

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/172597

Calabuig, JM.; Falciani, H.; Sánchez Pérez, EA. (2020). Dreaming machine learning:
Lipschitz extensions for reinforcement learning on financial markets. Neurocomputing.
398:172-184. https://doi.org/10.1016/j.neucom.2020.02.052

https://doi.org/10.1016/j.neucom.2020.02.052

Elsevier

DREAMING MACHINE LEARNING: LIPSCHITZ EXTENSIONS

FOR REINFORCEMENT LEARNING ON FINANCIAL

MARKETS

J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Abstract. We consider a quasi-metric topological structure for the construc-

tion of a new reinforcement learning model in the framework of financial mar-
kets. It is based on a Lipschitz type extension of reward functions defined

in metric spaces. Specifically, the McShane and Whitney extensions are con-

sidered for a reward function which is defined by the total evaluation of the
benefits produced by the investment decision at a given time. We define the

metric as a linear combination of a Euclidean distance and an angular met-

ric component. All information about the evolution of the system from the
beginning of the time interval is used to support the extension of the reward

function, but in addition this data set is enriched by adding some artificially
produced states. Thus, the main novelty of our method is the way we pro-

duce more states —which we call “dreams”— to enrich learning. Using some

known states of the dynamical system that represents the evolution of the fi-
nancial market, we use our technique to simulate new states by interpolating

real states and introducing some random variables. These new states are used

to feed a learning algorithm designed to improve the investment strategy by
following a typical reinforcement learning scheme.

1. Introduction

The theory of Lipschitz functions in metric spaces is a theoretical tool that
has often been considered since the beginning of machine learning. Indeed, sev-
eral theoretical aspects on Lipschitz extension of maps which can be interpreted
as foundations of reinforcement learning procedures were published in some early
papers many years ago. Just as an example, in the 1967 paper [3] the reader can
find some applications of the McShane and Whitney extensions—which are called
the lower and upper functions in this paper—to issues that can be identified now
as machine learning problems. In addition, the reader can find in [50] some re-
sults on so called absolutely minimal extensions, which can also be considered as
mathematical foundations of extension procedures associated with machine learn-
ing methods. Moreover, there are some explicit applications of Lipschitz functions
to machine learning in [4, 18, 44] and the references therein. However, the main
relation of Lipschitz functions with the mathematical framework of machine learn-
ing is associated with the notion of Lipschitz continuity, which allows to control
the regularity and smoothness of the functions involved, as can be seen for example

2010 Mathematics Subject Classification. Primary 68Q32; 46Q10. Secondary 68T05; 91B26.
Key words and phrases. pseudo-metric; reinforcement learning; Lipschitz extension; mathe-

matical economics; financial market; model.
The third author gratefully acknowledge the support of the Ministerio de Economı́a y Com-

petitividad (Spain) and FEDER under grant MTM2016-77054-C2-1-P .

1

2 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

in [4] and [70, Sec.2]. A full explanation of why these requirements are necessary
in several machine learning techniques can be found in [9]; the reason is the same
as that which makes Lipschitz’s condition so relevant in control theory (see for
example [15, 26, 41]).

Our paper presents a new technique that uses the theory of Lipschitz functions
in a different way. We focus our attention on the McShane-Whitney type extension
of the Lipschitz functions as the main tool for predicting the value of the reward
function in the next step of a dynamical system. There are not many papers in
which Lipschitz extensions are used in this way. A remarkable exception is provided
by [18]—see also the references in Sections II and III of this paper—, which explicitly
mention the Lipschitz extension as a tool for solving classification problems, in the
context of metric learning. We use the same fundamental extension results but
in a different context. We construct a typical reinforcement learning procedure,
in which the forecast of the reward function is performed as a McShane-Whitney
extension of its previous values. The underlying metric space is defined by the set
of all the previous states—represented as vectors of a finite dimensional space—, for
which the reward function is known, and another set that is artificially generated,
whose elements we call “dreams”. The distance used to endow the set of states—the
union of previous states and dreams—with a metric structure is constructed as a
weighted combination of a standard norm distance and an angular term. It will be
explained in Section 3, and we have to point out that it is rather atypical. Often,
the metric structure underlying the extension of the Lipschitz maps is the usual
finite dimensional space Rn with the Euclidean norm, or some classic modifications
of this metric considering non-canonical scalar products acting on Rn. Information
on other related metric structures in which Lipschitz extensions of reward functions
have been considered can be found, for example, in [33, 59], where metric graphs
are studied.

Therefore, the goal of this paper is to show a new mathematical environment
based on the McShane-Whitney reward function extensions for the development of
a new reinforcement learning procedure. However our ideas, which can be applied
in much more general contexts, will focus on the rather specific issue of designing
expert systems for financial market analysis. The reason is that financial time series
is one of the main challenges both in the time series theory and the machine learning
developments. Several approaches have been proposed in the last decades to predict
financial time series as a fundamental step for constructing decision-making support
systems. The reader can find some general explanation about the state of the art in
[10, 23, 63]. The traditional framework is given by statistical/probabilistic methods
as stochastic Markov processes, that are associated to linearity assumptions on the
processes that generate the time series. Although they have been successful in some
cases, they have proved to be insufficient, mainly due to the great complexity of
the financial time series, which makes it necessary to apply other methods that are
adapted to the nature of the signals (see for example [35, 72]).

Machine learning methods have also shown to be useful for the analysis of finan-
cial time series. Neural network based developments are probably the most popular
[38, 45, 51, 66], often using feed forward schemes to introduce dynamically updated
information [48]. Also, the advanced derivatives known as deep learning techniques
[12, 22, 61], recurrent neural network [46] and convolutional neural networks [62],
sometimes mixed with other techniques such as probabilistic tools [32, 67], have

DREAMING MACHINE LEARNING 3

been widely used. A relevant reason for the widespread use of neural networks
is given by the fact that these structures are capable of handling data with com-
ponents characterized by lack of smoothness (and therefore with bad polynomial
approximations), discontinuity and (local) nonlinearity. Neural networks are self-
adaptive methods, which are directly based on data and can process nonlinear time
series behaviors without any statistical assumption on the data [40, 43]. Thus, these
techniques have generally proved to be better adapted to highly nonlinear processes
and useful for both short and long term prediction ([57]). This is the reason why
we use this method to compare with our procedure in the present paper.

An alternative to artificial neural networks are support vector machines, a super-
vised learning statistical intelligent technique for data analysis and pattern recog-
nition that is suitable for highly nonlinear problems, and can be used for both
classification and regression [75]. They are a good option for time series forecast-
ing, and have been successfully applied in financial contexts [11, 21, 71], often mixed
with other methods [14, 69].

The technique proposed in this paper does not follow any of the methods ex-
plained above. It is a reinforcement learning procedure that is not based on any
of the approaches explained, but is closely related to some of the classical time
series forecasting methods. Reinforcement learning techniques and the related evo-
lutionary computation [73] concerns a great variety of methods, that are mainly
characterized by the fact that the so called (software) agents take actions in a dy-
namic context in such a way that they have to maximize some notion of cumulative
reward, that is defined to be a key issue of the model [65]. They have been suc-
cessfully applied in a wide variety of dynamic financial problems [7, 37, 58]. It is
the third classic option for dealing with problems such as those we are studying in
this paper, in addition to supervised learning and unsupervised learning to which
the techniques explained above belong [52]. Several methods are considered in this
cathegory, as Q-learning [20, 36, 56], recurrent [2, 20] and adaptive [16, 34] rein-
forcement learning techniques, often introducing tools from other contexts [5, 6, 47].
So called deep reinforcement learning is a recent theoretical context in which clas-
sical reinforcement learning techniques are used along with some other methods,
mainly from later developments based on neural networks and other techniques
[17, 27, 29, 74].

We have to mention that, due to the high complexity of the problem of forecasting
financial series, other techniques have also been used which are not related to the
core of the methods we have explained. For example, a great effort has been made
to add to these procedures arguments and tools from text mining [55, 68], sentiment
analysis [30, 39] and semantic analysis [8, 10, 42].

Concerning related work on mathematical economy and models for financial
markets, we develop our method in a rather classical framework. The definition
of our reward function begins with a relationship of duality similar to that of the
commodity-prize duality that is at the core of market models based on functional
analytic tools (see for example [1, Ch.8]). Although our method refers to some
probabilistic tools, we do not consider our learning method as based on stochastic
arguments. However, philosophically we may refer to some links with stochastic
market modeling —concretely to the so called continuous-time market model, see
for example [31, Ch.2]—, since the decision on the following step is given exactly
in the previous one, based on a predictive reward function in our case.

4 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

For clarity in the explanation of our technique, we will focus our presentation
on particular problems related to the dynamics of stock markets. As we said, our
technique is based on significantly extending the reward function by creating new
simulated situations to provide an improved tool for decision making in financial
markets based on Lipschitz preserving extensions of the reward. The calculations
are simple, as the extension formulas are simple, so the technique could be applied
when dealing with a large amount of data.

Our ideas will be presented in five sections. After this introductory section,
we will explain the topological foundations on the metric representation spaces
that will be used in the preliminary Section 2. In Section 3 we will describe the
general facts for the definition of our procedure —mainly of mathematical nature—,
and the fundamental scheme of our algorithm. The construction of the associated
models will be presented in a very concrete way in Section 4, in which two complete
examples are developed. The results of both will be presented in Section 5, along
with some comparisons between different situations and an alternative procedure
based on neural networks. The document ends with some conclusions in Section 6.

We should note that the objective of the present paper is theoretical in nature,
although very explicit examples are given. We do not intend to give an efficient
algorithm for computing the mathematical elements that appear in the model in
order to provide a concrete and effective tool: we are interested in explaining the
fundamentals of our method instead.

2. Preliminaries and topological tools

Our arguments bring together ideas from abstract topology on quasi-pseudo-
metric spaces and Lipschitz maps, and practical computational tools for extending
Lipschitz functions on metric vector spaces in which the distance is not given by
a standard norm coming from an inner product. In fact, our metric is not one of
the classical distances used in machine learning (see for example the comments is
Section I and Section II in [28]). We use the McShane and the Whitney extensions
for Lipschitz maps in a special way in order to extend some reward functions defined
by a novel design. The process of introduction of “dreams” to increase the size of the
training set needs also some topological tools based on average values computed on
equivalence classes constructed by a specific metric similarity method. Although
our mathematical approach is as far as we know new, the reader can find some
related ideas in [4, 19].

A quasi-pseudo-metric on a set M is a function d : M ×M → R+ —the set of
non-negative real numbers— such that

(1) d(a, b) = 0 if a = b, and
(2) d(a, b) ≤ d(a, c) + d(c, b)

for a, b, c ∈ M . A topology is defined by such a function d: the open balls define
the basis of neighborhoods. For ε > 0, we define the ball of radius ε and center in
a ∈M as

Bε(a) :=
{
b ∈M : d(a, b) < ε

}
.

(M,d) is called a quasi-pseudo-metric space. We will work in this paper mainly with
pseudo-metrics, that is, d(a, b) = d(b, a) for all a, b ∈M , or metrics, that in addition
satisfy that d(a, b) = 0 if and only if a = b. In this case, the topology defined by

DREAMING MACHINE LEARNING 5

d satisfies the Hausdorff separation axiom. However, we prefer to present some of
our ideas in this more general context, since the basic elements of our technique
can be easily extrapolated to the more general quasi-pseudo-metric case. This fact
is relevant, since asymmetry in the definition of metric notions (quasi-metric case)
could be crucial for the modeling of dynamical processes, in which the dependence
on the time variable changes the concepts related to distance. As usual, we will
use both the words metric and distance as synonyms. We will use also classical
notation for distances from a point to a set: if d is a (pseudo-)metric in a set M ,
a ∈ M and B ⊂ M, we will write d(a,B) for the distance from a to B, that is
d(a,B) = infb∈B d(a, b).

Let us mention that another generalization of the notion of distance, the so called
semimetrics, have been introduced recently in the context of machine learning (see
[25]). These functions fail in the triangle inequality, while in general quasi-pseudo-
metrics fail in symmetry. The difference is relevant, since triangle inequality is
necessary for the formulas of McShane or Whitney to work as extensions, which
might not happen if a semimetric is used.

Let us recall now some definitions regarding functions. Let (M,d) be a metric
space. A function f : M → R is a Lipschitz function if there is a positive constant
K such that

(2.1) |f(a)− f(b)| ≤ K d(a, b), a, b ∈M.

The infimum of such constants as K is called the Lipschitz constant of f . We refer
to [13] for a new complete explanation on this topic; all general results on Lipschitz
functions that are needed can be found there.

Regarding extensions of Lipschitz maps, recall that the classical McShane-Whitney
theorem states that if (M0, d) is a subspace of a metric space (M,d) and T : M0 → R
is a Lipschitz function with Lipschitz constant K, there always exists a Lips-
chitz function TM : M → R extending T and with the same Lipschitz con-
stant. There are also known extensions of this result to the general setting of
real-valued semi-Lipschitz functions acting in quasi-pseudo-metric spaces; see for
example [3, 49, 53, 54, 60] and the references therein. The function

(2.2) TM (a) := sup
b∈M0

{T (b)−K d(a, b)}, a ∈M,

provides such an extension; it is sometimes called the McShane extension. We will
use it for giving a constructive tool for our approximation. The Whitney formula,
given by

(2.3) TW (a) := inf
b∈M0

{T (b) +K d(a, b)}, a ∈M,

provides also an extension. We will use the first one in this paper, although some
results are also true when using the second, as will be explained. The reader can
find more recent technical information directly related with our ideas in [4, 44]
and the references therein. Concretely, some applied tools associated to Lipschitz
extensions of functions for machine learning can be found in [24, 33, 44]. General
explanations about applications of mathematical analysis in Machine Learning can
be found in [64]; in particular, basic definitions, examples and results on Lipschitz
maps can be found in Section 5.10 of this book and in [13].

We will use standard notation; we write ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ for the `1, the
`2, and the `∞ norms respectively, that will be called the 1-norm, the 2-norm (or

6 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

the Eclidean norm), and the ∞-norm, as usual. If X is a normed space, we denote
by BX and SX the closed unit ball and the unit sphere of X, respectively.

3. Metric spaces of states and Lipschitz maps: an algorithm for
machine learning

We will model the set of strategies to be applied in a financial market —a dy-
namical system— as a metric space of finite sequences of n items —states of the
system—, where n is the number of times that a change of state (purchase/sale
event) could occur in the market. We will consider also a reward function, that is
supposed to be known for a certain subset of strategies —initial “training set”—.
Using the well-known theoretical techniques of extension of Lipschitz functions on
metric spaces that we have mentioned in the introductory section, we will con-
struct the necessary tools for computing improved reward functions for bigger sets
of strategies by means of the search of “similarities” among different pieces of
these items. This will be used to feed the algorithm for creating new situations
—“dreams”— that will allow to increase the efficiency of the process by increas-
ing the size of the training set. The final result will be the definition of a typical
reinforcement learning method.

Consider a subset M0 of vectors of the finite dimensional real linear space Rn
not containing the 0. Let us write M = Rn \ {0}. We start by defining an adequate
metric on M . As the reader will see, the difference of our technique with other
methods of reinforcement learning begins at this point. The main reason is that
our choice does not allow to define the distance by means of a norm in Rn. We mix
the angular pseudo-distance —geodesic distance— and the Euclidean norm in this
space. Thus, since the cosine of the angle among elements s1 and s2 in M is given
by

(3.1) Cos(s1, s2) =
s1 · s2

‖s1‖ ‖s2‖
, s1, s2 ∈M,

we define a distance by mixing this angle

(3.2) Θ(s1, s2) =
1

π
ArcCos

(s1 · s2

‖s1‖ ‖s2‖

)
,

and a Euclidean component

(3.3) E(s1, s2) = ‖s1 − s2‖2 =

√√√√ n∑
k=1

∣∣s1,k − s2,k

∣∣2,
where s1 = (s1,1, ..., s1,n) and s2 = (s2,1, ..., s2,n). This Euclidean term can be
substituted by any other norm in Rn. For each ε ≥ 0, we define now the function

(3.4) dε(s1, s2) = Θ(s1, s2) + εE(s1, s2), s1, s2 ∈M,

that will become the general formula for the distance we want to use in our model.
As usual, we use the same symbol dε when it is restricted to any subset of M.
With this definition, we try to obtain a balance between the “metric part” and the
“angular part” when comparing vectors representing states/actions. The metric
part gives an estimate of the difference in vector sizes—which has a clear meaning
in the model representing the differences in the “volume” of investments—while

DREAMING MACHINE LEARNING 7

the angular part gives an idea of the direction in which the market moves. The
parameter ε allows us to modulate the weight we want to give to each term.

Lemma 3.1. Let ε > 0. With the definitions given above, the following statements
hold.

(i) The function dε is a pseudo-metric on M for every ε ≥ 0. Moreover, it is
a metric on M if and only if ε > 0.

(ii) For every ε > 0, the metric space dε is (topologically) equivalent to E.
(iii) Let ε > 0 and S0 ⊂ Rn a set that includes an open segment containing

0. Then, for any extension d∗ε of dε to S0, the metrics d∗ε and E are not
equivalent on S0.

Proof. (i) Note first that Θ is well-defined on M. The triangle inequality and the
symmetry are satisfied by both the functions Θ and E. Indeed, it is known that Θ
is a metric on the Euclidean unit sphere, and so if s1, s2, s3 ∈M ,

Θ(s1, s2) = Θ(
s1

‖s1‖
,
s2

‖s2‖
)

≤ Θ(
s1

‖s1‖
,
s3

‖s3‖
) + Θ(

s3

‖s3‖
,
s2

‖s2‖
) = Θ(s1, s3) + Θ(s3, s2).

Moreover, any linear combination with non-negative coefficients of Θ and E is a
pseudo-metric. Also, if ε > 0 then d(s1, s2) = Θ(s1, s2) + εE(s1, s2) = 0 implies
E(s1, s2) = 0, and so s1 = s2. The converse is obvious too.

(ii) Take an element s ∈ M and an open ball Bdε,r(s) of radius r > 0 for the
metric dε. Take the elements s′ ∈ M in this set satisfying that Θ(s, s′) < r/2 and
E(s, s′) < r/(2ε), and note that all of them are in Bdε,r(s). Then, since s 6= 0, by
the continuity of Θ with respect to the Euclidean metric E we can find a ball of
radius r′ > 0 such that

BE,r′(s) ⊂ {s′ ∈M : Θ(s, s′) < r/2}.
Thus, taking r′′ = min{r/(2ε), r′} we get that BE,r′′(s) ⊆ Bdε,r(s). The obvious
inequality

E(s1, s2) = ‖s1 − s2‖2 ≤
1

ε
dε(s1, s2), s1, s2 ∈M,

gives the converse relation needed for the equivalence.
(iii) Consider without loss of generality the vectors b = (α, 0, 0, 0, ...), −b =

(−α, 0, 0, 0, ...) ∈ M, for some α > 0. It is enough to notice that we can construct
a sequence converging to 0 with respect to E and which does not converge for d∗ε .
Indeed,

lim
0<α→0

‖b− (−b)‖2 = lim
0<α→0

2α = 0,

but

lim
0<α→0

dε(b,−b) = lim
0<α→0

ArcCos
(b · (−b)
‖b‖ ‖ − b‖

)
+ lim

0<α→0
ε‖b− (−b)‖2 = 1.

Thus, both metrics cannot be equivalent.

Of course, Lemma 3.1 can be automatically stated if we change the Euclidean
norm by any other norm on Rn, since all norms are equivalent on finite dimensional
spaces. The metric dε is defined to indicate the Euclidean distance among states
s1 and s2 but also the trend that they represent: indeed, in terms of the financial
model we are constructing, if two vectors have small size —in fact as small as we

8 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

want—, but they represent opposite trends in the market, the distance among them
is always bigger or equal than 1. The relative weight of Θ and E in the definition
of dε is modulated by the parameter ε.

We will define a reward function acting in M0 that will be given, as a primary
formula, by a duality relation among the elements s ∈M0 ⊂ Rn and vectors acting
on these elements. We will call these vectors actions, and they will be represented
by vectors of (a multiple of) the unit sphere of the space (Rn, ‖ · ‖) for any norm
‖ · ‖. We will write A for the set of all actions to be considered in a problem.

We will define the reward R : M0 → R for a state s as a function —a maximum,
or a mean— of actions that operates on s as

(3.5) R0(s) = s · a, s ∈M0, a ∈ Bs,
where Bs is an s-dependent set defined using a mix among some experience on
the system and a random procedure. The final function will be called R, the real
function to be extended with the McShane formula for getting an estimate RM of
the reward acting in all the space M .

In any case, as we will see in the rest of the paper, it is always possible to write
R(s) as s · as for a given action as belonging to the selected set of actions A for the
elements s of M0. However, this representation formula cannot be obtained in gen-
eral for all the extended values RM (s∗), s∗ ∈M \M0, although some useful bounds
can be obtained. Let us analyze this representation of R and the associated bounds
for the extension RM in what follows. Next example shows that the extension RM

cannot be written as the scalar product of the state s∗ and an action a ∈ A.

Example. Fix ε > 0. Consider a market with two products (n = 2) and just
two states. Consider the set M0 = {(1, 0), (2, 0)}. Both vectors represent increasing
states of the market. Consider the reward function given for both states by the
actions a1 = (50, 50) and a2 = (0, 100), that define the set A. The 1-norm multiplied
by 1/100 is considered, that is, both actions are elements of the set 100 × S`1 .
That is, R((1, 0)) := (1, 0) · a1 = 50 and R((2, 0)) := (2, 0) · a2 = 0. Note that
dε((1, 0), (2, 0)) = ε. The Lipschitz constant K is given by

K = |0− 50|/dε((1, 0), (2, 0)) = 50/ε.

Therefore, the McShane extension of R is given by

RM ((x, y)) := max
{

50− (50/ε)dε((x, y), (1, 0)), 0− (50/ε)dε((x, y), (2, 0))
}
.

for any possible state (x, y) ∈ R2 \ {0}. Take now (x, y) = (−1, 0), and note that

dε((1, 0), (−1, 0)) = 1 + 2ε and dε((2, 0), (−1, 0)) = 1 + 3ε.

Then we have

RM ((−1, 0)) = max{50− (50/ε)dε((−1, 0), (1, 0)), 0− (50/ε)dε((−1, 0), (2, 0))}

= max{50− 50

ε
· (1 + 2ε), 0− 50

ε
· (1 + 3ε)}.

Take now ε = 1/2. Then RM ((−1, 0)) = max{−150,−250} = −150. Since all the
actions in A belong to the ball of radius 100 of `1, we cannot write RM ((−1, 0)) =
(−1, 0) · a for any a ∈ A.

In the rest of this section we show some boundedness results that compensate the
lack of representation of the extension RM as a scalar product. Although this easy

DREAMING MACHINE LEARNING 9

representation is not always possible, at least we can control the difference of the
extension and the proposed formula using the scalar product. A relevant situation
is given when the set of actions A is defined by multiples of partitions of the unity,
that is, sets of vectors of the unit sphere of `1 having all the coordinates bigger or
equal than 0. We will write Sn,+`1 for this set, and we will consider the factor 100.
This models the standard problem of distributing a fixed amount of money among
a given set of products, depending on market forecasts. Thus, we will consider in
this section the set A as a subset of 100 × Sn,+`1 , in order to work with bets given
as %. However, the reader will notice that the same arguments and results can
be easily adapted for the case of any other bounded set with respect to any norm.
Concretely, we consider the following set of actions over M0,

AM0,R = {a ∈ 100 × Sn,+`1 : a = as for some s ∈M0 such that R(a) = s · as}.

Proposition 3.2. Let M0 ⊂M be a compact subset of (Rn\{0}, ‖·‖2). Consider a
function R : M0 → R such that for each s ∈M0 there is a functional as ∈ AM0,R ⊂
100 × Sn,+`1 such that

R(s) := s · as, s ∈M0.

Then for each s∗ ∈M there is a functional as∗ ∈ AM0,R such that

|RM (s∗)− s∗ · as∗ | ≤ min
s∈M0

(
100 ‖s− s∗‖∞ +KΘ(s, s∗) + εKE(s, s∗)

))
.

Proof. Fix s∗ ∈ M. First note that, since RM is a Lipschitz function with the
same Lipschitz constant K than R, for each element s ∈M0 we have

|RM (s∗)−R(s)| ≤ Kdε(s∗, s′).

Fix now s ∈M0. Then by hypothesis there is a functional as ∈ AM0,R such that

|RM (s∗)− s∗ · as| = |RM (s∗)− s · as + (s− s∗) · as|

≤ |RM (s∗)− s · as|+ |(s− s∗) · as| ≤ Kdε(s∗, s) + |(s− s∗) · as|.

Therefore,

|RM (s∗)− s∗ · as| ≤ K
(
Θ(s∗, s) + ε‖s− s∗‖2

)
+ 100 ‖s− s∗‖∞.

Since this happens for all the elements s ∈ M0, we have that the inequality holds
for the infimum. Finally, note that the set M0 is compact. Indeed, by Lemma 3.1
d and E are equivalent metrics on M . we have that the infimum is attained, and
so we get the result by taking as∗ = as0 for the state s0 that attains the minimum.

Using this result with some restrictions on the set M0 and the relation with the
particular elements s∗, we obtain useful bounds for the formulas that approximate
RM .We write one of them in the next corollary. Essentially, it reflects what happens
with the extension of the reward function R for a state s∗ that represents the same
market trend as another state belonging to M0, but with different norm.

Corollary 3.3. Let M0 ⊂M be a compact subset of (Rn \ {0}, ‖ · ‖2). Consider a
function R : M0 → R satisfying the requirements in Proposition 3.2.

10 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Suppose that an element s∗ ∈ M belongs to {λ > 0 : λM0}. Then there is a
functional as∗ ∈ AM0,R such that

|RM (s∗)− s∗ · as∗ | ≤ min
0<λ

{ |λ− 1|
λ

(
100 ‖s∗‖∞ + εK ‖s∗‖2

)
:
s∗

λ
∈M0

}
.

Proof. By assumption, s∗ = λs for a given 0 < λ and s ∈ M0. For such an
s we have that Θ(s, s∗) = 0. The rest of the right hand term in the inequality in
Proposition 3.2 can be rewritten as

100 ‖s− λs‖∞ + εKE(s, λs)
)

= |1− λ| ‖s‖∞) + |1− λ| εK‖s‖2,
for s∗ = λs. This can be rewritten as

|λ− 1|
λ

(
100 ‖s∗‖∞ + εK ‖s∗‖2

)
.

This gives the result.

Depending on the geometry of the set M0 and its relation with the chosen state
s∗ /∈ M0, we can also obtain a lower bound for the approximation formula of RM

using actions a ∈ A.

Proposition 3.4. Let M0 ⊂M be a compact subset of (Rn \{0}, ‖ · ‖2), and ε > 0.
Consider a function R : M0 → R. Let s∗ ∈M \M0 and a ∈ A such that

s∗ · a ≥ R(s) for all s ∈M0.

Then for Θ(s∗,M0) = infs∈M0 Θ(s∗, s) and E(s∗,M0) = infs∈M0 ‖s∗−s‖2, we have
that ∣∣s∗ · a−RM (s∗)

∣∣ ≥ K(Θ(s∗,M0) + εE(s∗,M0)
)
.

Proof. Take s∗ and a ∈ A as in the statement of the result. Then, using again
compactness of M0 we get an element s0 ∈ M0 such that RM (s∗) = R(s0) −
K dε(s0, s

∗). So we have that∣∣s∗ · a−RM (s∗)
∣∣ =

∣∣s∗ · a−R(s0) +K dε(s0, s
∗)
∣∣

=
(
s∗ · a−R(s0)

)
+K dε(s0, s

∗) ≥ K
(
Θ(s∗,M0) + εE(s∗,M0)

)
,

and the lower bound is proved.

In particular cases, this bound can be used for getting clear negative results
on the possibility of approximating the extended reward function RM by means
of actions. We show two of them in the following result, which proof follows the
same easy arguments than in Proposition 3.4. Note that the distances point-to-set
Θ(s∗,M0) and E(s∗,M0) defined above make sense if M0 is changed by any other
set.

Remark 3.5. Let M0 ⊂ M be a compact subset of (Rn \ {0}, ‖ · ‖2), and ε > 0.
Consider a function R : M0 → R, and let s∗ ∈M \M0 and a ∈ A.

(i) If s∗ · a ≥ 100 ‖s‖2 for all s ∈ M0, sups∈M0
‖s‖2 = B and s∗ ∈ ∪λ>0λM0,

then ∣∣s∗ · a−RM (s∗)
∣∣ ≥ Kε(‖s∗‖2 −B).

(ii) If M0 ⊂ C, where C is a closed convex cone (with vertex 0) that does not
contain s∗, and let s∗ · a ≥ R(s) for all s ∈M0. Then∣∣s∗ · a−RM (s∗)

∣∣ ≥ K Θ(s∗, C).

DREAMING MACHINE LEARNING 11

Remark 3.6. As we have demonstrated, the mathematical model imposes the re-
striction that valid states are always different from 0. That is, there are no states
that represent that the system has not changed, or that there is no trend. Therefore,
these states have to be eliminated if they appear in the experience.

4. Designing models for financial markets using Lipschitz
extension-based reinforcement learning

We will show in this section how to proceed to use our mathematical framework.
Essentially, as we said, we use the previous steps of a dynamic process to compute an
extension of a reward function—a Lipschitz function—, which allows us to calculate
which is the best action of a given subset given to execute in the next step. We
will present two complete models, with the aim of showing the scheme to follow
to build a model following our technique. We will check the results in Section 5,
analyzing the total reward obtained by using each algorithm, comparing the result
with the optimal reward computed a posteriori, and with other methods.

4.1. An expert system for day-to-day investment in a currency market
product. We explain in what follows a canonical example of application of our
technique. Suppose that we are interested in investing in the change of a given
electronic currency in US dollars, for example, Ethereum. Data were downloaded
from the web page https://finance.yahoo.com/cryptocurrencies, 31 August 2019.
We want to use the support of an algorithm every day in the starting moment of
the session, and we want to decide how much money we could invest, whether we
should buy or sell the currency we have, and whether we should reserve part of the
money we have for intraday investment (buy/sell several times in the same day,
following the instant sign of the market).

(A) We will consider the dynamic in a full year. We fix that the relevant in-
formation in a given day is given in a vector of 3 coordinates, containing as first
coordinate the balance of the previous day (that is to say, the difference between
the value of closing and the value of opening). The second coordinate is the initial
value at today’s opening divided by 100, and the third is the total amount of in-
vestments recorded in the market the previous day divided by 108. The weights are
included to avoid large differences in the absolute values of the investments.

However, for computing the value of the reward function after each day—that
is, the true value of the investment done—, we need to define other set D, given
by the balance at the end of the day, the maximum variation during the day, and
the relative global volume of investment. We call to the vectors of D, once they
are known, the state-values associated to the states. The set of action have to
be interpreted as scalar functions over these states acting by duality. The actions
represent investing strategies as 3-coordinates vectors that are bounded in norm:
the sign of the coordinates indicates if the action must be positive or negative; for
example, if the fist coordinate is positive, then the decision maker is advised to buy.
The size of each coordinate represents how much effort is recommended to put into
each of the three action items. As explained in the previous section, the reward
associated to each proposed action is the scalar product of the state and the action.
For already known states —that is, for states that have already passed—, this is
given by the scalar product of the state-value vectors of D associated to the given

12 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

state and the action. The optimal reward for states that have already passed, that
will be used for comparing the results of the model, is computed by maximazing the
state-value vector with respect to the set of actions chosen, that gives the 2-norm
of the state-value vector if the actions considered are all the vectors in the unit ball
B`2 .

(B) The learning procedure is designed to be a step by step extension of the
reward function. We consider a fixed set of actions that is defined as a randomly
chosen set A of 30 norm one vectors. The first day (k=1) we have no information
yet, so we start the second one. For this day, the metric space M0 has only one
element s1, what is enough to compute the Lipschitz extension for the next day.
The reward function associated to s1 can also be computed: it is the norm of d1,
the element of D corresponding to the first day. The optimal action a1 that allows
to compute the reward as d1 ·a1 is the norm one 3-coordinates vector that gives the
maximum, that is, the norm of s1. The procedure follows in the step k by adding
the every day experience from the first day and the day k − 1.

(C) At the step k, the estimate of the reward function RM is constructed by
applying the McShane extension formula to the reward function R given by the
rule (si, ai) 7→ di · ai, i = 1, ..., k − 1. That is, after computing the corresponding
Lipschitz constant K, the formula

RM (sk) := sup
s∈M0

{R(s)−K d(sk, s)},

provides the value of the desired extension RM : M → R to the action sk. Instead
of the McShane formula other extension rules —such as Whitney formula— can
be used (see for example, [59] and the references therein). Of course, the results
will depend on this choice; some comments on why we have chosen this option are
presented in Remark 5.1, but the use of other options is open. Checking which is
the best extension formula exceeds the scope of this paper, which is only intended
to introduce the technique.

At this step, the set M0 is defined by the product of the states s1, ..., sk−1 with
the product distance ds+da, where both metrics are defined as in (3.4) for ε = 1/10,
in the space of states of k−1 elements and the space of actions of 30 elements. Note
that the only pair (s, a) which has a clearly positive reward is given by the state
si together with the action asi that allows to compute the best reward associated
to si, that is di · asi . Thus, the rest of the pairs (a, s) together with their rewards
are artificially created, and define what we call dreams, concerning in this case
the creation of new pairs (state,action) together with the correponding rewards,
although the “state” part comes from real data. The new training data that will be
called dreams in the next section are constructed by directly creating new states.

The state sk is then considered. All the possible forecasts of the rewards for the
pairs (sk, a), a ∈ A, calculated by using RM , are computed. The maximun of this
set is computed, and the action ak0 for which this maximum is attained is chosen
to be the solution at this step: at the begining of the day k, the decision-maker has
to choose the action ak0 .

In order to study the effectiveness of the process, we will consider the cumula-
tive reward foreseen by our technique, in order to compare it with the cumulative
optimal reward. This will be done in Section 5.

DREAMING MACHINE LEARNING 13

4.2. Investments distributed in several products of a stock market. In
this case, we will work with the following metric space structure as a model for
the dynamical system defined by a financial market with n products. We will
assume that there are m times in which there are share purchase/sale events. The
model tries to solve the problem of distributing the daily investment in 4 different
products, indendently of the total amount to invest. The previous k − 1 steps of
the time series is used to define the metric space in which the reward function acts,
and to compute an expected value of the function for the step k.

(A) Take a subset M0 of vectors of M = Rn representing the states of the market.
Each of the vectors in M0 describes a state of the market in the following way: each
coordinate gives the value of the increment of the corresponding product at this
moment. In fact, we will write at each coordinate i the difference of the value at
the moment i ∈ {1, ...,m} and the value at i − 1. This means, in particular, that
the original values of the products is not relevant for defining the states, just the
variations.

Again, we will fix the value ε = 1/10 for the definition of the metric in the next
sections. That is, we will use

d(si, sj) = d1/10(si, sj) = Θ(si, sj) +
1

10
E(sj , si), si, sj ∈M0.

By choosing the value ε = 1/10 we try to obtain a balance among the “norm
part and the “angular part”. We estimate that the values of the differences among
vectors with respect to the norm is around 10, while the maximum value of the
angular part is 1. A more systematic way of calculating this parameter would be
necessary in a more advanced version of our method.

(B) We are interested in measuring the success of a concrete action in the mar-
ket, that is, the success of a share purchase/sale event that a decision-maker has
executed on the market. So we have to define what an action is in the model.
Formally, we have already defined them as elements of the dual of Rn. As we said,
at each step the state of the system is defined by an n-coordinate vector; each co-
ordinate represents the increase/decrease of the value of each product with respect
to the previous step. An action is a suitable share purchase/sale event that the
decision maker could execute, represented as follows: it is supposed that he has 100
monetary units to invest at every step, so an action is a vector of n-coordinates
(n + 1 if we want to consider leaving some of the money out of the buying pro-
cess). In Section 5 we will call “bets” to the actions to reinforce their meaning in
the model. Mathematically, they are positive elements of the algebraic dual of Rn
having `1-norm equal to 1. Let us write A for the set of all the actions.

The natural reward function to be defined in the model must be related to the
evaluation of the success of an action when it is applied to a certain state of the
system. Therefore, it must be defined as a functional acting in A once a given state
of the system has been fixed, and so it is a two-vector-variables function R0 acting
in M0 ×A.

However, the reward function must evaluate states of the market —an element
of M0—, taking into account how the decision maker acts in it and the success of
his actions. Therefore, we will finally consider a reward function R acting in M0,
but we will use all the information we have about the system to estimate it. That
is, we will use the function R0 for defining the function R. We will see that, finally,

14 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

for each state s ∈M0 there is an action a ∈ A such that R(s) = s · a, or a mean of
such values.

(C) After this, we are interested in extending the reward function R to the whole
linear space M preserving the Lipschitz constant. In order to assure that this
constant is a (positive) real number, it is enough to take into account that the set
M0 is defined by a finite set of vectors. In the model, R is supposed to measure “how
successful” is a given state. We will use the McShane formula for the extension.
The extension RM is supposed to extrapolate the same concept —success of a given
state—, preserving the metric relations of M0 and M . Since it appears explicitly in
the formula, we have to compute the Lipschitz constant K for the reward function
R in order to get the extension RM , for which the same K works. The way we
have defined the metric in the space allows to obtain a theoretical bound for this
extension, as stated in Proposition 3.2. However, note that in general we cannot
expect that RM (s) can be represented as an action belonging to the positive part of
100 × B(M,‖·‖`1). This was shown in the Example of Section 3; the general behavior
of such kind of representation formula was discussed also there, as a consequence
of Proposition 3.4 and its corollaries.

(D) Finally, we will use RM for simulating the reward of new time sequences of
states in order to perform our reinforcement learning algorithm. In order to do this,
we generate randomly new states for increasing the set M0. We create in this way
a new seminal set M1 bigger than M0, in which we are mixing “known situations”
(s ∈M0) and new ones, that we call “dreams” (s∗ ∈M1 \M0.) The rate of elections
of known cases and dreams that we have chosen is β = 50%.

5. Training and dreaming: Lipschitz approximations to real market
reward functions for the design of reinforcement learning

algorithms

We will present in this section an analysis of the application of the method
explained before, comparing the results provided by our algorithms and other stan-
dard techniques and the optimal strategy computed a posteriori.

5.1. Efficiency analysis of Lipschitz extensions in a currency market. Fol-
lowing the procedure explained in 4.1, we fix first the relevant sets that have to be
used for testing our method. The description of each state, at the day k = 1, ..., 365,
is given by the 3-coordinates vector sk = (sk,1, sk,2, sk,3),

sk,1 = dataOpen(k − 1)− dataClose(k − 1),

sk,2 = dataOpen(k) · 10−2, and

sk,3 = dataV olume(k − 1) · 10−8.

where dataOpen and dataClose are the values at the beginning and at the end of
the day on the exchange market, and dataVolumen is the volume of business in the
currrency market, both of them of the day before of the one considered, that is k.

DREAMING MACHINE LEARNING 15

The 3-coordinates vector r = (rk,1, rk,2, rk,3) gives the description of the real
results obtained this day, that are known after each day has passed.

rk,1 = dataOpen(k)− dataClose(k),

rk,2 = ((dataHigh(k)−max(dataOpen(k), dataClose(k)))

− (dataLow(k)−min(dataOpen(k), dataClose(k)))) · 10−2, and

rk,3 = (dataV olume(k)−meanV olume) · 10−8,

where dataHigh and dataLow the highest and the lowest exchanges in the day, and
meanVolume the average value through all the year, or of the previous year. We
use this vector to compare the results of our technique and the neural network con-
structed for the aim of comparison. The vector r provides also, just by maximizing
the reward, what is the best action to apply, that of course can be known only once
the day has passed. This allows to find the real reward, that would be obtainied in
the ideal situation that every day the decision maker invests using the best action.

The set of actions is obtained by choosing randomly thirty elements of the set
S(R2,‖·‖2)×{−1,+1}, that is, 3-coordinates vectors where the two first components
belonging to the sphere of the 2-dimensional Euclidean space, and the third coor-
dinate being 1 or −1.

To check the method, we compute the cumulative reward that results when we
apply our algorithm to the daily investment in a currency exchange market. On the
other hand, we also train three neural networks with a complete set of experiences
in the same market to solve the same problem. Finally, and using the information
at the end of the day in all the steps of the time series, we compute the cumulative
reward using the optimal investment option, that was calculated as the sum of the
norms of the corresponding elements of the set D as explained in 4.1. The result is
presented in the following Figures 1, 2 and 3.

Figure 1. Ideal exchange market benefits: cumulative reward by
taking the best possible sequence of investments .

0

200

400

600

800

0 25 50 75 100

Day

Re
wa

rd

The procedure for constructing an alternative neural network-based method for
making the prediction uses a mixed scheme that introduces some reinforcement
learning ideas. We consider the same elements as those used in the Lipschitz exten-
sion procedure, i.e. vectors representing states as explained in 4.1 defined by the

16 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Figure 2. Benefits in the exchange market with our method: cu-
mulative reward.

0

50

100

150

0 25 50 75 100

Day

Re
wa

rd

Figure 3. Neural networks: cumulative reward. (Black=Dataset
Size 50, Red=Dataset Size 100, Blue=Dataset Size 150)

−50

0

50

100

150

200

0 25 50 75 100

Day

Re
wa

rd
s

variables dataOpen, dataClose and dataVolume. With the same reward function
considered above, we calculate the optimal action to be executed by the decision
maker to obtain the best benefit as in the previous case, by duality with the vector
of real results of each day. The neural networks, one for each coordinate, are trained
using the vectors that describe the states to obtain the corresponding coordinate of
the optimal action. We define training sets from some past experience, associating
to each state of this experience (a set of states from the previous year) its optimal
action.

Three cases are considered, with three neural networks in each. The architecture
of the neural networks is the same in all cases: one layer with a variable number of
neurons. In the first case, a data set corresponding to 50 days of previous experience

DREAMING MACHINE LEARNING 17

and 40 neurons —in the 3 networks trained for the 3 coordinates—, are considered.
The second case uses a data set of 100 days, with 70 neurons, and the third 150
days with 100 neurons. At each step, the new training datasets contain the previous
ones. The results can be seen in Figure 3.

Day Neural net. 50 Neural net. 100 Neural net. 150 Proposed method Ac. optimal reward
10 -43.558691725181546 57.4324033877896 44.47243738532825 77.60677842315195 134.13561435299863
20 4.884239218843416 100.2346425421957 112.22117027137409 116.76071434515443 249.54663924323657
30 23.791809817006868 96.86025127421662 110.35398377818748 98.76474390573297 365.0068924120979
40 40.205026163815035 87.61110555387552 113.66742151950243 123.0021564604632 416.19343385732094
50 95.48769487319979 143.51952246409235 72.09119456086157 89.82931347013034 508.70337961659493
60 83.33325622430999 155.7272899378034 92.98426612161144 105.6084341697962 542.6826278318183
70 62.53286010375692 165.32570118498458 127.09749910167349 114.22749718335295 597.9391916815024
80 68.41434818797275 190.75855555851118 144.83690132495113 115.80747345691633 665.6369640606536
90 119.06531274545604 176.7239078266884 123.89204743943655 127.75409945737738 774.1029609030188
100 112.75762703544271 184.98018177655757 134.77098647649112 142.07255826459516 847.2570448677963

As can be seen, the algorithm we propose gives easily interpretable results (Figure
2). Some of the values —one in ten— are presented in Table 5.1. First of all, it
can be seen that the comparison with the optimal investment shows a reasonable
level of success. The first steps give a negative cumulative reward, due to the lack
of experience, but soon begins to improve, giving in the first 20 steps a return of
about 50% of the optimal reward. The increase is slow after this moment; however,
it can be seen that the cumulative reward is sometimes decreasing, but the global
behaviour is increasing.

Neural networks also give a positive cumulative reward, although the results are
worse in two of the three cases considered. It should be noted that neural networks
are trained from the first moment with data corresponding to actual experience of
at least 50 days, while our method uses experience data of k−1 days for the day k.
The reader can compare the results with the help of Table 5.1, in which predicted
values for trained neural networks with data sets —containing information on 50,
100 and 150 days— can be seen in the first 3 columns, respectively, as well as
the results for our method (fourth column) and the calculated optimal reward a
posteriori (fifth column). Also, keep in mind that the McShane formula penalizes
rewards calculated from data that are very far (with respect to the distance we
have defined) from the state being considered: it is a maximum with a negative
term that is defined exactly by this distance. In the case of neural networks, this
coherent behavior cannot be expected in general, since one cannot have any control
over the free parameters of the fitting method.

5.2. Creating dreams for the reinforcement learning procedure in parallel
investments. Let us continue with the presentation of the procedure by further
specifying the example explained in 4.2. Suppose that we are analyzing a fixed
market with four similar products. In fact, the dynamics of their prices are equiva-
lent, as the reader can see from the figures below. We have the complete sequence
of their values each minute from 1 to 800. As we said in Section 4.2 and for the
aim of simplicity, we assume that at the beginning of the process the values of all
the products equal 0. The set M0 of known states for which the reward function is
known is considered to be the first half of the states that have been registered. Let
us see how we fix the mathematical representation of the problem.

18 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

(1) A state of the system is given by a four-coordinate vector s: as we explained
in Section 3, each minute the vector gives the cumulative increase or decrease of
the values of each product. Since we want to define the reward function using the
scalar product with a vector that represents an action, and we want to include
the possibility of not investing, we expand the vectors s by adding a fifth null
coordinate. We preserve the same symbol s for the extended vector.

Figure 4. Real market experience: set of states for training the
model. The cumulative values for all the products of the market
are represented.

We consider series of “bets” applied at each minute. They correspond to series
of what we called “actions” in 4.2, that in this particular case are described as
the % of the money that the decision maker wants to apply in each market this
minute (including not investing a certain part). The decision maker is investing
100 monetary units at each step.

(2) Fix now a (five-coordinate) state of the system s. The reward function
R : M0 × A → R is then defined as a two-(vector)-variable function given by the
scalar product of the state s and the action a, R0(a, s) = a · s.

At this point we introduce our first arguments regarding reinforcement learning.
The main idea is to use the information that is known for similar situations in
order to compute a reward function R : M0 → R, depending only on the state.
Note that this is different that was done in the other case introduced in Section
4.1, since in this case the reward function and its extension was defined considering
pairs (state,action). This is relevant, since we are going to evaluate the state of
the system using this reward function. In order to define it, we use the following
procedure. For a state of the system s, we define

R(s) := mean {R(a, s) : a ∈ A ∪B},
where the average is calculated on two sets of A and B built as explained in what
follows, whose sizes are in a ratio of 90% and 10%, respectively. The first set A
—90%— is defined by using actions/bets a that have been already checked and

DREAMING MACHINE LEARNING 19

have obtained good enough values of the reward functions when acting in states s′

that are similar to s. This is done by choosing the bets that give the highest values
of the reward function when they act on these states s′. The similarity relation is
given by proximity with respect to the distance d, that is d(s, s′) < ε for a given
ε > 0 (for example, ε = 0.5). The second set B —10%— is randomly obtained.

Figure 5. Sequence of (randomly chosen) actions that optimize
the bets when applied to the set of real states M0. Note that for
each fixed time, the five values equals 100%.

This method is used for computing the reward function R for the elements of
M0. As we said in Section 4.2, for states which do not belong to M0—i.e. for
the remaining 50%— we will use the McShane formula for obtaining the extended
function RM .

Day 20 40 60 80 100 120 140 160
Dreams 0 % 1586.67 8626.67 7893.33 6880.06 6119.45 7588.51 5905.14 -1002.03
Dreams 50 % 1529.41 7631.42 6178.38 3260.48 3756.65 4288.25 1417.60 —

[1]
Fix M0 = {sk : sk is a state from the time series experience} 6= ∅.
|M0| ≥ 100
sk ∈M0

For i ∈ {1, · · · , 1000}, sort aki ∈ A := 100× S5,+
`1 to define Ak.

Rki ← R0(aki , sk) := a · sk, a ∈ Ak
Ak∗ := {90 states in Ak such Rki are the biggest ones in Ak.}
Define randomly a subset of 10 elements Bk∗ ⊂ Ak.
R(sk)← mean {R(aki , sk) : aki ∈ Ak∗ ∪Bk∗}.
K ← maxs,s′∈M0

|R(s)−R(s′)|
d(s,s′) .

s ∈M \M0 RM (s)← sups′∈M0
R(s′)−Kd(s, s′). RM (s)← R(s)

20 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Figure 6. Simulation with real data obtained from the experience.

Figure 7. Simulation with 50% of real data +50% of dream.

Computation of the McShane extension
(3) Taking into account the procedure for obtaining the reward function R, given

a state s ∈ M0 we can find an action/bet as ∈ A such that R(s) = R0(as, s) and
is as good (high) as possible, as was done in the case explained in 4.1. Of course,
as is not unique, but one of the possible solutions can be fixed using a random
procedure.

A similar definition can be done for suitable states that do not belong to M0.
We call dreams to such states. In this case, the reward function that should be
considered is RM , since this function plays the role of R for states that have not
been found in the experience in the market. However, note that we cannot say that,
if s∗ ∈M \M0, there is a positive functional —an action— as∗ in the unit ball of `1

such that RM (s∗) = s∗ · as∗ , as happens for s ∈M0 and R. This problem is solved
just by taking a suitable “norm 100” functional as∗ such that RM (s∗) − s∗ · as∗
attains its minimum value. We have already proved that in general, RM (s∗) cannot
be attained by a value as as∗ ·s∗. However, Proposition 3.2 and the results in Section
3 give precise bounds for this difference.

DREAMING MACHINE LEARNING 21

The set of all —randomly chosen but optimal— bets as as and as∗ represents
how the decision maker should act when he faces the problem of investing in the
market. Figure 5 shows a representation of a suitable set of optimal bets for the
states represented in Figure 4.

As we have shown, the main tool of our technique is the computation of the
McShane extension of the reward function. In order to clarify this computation
based on the McShane-Whitney extension theorem, we provide an scheme of the
algorithm (Algorithm 5.2).

(4) Finally, we check the results of the model. We assume that we start betting
on the market at the time t = 0 with 1000 of monetary units and we stop when
we loose all of them. In order to check the success of the model, we produce
a simulation considering first that the reward function is purely obtained by the
information of the market (Figure 5), and secondly using 50% of dreams. To do
this, we use the second part of the experience. The system has been trained using
all the information of the first 400 minutes in the first case (Figure 6), and with
just 50% of these states + 50% of dreams in the second one (Figure 7). In these
figures it can be seen the value of the sum of the four products of the market at
each state, where the investment that has been made in each of them has been the
result of the application of the action/bet obtained in the previous stages. The
measure of the success of the models is given by the survival time.

For the first case (Figure 6) we have used the set of actions obtained for the
set M0, which was shown in Figure 5. It is supposed that the situations should be
similar than in the training part of the experience. However, in case the state s was
not exactly appearing in the market situations that was recorded in the first part of
the experience, we approximate its value by distance similarity applying the action
as′ , where s′ is the element of M0 that satisfies that d(s, s′) attains its minimum.

The second figure (Figure 7) shows the same cumulative result: the total value
obtained at each state by applying to the same sequence of states the optimal
sequence of actions, that has been obtained in this case with a 50% of dreams. As
the reader can see, the evolution and the surveyance time are similar, and so the
success of both models is comparable. That is, the same result can be obtained
by using the McShane extension of the 50% of known data instead of 100% of real
data.

Remark 5.1.

◦ Note that dreams and real states are of a different nature. Real states
come directly from the observation of the system, while dreams are arti-
ficially generated states that mix real components—through some kind of
interpolation—and also add some random components, as explained in this
section.
◦ Our model allows to create an automatic forecasting system that introduce

updated data at every moment. The direct implementation of our model
in the financial markets provides an automatic system that advises the in-
vestor at all times on the best investment. Broadly speaking, applications
for market data analysis would be given by an algorithm that would provide
the analyst with a simulation of his investment, helping him to benefit from
market trends.

22 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

◦ Unlike neural networks, the McShane formula provides a method that pe-
nalizes predicted reward values if the state under consideration is far from
the states used to estimate its value (just take a look at the formula). It is
an extrapolation based on continuity, which can be quantified thanks to the
preservation of the Lipschitz constant in each state.
◦ As we said in part 3 of Section 5, other extension formulas could be used

instead of the McShane extension. We can suggest an easy way to improve
the choice: simply by choosing the best convex combination of the McShane
and Whitney formulas (which in a way represent ”extreme extensions”, as
suggested by the upper and lower labels used in [3]). The optimal parameter
of the convex combination could be estimated using some real data from the
problem and a Monte-Carlo estimate.

6. Conclusions

We have shown a reinforcement learning method to provide an expert system
for investing in a financial market. The first introduced tool, that involves approx-
imation of a reward function by using metric similarity with other known states
of the system, is based on a classic machine learning scheme on metric spaces and
the McShane extension of real functions preserving the Lipschitz constant. Re-
garding this point, the main novelty is the non-standard metric that is used, that
combines a geodesic distance —directly related with the cosine similarity of vectors
and that models the directions of the trends of the market— and the Euclidean
distance, which cannot be defined as associated to a norm in the underlying finite
dimensional linear space.

The second part of our technique consists on the development of a new reinforce-
ment learning procedure that allows the use of a smaller set M0 of experiences on
the financial market to obtain a good investment tool to act in the market. Basi-
cally, we combine the use of approximation of the reward function on neighbors of
M0 with a Lipschitz-preserving extension of the reward function by using the Mc-
Shane formula. Thus, one of the contributions of the present paper is to show that
an expert system for investment in financial markets can be done by substituting
a great set of experiences on the particular markets by a reinforcement learning
method based on the extension of Lipschitz maps. Since the results obtained are
comparable, our technique opens up the possibility of building models of similar
efficiency using much less data from experience.

7. Acknowledgements

This work was supported by the Ministerio de Ciencia, Innovación y Univer-
sidades, Agencial Estatal de Investigaciones and FEDER (Spain) [grant number
MTM2016-77054-C2-1-P.]

References

References

[1] Aliprantis, C. D., and Burkinshaw, O., Locally solid Riesz spaces with applications to

economics. Mathematical Surveys and Monographs No. 105. American Mathematical Soc.,
Providence, Rhode Island, 2003.

DREAMING MACHINE LEARNING 23

[2] Almahdi, S., and Yang. S.Y., An adaptive portfolio trading system: A risk-return portfolio

optimization using recurrent reinforcement learning with expected maximum drawdown.

Expert Systems with Applications 87 (2017): 267-279.
[3] Aronsson, G., Extension of functions satisfying Lipschitz conditions. Arkiv för Matematik,

6(6) (1967): 551-561.

[4] Asadi, K., Dipendra, M., and Littman, M.L., Lipschitz continuity in model-based reinforce-
ment learning. arXiv preprint arXiv:1804.07193 (2018). Proceedings of the 35 th Interna-

tional Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018.

[5] Bekiros, S. D., Heterogeneous trading strategies with adaptive fuzzy actorcritic reinforce-
ment learning: A behavioral approach. Journal of Economic Dynamics and Control, 34.6

(2010): 1153-1170.

[6] Bekiros, S. D., Heuristic learning in intraday trading under uncertainty. Journal of Empirical
Finance 30 (2015): 34-49.

[7] Bertoluzzo, F., and Corazza, M., Testing different Reinforcement Learning configurations
for financial trading: Introduction and applications. Procedia Economics and Finance, 1;3

(2012): 68-77.

[8] Bollen, J., Mao, H., and Zeng, X., Twitter mood predicts the stock market. Journal of
computational science, 1;2(1) (2011): 1-8.

[9] Calliess, J.P., Lipschitz optimisation for Lipschitz interpolation. In2017 American Control

Conference (ACC) 2017 May 24 (3141-3146). IEEE.
[10] Cavalcante, R.C., Brasileiro, R.C., Souza, V.L., Nobrega, J.P., and Oliveira, A.L. Compu-

tational intelligence and financial markets: A survey and future directions. Expert Systems

with Applications, 15;55 (2016): 194-211.
[11] Chen, Y., and Hao Y., A feature weighted support vector machine and K-nearest neighbor

algorithm for stock market indices prediction. Expert Systems with Applications 80 (2017):

340-355.
[12] Chong, E., Han, C., and Park, F.C., Deep learning networks for stock market analysis

and prediction: Methodology, data representations, and case studies. Expert Systems with
Applications, 15;83 (2017):187-205.

[13] Cobzaş, Ş, Miculescu, R., and Nicolae, A., Lipschitz Functions. Springer Nature Switzerland,

Cham, 2019.
[14] Das, S. P., and Padhy, S.. A novel hybrid model using teachinglearning-based optimization

and a support vector machine for commodity futures index forecasting. International Journal

of Machine Learning and Cybernetics 91 (2018): 97-111.
[15] Defoort, M., Polyakov, A., Demesure, G., Djemai, M., and Veluvolu, K. Leader-follower

fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics.

IET Control Theory & Applications. 24;9(14) (2015):2165-2170.
[16] Dempster, M.A., and Leemans, V., An automated FX trading system using adaptive rein-

forcement learning. Expert Systems with Applications, (2006) 1;30(3):543-552.

[17] Deng, Y., Bao, F., Kong, Y., Ren, Z., and Dai, Q., Deep direct reinforcement learning
for financial signal representation and trading. IEEE transactions on neural networks and

learning systems. 15;28(3) (2016):653-664.
[18] Dong, M., Yang, X., Wu, Y., and Xue J.H., Metric Learning via Maximizing the Lipschitz

Margin Ratio. arXiv preprint arXiv:1802.03464. 2018 Feb 9.

[19] Driessens, K., Ramon, J., and Gärtner, T., Graph kernels and Gaussian processes for rela-
tional reinforcement learning, Machine Learning 64 (2006):91-119.

[20] Du, X., Zha,i J., and Lv, K., Algorithm trading using q-learning and recurrent reinforcement
learning. positions. Stanford CS229, n.d. Web. 15 Dec. 2016. 1:1.

[21] Dunis, C.L., Rosillo, R., de la Fuente, D., and Pino, R., Forecasting IBEX-35 moves using

support vector machines. Neural Computing and Applications, 1;23(1) (2013):229-236.

[22] Fischer, T., and Christopher K., Deep learning with long short-term memory networks for
financial market predictions. European Journal of Operational, Research 270.2 (2018): 654-

669.
[23] Gerlein, E.A., McGinnity, M., Belatreche, A., and Coleman S., Evaluating machine learning

classification for financial trading: An empirical approach. Expert Systems with Applica-

tions, 15;54 (2016):193-207.

[24] Gottlieb, L.-A., Kontorovich, A., and Krauthgamer, A. Efficient classification for metric
data. IEEE Transactions on Information Theory, 60.9 (2014): 5750-5759.

24 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

[25] Gottlieb, L.A., Kontorovich, A., and Nisnevitch, P. Nearly optimal classification for semi-

metrics. The Journal of Machine Learning Research, 1;18(1) (2016):1233-1254.

[26] Guo, X.G., Wang, J.L., Liao, F., and Teo, R.S., Distributed adaptive control for vehicular
platoon with unknown deadzone inputs and velocity/acceleration disturbances. International

Journal of Robust and Nonlinear Control, 10;27(16) (2017):2961-2981.

[27] Jeong, G., and Kim, H.Y., Improving financial trading decisions using deep q-learning:
Predicting the number of shares, action strategies, and transfer learning. Expert Systems

with Applications, 1;117 (2019):125-138.

[28] Jia, H., Cheung, Y.-M. and Liu, J. A new distance metric for unsupervised learning of
categorical data. IEEE transactions on neural networks and learning systems 27.5 (2016):

1065-1079.

[29] Jiang, Z., Liang, J. Cryptocurrency portfolio management with deep reinforcement learning.
In2017 Intelligent Systems Conference (IntelliSys) 2017 Sep 7 (pp. 905-913). IEEE.

[30] Kearney, C., and Liu, S., Textual sentiment in finance: A survey of methods and models.
International Review of Financial Analysis, 1;33 (2014):171-85.

[31] Korn, R., and Korn E. Option pricing and portfolio optimization: modern methods of

financial mathematics. Graduate Studies in Mathematics, Vol. 31. American Mathematical
Soc., Providence, Rhode Island 2001.

[32] Krauss, C., Do, X.A., and N. Huck. Deep neural networks, gradient-boosted trees, random

forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research,
259.2 (2017): 689-702.

[33] Kyng, K., Rao, A., Sachdeva S., Spielman, D.A. Algorithms for Lipschitz Learning on

Graphs. Journal of Machine Learning Research: Workshop and Conference Proceedings, vol
40:1-34, 2015.

[34] Lahmiri, S., A variational mode decompoisition approach for analysis and forecasting of

economic and financial time series. Expert Systems with Applications, 55 (2016): 268-273.
[35] Lee, T.K., Cho, J.H., Kwon, D.S., and Sohn, S.Y., Global stock market investment strategies

based on financial network indicators using machine learning techniques. Expert Systems
with Applications,1;117 (2019):228-242.

[36] Lee, J.W., Park J., Jangmin, O., Lee, J., and Hong, E., A multiagent approach to Q-

learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans. 29;37(6) (2007):864-877.

[37] Li, H., Dagli, C.H., and Enke D., Short-term stock market timing prediction under reinforce-

ment learning schemes. In2007 IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning 2007 Apr 1 (pp. 233-240). IEEE.

[38] Li, Y., Jiang, W., Yang, L. and Wu, T., On neural networks and learning systems for

business computing. Neurocomputing, 275 (2018):1150-1159.
[39] Li, X., Xie, H., Chen, L., Wang, J., and Deng, X., News impact on stock price return via

sentiment analysis. Knowledge-Based Systems. 1;69 (2014):14-23.

[40] Liu, F., and Wang, J.,. Fluctuation prediction of stock market index by Legendre neural
network with random time strength function. Neurocomputing 83 (2012): 12-21.

[41] Liu, J., Zhang, Y., Yu, Y., and Sun, C., Fixed-time event-triggered consensus for nonlinear
multiagent systems without continuous communications. IEEE Transactions on Systems,

Man, and Cybernetics: Systems. 2018 Nov 15.

[42] Loughran, T., and McDonald, B., Textual analysis in accounting and finance: A survey.
Journal of Accounting Research, 54(4) (2016):1187-1230.

[43] Lu, C.J., Lee, T.S., and Chiu, C.C., Financial time series forecasting using independent
component analysis and support vector regression, Decision Support Systems, 47,2 (2009):
115-125,

[44] von Luxburg, U. and Bousquet, O. Distance-based classification with Lipschitz functions.

Journal of Machine Learning Research 5 (2004): 669-695.
[45] Mahmoudi, N., Docherty, P., and Moscato, P., Deep neural networks understand investors

better. Decision Support Systems, 1;112 (2018):23-34.
[46] Maknickienė, N., Rutkauskas, A.V., and Maknickas, A. Investigation of financial market

prediction by recurrent neural network. Innovative Technologies for Science, Business and

Education, 2(11) (2011):3-8.
[47] Maringer, D., and Ramtohul, T.. Regime-switching recurrent reinforcement learning for

investment decision making. Computational Management Science 9.1 (2012): 89-107.

DREAMING MACHINE LEARNING 25

[48] Martinez, L.C., da Hora, D.N., Palott,i J.R., Meira, W., and Pappa, G.L., From an artificial

neural network to a stock market day-trading system: A case study on the bm &f bovespa.

In2009 International Joint Conference on Neural Networks 2009 Jun 14 (pp. 2006-2013).
IEEE.

[49] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934): 837-842.

[50] Milman V.A., Absolutely minimal extensions of functions on metric spaces Sbornik: Math-
ematics 190,6 (1999): 859-885.

[51] Moghaddam, A.H., Moghaddam, M.H., and Esfandyari, M., Stock market index prediction

using artificial neural network. Journal of Economics, Finance and Administrative Science,
1;21(41) (2016):89-93.

[52] Moody, J., and Saffell, M.. Learning to trade via direct reinforcement. IEEE transactions

on neural Networks 12.4 (2001): 875-889.
[53] Mustata, C. Extensions of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Nu-

mer. Theor. Approx. 30.1 (2001): 61-67.
[54] Mustata, C. On the extremal semi-Lipschitz functions. Rev. Anal. Numer. Theor. Approx.

31.1 (2002): 103-108.

[55] Nassirtoussi, A.K., Aghabozorgi, S., Wah T.Y., and Ngo, D.C., Text mining for market
prediction: A systematic review. Expert Systems with Applications, 15;41(16) (2014):7653-

7670.

[56] Park, H., Sim, M.K., and Choi D.G.. An intelligent financial portfolio trading strategy using
deep Q-learning. arXiv preprint arXiv:1907.03665. 2019 Jul 8.

[57] Patel, J., Shah, S., Thakkar P, Kotecha K. Predicting stock market index using fusion of

machine learning techniques. Expert Systems with Applications, 1;42(4) (2015):2162-2172.
[58] Pendharkar, P.C., and Cusatis, P., Trading financial indices with reinforcement learning

agents. Expert Systems with Applications, 1;103 (2018):1-3.

[59] Rao, A., Algorithms for Lipschitz Extensions on Graphs, Yale University, ProQuest Disser-
tations Publishing, New Haven, 2015.

[60] Romaguera, S. and Sanchis, M. Semi-Lipschitz Functions and Best Approximation in Quasi-
Metric Spaces. Journal of Approximation Theory 103, (2000): 292-301.

[61] Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks 61 (2015):

85-117.
[62] Sezer, O. B., and A. M. Ozbayoglu. Algorithmic financial trading with deep convolutional

neural networks: Time series to image conversion approach. Applied Soft Computing 70

(2018): 525-538.
[63] Shen, S., Jiang, H., and Zhang, T., Stock market forecasting using machine learning algo-

rithms. Department of Electrical Engineering, Stanford University, Stanford, CA. 2012:1-5.

[64] Simovici, D., Mathematical analysis for machine learning and data mining, World Scientific
Pub, Singapore, 2018.

[65] Sutton, R.S., and Barto, A.G., Reinforcement learning: An introduction. MIT press; 2018

Oct 19.
[66] Tkáč M., and Verner, R., Artificial neural networks in business: Two decades of research.

Applied Soft Computing, 1;38 (2016):788-804.
[67] Ticknor, J. L., A Bayesian regularized artificial neural network for stock market forecasting.

Expert Systems with Applications 40.14 (2013): 5501-5506.

[68] Wang, B., Huang, H., and Wang, X., A novel text mining approach to financial time series
forecasting. Neurocomputing, 15;83 (2012):136-145.

[69] Wang, B., Huang, H., and Wang X., A support vector machine based MSM model for finan-
cial short-term volatility forecasting. Neural Computing and Applications. 1;22(1) (2013):21-
28.

[70] Xiao, G., Zhang, H., Luo, Y., and Qu, Q., General value iteration based reinforcement

learning for solving optimal tracking control problem of continuoustime affine nonlinear
systems. Neurocomputing, 5;245 (2017):114-123.

[71] Yeh, C.Y., Huang, C.W., and Lee, S.J., A multiple-kernel support vector regression approach
for stock market price forecasting. Expert Systems with Applications, 1;38(3) (2011):2177-
2186.

[72] Yin, Y., Shang, P., and Xia, J., Compositional segmentation of time series in the financial

markets. Applied Mathematics and Computation, 268 (2015): 399-412.

26 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

[73] Zhang, X., Hu Y., Xie K., Zhang W., Su L., and Liu M., An evolutionary trend reversion

model for stock trading rule discovery. Knowledge-Based Systems, 1;79 (2015):27-35.

[74] Zhang, J., and Maringer, D., Using a genetic algorithm to improve recurrent reinforcement
learning for equity trading. Computational Economics, 1;47(4) (2016):551-567.

[75] Zhiqiang, G., Huaiqing, W., and Quan, L., Financial time series forecasting using LPP and

SVM optimized by PSO. Soft Computing 17.5 (2013): 805-818.

DREAMING MACHINE LEARNING 27

José M. Calabuig is professor of Applied Mathematics at the Polytechnic Univer-
sity of Valencia and researcher at the Institute of Pure and Applied Mathematics
of this university. His research work has focused on some Mathematical Analysis
topics -mainly, space and the Banach Operator Theory-, in which he has published
more than 40 research papers. He is also an active researcher in applications of
mathematical structures in computing, economics and other applied areas, and is
currently developing several research projects on anti-fraud computational tech-
niques, amd applications of blockchain in public administration. This research
paper shows some of the results on the theoretical aspects of these projects.

Hervé Falciani is a computer engineer and analyst who has developed an active
career against economic fraud in the financial markets. He has collaborated on
Internet security and tax fraud issues with several European governments, public
administrations and social organizations. He is currently participating in several
anti-fraud projects as an analyst and researcher as a collaborator of the Institute of
Pure and Applied Mathematics of the Polytechnic University of Valencia. He also
worked for some years as a Data Scientist at INRIA, developing some deep learning
tools for the detection of anomalous events, mainly in terms of graphical data.

28 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Enrique A. Sánchez Pérez is also professor of Applied Mathematics at the Poly-
technic University of Valencia and researcher at the Institute of Pure and Applied
Mathematics. He is an active researcher in Functional Analysis, in which he has
published more than 130 articles and several books. He has also worked on interdis-
ciplinary projects with research groups in other sciences, such as Health Sciences,
Acoustics, Information Science and Computer Science. He also participates in the
project for the development of the mathematical bases of anti-fraud computer tools.

Instituto Universitario de Matemática Pura y Aplicada. Universitat Politècnica

de València. 46022 Valencia. Spain, jmcalabu@mat.upv.es, herfal@upvnet.upv.es, ea-
sancpe@mat.upv.es

