTR Laia Toolkit [19],
which is based on the Torch machine learning platform.

While raw images can be directly accepted as input, results can be better if
images are previously preprocessed. In this work, the employed preprocessing345

consists of slope and slant correction, background removal, 64 pixels in height
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Table 4: Description of the partitions with additional data for inferring the language and
lexical models for the Rodrigo corpus.

Training Training + 50%
Validation

Training +
Validation

Lines 9000 9500 10,000
Running words 102,631 108,403 114,018
Word lexicon size 10,778 11,107 11,442
Running chars 493,128 520,908 548,064
Char lexicon size 105 106 106

Table 5: Description of the partitions with additional data for inferring the language and
lexical models for the Cristo Salvador corpus.

Training Training + 50%
Validation

Training +
Validation

Lines 662 701 740
Running words 6680 7124 7553
Word lexicon size 2216 2218 2429
Running chars 32,814 34,956 37,050
Char lexicon size 91 91 91

Table 6: Description of the partitions with additional data for inferring the language and
lexical models for the Bentham corpus.

Training Training + 50%
Validation

Training +
Validation

Training
+ Extra

Lines 9198 9905 10,613 29,598
Running words 89,392 95,535 103,204 271,801
Word lexicon size 8235 8562 8842 12,292
Running chars 420,029 448,942 484,958 1,559,034
Char lexicon size 92 92 92 97
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Table 7: Architecture of the optical models.

Parameters Rodrigo & Bentham Cristo Salvador
CNN Layers 5 3
Filters {16,32,48,64,80} {16,32,48}
Kernel size 3× 3 3× 3
MaxPool size 2× 2 2× 2
Dropout {0,0,0.2,0.2,0.2} {0,0.2,0.2}
RNN Layers 5 3
BLSTM Units 256 256

(a) Some lines of the Rodrigo corpus.

(b) Some lines of the Cristo Salvador corpus.

(c) Some lines of the Bentham corpus.

Figure 6: Examples of preprocessed text lines.

normalisation, and noise removing [47, 48, 49, 50, 51]. This preprocessing has
been carried out by using the textFeats tool 8. As an example, Figure 6
presents the resulting images of preprocessing the lines shown in Figure 5.

The optical models are based on CRNN, which consist of a convolutional350

(CNN) block and a recurrent (RNN) block with the architecture detailed in
Table 7 for each corpus. The CRNN consists of convolutional layers with fil-
ters composed of different features maps with kernel sizes of 3 × 3 pixels and
horizontal and vertical strides of 1 pixel. LeakyReLU is used as the activation
function, and the output of the convolutional layers is fed to a maximum pool-355

ing layer with non-overlapping kernels of 2 × 2 pixels (only at the output of
the first three layers for Rodrigo and Bentham, and at the output of the first
two layers for Cristo Salvador). After that, the recurrent blocks are composed
of different recurrent layers composed of 256 Bidirectional Long-Short Term
Memory (BLSTM) units. Finally, a linear fully-connected layer is used after360

the recurrent block. The CTC training is carried out with minibatches of 16

8https://github.com/mauvilsa/textfeats
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samples, using a base learning rate of 0.0003. All the hyper parameters, such as
the number of convolutional and recurrent layers, were set up on the validation
sets.

The lexicon models are in HTK lexicon format [52]. For the experiments365

with lexicon restrictions (decoding at word level), each word from the training
partition was modelled as a concatenation of characters. On the other hand,
for the experiments without lexicon restrictions (decoding at character level),
the lexicon models contain only the set of characters contained in the training
partition.370

The language models were estimated as n-gram with Kneser-Ney back-off
smoothing [53] directly from the transcriptions of the text lines included on
the training partition using the SRILM ngram-count tool [54]. For the exper-
iments with language restrictions at word level 2-gram word language models
were estimated for the three corpora. However, for the experiments with lan-375

guage restrictions at character level a 7-gram character language model was
estimated for the Cristo Salvador corpus and 8-gram character language models
were estimated for the Rodrigo and Bentham corpora. On the other hand, for
the experiments without language restrictions, zero-gram language models were
used at both word and character level. The lattice generation was performed380

by using the EESEN decoder [55], which is based on WFST.
With respect to the user interaction in the CATTI system, in this work the

best performance, over the validation sets, was obtained with a limit of 2 Mouse
Actions. Thus, the assistance in all interactive-assistive experiments was limited
to 2 Mouse Actions.385

5.3. Evaluation Metrics

The transcriptions quality is assessed using the Levenshtein edit distance [56]
with respect to the reference text, which allows us to obtain a good estimation
for the transcriber post-edition effort at both the word and the character levels.
In this framework, the Character Error Rate (CER) value is especially interest-390

ing, since transcription errors are usually corrected at the character level. The
CER is the Levenshtein edit distance at character level and it can be defined
as the minimum number of substitutions, deletions, and insertions needed to
transform the transcription into the reference text, divided by the number of
characters in the reference text:395

CER =
s+ d+ i

n
· 100% (5)

where s is the number of substitutions, d is the number of deletions, i is the
number of insertions, and n is the total number of characters in the reference
text. Similarly, Word Error Rate (WER) is this edit distance calculated at word
level.

The quality of the lattices can be defined as the quality of the best hypothesis400

contained in each of them, and it is known as the oracle error rate. Then, the
quality of the word lattices is estimated by the oracle WER, which represents
the smallest WER that can be obtained from the word sequences contained in
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them. In the same way, the quality of the character lattices is estimated by the
oracle CER, which represents the smallest CER that can be obtained from the405

character lattices.
In the interactive approach, Word Click Rate (WCR) and Character Click

Rate (CCR) are used to assess the number of additional Mouse Actions (MA) per
word or character that the user has to do in order to obtain the best transcription
from the interactive system. The definition of CCR is:410

CCR =
c

n
(6)

where c is the number of MA carried out at character level and n is, again,
the number of reference characters. The definition of the Word Click Rate
(WCR) is analogous to the previous one, but substituting characters by words.

The overall interactive performance is given by the Word Stroke Ratio (WSR)
and the Character Stroke Ratio (CSR), which can be also computed by using415

the reference text. After each hypothesis is proposed by the system, the longest
common prefix between the hypothesis and the reference text is obtained, and
the first error from the hypothesis is corrected in an interaction action by the
user. This process is iterated until a full match is achieved.

Therefore, the CSR can be defined as the number of (character level) user in-420

teraction actions (a) that are necessary to achieve the reference transcriptions of
the text images considered, divided by the total number of reference characters
(n):

CSR =
a

n
· 100% (7)

The definition of WSR is analogous but at word level. This definition makes
comparable the WER with the WSR, and the CER with the CSR. The relative425

difference between the recognition error and the stroke ratio gives us the effort
reduction (EFR), which is an estimation of the reduction of the transcription
effort that can be achieved by using the interactive system.

The statistical significance of the experimental results is estimated by means
of confidence intervals of probability 95% (α = 0.025) calculated by using the430

bootstrapping method with 10,000 repetitions [57].

6. Experimental Results

This section presents the experimental results for the three corpora. Firstly,
the transcription given by the CTC decoding is evaluated to use it as a reference
with which to compare in the following experiments. Next, four experiments435

for studying the influence of the lexicon and language restrictions in the lattice
generation and the computer assisted transcription are performed. Specifically,
two experiments (Section 6.2 and Section 6.3) at word level (i.e. with lexicon re-
strictions) and two experiments (Section 6.4 and Section 6.5) at character level
(i.e. without lexicon restrictions). For both levels, word and character, one440
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Table 8: Quality of the CTC transcription given by the CRNN system.

Measure Rodrigo Cristo Salvador Bentham
WER 8.4%± 0.2 25.5%± 1.4 11.9%± 0.9
CER 1.75%± 0.05 8.15%± 0.60 3.30%± 0.29

experiment (Section 6.2 and Section 6.4) was performed with language restric-
tions imposed by language models and the other without language restrictions
(Section 6.3 and Section 6.5).

In the experiments with lexical or language restrictions (Sections 6.2, 6.3,
and 6.4) the use of additional textual information for training the lexical and445

language models was used in order to test the performance with additional data,
as described in Section 5.1.

6.1. Transcription given by the CTC decoding

Table 8 presents the results obtained by the CTC decoding. As it can be
seen in this table, despite the large number of out-of-vocabulary words (7.6% for450

Rodrigo, 26.1% for Cristo Salvador, and 5.3% for Bentham), the transcription
given by the CTC decoding presents a quite good quality. It should be noted
that the transcription obtained for Cristo Salvador presents a WER smaller
than the limit established by the percentage of out-of-vocabulary words. It is
possible because the CTC decoding provides character sequences not restricted455

by the lexicon or the language model.
The CTC decoding in state-of-the-art handwritten recognition systems based

on deep neural networks allows us to obtain transcriptions with very low error
rates. However, from these systems much more knowledge can be extracted.
One way to extract it is by using WFST decoding for obtaining a set of hy-460

potheses that can be compactly stored in form of lattices and that are richer
than the single hypothesis solution given by the CTC transcription.

An interactive and assistive transcription system can take advantage of the
knowledge stored in lattices and help to reduce the transcriber workload and
time to obtain the correct transcription. In the next experiments, the influ-465

ence of lexicon and language restrictions in computer assisted transcription are
studied.

6.2. Computer assisted transcription with lexicon and language restrictions

In this work, the best results when decoding the validation set with lexicon
and language restrictions were obtained by using 2-gram language models, for470

the three corpora. Thus, these models were used in the test set decoding.
As it can be seen in the first part of Table 9, the 1-best hypotheses offered

by the lattices generated with lexicon and language restrictions for the Rodrigo
corpus present a WER equal to 16.7%± 0.3. This value is statistically significant
better than the best result (17.9%±0.4) presented in a recent previous work [7],475
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Table 9: Results for the computer assisted transcription with lexicon and language restrictions
(2-gram for all corpora). EFRWFST and EFRCTC refer to effort reduction with respect to
WFST lattice generation (WER in top row) and CTC decoding (WER in Table 8), respec-
tively.

Experiment Measure Rodrigo Cristo Salvador Bentham

Lattice
generation

WER 16.7%± 0.3 46.5%± 1.4 23.3%± 1.1
CER 3.98%± 0.08 17.32%± 0.67 5.56%± 0.3
Oracle WER 10.0% 32.7% 10.6%

CATTI

WSR 12.4%± 0.3 40.2%± 1.3 14.9%± 0.8
WCR 0.31± 0.01 0.90± 0.03 0.37± 0.01
MA 17, 625 4698 2960
EFRWFST 25.7% 13.6% 36.1%
EFRCTC −47.6% −57.6% −25.2%

although worse than the value obtained by the CTC decoding (see Table 8)
because of the low amount of data employed to generate the language model.
In any case, the obtained word lattices contain hypotheses that reach an oracle
WER equal to 10.0%.

Regarding the Cristo Salvador corpus, the performance of our system at480

word-level is quite poor. This is because it is a relatively small data set (only 662
samples were used for training in this work) and training and test sets present
a high disparity, reflected in the 26.1% of out-of-vocabulary words. Again, the
scarce data used to infer the language model explains why these results are worse
than the CTC results. The generated lattices present a 1-best WER equal to485

46.5%± 1.4 and an oracle WER equal to 32.7%.
In the case of Bentham, the generated word lattices present worse results

than the obtained by the CTC decoding, specifically, a 1-best WER equal to
23.3%± 1.1 and an oracle WER equal to 10.6%.

The second part of Table 9 presents the results obtained by the assistive490

system (CATTI) working at word-level with lexicon and language restrictions.
As it can be observed, the assistive system allows us to decrease significantly the
number of words to correct over the most probable hypotheses contained in the
word lattices. Concretely, for Rodrigo it presents a WSR equal to 12.4%± 0.3,
which represents a 25.7% of significant human effort reduction (WER equal to495

16.7% ± 0.3). For Cristo Salvador it presents a WSR equal to 40.2% ± 1.3,
which represents 13.6% of significant human effort reduction (WER equal to
46.5% ± 1.4). Finally, for Bentham it presents a WSR equal to 14.9% ± 0.8,
which represents 36.1% of significant human effort reduction (WER equal to
23.3%± 1.1).500

Nevertheless, given that the performance of CATTI is limited by the quality
of the hypotheses contained in the lattices, only in the case of the Bentham
corpus some human effort reduction could be expected with respect to CTC
decoding. However, this is not the case, and no human effort reduction can be
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Table 10: Results for the computer assisted transcription with lexicon and language restric-
tions (2-gram for all corpora) with additional data for the Rodrigo corpus. EFRWFST and
EFRCTC refer to effort reduction with respect to WFST lattice generation (WER in top row)
and CTC decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 16.5%± 0.3 16.2%± 0.3
CER 3.93%± 0.09 3.87%± 0.08
Oracle WER 9.7% 9.6%

CATTI

WSR 12.3%± 0.3 12.1%± 0.3
WCR 0.31± 0.01 0.30± 0.01
MA 17, 380 17, 195
EFRWFST 25.5% 25.3%
EFRCTC −45.9% −44.3%

Table 11: Results for the computer assisted transcription with lexicon and language restric-
tions (2-gram for all corpora) with additional data for the Cristo Salvador corpus. EFRWFST

and EFRCTC refer to effort reduction with respect to WFST lattice generation (WER in top
row) and CTC decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 46.5%± 1.4 45.8%± 1.4
CER 17.34%± 0.65 16.69%± 0.64
Oracle WER 32.7% 31.9%

CATTI

WSR 40.2%± 1.3 39.3%± 1.3
WCR 0.90± 0.03 0.89± 0.03
MA 4698 4597
EFRWFST 13.5% 14.2%
EFRCTC −57.6% −54.1%

considered when comparing the obtained WSR with the transcription offered505

by the CTC decoding for the three corpora (see Table 8).
Finally, regarding the number of clicks or additional Mouse Actions (MA),

in the case of Rodrigo 17, 625 MA where performed for transcribing the 5010
text lines, resulting in 3.5 MA per line, 0.31 MA per word, and 0.065 MA
per character. In the case of Cristo Salvador, 4698 MA where performed for510

transcribing the 473 text lines, resulting in 9.9 MA per line, 0.90 MA per word,
and 0.192 MA per character. Finally, for Bentham 2960 MA where performed
for transcribing the 860 text lines, resulting in 3.4 MA per line, 0.37 MA per
word, and 0.077 MA per character. In the case of Cristo Salvador these figures
are really bad, but it was expected because of the high error rates and the high515

percentage of OOV words.
In order to see the influence of the training data size on the performance

of the system, experiments with the same test set but training the lexical and
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Table 12: Results for the computer assisted transcription with lexicon and language restric-
tions (2-gram for all corpora) with additional data for the Bentham corpus. EFRWFST and
EFRCTC refer to effort reduction with respect to WFST lattice generation (WER in top row)
and CTC decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Training
+ Extra

Lattice
generation

WER 22.9%± 1.1 22.8%± 1.0 17.0%± 0.9
CER 5.43%± 0.29 5.32%± 0.30 3.69%± 0.24
Oracle WER 10.1% 10.0% 4.28%

CATTI

WSR 14.5%± 0.8 14.2%± 0.8 8.6%± 0.6
WCR 0.36± 0.02 0.35± 0.02 0.22± 0.01
MA 2881 2839 1726
EFRWFST 36.7% 37.7% 49.4%
EFRCTC −21.8% −19.6% 27.8%

language models with the data described in Section 5.1 were performed.
The results for Rodrigo, Cristo Salvador, and Bentham are presented in520

Tables 10, 11, and 12, respectively. From these results it is clear that adding
more data for training the lexical and language models is beneficial in any
case for the recognition, which is reflected in the decrease of WER, CER, and
oracle WER. The tendency shows that, the more data, the better results. This
tendency appears as well in the assistive system results. However, results are525

only significantly better compared with those obtained without additional data
when a huge amount of additional data is available (i.e., Bentham case with the
extra dataset), while providing only a moderate amount of additional data has
no practical effect. Moreover, when studying the effort reduction when using the
assistive system, the same conclusions are obtained: only using a huge amount of530

training data for lexical and language models provides a better effort reduction
than the only use of the CTC transcription postedition (last row and column
cell of Table 12.

Consequently, we can conclude that the pure CTC approximation offers a
better performance than the assistive system that employs lexical and language535

restrictions when the amount of training data is moderate, something that it is
quite usual when dealing with historical texts because of the difficulty of finding
comparable data to improve the lexical and language models.

6.3. Computer assisted transcription with lexicon restrictions but without lan-
guage restrictions540

The first part of Table 13 shows the results obtained by the word lattices gen-
eration without language restrictions (using zero-gram word language models).
For the Rodrigo corpus, the best hypotheses offered by these lattices presents
a WER equal to 18.8%± 0.4, which is statistically significant worse than the
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Table 13: Results for the computer assisted transcription with lexicon restrictions but without
language restrictions. EFRWFST and EFRCTC refer to effort reduction with respect to WFST
lattice generation (WER in top row) and CTC decoding (WER in Table 8), respectively.

Experiment Measure Rodrigo Cristo Salvador Bentham

Lattice
generation

WER 18.8%± 0.4 55.5%± 1.8 27.3%± 1.3
CER 3.80%± 0.08 16.09%± 0.63 5.83%± 0.31
Oracle WER 10.5% 34.1% 10.4%

CATTI

WSR 12.0%± 0.3 42.0%± 1.4 17.3%± 0.9
WCR 0.33± 0.01 0.96± 0.03 0.40± 0.02
MA 18, 745 4964 3170
EFRWFST 36.2% 24.3% 36.6%
EFRCTC −42.9% −64.7% −45.4%

obtained in the previous experiment. However, the oracle WER (10.5%) it is545

only slightly worse.
In the case of the Cristo Salvador corpus, the obtained lattices present a

1-best WER equal to 55.5%± 1.8 and an oracle WER equal to 34.1%. These
results are, once again, worse than the results obtained in the previous experi-
ment.550

For the Bentham corpus, the generated lattices present a 1-best WER equal
to 27.3%± 1.3 and an oracle WER equal to 10.4%. In this case, the WER
is worse than the obtained in the previous experiment but the oracle WER is
slightly better.

In the second part of Table 13 the results obtained by the CATTI system555

working at word-level without language restrictions are presented. As it can be
observed, for Rodrigo it presents a WSR equal to 12.0%± 0.3, which is slightly
better than the obtained in the previous experiment. For Cristo Salvador it
presents a WSR equal to 42.0%± 1.4, which is slightly worse than the obtained
in the previous experiment. Finally, for Bentham it presents a WSR equal560

to 17.3% ± 0.9, which is statistically significant worse than the obtained in
the previous experiment. Therefore, as in the previous experiment, no human
effort reduction can be considered when comparing the obtained WSR with the
transcription offered by the CTC decoding.

Finally, regarding the number of interactions, in the case of Rodrigo 18, 745565

MA where performed, resulting in 3.7 MA per line, 0.33 MA per word, and 0.069
MA per character. In the case of Cristo Salvador, 4964 MA where performed,
resulting in 10.5 MA per line, 0.95 MA per word, and 0.203 MA per character.
For Bentham, 3170 MA where performed, resulting in 3.7 MA per line, 0.39 MA
per word, and 0.082 MA per character.570

From the obtained results, it can be observed that removing the language
restrictions when working at word-level in the CATTI system increases the
required number of user interactions for obtaining similar or even worse results.

In order to see the influence of the training data size on the performance of
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Table 14: Results for the computer assisted transcription with lexicon restrictions but without
language restrictions with additional data for the Rodrigo corpus. EFRWFST and EFRCTC

refer to effort reduction with respect to WFST lattice generation (WER in top row) and CTC
decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 18.5%± 0.4 18.1%± 0.4
CER 3.76%± 0.08 3.87%± 0.08
Oracle WER 10.3% 10.1%

CATTI

WSR 11.8%± 0.3 11.7%± 0.3
WCR 0.33± 0.01 0.32± 0.01
MA 18, 475 18, 148
EFRWFST 36.2% 35.4%
EFRCTC −39.7% −38.8%

Table 15: Results for the computer assisted transcription with lexicon restrictions but without
language restrictions with additional data for the Cristo Salvador corpus. EFRWFST and
EFRCTC refer to effort reduction with respect to WFST lattice generation (WER in top row)
and CTC decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 55.4%± 1.9 55.5%± 1.8
CER 16.08%± 0.64 16.10%± 0.64
Oracle WER 34.1% 34.1%

CATTI

WSR 42.0%± 1.4 42.0%± 1.4
WCR 0.95± 0.03 0.95± 0.03
MA 4964 4964
EFRWFST 24.2% 24.3%
EFRCTC −64.6% −64.6%

the system, experiments with the same test set but training the lexical models575

with the data described in Sections 5.1 were performed.
The results for Rodrigo, Cristo Salvador, and Bentham are presented in

Tables 14, 15, and 16, respectively. From these results it can be seen that
adding more data for the lexical model inference has a low positive impact (that
is not statistically significant with respect to those results obtained without the580

additional data) in recognition performance when the provided additional data
is similar to the test data, which is not the case of the large set of extra data
used in Bentham (last column of Table 16, WER and CER results).

However, the impact on the assisted transcription is positive or neutral in
all cases; even in the case that mismatching data is provided for increasing585

the lexicon, the interactive results are slightly worse, but differences are not
significant at WSR level. This can be explained by the low oracle WER obtained
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Table 16: Results for the computer assisted transcription with lexicon restrictions but without
language restrictions with additional data for the Bentham corpus. EFRWFST and EFRCTC

refer to effort reduction with respect to WFST lattice generation (WER in top row) and CTC
decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Training
+ Extra

Lattice
generation

WER 26.5%± 1.2 26.1%± 1.2 38.1%± 1.1
CER 5.67%± 0.31 5.60%± 0.29 8.50%± 0.31
Oracle WER 9.9% 9.7% 4.29%

CATTI

WSR 16.7%± 0.9 16.6%± 0.9 18.0%± 0.8
WCR 0.38± 0.02 0.38± 0.02 0.53± 0.02
MA 3087 3050 4221
EFRWFST 37.0% 36.4% 52.8%
EFRCTC −40.6% −39.2% −51.2%

in this case in the recognition process, that means that the correct words are
present at more or less the same position in the list of alternatives in all cases.

In any case, the addition of the lexical restriction does not provide effort590

reduction with respect to using pure CTC decoding, as the EFRCTC results
shows for all corpora with additional data.

6.4. Computer assisted transcription without lexicon restrictions but with lan-
guage restrictions

When decoding the validation partition using character-level language mod-595

els, i.e. with restrictions imposed only by the character language model, the
best results were obtained by using 8-gram character language models in the
cases of Rodrigo and Bentham, and 7-gram in the case of Cristo Salvador. Thus,
these models were employed as well for the test decoding. Since decoding is at
character level, the most important evaluation values should be those related to600

character (i.e., CER, oracle CER, CSR), instead of the word evaluation measures
we paid attention to in the previous experiments.

The first part of Table 17 presents the quality of the generated character
lattices with language restrictions. In the case of Rodrigo, these lattices present
a CER equal to 2.15%± 0.06, which represents a statistically significant im-605

provement over the best result (3.01%± 0.07) presented in a previous work [7],
but again worse than the result obtained by the CTC decoding (1.75%± 0.05,
see Table 8). However, the quality of the hypotheses contained in these lattices
reach an oracle CER equal to 0.36%, which represents a relative improvement of
79.4% over the CER present on the transcription offered by the CTC decoding.610

Regarding Cristo Salvador, the character lattices presented a CER equal to
9.75%± 0.68 (worse than the CTC result) and an oracle CER equal to 2.63%.
This oracle CER represents a relative improvement of 67.7% over the CER
present on the transcription given by the CTC decoding (8.15%, see Table 8).
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Table 17: Computer assisted transcription without lexicon restrictions but with language
restrictions (7-gram for Cristo Salvador and 8-gram for Rodrigo and Bentham). EFRWFST

and EFRCTC refer to effort reduction with respect to WFST lattice generation (CER in
second row) and CTC decoding (CER in Table 8), respectively.

Experiment Measure Rodrigo Cristo Salvador Bentham

Lattice
generation

WER 11.0%± 0.3 30.7%± 1.5 11.9%± 0.9
CER 2.15%± 0.06 9.75%± 0.68 3.10%± 0.27
Oracle CER 0.36% 2.63% 1.03%

CATTI

CSR 0.67%± 0.04 4.59%± 0.51 1.70%± 0.20
CCR 0.032± 0.001 0.161± 0.013 0.050± 0.005
MA 8802 3955 2058
EFRWFST 68.8% 52.9% 45.2%
EFRCTC 61.7% 43.7% 48.5%

For Bentham, the character lattices generation gives us a CER equal to615

3.10%± 0.27, which is better than the result obtained by the CTC decoding (a
CER equal to 3.30%±0.29), and an oracle CER equal to 1.03%, which represents
a relative improvement of 68.8%.

Given the oracle CER reached by the hypotheses contained in the gener-
ated character lattices, an outstanding performance in our computer assisted620

transcription system can be expected when working at character level.
The obtained results for the CATTI experiments are presented in the sec-

ond part of Table 17. A CSR equal to 0.67% ± 0.04 for Rodrigo corpus was
achieved. It represents a 68.8% of significant human effort reduction over the
most probable hypotheses contained in the character lattices. Moreover, thanks625

to the knowledge contained in the character lattices, our assistive system is
able to offer 61.7% of statistically significant human effort reduction over the
transcription offered by the CTC decoding, which presented a very low CER
(1.75% ± 0.05, see Table 8). A similar behaviour was observed for Cristo Sal-
vador and Bentham. In the case of Cristo Salvador, a CSR equal to 4.59%±0.51630

was achieved, which represents a statistically significant human effort reduction
of 52.9% over the most probable hypotheses contained in the character lattices,
and 43.7% over the transcription offered by the CTC decoding (CER equal to
8.15%±0.60, see Table 8). In the case of Bentham, a CSR equal to 1.70%±0.20
was achieved, which represents a statistically significant human effort reduction635

of 45.2% over the most probable hypotheses contained in the character lattices,
and 48.5% over the transcription offered by the CTC decoding (CER equal to
3.30%± 0.29, see Table 8).

Regarding the number of clicks or additional Mouse Actions (MA), for Ro-
drigo 8802 MA where performed, resulting in 1.8 MA per line, 0.16 MA per640

word, and 0.032 MA per character. In the case of Cristo Salvador, 3955 MA
where performed, resulting in 8.4 MA per line, 0.76 MA per word, and 0.162
MA per character. In the case of Bentham, 2058 MA where performed, resulting
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Table 18: Results for the computer assisted transcription without lexicon restrictions but with
language restrictions (8-gram) with additional data for the Rodrigo corpus. EFRWFST and
EFRCTC refer to effort reduction with respect to WFST lattice generation (CER in second
row) and CTC decoding (CER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 10.8%± 0.3 10.7%± 0.3
CER 2.13%± 0.06 2.11%± 0.06
Oracle CER 0.36% 0.36%

CATTI

CSR 0.66%± 0.04 0.67%± 0.04
CCR 0.031± 0.001 0.031± 0.001
MA 8409 8401
EFRWFST 69.0% 68.2%
EFRCTC 62.6% 61.7%

Table 19: Results for the computer assisted transcription without lexicon restrictions but with
language restrictions (7-gram) with additional data for the Cristo Salvador corpus. EFRWFST

and EFRCTC refer to effort reduction with respect to WFST lattice generation (WER in top
row) and CTC decoding (WER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Lattice
generation

WER 29.9%± 1.6 29.9%± 1.6
CER 9.52%± 0.67 9.57%± 0.72
Oracle CER 2.64% 2.66%

CATTI

CSR 4.56%± 0.52 4.55%± 0.51
CCR 0.158± 0.013 0.158± 0.013
MA 3880 3875
EFRWFST 52.1% 52.5%
EFRCTC 44.0% 44.1%

in 2.4 MA per line, 0.26 MA per word, and 0.053 MA per character. All these
figures represent an improvement in the use of the assistive system with respect645

to those obtained when working with lexicon restrictions (at word level).
As it can be observed from the presented results, our computer assisted

transcription system working at character-level (without lexicon restrictions)
not only allows us to reduce significantly the number of characters to be cor-
rected over the transcription given by the CTC decoding, but it also gets it with650

a minimal interaction with the user.
In order to see the influence of the training data size on the performance

of the system, experiments with the same test set but training the language
models (at char level) with the data described in Section 5.1 were performed.

The results for Rodrigo, Cristo Salvador, and Bentham are presented in655

Tables 18, 19, and 20, respectively. As happened in the previously presented
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Table 20: Results for the computer assisted transcription without lexicon restrictions but with
language restrictions (8-gram) with additional data for the Bentham corpus. EFRWFST and
EFRCTC refer to effort reduction with respect to WFST lattice generation (CER in second
row) and CTC decoding (CER in Table 8), respectively.

Experiment Measure Training + 50%
Validation

Training +
Validation

Training
+ Extra

Lattice
generation

WER 11.6%± 0.8 11.6%± 0.8 9.2%± 0.7
CER 3.07%± 0.27 3.04%± 0.28 2.65%± 0.26
Oracle CER 1.02% 1.01% 0.86%

CATTI

CSR 1.68%± 0.20 1.67%± 0.21 1.36%± 0.19
CCR 0.051± 0.005 0.052± 0.005 0.041± 0.005
MA 1980 1990 1589
EFRWFST 45.3% 45.1% 48.7%
EFRCTC 49.1% 49.3% 58.8%

cases, the use of additional data for training the models has a positive impact in
recognition, although differences are only significant at word level (WER) when
a huge set of additional data is used (last column of Table 20), but at character
level (CER) differences are not significant with respect to the results obtained660

without additional data in any case. When the CTC decoding is considered,
only in the case of the huge set of additional data differences are significant at
both word and character level.

The impact in the oracle CER follows the same tendency, which is reflected
as well in the assisted transcription results, where no significant differences are665

obtained when additional data is used. As happened when no additional data
is used, in this case a positive effort reduction with respect to CTC decoding is
obtained, and the larger the dataset used, the higher is this effort reduction.

6.5. Computer assisted transcription without lexicon or language restrictions

In this last experiment, character lattices were generated without lexicon or670

language restrictions (using zero-gram character language models). In the first
part of Table 21 the quality of the generated character lattices is presented. In
the case of Rodrigo, these lattices present a CER equal to 2.84%± 0.06, which
represents a statistically significant deterioration over the result obtained in
the previous experiment. However, the quality of the hypotheses contained in675

these lattices reach an oracle CER equal to 0.17%, which represents a relative
improvement of 52.8% over the oracle CER obtained in the previous experiment.

The character lattices obtained for Cristo Salvador presented a CER equal
to 8.34%± 0.63 and an oracle CER equal to 1.40%. In this case, both results
are better than those obtained in the previous experiment with language re-680

strictions.
Regarding Bentham, the character lattices generation gives us a CER equal

to 3.80%±0.33, which is worse than the results obtained in the previous experi-
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Table 21: Computer assisted transcription without lexicon or language restrictions. EFRWFST

and EFRCTC refer to effort reduction with respect to WFST lattice generation (CER in second
row) and CTC decoding (CER in Table 8), respectively.

Experiment Measure Rodrigo Cristo Salvador Bentham

Lattice
generation

WER 18.4%± 0.4 26.6%± 1.5 15.9%± 1.2
CER 2.84%± 0.06 8.34%± 0.63 3.80%± 0.33
Oracle CER 0.17% 1.40% 0.78%

CATTI

CSR 0.49%± 0.03 4.05%± 0.47 1.55%± 0.19
CCR 0.033± 0.001 0.139± 0.012 0.056± 0.005
MA 9025 3427 2143
EFRWFST 82.7% 51.4% 59.2%
EFRCTC 72.0% 50.3% 53.0%

ment and the obtained by the CTC decoding. However, these lattices presented
an oracle CER equal to 0.78%, which represents a relative improvement of 24.3%685

over the oracle CER obtained in the previous experiment.
Given the improvement in the oracle CER reached by the lattices generation

without lexicon or language restrictions, a better performance of our computer
assisted transcription system can be expected.

The obtained results for the CATTI experiments are presented in the second690

part of Table 21. A CSR equal to 0.49%±0.03 for Rodrigo corpus was achieved.
It represents 72.0% of significant human effort reduction over the transcription
offered by the CTC decoding. A similar behaviour was observed for Cristo
Salvador and Bentham. In the case of Cristo Salvador, a CSR equal to 4.05%±
0.47 was achieved, which represents a significant human effort reduction of 50.3%695

over the transcription offered by the CTC decoding. In the case of Bentham, a
CSR equal to 1.55%± 0.19 was achieved, which represents a significant human
effort reduction of 48.5% over the transcription offered by the CTC decoding.

Regarding the number of interactions, for Rodrigo 9025 MA where per-
formed, resulting in 1.8 MA per line, 0.16 MA per word, and 0.033 MA per700

character. In the case of Cristo Salvador, 3427 MA where performed, resulting
in 7.3 MA per line, 0.66 MA per word, and 0.139 MA per character. In the case
of Bentham, 2143 MA where performed, resulting in 2.5 MA per line, 0.27 MA
per word, and 0.056 MA per character.

As it can be observed from the presented results, our computer assisted705

transcription system working at character-level, without lexicon or language
restrictions, provides a better estimated human effort reduction (EFR) than the
obtained in the previous experiment at character-level with language restrictions
obtained in all conditions, except for the use of the huge extra dataset in the
Bentham corpus. However, only in the case of Rodrigo this improvement is710

statistically significant (0.49%±0.03 over 0.67%±0.04). With respect to Mouse
Actions, they increase in Rodrigo and Bentham (possible because of the large
amount of training data, that makes character language models much more
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Table 22: Summary of the estimated effort reduction (EFR) in the computer assisted tran-
scription experiments over the transcriptions given by the CTC decoding when using only the
training data for obtaining the lexicon and language models.

Restrictions Rodrigo Cristo Salvador Bentham
Lexicon Language EFRCTC

Yes Yes −47.6% −57.6% −25.2%
Yes No −42.9% −64.7% −45.4%
No Yes 61.7% 43.7% 48.5%
No No 72.0% 50.3% 53.0%

Table 23: Summary of the best estimated effort reduction (EFR) in the computer assisted
transcription experiments over the transcriptions given by the CTC decoding when using the
available additional data for obtaining the lexicon and language models.

Restrictions Rodrigo Cristo Salvador Bentham
Lexicon Language EFRCTC

Yes Yes −44.3% −54.1% 27.8%
Yes No −38.8% −64.6% −39.2%
No Yes 62.6% 44.1% 58.8%
No No 72.0% 50.3% 53.0%

reliable) but they decrease for Cristo Salvador (which has much less training
data).715

6.6. Estimated effort reduction in the assisted transcription experiments

Table 22 presents a summary of the estimated effort reduction (EFR) in the
computer assisted transcription experiments over the transcriptions given by the
CTC decoding for the three corpora when using only the training data. It can be
observed that no human effort reduction can be considered when working with720

lexical restrictions (working at word level). However, when working without
lexicon restrictions, the estimated effort reduction reaches the 40%. Moreover,
the estimated effort reduction increases with a minimum of 50% when working
without lexicon or language restrictions.

When additional data is available, conclusions are similar. Table 23 presents725

a summary of the best estimated effort reduction (EFR) when this additional
data is available. Lexicon restrictions are only better when a huge amount of
data is available (i.e., the Bentham extra data corpus, that provides three times
more data), but in any other case the results with these restrictions do not im-
prove those obtained with no lexical restrictions. When language restrictions730

are present without lexical restrictions, similarly only huge amounts of data (the
same case in the Bentham corpus) provide a better result in assisted transcrip-
tion with respect to that obtained without any restriction, but at the cost of
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Table 24: Summary of the additional Clicks of Mouse Actions performed in the computer
assisted transcription experiments per word (WCR) and per character (CCR).

Restrictions Rodrigo Cristo Salvador Bentham
Lexicon Language WCR CCR WCR CCR WCR CCR

Yes Yes 0.31 0.065 0.90 0.192 0.37 0.077
Yes No 0.33 0.069 0.95 0.203 0.39 0.082
No Yes 0.16 0.032 0.76 0.162 0.26 0.053
No No 0.16 0.033 0.66 0.139 0.27 0.056

needing much more data that, in general, it could be difficult and/or expensive
to obtain.735

The main reason for this behaviour is that, in general, having no restrictions
provides a richer set of alternatives in the resulting lattice of the WFST decod-
ing. Moreover, this set of alternatives is of better quality, as the oracle CER
value demonstrates. For results with lexical restrictions, CER values are quite
higher, thus even if oracle CER values were comparable, much effort would be740

necessary to obtain the final reference (as the EFR values demonstrate).

6.7. Mouse actions performed in the assisted transcription experiments

The cost of point signalling (by clicks or mouse actions) the erroneous words
or characters in computer assisted transcription is usually so small as to be not
worth considering. However, in this work we considered interesting to study745

how it is influenced by the lexicon and the language restrictions.
Table 24 presents a summary of the additional clicks or mouse actions per-

formed in the computer assisted transcription experiments per word and per
character for the three corpora. It can be observed that the lexicon restric-
tions (working at word level) increase considerably the additional mouse actions.750

However, they are slightly reduced when using the language restrictions (except
for the Cristo Salvador corpus, possibly because of the scarce data).

The number of MA demonstrates that, when no lexical restrictions appear,
less actions are necessary to get the final reference. In the case of absence
of language model when no lexical model is present, the number of actions is755

comparable to those of having lexical model, which means that the depth of the
best solutions in the lattices are similar, but in the case of no restrictions at all,
they are better (lower oracle CER), which implies a higher effort reduction.

7. Conclusions

State-of-the-art Handwritten Text Recognition systems based on Convolu-760

tional and Recurrent Neural Networks provide high quality draft transcriptions
by CTC decoding. However, it is still necessary to supervise them by profes-
sional transcribers.
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In this work we have studied the influence of the lexicon and language restric-
tions on computer assisted transcription for reducing the human transcription765

effort. From the experimentation with three different historical manuscripts, we
concluded that our interactive approach adds an additional reduction to the re-
quired human effort over the best transcription provided by the CTC decoding
when working at character-level, i.e. without lexicon restrictions.

Working at character level, independently of using language model or not,770

allows our interactive approach to reduce significantly the human transcription
effort. However, the best results were obtained when working without language
restrictions, except in the case were a huge training set for the language model
is available, which is not common in historical manuscripts. Concretely, the
transcriptions provided by the CTC decoding present a CER equal to 1.75%,775

8.15%, and 3.30% for each one of the three manuscripts used on the experimen-
tation. When using our assistive transcription system only 0.49%, 4.05%, and
1.55% of the characters, for each manuscript, has to be effectively corrected by
the human transcriber, allowing to reduce the human effort in more than a 50%.
This behaviour can be attributed to the richer set of alternatives provided in780

the lattice that results from the WFST decoding on the CTC results, which al-
lows to find the correct transcription with less effort than using the postedition
approach.

We also verified that adding more information during the training of the
lexical and language models allows us to obtain better results. However, in this785

case this improvement (a CSR equal to 1.36% for Bentham) is not statistically
significant compared to the results obtained without language restrictions.

Regarding the number of additional mouse actions, working without lexicon
restrictions reduces this number considerably. However, an additional reduction
may be achieved when working with the language restrictions imposed by a790

character language model trained with abundant data.
Future work lines include the exploration of new assistive and interactive

strategies, the use of multimodal interaction, and the experimentation with
other datasets.
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[41] L. Rodŕıguez, F. Casacuberta, E. Vidal, Computer Assisted Transcription
of Speech, in: J. Mart́ı, J. M. B. A. M. Mendonça, J. Serrat (Eds.), Pattern
Recognition and Image Analysis (IbPRIA 2007), Vol. 4477 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2007, pp. 241–248.935
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