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Abstract

Continual learning of deep neural networks is a key requirement for scal-

ing them up to more complex applicative scenarios and for achieving real

lifelong learning of these architectures. Previous approaches to the problem

have considered either the progressive increase in the size of the networks,

or have tried to regularize the network behavior to equalize it with respect

to previously observed tasks. In the latter case, it is essential to understand

what type of information best represents this past behavior. Common tech-

niques include regularizing the past outputs, gradients, or individual weights.

In this work, we propose a new, relatively simple and efficient method to per-

form continual learning by regularizing instead the network internal embed-

dings. To make the approach scalable, we also propose a dynamic sampling

strategy to reduce the memory footprint of the required external storage. We

show that our method performs favorably with respect to state-of-the-art ap-
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proaches in the literature, while requiring significantly less space in memory

and computational time. In addition, inspired by recent works, we evaluate

the impact of selecting a more flexible model for the activation functions

inside the network, evaluating the impact of catastrophic forgetting on the

activation functions themselves.

Keywords: Continual learning, catastrophic forgetting, embedding,

regularization, trainable activation functions

1. Introduction

While deep networks have achieved remarkable successes over the last

decade, most of their applications are limited to single, isolated problems,

where each network has to be redesigned (and re-trained) from scratch. As

a result, their training remains daunting in situations where data is scarce

and/or computation is expensive. In these scenarios, efficient transfer of in-

formation from one task to another (e.g., in reinforcement learning contexts)

is widely acknowledged to be a fundamental technique for their deployment

[22]. Depending on the number of tasks and their similarity, different applica-

tive scenarios can be devised, ranging from simple transfer learning from one

source domain to a target domain (e.g., as is popular today with pre-trained

image classification networks), up to full, lifelong learning of a single network

on a possibly infinite number of interrelated tasks.

Artificial general intelligence must be able to learn and remember many

different tasks [17] and this is particularly complex in real-world scenarios.

The ability of an agent to learn consecutive tasks without forgetting how

to solve previously learned tasks is called continual learning (CL). CL is a
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property difficult to obtain, because when the network learns how to solve a

task the information about how to solve previously learned tasks is generally

lost if no countermeasure is adopted; this phenomenon is called catastrophic

forgetting [8], and it occurs when the network, trained on a task, changes

its weights in order to meet the objectives of the new task. As a result, the

network accuracy on a previous task is drastically reduced after a few training

updates on successive tasks. Whilst recent results on deep networks have

improved the results on a wide variety of domains, relatively less progress

has been made in reaching continual learning on artificial neural networks.

Because of its importance, many ideas and algorithms were proposed re-

cently for an effective CL of neural architectures. One class of algorithms,

known as progressive training algorithms [6, 26, 28], incrementally builds the

structure of the network for each task being processed, trying to re-use as

much as possible of the previous architecture in the process. Another class

of algorithms, known as rehearsal methods [24, 29, 2], save the information

about past tasks in an external memory, and continually retrain the network

on this memory in order to maintain its performance. Finally, a third class

of algorithms try to reuse a single neural network by instead including mul-

tiple regularization penalties [14] to stabilize the behaviour of the network

with respect to previous tasks. Generally speaking, rehearsal and progressive

strategies tend to perform well but scale poorly with respect to the number

of tasks, and might have a large computational complexity. Differently, reg-

ularization strategies are simple to implement, tend to require less memory,

but their performance might not match naive rehearsal.

One key problem when implementing a regularization strategy is deciding
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what information best represents the behaviour of the network and, as a

result, what form the regularization penalty should take. Proposals in this

sense range from regularizing individual weights based on their importance

[14], to specific gradients [20], outputs [18] (similar to the idea of knowledge

distillation), using information from an external memory or a combination

of these. Some state-of-the-art algorithms in this sense are described in-

depth in Section 2. Choosing the proper level of abstraction in this sense

is not trivial, and the choice highly influences the level of accuracy of these

techniques, and their ability to scale on multiple tasks.

Contributions of this paper

In this paper, we propose a novel regularization-rehearsal approach for

continual learning. Our insight is that an efficient way to regularize the

behaviour of the network is to act on its internal embeddings, i.e., the acti-

vations of one or more layers close to the exit. We argue that regularizing

the embeddings provide more information as opposed to simply asking for

similar outputs, allowing the network more degrees of freedom in choosing

how best to enforce the penalty, while being less stringent than asking for

specific, individual weights to be preserved.

Because our method requires a small external memory of past activations

to work efficiently, we also devise a simple sampling strategy for this memory

to maximize the information provided by the regularization term, i.e., we

try to sample maximally those elements in memory that can provide the

strongest regularization on the model.

In addition to the previous contributions, we also evaluate the impact of

more flexible activation functions, namely, kernel activation functions (KAFs,
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[27]), on the CL scenario. Several papers [9, 1, 12, 23, 27] recently have

shown that, in the single-task scenario, training the activation functions can

provide significant improvements in performance and in the number of layers

required to solve the given task. The intuition is that giving more freedom

to the activation functions inside the network, whenever these are properly

normalized, can have a beneficial impact on the learning of the networks.

However, very little has been done to evaluate whether these benefits extend

to the CL case or if, on the opposite, flexible activation functions can suffer

from catastrophic forgetting themselves.

To this end, in the experimental section we compare our proposed regu-

larization technique with multiple state-of-the-art regularization algorithms

for CL, both on standard neural networks and on neural networks endowed

with KAFs, hereafter denoted as Kafnets.

Organization of this paper

The rest of the paper is structured as follows. Section 2 describes the

problem of CL in neural networks and some techniques for performing CL

through proper regularization. Then, after elaborating on the advantages

and shortcomings of each of these techniques, in Section 3 we propose a

novel method for performing the regularization, that we call embedding reg-

ularization (ER). We provide a comprehensive experimental evaluation of the

proposed ER algorithm in Sections 4 and 5, before giving some concluding

remarks in Section 6.
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2. Continual learning in neural networks

2.1. Problem formulation

We follow the formulation of continual learning from [20]. We receive a

(possibly infinite) sequence of labeled examples, and we suppose that each

example is described by a triplet (x, t, y) ∈ X ×N+×Y , where x is an input

(e.g., an image or a vector of features), t is an integer identifying a particular

task, and y is the corresponding label of x (e.g., the presence of a specific

object inside the image).

In this formulation, x can belong to any domain (e.g., an image, or a

vector in a suitable Euclidean space), although most benchmarks in the CL

literature have considered the image domain [22]. As a motivating example,

images with t = 0 could contain either cars or trucks (two classes), while

images with t = 1 could contain planes, helicopters, or boats (three classes)

and so on. Crucially, we assume that a pair (x, y) is locally i.i.d. given t,

i.e., it is sampled from some probability distribution Pt that fully specifies

the task. The total number of tasks can be known a priori or not.

In addition, several works in the literature consider sequential scenarios

where a full dataset belonging to a given task is received and processed (even

with multiple passes over it), before switching to the next task. Nonetheless,

methods developed for the sequential case can generally be extended to the

non-sequential (online) case, and vice versa.

In continual learning we want to design a training algorithm for a neural

network fθ(x, t), parameterized by a vector θ, such that fθ(x, t) ≈ y for

any possible task and example. Because we assume potential correlations

between different tasks, the network should share as much as possible the
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information contained in θ across all possible problems.

For a single task t (e.g., only images of cars/trucks), we could find the

optimal θ by minimizing the expected risk of the network as:

θ∗ = arg min
θ

{
E

(x,y)∼P1

L (fθ(x, t), y)

}
, (1)

where L(·, ·) is a loss function and the expectation is taken with respect to

all possible data of the single task. If we are provided with a dataset of

B examples {xi, t, yi}Bi=1 from the task, then (1) can be approximated by

minimizing:

Jt(θ) =

{
1

B

B∑
i=1

L (fθ(xi, t), yi)

}
. (2)

Practically, (2) can be solved by taking mini-batches of data and using these

to compute approximate gradients of the cost function J(θ) [3].

Extending this formulation to more than a single task is non-trivial for the

problems described in Section 1, mostly because of the catastrophic forgetting

of previously learned information [22]. In particular, suppose we are provided

with a separate dataset of B′ examples {xi, t′, yi}B+B′

i=B+1 from a different task

t′ (e.g., a new mini-batch of data containing planes and similar objects). A

naive solution would be to solve a problem Jt′(θ) similar to (2), starting

however from the previous solution θ∗. Catastrophic forgetting then occurs

whenever the solution of this new optimization problem performs poorly on

the original task.

Next, we describe many state-of-the-art regularization solutions for ap-

proaching this problem. Note how, as the size of the datasets shrink, and as

we iterate this process, we are back at the sequential scenario described at
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the beginning of this section. Nonetheless, it is easier to describe continual

learning techniques in this simplified context.

2.2. Regularization by weight consolidation

The idea of elastic weight consolidation (EWC) [14] is to impose a regular-

ization term on successive tasks to preserve as much as possible the weights

in θ that were essential to the previous task. This is achieved by augmenting

Jt′(θ) with a quadratic penalty as follows:

R(θ) =
λ

2
·
∑
z

Fz (θ∗z − θz)
2 , (3)

where λ is a hyper-parameter, θ∗ is the weight vector after training on the first

task, and Fz represents the zth diagonal element of the Fisher information

matrix:

Fz =
1

B

B∑
i=1

∂2 log [fθ∗(xi, t)]

∂θ∗z
. (4)

EWC can be justified from a Bayesian perspective by assuming that the

network posterior distribution can be fully specified by the mean vector θ∗

and a diagonal precision matrix given by the elements {Fz}z. When training

on more than two tasks, different penalties can be combined by storing the

mean vectors and Fisher diagonal matrices for each task [14], or a single

composite penalty can be obtained in various ways [19, 11, 15].

More in general, when faced with a sequential scenario, we would generate

a sequence of weight vectors θ1, θ2, . . . and corresponding diagonal Fisher

matrices F 1, F 2, . . .. At a generic iteration n, a simple online extension of
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EWC [28] computes a single dynamic penalty by keeping the last mean vector

θn−1 and updating the Fisher information matrix as:

F n = F n + γF n−1 , (5)

where γ ∈ [0, 1] is a discounting factor. In the online version of the approach

only the optimal weights from the last task are maintained into memory.

Alternatively, one can keep an external memoryM of samples from previous

tasks, and use this memory to build an aggregated Fisher information matrix

for every iteration. However, how best to sample from previous tasks remains

a significant open challenge [14].

2.3. Regularization by knowledge distillation

While EWC has been shown to work well in some scenarios, regularizing

individual weights might not always work optimally, especially when different

penalties start to exert conflicting influences. Learning without forgetting

(LWF) [18] is another method for continual learning whose idea is to simply

preserve the outputs of a network on older tasks, while leaving it free to

modify weights as necessary to achieve this objective. To do so, LWF employs

a variant of knowledge distillation [10].

In our notation, fθ∗(x, t
′) is the output of the network using the previous

weights (at iteration n−1) on an example from the separate task t′. Suppose

we are in a binary classification task, in which case the output is the proba-

bility of x belonging to the class specified by t′. To regularize the network,

we add a penalty term to Jt′(θ) forcing the new probabilities to be similar to

the old probabilities using a cross-entropy term:
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R(θ) = −λ · 1

B′

B′∑
i=B+1

fθ∗(xi, t
′) log [fθ(xi, t

′)] , (6)

where λ has the same meaning as in the previous section. For regression

problems one can use the mean-squared error, while for multi-class classifica-

tion problems it is possible to improve on this basic scheme by re-weighting

the probabilities using a new temperature hyper-parameter [18]. LWF has

the advantage that the training process can potentially discover new weight

configurations able to preserve older behaviors.

2.4. Synaptic Intelligence

Synaptic Intelligence (SI), introduced in [32], is a variant of EWC. The

main idea is to calculate the weight importance in an online fashion, instead

of calculating the Fisher matrix. To do it the authors characterized the tra-

jectory of the network parameters over the optimization process to evaluate

the importance of a parameter’s change in the loss’ decrease. In particular,

a weight importance w.r.t. optimization can be defined as:

Fz =
∆Jz

(∆z)2 + ξ
(7)

where ∆Jz is the sum of instantaneous changes to the parameter θz along

the optimization trajectory of Jt (see [32] for the full definition), ∆z is its

absolute variation from the starting condition, and ξ a small constant to

bound the expression in case of numerical issues.

The main advantage of this approach is the possibility to calculate Fz

using the information that are available during the training and no extra
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computation is needed. The magnitude of F can be scaled by proper set-

ting of a scale factor 1 ≥ c ≥ 0, which regularizes how much of the past

information needs to be saved. This factor can then be used in a EWC-like

regularization term replacing the Fisher information matrix.

2.5. Gradient episodic memory

Gradient episodic memory (GEM) [20] is another technique which regu-

larizes a model by working neither on individual weights nor on the outputs,

but on the gradients of the model. In GEM, a subset of past tasks is saved

into an external fixed size memory, and used to constrain the current gra-

dients to avoid the increasing of losses associated to past tasks, but at the

same time allowing their decreasing; this could lead to positive transfer of

knowledge to past tasks.

To this end, denote by gt the gradient of the loss obtained with a sam-

ple from the past task t using the current network, and by gt′ the gradient

vector on the current task, the method alleviates catastrophic forgetting by

enforcing the gradients to point in the same direction:

〈gt′ , gt〉 ≥ 0 ,

if the inequality constraints are satisfied, then the proposed parameter up-

date is unlikely to increase the loss on previous tasks. In this case the past

information is preserved. Otherwise there is at least one previous task that

would experience an increase in loss after the parameter update.

In order to enforce the previous penalty, at every optimization step a
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quadratic program with inequality constrains is solved:

minimize
v

1

2
vTGtG

T
t v + gTt′G

T
t v

subject to v ≥ 0

where Gt is a matrix containing all the gradients associated to the past task

samples (i.e., each row is the gradient associated to one of the B samples).

The new gradients are calculated as ḡ = GT
t v
∗ + gt′ , where v∗ is the solution

to the QP. Basically, the method forces the new gradients to go in the same

direction of the gradients associated to past tasks. This method requires

more memory than a simpler regularization approach such as EWC, and

more computational time, but could provide improved performance.

Recently a new version of GEM, called A-GEM, has been proposed in

[5]. This approach tries to ensure, using a different QP w.r.t. GEM, that

at every training step the average episodic memory loss over the previous

tasks does not increase; the resulting QP used in A-GEM is faster and easier

to minimize. The main difference between A-GEM and GEM is that GEM

has better guarantees in terms of worst-case forgetting of each task since it

prohibits an increase of any past task specific loss, while A-GEM has better

guarantees in term of average accuracy obtained, since GEM can prevent a

gradient update on the current task in order to satisfy the constraints.

3. Proposed embedding regularization (ER) for continual learning

All methods described in the previous section are similar, in the sense

that they try to preserve the behaviour of the neural network on previous

tasks by modifying the (unconstrained) descent direction in a direction that
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alleviates catastrophic forgetting. They differ, however, in what information

is the best representation of such behavior: individual weights for EWC and

SI, gradient information for GEM, or actual outputs for LWF.

As we stated in Section 1, our aim in this paper is to complement these

methods with a separate regularization technique acting on the embeddings

of the neural network, i.e., the activations of the second-to-last layer of the

model. We argue this is both more flexible than individual weights, and more

informative than the outputs themselves, as evidenced by the large literature

on using pre-trained networks for a variety of fine-tuning tasks and few-

shot learning [21]. The method we propose is connected to the less-forgetful

learning (LFL) [13] method in domain adaptation, and in a lesser form to

neural graph machines [4] for graph-based learning. LFL is not suitable for

a continual learning scenario, since the idea is that, given a source network

trained on a source domain, the weights of the source network are used as

the initial weights of the target network and then the parameters associated

to the softmax layer are frozen; this network is then trained. However, while

LFL also regularizes a network on a new domain using embeddings, it is

not designed to work on more than two tasks, and its memory requirements

scale linearly with the number of tasks, since it requires a network for each

one. Also, the features regularization is done by minimizing the distance

between the features associated to the new task (e.g., the target domain)

extracted using the old network and the new one; so the domains need to be

correlated somehow, also because the number of classes remains unchanged

from one network to another and the softmax layer is fixed. Conversely,

we are interested in the more general CL scenario described above, and in
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Figure 1: Overall schema of the proposed framework. See the text for a description of the

different steps.

designing a method with a fixed, low-memory overhead.

3.1. General description of the proposed method

The overall schema of the proposed embedding regularization (ER) tech-

nique is provided in Fig. 1. Similarly to before, we represent the continual

learning scenario with a small external memoryM = {(xm, tm, hm, pm)}Mm=1,

whose size M is selected by the user, and where each element of the memory

is a quadruplet containing:

• An image xm that the network processed previously and the corre-

sponding task tm;
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• The embedding hm corresponding to the activation of the second-to-

last layer of fθ(xm, tm), computed when the network was trained last

on task tm;

• A sampling weight pm. The set of weights {pm}Mm=1 should define a

probability distribution over the elements of M.

Whenever we want to regularize our model, we sample an element (xm, tm, hm)

from the past task memory M (or a mini-batch of elements) with a proba-

bility proportional to pm. We then compare the embedding with the current

embedding ĥm computed with the current weights of the network:

R(θ) = λ · d
(
hm, ĥm

)
, (8)

where we use the cosine similarity between the two vectors as distance func-

tion d(·, ·) in our implementation. The overall algorithm is summarized in

Algorithm 1, while in the following we elaborate more in-depth with respect

to the sampling strategies we can adopt.

3.2. Selecting and updating the sampling probabilities

A correct sampling from the external memory is the key of this method,

since sampling unrepresentative images might lead to catastrophic forgetting.

The simplest way to do this, besides using uniform sampling probabilities for

each value inM, is to count how many times a sample mi ∈M has already

been chosen and assign to the weight a value equal to the inverse of how

many times it has been extracted (in the following, this is referred to as the

frequency sampling strategy). In this way, however, the weights are not a

real indicator of the importance of mi, given the current task.
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Algorithm 1 Embedding regularization (ER)

1: procedure Train Procedure

2: Given: a neural network f with current weights θ

3: Given: a mini-batch of B′ elements from a task t.

4: Step 1 Perform one step of optimization on the mini-batch.

5: Step 2 Regularize the model with EmbeddingRegularization().

6: When the task is over: Update the external memory M.

7: procedure EmbeddingRegularization

8: Sample m values {(xi, ti, hi, pi)} from M

9: m← λ ∗mean
(
{d(hi, ĥi)} i=1...m

)
10: Perform one step of optimization on m.

Another way to do that is to assign an initial value to each weight and

then, when mi is picked and the distance di = d
(
hi, ĥi

)
calculated, assign

a weight pi proportional to the distance di (distance sampling strategy). In

this way any image that is associated to a high distance will be drawn more

frequently, because it contains some information that is in contrast to the

current task and needs to be enforced multiple times.

Moreover, the distance between the images can be used, by using the

structural distance from an image in the memory and some images from the

current task. When a new batch is encountered, an external network, whose

parameters are randomly initialized and not trained, is used to extract the

features from the images present in the current batch and from the images

drawn from the memory (pretrained reference sampling strategy). Then the

weight pi is set equal to the mean distance between the image xi from the
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memory and all the images in the current batch. The idea is to use a distance

that won’t change during the training and was inspired by [30].

4. Experimental setup

4.1. Datasets and metrics

For evaluating the proposed method, we consider the following datasets:

• Permuted MNIST: [14] it is a variant of the popular MNIST dataset of

handwritten digits [16], in which each task is a random fixed permu-

tation of the pixels and the images are treated as vectors of features

(flattened images). In this experiments the output of the network is

fixed to 10. This is a relatively easy benchmark, allowing to easily

compare with other techniques. In our experiment the number of tasks

is set to 4.

• CIFAR10: another dataset widely used in the literature. It consists in

10 classes with 60000 colour images each. To adapt this dataset for

a continual learning scenario the classes are grouped in n sets, in our

case n = 5; so each task contains 2 consecutive classes. In this case the

scenario is the CL one.

• CIFAR100: a variant of the CIFAR10 dataset with 100 classes. The

number of images are the same as CIFAR10 but, since the classes are

100, each class has less images and this makes the training harder. We

grouped the classes into 10 tasks.

To evaluate the efficiency and to compare the methods different metrics

have been used. All these metrics are calculated on a matrix R ∈ RN×N ,
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where N is the number of tasks, and each entry Rij contains the test clas-

sification accuracy on task j when the training on task i is completed. The

metrics used are the following.

Accuracy: it is the average accuracy on the trained task, it considers

the elements of the diagonal as well as the elements below it:

Accuracy =

∑N
i>j Ri,j

1
2
N(N + 1)

.

This metric aims to show the averaged performance of the model in every

step of the training and for each task.

Remembering: it measures how much information from the old tasks

is remembered during the training on the new one. Given a score called

backward transfer:

backward transfer =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)

1
2
N(N − 1)

that measures the influence that learning a task has on the previously learned

tasks, the remembering score is defined as:

Remembering = 1− |min(0, backward transfer)| .

Having a score equals to one means not only that the model is remembering

everything about the past tasks, but it can also improve these. To measure

how the old tasks have been improved the metric used is Positive Backward

Transfer = max(0, backward transfer).

We used these metrics because they embody all the import aspects of

CL problems: the ability of a model to being able to classify past tasks, by
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reducing the CF (remembering), but at the same time the ability to cor-

rectly classify all the tasks during the training phase (accuracy), including

the current task. Also, they are jointly important: a model with high ac-

curacy and low remembering is a model not capable of alleviating CF, and

will rewrite all the weights at each task; on the other hand low accuracy and

high remembering tells us that the constraints applied on the model are too

restrictive, blocking the learning of the current task by remembering all the

past information.

These metrics and more are defined in [25]. The complete code of our

experimental evaluation can be found online.1

4.2. Architectures and methods

On the the MNIST experiment a fully-connected neural network with

4 hidden layers of 400 ReLU units is used. This network is trained using

SGD with learning rate equal to 1e − 3. For the CIFAR10/100 the CNN is

the same used in [31], except for the CIFAR100 case where the number of

kernels is doubled. The CNNs have been trained using the Adam optimizer

with learning rate set to 1e− 3; the optimizer state was reset after training

on each task.

As stated in the introduction, as a further contribution we also decided

to compare the standard NNs to the Kafnets [27], a class of neural networks

using KAFs as activation functions. Briefly, using this architecture each ac-

tivation function is allowed to change shape during training using a small

number of adaptable coefficients, and the aim of this set of comparisons is

1 https://github.com/jaryP/Master-thesis
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to explore whether this additional number of degrees of freedom is benefi-

cial or not in terms of CL. Each Kafnet used has the same architecture of

the NN counterpart but the size of each layer/kernel is reduced by 30%, in

order to have roughly the same number of adaptable parameters for both

architectures. The hyper-parameters for the KAFs use the same values from

[27].

To demonstrate the effectiveness of the proposed ER algorithm we com-

pare it with GEM, online EWC, SI, and the full training without any ap-

proach to alleviate catastrophic forgetting as further comparisons; we dis-

carded LWF because it showed no good performance in our preliminary ex-

periments on CL (being designed for a single transfer scenario), and also SI

from KAFs experiments, given the poor performance obtained on the stan-

dard ANN (see below). The memory size for each task in the GEM approach

was set to 200 for each task in CIFAR10/MNIST and 500 for each task in

CIFAR100. For our method, memory was fixed to a smaller size of 100 im-

ages per task. All of the values were fine-tuned to provide the best accuracy,

while in Section 5.2 we evaluate the impact of selecting different values for

the external memory, for both GEM and ER. For our proposed method, we

use the distance sampling strategy in the following, and evaluate the impact

of the other sampling strategies described in Section 3.2 in Section 5.3.

Finally, λ was set to 1 in every experiment with the exception of CI-

FAR100, in which it was set to 5, and the c factor in SI was set to 1 for

permuted MNIST and 0.01 for the other tasks. All of the parameters were

chosen after a preliminary empirical analysis.
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Perm-MNIST CIFAR10 CIFAR100 Average

Accuracy Remembering Accuracy Remembering Accuracy Remembering Accuracy Remembering

S
ta

n
d

ar
d

N
N

None 0.86 0.9509 0.6548 0.6858 0.2487 0.4789 0.5878 0.7052

EWC 0.8656 0.9894 0.6549 0.7856 0.2187 0.5971 57.94 0.7907

SI 0.8592 0.9373 0.655 0.6836 0.2532 0.4693 58.91 0.68

GEM 0.9421 1 (+0.0894) 0.8127 0.8817 0.3211 0.6629 0.6919 0.8511

ER 0.9128 0.9908 0.8428 0.8905 0.3813 0.6643 71.23 0.8485

K
af

n
et

None 0.8526 0.6489 0.6620 0.6197 0.2304 0.4441 0.5948 0.5709

EWC 0.8816 0.9939 0.7107 0.8902 0.2030 0.6030 59.84 0.8290

GEM 0.912 1 (+0.0157) 0.7320 0.8233 0.2903 0.638 64.47 0.8250

ER 0.8973 0.9937 0.7856 0.8181 0.3205 0.5975 66.78 0.8030

Table 1: Overall results on the three datasets, two architectures, and different strategies

for CL. The plus symbol means that the approach is capable not only of remembering

completely the past information about the past tasks, but also to improve the classification

of it during the training on new tasks. The average column contains the averaged Accuracy

and Remembering obtained on all the benchmarks.

5. Experimental evaluation

5.1. Overall comparison of the algorithms

Table 1 summarizes all the scores obtained on all datasets, methods and

architectures. We decided to use the training without any approach to alle-

viate catastrophic forgetting as baseline. Overall, the ER method performs

similarly or better than GEM, for both accuracy and remembering; with the

exception of the MNIST dataset, in which GEM performs better. In general,

including more flexible activation functions does not seem to bring benefit

to the CL task, worsening the results in most scenarios, possibly because of

catastrophic forgetting occuring on the activation functions themselves.

Figs. 2 and 3 show how the score on the first task evolves during the

training, respectively on CIFAR10 and CIFAR100. These images show how

the proposed ER method is the best one on remembering the first task, with
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Figure 2: Evolution of accuracy on task 1 when training on CIFAR10.

the exception of the Kafnet on CIFAR10, in which our method achieves better

accuracy than GEM but lower remembering. The ER approach achieves

better remembering on standard ANN trained on CIFAR10 given the less

binding constraints imposed to the networks by the ER, w.r.t. GEM or

EWC, because we regularize only the last layer of the network letting the

network to adjust the internal weights as it sees fit, giving it more operating

space while learning new tasks. This is the most important advantage over

the other compared methods.

We complete the analysis in this section with a statistical analysis of the

algorithms according to the procedure in Demšar [7]. A Friedman rank test

confirms that there are statistical significant differences with respect to the

accuracy in Tab. 1 (p-value of 0.01). A successive set of Nemenyi post-hoc

tests further confirms statistical significant differences between the proposed

method, the baseline network, SI, and EWC.
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Figure 3: Evolution of accuracy on task 1 when training on CIFAR100.

5.2. Impact of the memory size and computational time

The previous section showed that the proposed ER method is able to

achieve competiting results in terms of accuracy and remembering with a

smaller external memory. In this section, we investigate how the performance

of the methods varies when we increase or decrease the size of the memory.

To this end, Fig. 4 shows the accuracy and the remembering for both

ER and GEM as a function of the memory associated to each task. GEM

benefits from a bigger memory while ER achieves the best score around 100.

Training time required by the approaches is shown in Fig. 6. The im-

age shows that, on CIFAR10, ER requires half of the time if compared to

GEM, and also ER scales much better when the number of tasks increases

(CIFAR100), making GEM not suitable. We can conclude that ER achieves

better scores using less memory and the training requires less time, not need-

ing a QP optimization at every optimization step; in fact the QP optimization
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problem has a number of parameters equals to the number of tasks, making

it slower when the number of tasks in the training grows.

In the experiments about the time we considered also the memory size,

but this value is not much impactful if compared to the QP optimization

problem; in fact when the memory grows the required training time increases

from 10 to 20 seconds, for both GEM and ER.

5.3. Impact of the sampling strategy

Next, we investigate how the different sampling strategies described in

Section 3.2 impact the accuracy of the method. Fig. 5 shows the scores ob-

tained when using the different techniques. In general, the distance between

the images used as weight performed well, but the real embedding distance

achieves better scores.

The image shows also that a sampling approach based on the usage of

the images leads to the worst results, since it doesn’t provide us any informa-

tion about the real importance of the images. The distance based sampling

method is the best one because it provide useful information about the real

distance from the past tasks and the current one, and these distances are

adapted during the training, and does not requires any further computation

(as opposed to image similarity).
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Figure 4: A comparison between GEM and ER when varying the memory size.
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Figure 6: Training time required by the approaches (in seconds). The times are averaged

over the ANN experiments.

5.4. Visualization of the embeddings

Finally, it could be interesting to see how the features space changes

during the training, to see if the intuitions behind the ER method are em-

pirically confirmed. Figure 7 shows that GEM is capable of keeping the

embedding shape unchanged during the training, however the division be-

tween the classes become less clear in the end of the training. ER method

rotates the points, since the distance used are the cosine dissimilarity and

it constrains only the direction of the embeddings, but the division remains

neat during all the training.

We can now confirm that regularizing the embeddings is a promising

approach to alleviate catastrophic forgetting in a CL multi-task scenario.
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Figure 7: How the feature space of the first CIFAR10 task changes from one task to

another. Each column contains the feature space at the end of the training of a task from

CIFAR10, from 1 to 5. Visualized using PCA algorithm.
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6. Conclusions

In this paper, we proposed a new method for continual learning of neural

networks called embedding regularization, which uses the features vectors

extracted from the past tasks to regularize the training on the current task.

Embedding has several advantageous characteristics, if compared to other

state-of-the-art techniques such as EWC and GEM. First, the method is

easier to implement, since it does not work directly with the parameters but

let the network adapts itself based on the embeddings; the only constraint is

that the network must be able to extract the information from the past tasks.

Second, as shown by our experimental evaluation, the method requires very

small memory footprint to works properly. The combination of the previous

points leads also to a faster training and a better averaged accuracy.

Our method suggests several interesting lines of further research, in which

it is not necessary to operate directly on the network to alleviate catastrophic

forgetting, but one can design intermediate auxiliary objectives describing the

right constraints, such that the network can adapt itself during the training.

An interesting line of research is trying to combine the strengths of the pro-

posed ER method with the other state-of-the-art techniques known for CL,

also beyond regularization approaches.
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