
Elsevier required licence: © <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/
The definitive publisher version is available online at https://doi.org/10.1016/j.neucom.2020.01.111

DeepPIPE: A Distribution-free Uncertainty Quantification Approach for Time Series
Forecasting

Bin Wanga,c, Tianrui Lia,b,∗, Zheng Yanc, Guangquan Zhangc, Jie Luc

a Institute of Artificial Intelligence, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
bNational Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China

cCentre for Artificial Intelligence, University of Technology Sydney

Abstract

Time series forecasting is a challenging task as the underlying data generating process is dynamic, nonlinear, and uncertain. Deep
learning such as LSTM and auto-encoder can learn representations automatically and has attracted considerable attention in time
series forecasting. However, current approaches mainly focus on point estimation, which leads to the inability to quantify uncer-
tainty. Meantime, existing deep uncertainty quantification methods suffer from various limitations in practice. To this end, this
paper presents a novel end-to-end framework called deep prediction interval and point estimation (DeepPIPE) that simultaneously
performs multi-step point estimation and uncertainty quantification for time series forecasting. The merits of this approach are
threefold: first, it requires no prior assumption on the distribution of data noise; second, it utilizes a novel hybrid loss function that
improves the accuracy and stability of forecasting; third, it is only optimized by back-propagation algorithm, which is time friendly
and easy to be implemented. Experimental results demonstrate that the proposed approach achieves state-of-the-art performance
on three real-world datasets.

Keywords: Deep Learning, Uncertainty Quantification, Time Series, Forecasting

1. Introduction

Time series are observations of a dynamic system collected
sequentially over time [1]. To forecast the future values, histori-
cal t-step observations X1:t = [x1, x2, ..., xt] ∈ Rt×d with each
xi ∈ Rd and d being the feature dimensions, are analyzed to
build a model that depicts the underlying dynamic of the non-
linear system. The model is then utilized to predict the most
possible series ŷt+1:t+S = [ŷt+1, ŷt+2, ..., ŷt+S] ∈ RS to ap-
proximate the ground truth series yt+1:t+S in the future S steps,
which can be formally described as below:

ŷt+1:t+S = argmax
yt+1:t+S

Pr(yt+1:t+S |X1:t) (1)

or denoted by the machine learning model f(·):

ŷt+1:t+S = f(X1:t) (2)

The forecasted ŷt+1:t+S is termed as point estimation, a.k.a,
single-value forecasting. Previous studies of deep learning for
time series forecasting have achieved great success, especially
on point estimation problems [2, 3, 4, 5, 6, 7]. Nonetheless,
point estimation omits uncertainty, which cannot provide suf-
ficient information for safe and optimal decision-making [8].
For example, crowd prediction and management without un-
certainty quantification will lack warning information for man-

∗Corresponding author
Email address: trli@swjtu.edu.cn (Tianrui Li)

agers to take early deployment measures [9]. In financial trad-
ing, if a prediction algorithm only forecasts a single value, it
will not be sufficient to derive a safe trading policy in that the
market can be high-risk and volatile [6]. Concerning many au-
tomated systems, various safety issues may arise beyond ex-
pectation [10], hence letting the automated systems sense high
uncertain scenarios to stop operations and seek experts for inter-
vention will be the safe strategy. Uncertainty quantification has
therefore received increased attention in the research commu-
nity [11, 12]. Through the uncertainty quantification method,
researchers proposed LSTM-based auto-encoder scheme for anomaly
detection [13]. In order to formalize uncertainty quantification
in the scenarios of time series forecasting, let us first consider
the equation of one-step point estimation by setting n = 1 in
formula (2) and it achieves:

ŷt+1 = f(X1:t) (3)

Although ŷt+1 is regarded as the prediction for the ground truth
yt+1, a basic view of statistical machine learning is that yt+1

is difficult to be forecasted perfectly and there often exists irre-
ducible noise εt+1 in yt+1, which is expressed as:

yt+1 = f(X1:t) + εt+1 (4)

The philosophy of uncertainty quantification is to predict a
prediction interval (PI) [ŷLt+1, ŷUt+1] to bound yt+1 to satisfy

Prt+1 = Pr[ŷLt+1 ≤ yt+1 ≤ ŷUt+1] ≥ Pc, (5)

Preprint submitted to Elsevier December 16, 2019

where Pc is the predefined confidence level and Prt+1 is called
prediction interval coverage probability (PICP). It can be in-
ferred that if ŷUt+1 is extremely large and in the meantime ŷLt+1 is
excessively small, Prt+1 can be always equal to 100%, which
is nonsensical for users. An admirable uncertainty quantifi-
cation is when formula (5) holds, smaller interval width, i.e.,
ŷUt+1 − ŷLt+1, is better. The equations (3), (4) and (5) can be
extended for the other time step t+ S.

This study aims to utilize one deep learning model to fore-
cast multi-step point estimation and prediction interval simulta-
neously in time series scenarios. The contributions of this paper
are summarized as below:

1. It proposes an end-to-end deep learning method to solve
sequential point estimation and uncertainty quantification
simultaneously for time series forecasting. More formally,
it is an integrated model g(·) with the specified Pc to pre-
dict ŷ, ŷL and ŷU ∈ RS , i.e., ŷt+1:t+S , ŷ

L
t+1:t+S , ŷ

U
t+1:t+S =

g(X1:t|Pc).
2. It is distribution-free for modeling εt+1, which means it

implicitly learns the distribution of the irreducible noise
εt+1 instead of imposing an explicit distribution assump-
tion. This property makes it very consistent with the
real-world environment where εt+1 usually does not obey
mathematically analytic distribution like Gaussian distri-
bution, which has been validated in our experiments.

3. It is trained by a designed hybrid loss function. We ex-
perimentally display that it can achieve better general-
ization accuracy and variance by training with that loss
function. Moreover, it only utilizes back-propagation for
training, which makes it friendly implemented by popular
deep learning libraries, such as TensorFlow and PyTorch.

The proposed model is also flexible and can be enhanced by
being combined with popular modules such as attention mech-
anisms and residual connections.

The rest of the paper is organized as follows. In Section II,
we discuss the related works; in Section III, we introduce the
proposed methodology DeepPIPE; in Section IV, we show the
experimental results on three real-world datasets; and finally,
some conclusions and future works are given in Section V.

2. Related works

Time series forecasting in nature is a problem of dynamic
modeling, which usually takes on nonlinear or chaotic proper-
ties. Detecting chaotic behavior from a time series has been
proposed [14]. Although it has been found that chaotic sys-
tems are ubiquitous, most of them do not have explicit dy-
namical equations and can be only modeled through the ob-
served time series [15]. In recent years, with deep learning
reaching fever pitch in data science, various types of deep neu-
ral networks were introduced to model time series forecasting
[16, 17, 18, 19, 20]. Most of these studies focused on point es-
timation, and have devised effective network architectures such
as sequence-to-sequence [21], attention mechanism [22], em-
bedding [23], which can shed enlightenment on their combina-
tion with uncertainty quantification.

Uncertainty quantification is constantly a hot research topic.
A pioneering neural-network-based method is MVE, which uti-
lized the neural network to predict mean and variance to param-
eterize Gaussian distribution [24]. This method has been pro-
gressively combined with advanced network architectures such
as echo-state network [25] and deep forward neural networks
[26]. However, MVE relies on a strong assumption that the ir-
reducible noise εt+1 obeys Gaussian distribution and performs
poorly when the assumption is too inconsistent with reality. To
this end, two distribution-free neural-network-based methods
are especially proposed. Method LUBE constructed a non-
convex loss function and hence used simulated annealing for
optimization [27]. Method DeepHQ is optimized based on gra-
dient descent-based algorithms [28]. Nonetheless, both LUBE
and DeepHQ can only implement prediction interval without
point estimation and conduct regression for cross-sectional data
rather than time-series data, which cannot be directly applied to
time series scenarios [29]. A Bayesian method was proposed
for modeling time series [30]. However, Bayesian methodol-
ogy required Markov chain Monte Carlo (MCMC) or varia-
tional inference (VI) as the optimization algorithm, and when
combined with deep learning as Bayesian deep learning (BDL)
[31], it causes an efficient bottleneck of implementation. Non-
Bayesian deep learning methods hence have been proposed to
address the issue of BDL. A non-Bayesian study mathemati-
cally proved that Monte Carlo Dropout (MC-Dropout) could be
operated as Bayesian approximation [32] hence can be taken as
a solution based on the back-propagation algorithm. The fol-
lowing research extended MC-Dropout for modeling time se-
ries based on recurrent neural networks [33]. Another branch,
i.e., non-Bayesian approach, is to design novel loss function
to depicts uncertainty quantification when modeling time se-
ries. Method DeepMVE, inspired by MVE and sequence-to-
sequence architecture, was proposed based on the assumption
that the irreducible noise εt+s obeyed Gaussian distribution [34].
However, this method may overestimate the lower and upper
bounds when the actual noise is non-Gaussian. DE-RNN [12]
was proposed which did not require the distribution assumption
of εt+s, but DE-RNN are limited in that: 1) It needs discretiza-
tion to transform regression as a classification problem, which
asks users to denote the interval width at the expense of infor-
mation loss; 2) It adopts the Monte Carlo procedure for multi-
step forecasting, which is time-consuming; 3) It evaluates the
aspect of PICP alone but ignores the quality of interval width.

The DeepPIPE thus is proposed to bridge the current re-
search gap for time series forecasting. To the best of our knowl-
edge, it is the first methodology that can overcome all the lim-
itations existing in previous studies, including DeepHQ, Deep-
MVE, LUBE, Bayesian deep learning, MC-Dropout, and DE-
RNN. Its key characteristics are summarized in Table 1.

3. Proposed methodology

DeepPIPE is based on Encoder-Decoder (a.k.a sequence-
to-sequence) [21]. Both encoder and decoder consist of LSTM
which can address gradient vanishing problem compared with

2

Table 1: Summarized key differences between DeepPIPE and previ-
ous methods. PE and PI represents point estimation and prediction
interval, respectively.

V.S. DeepPIPE

DeepHQ PI PI & PE
DeepMVE distribution assumption distribution free

LUBE simulated annealing back propagation
BDL Bayesian inference non-Bayesian method

MC-Dropout Monte Carlo non-Monte Carlo
DE-RNN need discretization non-discretization

vanilla RNN [35]. The formula of the LSTM cell is:

it = σ
(
xtU i + ht−1W

i
)

ft = σ
(
xtUf + ht−1W

f
)

ot = σ
(
xtUo + ht−1W

o
)

C̃t = tanh
(
xtUz + ht−1W

z
)

Ct = σ
(
ft � Ct−1 + it � C̃t

)
ht = tanh(Ct)� ot

(6)

where

• xt defines the input vectors at the timestep t,

• it defines the input gates, ft defines the forget gates and
ot defines the output gates,

• C̃t defines the temporary hidden state which is computed
based on the current input and the previous hidden state.
Ct defines the internal memory.

• ht defines the output hidden states, computed by multi-
plying the memory with the output gate. ht−1 defines the
hidden states at the previous time step,

• W and U define the learnable weights,

• σ and tanh define sigmoid and tanh activation function
respectively,

• � defines the element-wise product.

The encoder E(·) first encodes input series X1:t to context vec-
tors c:

c = E(X1:t; θ1) (7)

c is then transferred to form the initial state of decoder D(·)
which decodes c and consequently generates the sequential pre-
diction interval and point estimation simultaneously:

ŷt+1:t+S , ŷ
L
t+1:t+S , ŷ

U
t+1:t+S = D(c; θ2) (8)

where θ1 and θ2 are learnable parameters. For each time step
t + s, ŷt+s, ŷ

L
t+s yt+sand ŷUt+s are calculated through below

transformation:

ŷt+s = ht+sU
p +Bp

ŷLt+s = ht+sU
l +Bl

ŷUt+s = ht+sU
u +Bu

(9)

where U and B are learnable parameters shared among total
time steps. The architecture of DeepPIPE is illustrated in Fig. 1,
where the Assumptions and Hybrid loss function are explained
in the next section.

3.1. Hybrid loss function
In order to equip DeepPIPE with the capability of point es-

timation and prediction interval, the training loss function L
consists of two parts, where LPE is to penalize the loss of point
estimation and LPI is to penalize the loss of prediction interval.
The hyper-parameter β balances the influence between point
estimation and prediction interval. Formally, it is defined as
below:

L = βLPE + LPI (10)

Particularly, LPE is denoted as below:

LPE =
1

NS

N∑
n=1

S∑
s=1

vs · |y(n)t+s − ŷ
(n)
t+s| (11)

whereN is the training batch size, S is the number of forecasted
time steps, vs is a weight factor for the time step s, y(n)t+s and
ŷ
(n)
t+s are the ground truth and our prediction at the timestep t+s,

respectively.
To learn prediction interval, LPI is inspired from the study

[28] and constructed as below:

LPI = λ
N

(1− Pc)Pc
max(0, (Pc−PICP))2+MPIW (12)

The advanced intuitions of the formula (12) is, during train-
ing process, if PICP is lower than the expected confidence level
Pc, a penalty loss will be imposed through the operationmax(0,
(Pc − PICP))2. The width of the prediction interval is mean-
while accomplished as small as possible by plus MPIW. N cor-
responds to the training batch size. The expression λ N

(1−Pc)Pc

is the derivative which can be referred to the original paper [28]
for the details. In particular, λ is a weighting hyper-parameter
that controls the loss balance between PICP and MPIW. To ad-
dress multi-step forecasting in time series scenarios, PICP is
denoted as:

PICP =
c

N · S
(13)

where c =
∑N

n=1

∑S
s=1 b

(n)
t+s is the total number of captured

data points. Specially, we say a forecasting value y(n)t+s (value
of the nth training sample at the time step t+ s) captured, shall
satisfy:

b
(n)
t+s =

{
1, if ŷ

(n),L
t+s ≤ y(n)t+s ≤ ŷ

(n),U
t+s

0, else.

3

LSTM

LSTM
LSTM

LSTM

LSTM
LSTM

LSTM

Transfer
Hidden States

LSTM

Hybrid
Loss FunctionLSTM

LSTM

LSTM

LSTM

E
ncoder

D
ecoder

…
…

G
round truth

A
ssum

ptions

…
…

Figure 1: Framework of DeepPIPE. The encoder E(·) first encodes input series X1:t to hidden states c which is transferred to form the initial state
of decoder D(·). D(·) then decodes c and consequently generates the sequential prediction interval and point estimation simultaneously. The
proposed hybrid loss function based on related assumptions is adopted to train the whole network.

where ŷ(n),Lt+s and ŷ
(n),U
t+s are the forecasted lower and upper

bound for the the nth training sample at the time step t + s.
MPIW is defined as:

MPIW =
1

c

N∑
n=1

S∑
s=1

ws · (ŷ(n),Ut+s − ŷ(n),Lt+s) · b(n)t+s (14)

where ws is a weight factor for the time step s. Note that 1
c in-

dicates that only the captured forecasting values are considered
for the calculation of MPIW. Due to the existence of operation
max(·) in (12), applying the Boolean b

(n)
t+s in formulas (13)

and (14) can cause the LPI not to be differentiable for back-
propagation algorithm. To this end, b(n)t+s is substituted with a
softened version as below:

b
(n)
t+s = σ(s · (ŷ(n),Ut+s − y(n)t+s)) · σ(s · (y

(n)
t+s − ŷ

(n),L
t+s)) (15)

where σ is the sigmoid activation function and s is a hyper-
parameter factor for softing. Accordingly, the softened b(n)t+s is
adopted in formulas (13) and (14).

3.1.1. Explanation of assumptions
The formula (12) in the original study [28] does not con-

sider the time dimension; hence, it can not be applied directly
for modeling time series. To address this problem, we expand
it to be compatible with the sequence-to-sequence model based
on assumptions as follows.

• Different time steps t + s have an equal weight factor
as one. That is to say, in formula (11) and (14), in this
research, vs and ws are set to 1.

• Although this research only considers the single variable
forecasting, when DeepPIPE is adopted for multiple vari-
ables forecasting, the weight factors of different variables
can be set according to users’ experience.

3.2. Algorithm

Algorithm 1 outlines the DeepPIPE training procedure. We
first construct the data pairs from historical time-series data.
A sliding window with sliding step one is applied to the raw
time series. For the timestep i, we pair X1:t and yt+1:t+S as
a training sample, which is shown by lines 1-6. The model
is then trained through batch gradient descending and back-
propagation algorithm to minimize the loss function L, which
is illustrated by lines 7-11.

Algorithm 1: DeepPIPE Training Algorithm
Input : Historical input time series: x1, x2, ..., xI ;

Historical target time series: y1, y2, ..., yI ;
Input window size t;
Output window size S;
Confidence level Pc (0.9 in our experiments).

Output: Learned DeepPIPE model
// Format the training dataset by sliding window

1 D ← ∅
2 while all available timestamp i (0 ≤ i ≤ I − t− S) do
3 X1:t = [x1+i, x2+i, ..., xt+i]
4 yt+1:t+S = [yt+1+i, yt+2+i, ..., yt+S+i]
5 put a data sample (X1:t, yt+1:t+S) into D
6 end

// Split dataset D into training set D1, validation set D2,
and test set D3.

// Train
7 Initialize all trainable parameters θ1, θ2 in DeepPIPE.
8 repeat
9 randomly select a batch of samples B from D1

10 update parameters θ1, θ2 by minimizing the loss
function with B

11 until stopping criteria are met;

4

4. Experiments

In this section, we first introduce the datasets, experimental
settings, evaluation metrics, evaluation metrics, and baselines.
Afterward, we conduct a performance analysis for the experi-
mental results.

4.1. Datasets

Three open real-world datasets appliances energy and air
quality are used in our experiments. Fig. 2 displays examples
of three time-series datasets. The detail of each dataset is intro-
duced as follows.

4.1.1. Multivariate datasets
Appliances energy UCI dataset was collected for 4.5 months

with 10-min frequency, having a total 19737 records [36]1. One-
hot encoding is utilized to transform the category variables (e.g.,
DayOfWeek and TimeOfDay), and the final feature dimensions
are 36 for each time step, and the dimension appliances energy
consumption is the target variable.

Air quality dataset was collected for the air quality fore-
casting research [37]2. This dataset is collected from 00:00
01/May/2014 to 22:00 30/Apr/2015 at 1-hour frequency, a to-
tally of 8759 records. Unfortunately, there are serious missing
value problems in the majority of air monitoring stations. We
finally select the station Yangjiang as our data source, which
has the least missing values. We have six pollutants including
PM2.5, PM10, NO2, CO, O3, and SO2 to build previous feature
series and take the future PM2.5 as the target variable.

4.1.2. Univariate dataset
Brent oil price dataset contains daily Brent oil prices from

17th of May 1987 until the 30th of September 2019 at 1-day
frequency 3, totally 8216 records.

4.2. Experimental settings

4.2.1. Preprocessing
We use min-max normalization to normalize the continu-

ous features into [0, 1] and utilize linear interpolation for miss-
ing data imputation. In the evaluation, we rescale the predicted
values back to the normal scale.

1Data link: https://archive.ics.uci.edu/ml/datasets/Appliances+energy
+prediction. We investigated that there was a technical misuse in the original
research paper [36]. In the source codes, the authors shuffled training/testing
data partitioning, which was a misuse of time-series data. We split the data in
chronological order without shuffle operation. Hence the MAE in our experi-
mental results and in the original paper are not comparable because of forecast-
ing implemented on the different test datasets.

2Data link: http://urban-computing.com/data/Data-1.zip
3Data link: https://www.kaggle.com/mabusalah/brent-oil-prices

4.2.2. Hyper-parameter settings
For a fair comparison, all deep learning methods are config-

ured with the same hyper-parameter as follows. In particular,
we set λ = 2, β = 1.5, s = 160 and Pc = 0.9 in formula
(12) and (15). We set the hidden nodes of each layer as 64.
We set the batch size as 256. We set the time window size of
input feature series as t = 12, 6, 7 for datasets appliances en-
ergy, air quality, and Brent oil price respectively. For the single
forecasting, we set S = 1, which indicates to predict the next
value once time. For the multi-step forecasting, we set S = 3,
which means to forecast the following three values once time.
Financial time-series prediction is a challenging task, and long-
term forecasting is often unhelpful, hence 1-step-ahead setting
has become the first consideration [38]. Our experiments fol-
low the 1-step-ahead setting for the oil price prediction. All
datasets are formatted according to the Algorithm 1. The re-
sultant dataset for training, validation, and test are outlined in
Table 2.

4.2.3. Optimization method
Adam [39] is adopted as the optimization method to learn

the parameters with learning rate 0.001, and early-stopping is
implemented on the validation set to avoid overfitting.

4.2.4. Experimental environment
All models are trained on a server with Quadro P4000 GPU.

The programming environment is Python 3.6 and Tensorflow.

Table 2: Information of three real-world datasets. 1/3-step prediction
indicate that datasets are formatted for n-step-ahead prediction.

Dataset Feature Size
dimensions training validation test

1-step prediction

Brent Oil Price 1 5743 1228 1229
Appliances Energy 36 13312 1480 4931

Air Quality 6 7089 788 876

3-step prediction

Appliances Energy 36 13311 1479 4931
Air Quality 6 7087 788 876

4.3. Evaluation metrics

4.3.1. Point estimation measurement
During test, MAE is calculated to evaluate the predictive

error of point estimation as below:

MAE =
1

NS

N∑
n=1

S∑
s=1

|y(n)t+s − ŷ
(n)
t+s| (16)

where y(n)t+s and ŷ(n)t+s are the ground truth and the prediction for
the test sample n at the timestep t+ s, respectively.

5

0 100 200 300 400 500 600 700 800
Time step

0

100

200

300

400

500

600

En
er

gy

(a) Clear cycle in appliances energy dataset

0 100 200 300 400 500 600 700 800
Time step

0

50

100

150

200

250

PM
2.

5

(b) Numerous abrupt points in air quality dataset

0 100 200 300 400 500 600 700
Time step

12

14

16

18

20

22

Pr
ice

(c) Complicated dynamics in oil price dataset

Figure 2: Examples of three time-series datasets. Each dataset illustrates the first 800-step time series.

4.3.2. Uncertainty quantification measurement
PICP in formula (13) and MPIW in formula (14) are taken

as the measurements of uncertainty quantification.

4.4. Baselines

As mentioned that LUBE [11] requires heuristic algorithms
and BDL [31] requires variational inference for optimization.
Both two methods not only cannot be seamlessly integrated
with popular gradient-based frameworks, such as Tensorflow.
Although MC-Dropout [33] only needs back-propagation dur-
ing training, it requires Monte Carlo by repeating forward cal-
culation for thousands of times to inference prediction interval
and point estimation. Moreover, the above methods are time-
consuming and do not show significant improvement compared
to the MVE method according to previous researches [11, 26].
In this respect of pragmatism, their shortcomings have already
made them lose their advantage compared with DeepPIPE, and
thus, we compare DeepPIPE with below baselines.

• DeepMVE adopts the Encoder-Decoder architecture ex-
tended from MVE model [34]. Although MVE loss can
be easily integrated into deep learning for uncertainty
quantification, a strong assumption is that the ground truth
yt+s ∼ N(ŷt+s, σt+s), and the interval width can be cal-
culated by looking up the z-score table of Gaussian dis-
tribution according to the pre-defined Pc. In our exper-
iments, IWt+s is calculated by 2 ∗ 1.64 ∗ σt+s because
of Pc set to 0.9. The learning process is essentially by
maximum likelihood estimation. It has the same hyper-
parameter settings with DeepPIPE.

• DeepHQ has the same hyper-parameter settings with Deep-
PIPE except that its loss function only includes prediction
interval part LPI . It can also be regarded as a sequence-
to-sequence extension from the previous study [28]. This
baseline aims to illustrate the effectiveness of the designed
hybrid loss function, which optimizes LPE and LPI si-
multaneously.

• ShallowPIPE has the same hyper-parameter settings with
DeepPIPE except only having one hidden layer. This
baseline aims to show the influence of the layer number
when compared with DeepPIPE.

Since weights initialization can influence the performance
of deep models. In our experiments, each deep model was
trained up to five times with different random seeds. The test
results are reported with the expression as mean ± standard
deviation. In addition, non-deep learning baselines include:

• ARIMA (Autoregressive Integrated Moving Average) is
a popular method for univariate time series forecasting. It
was implemented by statsmodels.tsa.arima model.ARIMA.

• VAR (Vector Auto Regression) is one of the most com-
monly used parametric methods for time series forecast-
ing. It was implemented by statsmodels.tsa.api.VAR.

• SVR (Support Vector Regression) is a category of SVM
for regression tasks. It was implemented by the Python
package sklearn.svm.SVR.

• GBDT (Gradient Boosting Decision Tree) is a popular
boosting method that ensembles a set of weak decision
trees in order. It was implemented by the Python package
sklearn.ensemble.GradientBoostingRegressor.

4.5. Performance analysis

Table. 4 and 5 report the experimental results. Fig.3 and
Fig.4 exhibit the visualization of forecasting examples. We con-
duct analysis from aspects as follows.

4.5.1. Performance of point estimation
Our top-line conclusions are that DeepPIPE almost achieved

the best MAE measurement on three datasets for both 1-step
and 3-step forecasting. We can see that on appliances energy
dataset, it achieved 34.99±0.61 for 1-step prediction and 41.77±1.03
for 3-step prediction. For the air quality dataset, it achieved
5.25±0.09 for 1-step prediction and 7.69±0.03 for a 3-step pre-
diction. DeepHQ has no ability for point estimation, so the rel-
evant results were left out. For the 1-step forecasting of Brent
oil price, ARIMA achieved the best 1.14±0.00, whereas Deep-
PIPE attained 1.22±0.17. The result is not impossible because
the financial dynamic is highly complicated, and the classic
baseline ARIMA can sometimes be strong and perform better.
It is noticeable that DeepPIPE has obvious advantages when
modeling prediction interval, which is analyzed as below.

6

0 5 10 15 20 25
Time step

0

200

400

600

800

1000

E
ne

rg
y

Observation
Point Estimation of DeepPIPE
Point Estimation of DeepMVE
DeepPIPE
DeepHQ
DeepMVE

(a) 25 test examples of 1-step-ahead forecasting.

0 1 2
Time step

100

0

100

200

300

400

500

600

E
ne

rg
y

Observation
Point Estimation of DeepPIPE
Point Estimation of DeepMVE
DeepPIPE
DeepHQ
DeepMVE

(b) One example of end-to-end 3-step-ahead forecasting

Figure 3: Predictive examples of DeepPIPE on appliances energy dataset. DeepPIPE achieved better MPIW significantly than DeepMVE.

0 5 10 15 20 25
Time step

0

50

100

150

200

250

300

350

400

A
Q

I

Observation
Point Estimation of DeepPIPE
Point Estimation of DeepMVE
DeepPIPE
DeepHQ
DeepMVE

(a) 25 test examples of 1-step-ahead forecasting.

0 1 2
Time step

100

150

200

250

300

350

400

450

P
M

2.
5

Observation
Point Estimation of DeepPIPE
Point Estimation of DeepMVE
DeepPIPE
DeepHQ
DeepMVE

(b) One example of end-to-end 3-step-ahead forecasting

Figure 4: Forecasting examples of DeepPIPE on air quality dataset. DeepPIPE achieved better MPIW significantly than DeepMVE.

4.5.2. Performance of prediction interval
All methods have achieved the predefined confidence level

of Pc, which indicated that all PICPs were greater than 0.9.
However, under this premise, the performance of MPIW had
obvious distinctions. Methods like ARIMA, VAR, GBDT, Deep-
MVE significantly overestimated MPIW. Our explanation for
this was that these models assumed that the ground truth obeyed
Gaussian distribution, which might be far different from the
realistic data distribution. The observations that are consis-
tent with our explanation are that DeepHQ, ShallowPIPE, and
DeepPIPE, which all are distribution-free, accomplished smaller
MPIW. Notably, DeepPIPE accomplished the best MPIW per-
formance 106.96±2.39 (1-step) and 116.52±1.69 (3-step) on
appliances energy dataset, 22.79±0.47 (1-step) and 29.95±0.12
(3-step) on air quality dataset and 3.26±0.28 on Brent oil price
dataset. The results of SVR were omitted, since sklearn.svm.SVR
has not provided the function for the prediction interval.

4.5.3. Performance of stability
Deep models trained with various initialized parameters can

lead to different forecasting results. To address the randomness
problem, we implemented each deep model with different ran-
dom seeds up to five times and calculated the standard devia-
tion expressed via ±X to reflect the forecasting stability. In
our experiments, DeepPIPE achieved the least standard devia-
tion, and it illustrated that DeepPIPE had a stable generaliza-

tion. Although methods including ARIMA, VAR, SVR, and
GBDT, were configured by certain hyper-parameters leading to
deterministic solutions, thus the resultant standard deviations
equal to zeros, they usually have poor performances on MAE
and MPIW.

4.5.4. Effect of hybrid loss function
On appliances energy dataset for 1-step forecasting, DeepHQ

achieved MPIW as 115.75±5.71 while DeepPIPE achieved smaller
MPIW as 106.96±2.39. For 3-step forecasting, DeepHQ achieved
MPIW as 119.20±3.82 while DeepPIPE achieved smaller MPIW
as 116.52±1.69. For the air quality dataset for 1-step forecast-
ing, DeepHQ achieved MPIW as 23.71±0.61 while DeepPIPE
achieved smaller MPIW as 22.79±0.47. For 3-step forecast-
ing, DeepHQ achieved MPIW as 31.02±0.57 while DeepPIPE
achieved smaller MPIW as 29.95±0.12. On the Brent oil price
dataset, DeepHQ achieved MPIW as 3.72±0.12 while Deep-
PIPE achieved smaller MPIW as 3.26±0.28. These observa-
tions indicated that combining LPI and LPE rather only LPE

as loss function indeed improved the performance of prediction
interval. Our explanation for this was that it benefited from the
multi-task learning, which can promote consistency and coher-
ence for point estimation and prediction interval.

7

4.5.5. Effect of deep learning
By comparing DeepPIPE with ShallowPIPE, we can see

that stacked two layers helped DeepPIPE improve its perfor-
mance for both point estimation and prediction interval on three
datasets. For example, on appliances energy dataset, Shallow-
PIPE achieved MAE as 36.31±0.85, MPIW as 113.54±6.70,
while DeepPIPE achieved smaller MAE as 34.99±0.61, MPIW
as 106.96±2.39. The experimental results indicated the pro-
posed DeepPIPE was compatible with the philosophy of deep
learning. We believe its performance can be improved further
when combined with other advanced deep learning techniques,
such as attention mechanism and memory network.

4.5.6. The advantage of distribution-free assumption
As shown in Fig. 3 and Fig. 4, a noteworthy observation

was that DeepMVE forecasted the point estimation located at
the central location of the prediction interval, which was the
consistent result of the Gaussian assumption. However, the
point estimation of DeepPIPE does not necessarily locate at
the central location between the prediction interval. This ob-
servation proves the superiority of DeepPIPE to model sensible
distribution from the observed data.

5. Conclusions and future works

In this paper, we proposed a deep learning approach called
DeepPIPE for time series forecasting. A novel loss function has
been designed to cast the problems as multi-task learning, thus
makes DeepPIPE be capable of implementing prediction inter-
val and point estimation simultaneously. We have qualitatively
analyzed its superiority over previous models, that is, Deep-
PIPE can be trained by back-propagation algorithm, which can
be seamlessly deployed in popular deep learning libraries and is
an admirable hallmark compared with LUBE, BDL, and MC-
Dropout, of which they require heuristic algorithms, variational
inference, and Monte Carlo, respectively. Furthermore, differ-
ent from DeepMVE, it can automatically learn the distribution
of εt+s without prior distribution assumptions. It also over-
comes the mentioned drawbacks of DE-RNN. To the best of our
knowledge, this is the first methodology that can overcome all
the limitations existing in previous studies, including DeepHQ,
DeepMVE, LUBE, Bayesian deep learning, MC-Dropout, and
DE-RNN. We also quantitatively show its considerable perfor-
mance and forecasting stability on three real-world datasets.
For the future works, we will explore DeepPIPE in real-world
applications, such as energy forecasting [40] and electrocardio-
gram analysis [41]. We also aim to incorporate advanced tech-
niques, including attention mechanisms and memory networks,
to further improve its performance.

6. Acknowledgments

This work was supported by the Natural Science Founda-
tion of China (Nos. 61773324, 61573292, 61976247) and the
Australian Research Council (No. DP190101645).

References

[1] S. Choudhary, G. Hiranandani, S. K. Saini, Sparse decomposition for time
series forecasting and anomaly detection, in: SIAM International Confer-
ence on Data Mining, 2018, pp. 522–530.

[2] J. Wang, Q. Gu, J. Wu, G. Liu, Z. Xiong, Traffic speed prediction and
congestion source exploration: A deep learning method, in: International
Conference on Data Mining, 2016, pp. 499–508.

[3] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, Y. Liu, Deep learning: A generic
approach for extreme condition traffic forecasting, in: SIAM International
Conference on Data Mining, 2017, pp. 777–785.

[4] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, T. Li, Predicting citywide
crowd flows using deep spatio-temporal residual networks, Artificial In-
telligence 259 (2018) 147–166.

[5] T. Guo, A. Bifet, N. Antulov-Fantulin, Bitcoin volatility forecasting with
a glimpse into buy and sell orders, in: International Conference on Data
Mining, 2018, pp. 989–994.

[6] L. Zhang, C. Aggarwal, G.-J. Qi, Stock price prediction via discovering
multi-frequency trading patterns, in: International Conference on Knowl-
edge Discovery and Data Mining, 2017, pp. 2141–2149.

[7] H. Li, Y. Shen, Y. Zhu, Stock price prediction using attention-based multi-
input LSTM, in: Asian Conference on Machine Learning, 2018, pp. 454–
469.

[8] X. Zeng, J. Lu, Decision support systems with uncertainties in big data
environments, Knowledge-Based Systems 143 (2018) 327.

[9] D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke,
O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte,
et al., Saving human lives: What complexity science and information sys-
tems can contribute, Journal of Statistical Physics 158 (3) (2015) 735–
781.

[10] M. Perc, M. Ozer, J. Hojnik, Social and juristic challenges of artificial
intelligence, Palgrave Communications 5 (1) (2019) 1–7.

[11] A. Khosravi, S. Nahavandi, D. Creighton, A. F. Atiya, Comprehensive
review of neural network-based prediction intervals and new advances,
Transactions on Neural Networks 22 (9) (2011) 1341–1356.

[12] K. Yeo, I. Melnyk, N. Nguyen, E. K. Lee, DE-RNN: Forecasting the prob-
ability density function of nonlinear time series, in: International Confer-
ence on Data Mining, 2018, pp. 697–706.

[13] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff,
Lstm-based encoder-decoder for multi-sensor anomaly detection, arXiv
preprint arXiv:1607.00148.

[14] S. Kodba, M. Perc, M. Marhl, Detecting chaos from a time series, Euro-
pean Journal of Physics 26 (1) (2005) 205–215.

[15] Z. Liu, Chaotic time series analysis, Mathematical Problems in Engineer-
ing 2010 (2010) 1–31.

[16] Y. Zhao, Y. Shen, Y. Zhu, J. Yao, Forecasting wavelet transformed time
series with attentive neural networks, in: International Conference on
Data Mining, 2018, pp. 1452–1457.

[17] C. Chen, K. Li, S. G. Teo, G. Chen, X. Zou, X. Yang, R. C. Vijay, J. Feng,
Z. Zeng, Exploiting spatio-temporal correlations with multiple 3d convo-
lutional neural networks for citywide vehicle flow prediction, in: Interna-
tional Conference on Data Mining, 2018, pp. 893–898.

[18] A. Ziat, E. Delasalles, L. Denoyer, P. Gallinari, Spatio-temporal neural
networks for space-time series forecasting and relations discovery, in: In-
ternational Conference on Data Mining, 2017, pp. 705–714.

[19] M. Qiu, P. Zhao, K. Zhang, J. Huang, X. Shi, X. Wang, W. Chu, A short-
term rainfall prediction model using multi-task convolutional neural net-
works, in: International Conference on Data Mining, 2017, pp. 395–404.

[20] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, Situation aware multi-task
learning for traffic prediction, in: International Conference on Data Min-
ing, 2017, pp. 81–90.

[21] Y. Xiao, J. Cai, Y. Yang, H. Zhao, H. Shen, Prediction of microrna sub-
cellular localization by using a sequence-to-sequence model, in: Interna-
tional Conference on Data Mining, 2018, pp. 1332–1337.

[22] Y. Yuan, G. Xun, F. Ma, Y. Wang, N. Du, K. Jia, L. Su, A. Zhang, Mu-
van: A multi-view attention network for multivariate temporal data, in:
International Conference on Data Mining, 2018, pp. 717–726.

[23] T. Chen, H. Yin, H. Chen, L. Wu, H. Wang, X. Zhou, X. Li, Tada: trend
alignment with dual-attention multi-task recurrent neural networks for
sales prediction, in: International Conference on Data Mining, 2018, pp.
49–58.

8

Table 3: Experimental results on Brent oil price dataset. DeepPIPE achieved best on MAE and MPIW.

Model MAE PICP MPIW

1-step prediction

ARIMA 1.14±0.00 1.00±0.00 3.45±0.00
SVR 1.23±0.00 - -

GBDT 1.38±0.00 0.98±0.00 4.54±0.00
DeepMVE 1.21±0.28 0.96±0.02 4.04±0.40
DeepHQ - 0.99±0.03 3.42±0.12

ShallowPIPE 1.18±0.21 0.99±0.01 3.38±0.33
DeepPIPE 1.02±0.17 1.00±0.00 3.26±0.28

Table 4: Experimental results on appliances energy dataset. DeepPIPE achieved best on MAE and MPIW.

Model MAE PICP MPIW

1-step prediction

ARIMA 36.17±0.00 1.00±0.00 233.05±0.00
VAR 36.91±0.00 1.00±0.00 232.21±0.00
SVR 41.06±0.00 - -

GBDT 36.70±0.00 1.00±0.00 173.84±0.00
DeepMVE 38.52±2.35 0.95±0.02 152.33±5.61
DeepHQ - 0.93±0.00 115.75±5.71

ShallowPIPE 36.31±0.85 0.93±0.01 113.54±6.70
DeepPIPE 34.99±0.61 0.93±0.00 106.96±2.39

3-step prediction

ARIMA 42.68±0.00 1.00±0.00 279.85±0.00
VAR 44.23±0.00 1.00±0.00 275.39±0.00
SVR 44.67±0.00 - -

GBDT 43.51±0.00 1.00±0.00 204.23±0.00
DeepMVE 45.53±3.21 0.95±0.02 141.97±18.06
DeepHQ - 0.93±0.00 119.20±3.82

ShallowPIPE 48.17±1.71 0.93±0.01 123.67±2.52
DeepPIPE 41.77±1.03 0.93±0.01 116.52±1.69

[24] D. A. Nix, A. S. Weigend, Estimating the mean and variance of the tar-
get probability distribution, in: International Conference on Neural Net-
works, 1994, pp. 55–60.

[25] W. Yao, Z. Zeng, C. Lian, Generating probabilistic predictions using
mean-variance estimation and echo state network, Neurocomputing 219
(2017) 536–547.

[26] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable pre-
dictive uncertainty estimation using deep ensembles, in: Neural Informa-
tion Processing Systems, 2017, pp. 6402–6413.

[27] A. Khosravi, S. Nahavandi, D. Creighton, A. F. Atiya, Lower upper bound
estimation method for construction of neural network-based prediction
intervals, Transactions on Neural Networks 22 (3) (2010) 337–346.

[28] T. Pearce, M. Zaki, A. Brintrup, A. Neely, High-quality prediction in-
tervals for deep learning: A distribution-free, ensembled approach, in:
International Conference on Machine Learning, 2018.

[29] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, S. Aigrain,
Gaussian processes for time-series modelling, Philosophical Transactions
of the Royal Society A 371 (1984) (2013) 20110550.

[30] M. Johnson, A. Willsky, Stochastic variational inference for bayesian time
series models, in: International Conference on Machine Learning, 2014,
pp. 1854–1862.

[31] M. Fortunato, C. Blundell, O. Vinyals, Bayesian recurrent neural net-
works, arXiv preprint arXiv:1704.02798.

[32] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Represent-

ing model uncertainty in deep learning, in: International Conference on
Machine Learning, 2016, pp. 1050–1059.

[33] L. Zhu, N. Laptev, Deep and confident prediction for time series at uber,
in: International Conference on Data Mining Workshops, 2017, pp. 103–
110.

[34] B. Wang, J. Lu, Z. Yan, H. Luo, T. Li, Y. Zheng, G. Zhang, Deep un-
certainty quantification: A machine learning approach for weather fore-
casting, in: International Conference on Knowledge Discovery and Data
Mining, 2019, pp. 2087–2095.

[35] J. Wang, V. W. Zheng, Z. Liu, K. C.-C. Chang, Topological recurrent
neural network for diffusion prediction, in: International Conference on
Data Mining, 2017, pp. 475–484.

[36] L. M. Candanedo, V. Feldheim, D. Deramaix, Data driven prediction
models of energy use of appliances in a low-energy house, Energy and
Buildings 140 (2017) 81–97.

[37] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, T. Li, Forecasting
fine-grained air quality based on big data, in: International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 2267–2276.

[38] S. T. A. Niaki, S. Hoseinzade, Forecasting s&p 500 index using artificial
neural networks and design of experiments, Journal of Industrial Engi-
neering International 9 (1) (2013) 1.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

[40] T. Hong, J. Xie, J. Black, Global energy forecasting competition 2017:

9

Table 5: Experimental results on air quality dataset. DeepPIPE achieved best on MAE and MPIW.

Model MAE PICP MPIW

1-step prediction

ARIMA 5.35±0.00 1.00±0.00 26.30±0.00
VAR 5.40±0.00 1.00±0.00 27.10±0.00
SVR 5.50±0.00 - -

GBDT 5.49±0.00 - 25.89±0.00
DeepMVE 5.47±0.29 0.93±0.00 23.69±0.79
DeepHQ - 0.93±0.00 23.71±0.61

ShallowPIPE 5.65±0.34 0.93±0.00 23.62±0.66
DeepPIPE 5.25±0.09 0.93±0.01 22.79±0.47

3-step prediction

ARIMA 7.85±0.00 1.00±0.00 37.46±0.00
VAR 7.94±0.00 1.00±0.00 36.01±0.00
SVR 8.00±0.00 - -

GBDT 8.03±0.00 - 34.52±0.00
DeepMVE 7.80±0.24 0.93±0.01 32.31±0.82
DeepHQ - 0.91±0.00 31.02±0.57

ShallowPIPE 8.01±0.27 0.91±0.00 30.42±0.58
DeepPIPE 7.69±0.03 0.91±0.00 29.95±0.12

Hierarchical probabilistic load forecasting, International Journal of Fore-
casting 35 (4) (2019) 1389–1399.

[41] M. Perc, Nonlinear time series analysis of the human electrocardiogram,
European Journal of Physics 26 (5) (2005) 757.

10

	Clipboard Data(2)
	DeepPIPE_revised.pdf
	Introduction
	Related works
	Proposed methodology
	Hybrid loss function
	Explanation of assumptions

	Algorithm

	Experiments
	Datasets
	Multivariate datasets
	Univariate dataset

	Experimental settings
	Preprocessing
	Hyper-parameter settings
	Optimization method
	Experimental environment

	Evaluation metrics
	Point estimation measurement
	Uncertainty quantification measurement

	Baselines
	Performance analysis
	Performance of point estimation
	Performance of prediction interval
	Performance of stability
	Effect of hybrid loss function
	Effect of deep learning
	The advantage of distribution-free assumption

	Conclusions and future works
	Acknowledgments

