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Abstract

Reinforcement Learning (RL) technologies are powerful to
learn how to interact with environments and have been success-
fully applied to variants of important applications. Q-learning
is one of the most popular methods in RL, which uses temporal
difference method to update the Q-function and can asymptot-
ically learn the optimal Q-function. Transfer Learning aims to
utilize the learned knowledge from source tasks to help new
tasks. For supervised learning, it has been shown that transfer
learning has the potential to significantly improve the sample
complexity of the new tasks. Considering that data collection
in RL is both more time and cost consuming and Q-learning
converges slowly comparing to supervised learning, differ-
ent kinds of transfer RL algorithms are designed. However,
most of them are heuristic with no theoretical guarantee of the
convergence rate. Therefore, it is important for us to clearly un-
derstand when and how will transfer learning help RL method
and provide the theoretical guarantee for the improvement of
the sample complexity. In this paper, we propose to transfer
the Q-function learned in the source task to the target in the
Q-learning of the new task when certain safe conditions are
satisfied. We call this new transfer Q-learning method tar-
get transfer Q-Learning. The safe conditions are necessary
to avoid the harm to the new tasks brought by the transfer
target and thus ensure the convergence of the algorithm. We
study the convergence rate of the target transfer Q-learning.
We prove that if the two tasks are similar with respect to the
MDPs, the optimal Q-functions of the two tasks are similar
which means the error of the transferred target Q-function
in the new task is small. Also, the convergence rate analysis
shows that the target transfer Q-Learning will converge faster
than Q-learning if the error of the transferred target Q-function
is smaller than the current Q-function in the new task. Based
on our theoretical results and the relationship between the Q
error and the Bellman error, we design the safe condition as
the Bellman error of the transferred target Q-function is less
than the current Q-function. Our experiments are consistent
with our theoretical founding and verified the effectiveness of
our proposed target transfer Q-learning method.

∗This work was done when the first author was visiting Microsoft
Research Asia.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction
Reinforcement Learning (RL) (Sutton, Barto, and others
1998) technologies are very powerful to learn how to in-
teract with environments and have been successfully applied
to variants of important applications, such as robotics, com-
puter games and so on (Kober, Bagnell, and Peters 2013;
Mnih et al. 2015; Silver et al. 2016; Bahdanau et al. 2016).

Q-learning (Watkins 1989) is one of the most popular RL
algorithms which uses temporal difference method to update
the Q-function. To be specific, Q-learning maps the current
Q-function to a new Q-function by using Bellman operator
and use the difference between these two Q-functions to up-
date the Q-function. Since Bellman operator is a contractive
mapping, Q-learning will converge to the optimal Q-function
(Jaakkola, Jordan, and Singh 1994). Comparing to supervised
learning algorithms, Q-learning converges much slower due
to the interactions with the environment. At the same time,
the data collection is both very time and cost consuming in
RL. Thus, it is crucial for us to utilize available information
to save the sample complexity of Q-Learning.

Transfer learning aims to improve the learning perfor-
mance on a new task by utilizing knowledge/model learned
from source tasks. Transfer learning has a long history in
supervised learning (Li, Yang, and Xue 2009; Pan, Yang,
and others 2010; Oquab et al. 2014). Recently, by leverag-
ing the experiences from supervised transfer learning, re-
searchers developed different kinds of transfer learning meth-
ods for RL, which can be categorized into three classes:
(1) instance transfer in which old data will be reused in
the new task (Sunmola and Wyatt 2006; Zhan and Taylor
2015); (2) representation transfer such as reward shaping
and basis function extraction (Konidaris and Barto 2006;
Barreto et al. 2017); (3) parameter transfer (Song et al. 2016)
in which the parameters of the source task will be partially
merged into the model of the new task. While supervised
learning is a pure optimization problem, reinforcement learn-
ing is a more complex control problem. To the best of our
knowledge, most of the existing transfer reinforcement learn-
ing algorithms are heuristic with no theoretical guarantee of
the convergence rate (Bone 2008), (Taylor and Stone 2009)
and (Lazaric 2012). As mentioned by (Spector and Belongie
2017), the transfer learning method potentially do not work
or even harm to the new tasks and we do not know the reason
since the absence of the theory. Therefore, it is very important

ar
X

iv
:1

80
9.

08
92

3v
1 

 [
cs

.L
G

] 
 2

1 
Se

p 
20

18



for us to clearly understand how and when transfer learning
will help reinforcement learning save sample complexity.

In this paper, we design a novel transfer learning method
for Q-learning in RL with theoretical guarantee. Different
from the existing transfer RL algorithms, we propose to trans-
fer the Q-function learned in the source task as the temporal
difference update target of the new task when certain safe
conditions are satisfied. We call this new transfer Q-learning
method target transfer Q-learning. The intuitive motivation
is that when the two RL tasks are similar to each other, their
optimal Q-function will be similar which means the trans-
ferred target is better ( the error is smaller than the current
Q-function ). Combine it with that a better target Q-function
in Q-learning will help to accelerate the convergence, we
may expect that the target transfer Q-learning method will
outperform the Q-learning. The safe conditions are neces-
sary to avoid the harm to the new tasks and thus ensure the
convergence of the algorithm.

We prove that target transfer Q-learning has the theoreti-
cal guarantee of convergence rate. Furthermore, if the two
MDPs and thus the optimal Q-functions in the source and
new RL tasks are similar, the target transfer Q-learning con-
verges faster than Q-learning. To be specific, we prove the
error of target transfer Q-learning consists of two errors: the
initialization error and the sampling error. Both of the er-
rors are increasing with the the product of discount factor
γ and the relative Q-function error ratio β (error ratio for
simplicity) which measures the relative error of the target
Q-function comparing with the current Q-function in the new
task. We called γβ discounted relative Q-function error ra-
tio(discounted error ratio for simplicity). The smaller the
discounted error ratio is, the faster the convergence is. And
if the discounted error ratio is larger than 1, the convergence
will no longer guaranteed.

If the two RL tasks are similar, the learned Q-function
in the source task will be close to the optimal Q-function
comparing to the current Q-function in the new task. Thus,
the discounted error ratio γβ will be small(especially for the
early stage) when we transfer the learned Q-function from
the source task to the target of the new task. Please note that
the traditional Q-learning is a special case for target transfer
Q-learning with constant discounted error ratio γ.

Therefore, our convergence analysis for target transfer Q-
learning help us design the safe condition. We can transfer
the target if it will lead the discounted error ratio γβ smaller
than 1 . We call it error ratio safe condition. Specifically,
in the early stage of the training, the Q-function in the new
task is not fully trained, the learned Q-function in the source
task it a better choice with a smaller error ratio. With the
updating of the Q-function in the new task, its error ratio
becomes larger. When its discounted error ratio is close or
larger than 1, the safe condition will not be satisfied, and we
will stop transferring the target to avoid the harm brought
by the transfer learning. Following the standard way in Q-
learning, we estimate the error ratio about the error of the
Q-function w.r.t the optimal Q-function by the Bellman error.

Our experiments on synthetic MDPs fully support our con-
vergence analysis and verify the effectiveness of our proposed
target transfer Q-Learning with error ratio safe condition.

Related Work
This section briefly outline related work in transfer learning
in reinforcement learning.

Transfer Learning in RL(Taylor and Stone 2009) (Lazaric
2012) aims to improve learning in new MDP tasks by bor-
rowing knowledge from a related but different learned MDP
tasks. In paper (Laroche and Barlier 2017), the authors
propose to use instance transfer in the Transfer Reinforce-
ment Learning with Shared Dynamics (TRLSD) setting in
which only the reward function is different between MDPs.
In paper (Gupta et al. 2017), the authors propose to use
the representation transfer and learned the invariant fea-
ture space. The papers (Karimpanal and Bouffanais 2018;
Song et al. 2016) propose to use the parameter transfer to
guide the exploration or to initialize the Q-function of the
new task directly. In paper (Al-Shedivat et al. 2017), the au-
thors propose to use the meta-learning method to do transfer
learning in RL. All these works are empirically evaluated and
no theoretical analysis for the convergence rate.

There are few works that have the convergence analysis. In
paper (Barreto et al. 2017), the authors use the representation
transfer but only consider the TRLSD setting. (Zhan and Tay-
lor 2015) propose a method by using instance transfer. They
gives the theoretical analysis of the asymptotic convergence
and no finite sample performance guarantee.

Q Learning Background
Consider the reinforcement learning problem with Markov
decision process (MDP) M , (S,A, P, r, γ), where S is
the state space, A is the action space, P = {P as,s′ ; s, s ∈
S, a ∈ A} is the transition matrix and P as,s′ is the transi-
tion probability from state s to state s′ after taking action
a, r = {r(s, a); s ∈ S, a ∈ A} is the reward function
and r(s, a) is the reward received at state s if taking ac-
tion a, and 0 < γ < 1 is the discount factor. A policy
π : A × S → [0, 1] indicates the probability to take each
action at each state. Value function for policy π is defined
as: V π(s) , E [

∑∞
t=0 γ

tr(st, at)|s0 = s, π]. Action value
function for policy π is also called Q-function and is defined
as:

Qπ(s, a) , E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, π

]
.

Without loss of generality, we assume that the rewards all lie
between 0 and 1. The optimal policy is denoted π∗ and has
value function V ∗M (s) and Q value function Q∗M (s, a).

As we know, the Q-function in RL satisfies the following
Bellman equation:

Qπ(s, a) = r(s, a) + γ E
ã∼π(a|s)

s′∼P (s′|s,a)

[Qπ(s′, ã)|st = s]

Denote the right hand side(RHS) of the equation as
TπQπ(s, a) , Tπ is called Bellman operator for policy π.
Similar, consider the optimal Bellman equation:

Q∗(s, a) = r(s, a) + γ E
ã∼π(a|s)

s′∼P (s′|s,a)

[Q∗(s′, ã)|st = s]



(RHS) of the equation is been denoted as TπQπ(s, a),T ∗ is
called optimal Bellman operator. It can be proved that the
optimal Bellman operator is a contraction mapping for the
Q-function. We know that there is an unique fix point which
is optimal Q-function by contraction mapping theorem. Q-
learning algorithm is designed by the above theory. Watkins
introduced the Q-learning algorithm to estimate the value of
state-action pairs in discounted MDPs (Watkins 1989) :

Qt+1(s, a)

= (1− αt)Qt(s, a) + αt

(
rt(s, a) + γmax

ã
Qt(s

′, ã)
)

We introduce the max norm error to measure the quality of
Q-function:

MNE(Q) = max
s,a
|Q(s, a)−Q∗(s, a)|.

Target Transfer Q-Learning
First of all, we formalize transfer learning in RL problem.
Secondly, We propose our new transfer Q-learning method
Target Transfer Q-Learning (TTQL) and introduce the intu-
ition.

Transfer Learning in RL(Taylor and Stone 2009) (Lazaric
2012) aims to improve learning in new MDP tasks by bor-
rowing knowledge from a related but different learned MDP
tasks.

According to the definition of MDPs,M , (S,A, P, r, γ),
we consider the situation that two MDPs are different in
transition probability P , reward function r and discount fac-
tor γ. Assume there are two MDPs: source MDP M1 =
(S,A, P1, r1, γ1) and new MDP M2 = (S,A, P2, r2, γ2),
Q∗1 and Q∗2 are the corresponding optimal Q-functions. Let
M1 be the source domain and we have already learned the
Q∗1. The goal of transfer in RL considered in this work is how
we can use the information of M1 and Q∗1 to achieve learning
speed improvement in M2.

To solve the problem mentioned above, we propose to use
TTQL method. TTQL use the Q-function learned from the
source task as the target Q-function in the new task when
safe conditions satisfied. The safe condition ensures that the
transferred target only appears if it can help to accelerate
the training. Otherwise we will replace it with the current
Q-function in the new MDP’s learning progress. We describe
the TTQL in Algorithm 1.

The intuitive motivation is that when the two RL tasks are
similar to each other, their optimal Q-function will be similar.
Thus the transferred target is better ( the error is smaller than
the current Q-function ) and the better target can help to
accelerate the convergence.

We define the distance between two MDPs as ∆(M1,M2)

∆(M1,M2) = max
s,a
|Q∗1(s, a)−Q∗2(s, a)|.

The following Proposition 1 shows the relation between the
distance of two MDPs and the component of two MDPs.

Proposition 1. Assume two MDPs, M1 = (S,A, P1, r1, γ1)
and M2 = (S,A, P2, r2, γ2), Let the corresponding optimal

Algorithm 1 Target Transfer Q Learning

Require: initial Q-learning Q1 , source task learned Q-
learning Q∗source, total step n

1: for t = 1, . . . , n do
2: αt = 1

t+1

3: flag = safe-condition(Q∗source, Qt(·, ·))
4: if flag = True then
5: Qtarget = Q∗source
6: else
7: Qtarget = Qt
8: end if
9: for s ∈ S, a ∈ A do

10: Qt+1(s, a) = (1 − 1
n )Qt(s, a) +

1
n (r(s, a) + γmaxãQtarget(s

′, ã))
11: end for
12: end for
Ensure: Qn+1

Q-functions be Q∗1 and Q∗2, then we have

∆(M1,M2) = ‖Q∗1 −Q∗2‖∞ ≤ ∆̃(M1,M2) (1)

,
‖r1 − r2‖∞

1− γ′ +
γ′′‖r′‖∞
(1− γ′′)2 ‖P1 − P2‖∞ +

|γ1 − γ2|
(1− γ1)(1− γ2)

‖r′′‖∞.

for ∀(γ′, γ′′, r′, r′′) ∈ Ω, where Ω is the available combina-
tion of the (γ1, γ2, γ1, γ2).

Proof. Without loss of generality, we assume γ1 ≤ γ2,
‖r2‖∞ ≤ ‖r1‖∞, we will show that other cases can be
proved similarly. We define the following auxiliary MDPs:
M̂3 = (S,A, P1, r2, γ1), M̂4 = (S,A, P2, r2, γ1), and let
the corresponding optimal Q-functions be Q∗3 and Q∗4. We
have

‖Q∗1 −Q∗2‖∞ (2)
= ‖Q∗1 −Q∗3 +Q∗3 −Q∗4 +Q∗4 −Q∗2‖∞ (3)
≤ ‖Q∗1 −Q∗3‖∞ + ‖Q∗3 −Q∗4‖∞ + ‖Q∗4 −Q∗2‖∞ (4)

Notice that in each term, two MDPs are only different in one
component. Using the results of (Csáji and Monostori 2008),
we have that ‖Q∗1 − Q∗3‖∞ ≤

‖r1−r2‖∞
1−γ1 , ‖Q∗3 − Q∗4‖∞ ≤

γ1‖r2‖∞
(1−γ1)2 ‖P1 − P2‖∞, ‖Q∗4 −Q∗2‖∞ ≤

|γ1−γ2|
(1−γ1)(1−γ2)‖r2‖∞.

Combine the above upper bound and set γ′ = γ1, γ
′′ =

γ1, r
′ = r2, r

′′ = r2, we can get the in-equation (1).
In other situation, we can construct auxiliary MDPs like

above and use the similar procedure to prove the theo-
rem. After traversing all the available combination of the
(γ1, γ2, γ1, γ2), we can prove the Proposition 1

By the Proposition 1, we can conclude that if the two RL
tasks are similar, in the sense of that the component of two
MDPs are similar, the learned Q-function in the source task
will be close to the optimal Q in the new task.

A question is that when to transfer the target will have
performance guarantee. Here, we need safe conditions which



are necessary to avoid the harm to the new tasks and thus
ensure the convergence of the algorithm. We can now heuris-
tically relate it to the distance between two MDPs and the
current learning quality. The concrete value of the safe condi-
tion need to further investigate through quantified theoretical
analysis and we present these result in the following section.

Convergence Rate of TTQL

In this section, we present the convergence rate of the Target
Transfer Q Learning (TTQL) and make discussions for the
key factor that influence the convergence. Theorem 1 analysis
the convergence of the target transfer Q learning. Theorem
2 and 3 analysis two key factors of the convergence rate.
Theorem 4 discuss the convergence rate for the TTQL totally.

First of all, Theorem 1 analysis the convergence rate for
the target transfer method which is

Qt+1(s, a) = (1− 1

n
)Qt(s, a)+

1

n

(
r(s, a) + γmax

ã
Qtarget(s

′, ã)
)

For simplicity, we denote En = MNE(Qn). We denote
the error ratio βn =

MNE(Qtarget)
En

and β if we do not specify
the learning steps n.

Theorem 1. we denote wk(βn−k:n) =
∏n−1
i=n−k(i+γβi)∏n

i=n−k i
,

αn =
∏n−1
i=1 (i+γβi)∏n

i=2 i
. If 0 ≤ βn ≤ 1, then with probability

1− δ we have

En ≤ αnE1︸ ︷︷ ︸
initialization error

+

√
ln 1/δ

∑n−1
k=0 w

2
k(βn−k:n)

2︸ ︷︷ ︸
sampling error

.

Before showing the proof of Theorem 1, we first introduce
a modified Hoeffding inequality lemma which bounds the
distance between the weighted sum of the bounded random
variable and its expectation.

Lemma 1. Let a < xi < b almost surely , Sn =
∑n
i=1 wixi,

then we have

Sn − E[Sn] ≤

√√√√1

2
log

1

δ

n∑
k=1

w2
k(b− a)2. (5)

Proof. We first prove the inequality P (Sn − E[Sn] ≥ ε) ≤
exp

(
− 2ε2∑n

k=1 w
2
k(b−a)2

)
For s, ε ≥ 0, Markov’s inequality and the independence of

xi implies
P (Sn − E [Sn] ≥ ε) (6)

= P
(
es(Sn−E[Sn]) ≥ esε

)
(7)

≤ e−sεE
[
es(Sn−E[Sn])

]
(8)

= e−sεE
[
es(

∑n
i=1 wixi−E[

∑n
i=1 wixi])

]
(9)

= e−sε
n∏
i=1

E
[
eswi(xi−E[xi])

]
(10)

≤ e−sε
n∏
i=1

e
s2w2

i (b−a)
2

8 (11)

= exp

(
−sε+ 1

8
s2(b− a)2

n∑
i=1

w2
i

)
. (12)

Now we consider the minimum of the right hand side of the last
inequality as a function of s, and denote

g(s) = −sε+ 1
8
s2(b− a)2

n∑
i=1

w2
i

Note that g is a quadratic function and achieves its minimum at
s = 4ε

(b−a)2
∑n
i=1 w

2
i

, Thus we get

P (Sn − E [Sn] ≥ ε) ≤ exp
(
− 2ε2∑n

k=1 w
2
k(b− a)2

)
(13)

We can easily obtain the second part of the Lemma 1 by inverse the
inequality.

Proof of Theorem 1. Our analysis are derived based on the
following synchronous generalized Q-learning setting. Com-
pare with the traditional synchronous Q-learning 1, we re-
place the target Q-function as the independent Q-function
Q′(s, a) rather than the current one Qn(s, a).

∀s, a : Q0(s, a) = q(s, a)

∀s, a : Qn(s, a) =

(
n− 1

n
)Qn−1(s, a) +

1

n

(
r(s, a) + γmax

ã
Q′n−1(s′, ã)

)
(14)

Let Q′n(s, a) satisfied the following condition ,

0 ≤ maxs,a (Q′n(s, a)−Q∗(s, a))

maxs,a (Qn(s, a)−Q∗(s, a))
≤ 1 (15)

Note that if we set Q′n(s, a) = Q∗source, we can verify 0 ≤
βn ≤ 1 according to inequality 15. First of all, we decompose
the update role,

Qn(s, a)

=
n− 1

n
Qn−1(s, a) +

1

n

[
r(s, a) + γmax

ã
Q′n−1(s′, ã)

]
=
n− 1

n
Qn−1(s, a) +

1

n

[
r(s, a) + γmax

ã
Q∗(s′, ã)

+γmax
ã

Q′n−1(s′, ã)− γmax
ã

Q∗(s′, ã)
]

1It is the same as the commonly used setting or more gen-
eral((Asadi and Littman 2017), (Even-Dar and Mansour 2003),
(Azar et al. 2013) (Haarnoja et al. 2017)).



If we denote εn(s, a) = Qn(s, a) − Q∗(s, a), x(s′) =
γmaxãQ

∗(s′, ã) and recall the definition of βn we can have

εn(s, a)

≤n− 1

n
εn−1(s, a) +

1

n
[x(s′)− Es′x(s′)] +

1

n
γβnεn−1(s′, ã)

≤n− 1

n
εn−1(s, a) +

1

n
[x(s′)− Es′x(s′)] +

1

n
γβnEn−1

The last step is right because εn(s, a) ≤ En for ∀s, a. Taking
maximization of the both sides(RHS) of the inequality and
using recursion of E we can have

En ≤
n− 1 + γβn

n
En−1 +

1

n
[x(s′)− Es′x(s′)]

≤

n−1∏
i=1

(i+ γβi)

n∏
i=2

i
E1 +

n−1∑
k=1

n−1∏
i=n−k

(i+ γβi)

n∏
i=n−k

i
[x(s′k)− E

s′
x(s′)]

= αnE1 +

n−1∑
k=1

wk(β)[x(s′k)− Es′x(s′)]

According to Lemma 1(weighted Hoeffding inequality), with
probability 1-δ, we have

En ≤αnE1 +

√
ln 1/δ

∑n−1
k=0 w

2
k(βn−k:n)

2
(16)

The convergence result reveals the how the error ratio β
influence the convergence rate. In short, if we can find a better
target Q-function, we can learn much more faster.

We can see from the Theorem 1 that there are two key
factors that influence the convergence rate. One is the ini-
tialization error αnE1, the other one is the sampling error√

ln 1/δ
∑n−1
k=0 w

2
k(βn−k,n)

2 . To make it clear, we analysis the
order of these two terms in 2 and 3 respectively.

Theorem 2. Denote wk(βn−k:n) =
∏n−1
i=n−k(i+γβi)∏n

i=n−k i
, and

βi ≤ β∗ for ∀i ≤ n, we have

n−1∑
k=0

(wk(βn−k,n))2 ≤


e2γβ

∗

n2−2γβ∗

(
n1−2γβ∗

1−2γβ∗ −
1

1−2γβ∗ + 1
)
,

γβ∗ 6= 0.5
(n−2)2γβ

∗

n2 e2γβ
∗
(1 + ln(n)),

γβ∗ = 0.5

.

Based on the results of Theorem 2, we can get the follow-
ing corollary directly.

Corollary 1. The order of
∑n−1
k=0 (wk(βn−k:n))

2 is:
O( 1

n ), if γβ∗ < 0.5,.
O( 1

n2−2γβ∗ ), if 0.5 < γβ∗ < 1.
O( 1

n2−2γβ∗ ln(n)), if γβ∗ = 0.5.
The sufficient condition for the limn→∞

∑n−1
k=0 (wk(β∗))

2
=

0 is γβ∗ < 1

Before showing the proof of Theorem 2, we first introduce
a Lemma which will be used.
Lemma 2. If a < b,

∑b
i=a

1
i ≤

1
a + ln(b)− ln(a).

Proof.

b∑
i=a

1

i
≤ 1

a
+

b∑
i=a+1

1

i
≤ 1

a
+

b∑
i=a+1

∫ i

k=i−1

1

k
dk

≤ 1

a
+

∫ b

k=a

1

k
dk ≤ 1

a
+ ln(b)− ln(a)

Proof of Theorem 2.

n−1∑
k=0

(wk(βn−k:n))2 ≤
n−1∑
k=0

(∏n−1
i=n−k(i+ γβ∗)∏n

i=n−k i

)2

=︸︷︷︸
(a)

n−1∑
k=0

exp

{
2

[
n−1∑
i=n−k

ln(i+ γβ∗)−
n∑

i=n−k

ln i

]}

=︸︷︷︸
(b)

1

n2

n−1∑
k=0

exp

{
2

n−1∑
i=n−k

[ln(i+ γβ∗)− ln i]

}

≤︸︷︷︸
(c)

1

n2

n−1∑
k=0

exp

{
2

n−1∑
i=n−k

γβ∗

i

}

≤︸︷︷︸
(d)

1

n2

n−1∑
k=0

exp {2γβ∗ [ln(n− 2)− ln(n− k) + 1]}

=
(n− 2)2γβ

∗

n2
e2γβ

∗
n−1∑
k=0

1

(n− k)2γβ∗

=
(n− 2)2γβ

∗

n2
e2γβ

∗
n∑
t=1

1

t2γβ∗
(17)

We rewrite the product term in (a) into the summarization
term. Then we drop one term outside of the summarization
to align the i sum from n− k to n− 1 in (b). (c) follows the
concave property of the ln function. (d) follows the relation
between summarization and integral as shown in Lemma 2.
The last two terms is right because we only rearrange the
term and write it simply.

If γβ∗ = 0.5, 2γβ∗ = 1,

n−1∑
k=0

(wk(βn−k:n))
2 ≤ 1

n2−2γβ∗
e

2γβ∗
n−1 (1 + ln(n))

If γβ∗ 6= 0.5,

n−1∑
k=0

(wk(β∗))
2 ≤ 1

n2−2γβ∗︸ ︷︷ ︸
(e)

e2γβ
∗︸ ︷︷ ︸

(f)

 n1−2γβ∗

1− 2γβ∗︸ ︷︷ ︸
(g)

− 1

1− 2γβ∗
+ 1︸ ︷︷ ︸

(h)


Note that term (f) is a constant.
If γβ∗ < 0.5, term(g) will dominant the order,∑n−1
k=0 (wk(βn−k:n))

2 will be O( 1
n ).

If γβ∗ > 0.5, term(h) will dominant the order,



∑n−1
k=0 (wk(βn−k:n))

2 will be O( 1
n2−2γβ∗ ).

If γβ∗ = 0.5,
∑n−1
k=0 (wk(βn−k:n))

2 will be
O( 1

n2−2γβ∗ ln(n)).
In all case, the (18) will converge to 0 as n will go to∞.

Note that if γβ∗ < 1. The theorem 2 shows,
∑n−1
k=0 w

2
k

converges to 0 and the convergence rate is highly related to
the γβ∗. The next theorem shows the upper bound of the
coefficient αn in initialization error.

Theorem 3. Denote αn =
∏n−1
i=1 (i+γβi)∏n

i=2 i
, and βi ≤

β∗ for ∀i ≤ n, we can bound αn as:

αn ≤
(n− 1)γβ

∗

n
(1 + γβ∗)e(0.5−ln 2)γβ∗ =

C1
γ,β∗

n1−γβ∗
.

(18)

where C1
γ,β∗ = (1 + γβ∗)e(0.5−ln 2)γβ∗ is a constant

Proof of Theorem 3.

αn ≤
∏n−1
i=1 (i+ γβ∗)∏n

i=2 i
(19)

= exp

{
n−1∑
i=1

ln(i+ γβ∗)−
n∑
i=2

ln i

}
(20)

= (1 + γβ∗) exp

{
n−1∑
i=2

(ln(i+ γβ∗)− ln i)− lnn

}
(21)

≤ (1 + γβ∗) exp

{
n−1∑
i=2

(
γβ∗

i

)
− lnn

}
(22)

≤ (1 + γβ∗) exp {γβ∗(0.5 + ln(n− 1)− ln 2)− lnn} (23)

≤ (n− 1)γβ
∗

n
(1 + γβ∗)e(0.5−ln 2)γβ∗ (24)

We rewrite the product term in the second equation into
the summarization term. The third equation is rearrange the
terms. The first inequality follows the concave property of ln
function. The second inequality follows the relation between
summarization and integral(Lemma 2).

Note that if γβ∗ < 1. The theorem 3 shows, αn converge
to 0 and the convergence rate is in order O( 1

n1−γβ∗ ).
Combining Theorem 1, 2 and 3, we have the following

Theorem:

Theorem 4. The TTQL will converge if we set the safe con-
dition as

β̂n =
∆(M1,M2)

En
≤ 1.

And the convergence rate is:

En ≤


O( 1

n1−γβE1 +
√

1
n ), if γβ < 0.5

O( 1
n1−γβE1 + 1

n1−γβ

√
lnn), if γβ = 0.5

O( 1
n1−γβE1 + 1

n1−γβ ), if 0.5 < γβ < 1

.

(25)

Note that if the safe condition is satisfied, we setQtarget =
Q∗source and β

We would like to make the following discussion:
(1) The distance between two MDPs influence the con-

vergence rate. According to the Proposition 1, if two MPDs
have the similar components(P , r, γ), the optimal Q-function
of these two MDPs will be closed. The discounted error ratio
γβn will be relatively small in this situation and the conver-
gence rate will be improved.

(2) Q-learning is the special case. Please note that the
traditional Q-learning is a special case for target transfer
Q-learning with Qtarget = Qn−1. Thus the error ratio is a
constant and βn = 1 and our results reduce to the previous
(Szepesvári 1998). It shows that if the β < 1 in TTQL,the
TTQL converge faster than traditional Q-learning.

(3) The TTQL method do converge with the safe con-
dition. As shown in Theorem 4, the TTQL method will
converge. And the convergence rate changes under differ-
ent discounted error ratio γβ. The smaller γβ will lead to a
quicker convergence rate. Intuitively, smaller β means that
Q′ provides more information about the optimal Q-function.
Besides, the discount factor γ can be viewed as the ”horizon”
of the infinite MDPs. Smaller γ means that the expected long-
term return is less influenced by the future information and
the immediate reward is assigned more weights.

(4) Safe condition is necessary. As mentioned above, the
safe condition is defined as β̂n ≤ 1. If the safe condition is
satisfied, we set Qtarget = Q∗source and γβn = γβ̂n ≤ γ <
1. If safe condition is not satisfied, we set Qtarget = Qn and
γβn = γ < 1. So with the safe condition, TTQL algorithms
do converge at any situation. At the beginning of the new
task training, due to the large error of the current Q-function,
βn = β̂n will be relatively small and the transfer learning
will be greatly helpful. Speedup would come down as the
error of current Q-function, become smaller. Finally when β
is equal to or larger than one we need to remove the transfer
Q target which means to set β = 1 to avoid the harm brought
by the transfer learning.

Discussion for Error Ratio Safe Condition

Until now, we can conclude that TTQL will converge. TTQL
method need the safe condition to guarantee the convergence.
In this section, We discuss the safe conditions.

At the beginning, we propose the safe condition is that can
guarantee the algorithms convergence generally. Heuristi-
cally, the safe condition is related to the distance between
two MDPs and the quality of the current value function. Then
according to the Theorem 1, we know that the safe condition
is β̂n ≤ 1 which we called error ratio safe condition. Under
the transfer learning in RL setting, it means that the distance
between two MDPs need to be smaller than the error of the
current Q-function. In the real algorithms, it is impossible
to calculate the error of the current Q-function MNE(Qn)
and the distance between two MDPs precisely. However it
is easy to calculate the bellman error MNBE(Q(s, a)) =
maxs,a |Q(s, a)− (r(s, a) + γEs′ maxã(Q(s′, ã)))|. We



can prove that these two metrics follow the relationship as:

MNE(Q) ≤ MNBE(Q)

1− γ
.

Following the standard way in Q-learning, we estimate the
error ratio about the error of the Q-function w.r.t the optimal
Q-function by the Bellman error.

Algorithm 2 Error Ratio Safe Condition

Require: leared Q∗1 , current Q-function Qn
1: if MNBE(Q∗1) ≤MNBE(Qn) then
2: flag = True
3: else
4: flag = False
5: end if

Ensure: flag

Proof of the relation between MNE and MNBE. Denote
BQ(s, a) = r(s, a)− γEs′ maxãQ(s′, ã) as bellman operator.

MNE(Q)

≤‖Q(s, a)− BQ∗(s, a)‖∞ + ‖BQ∗(s, a)−Q∗(s, a)‖∞
≤MNBE(Q) + ‖γEs′ max

ã
Q(s′, ã)− γEs′ max

ã
Q∗(s′, ã)‖

≤MNBE(Q) + γMNE(Q)

So we can proof that

MNE(Q) ≤ MNBE(Q)

1− γ .

Experiment
In this section, we report our simulation experiments to sup-
port our convergence analysis and verified the effectiveness
of our proposed target transfer Q-Learning with the error
ratio safe condition.

We consider the general MDP setting. We construct the ran-
dom MDP by generating the transition probability P (s′|s, a),
reward function r(s, a) and discount factor γ and fixing the
state and action space size as 50.

First of all, we generate 9 different MDPs (M11 ∼ M33)
as source tasks and then generate the new MDP M0. Let
M11,M12,M13 be different from M0 in γ and the distance
fromM1· andM0 increase asM11 < M12 < M13. Similarly,
MDPs M21,M22,M23 is different from M0 in r, and MDPs
M31,M32,M33 is different from M0 in P . Then we run
our algorithm to transfer the Q-function learned on these
9 source MPDs to the new MDP M0. The result is shown
in Figure1a, 1b and 1c. Note that the dash line Q is the Q-
learning algorithm with no transfer learning, and the solid
line with various markers are the TTQL algorithm.

Secondly, we design three MDPs M4,M5,M6 as source
task MDPs, and the distance between these MDPs and the tar-
get becomes larger and larger. Then we use TTQL to transfer
the Q-function learning from them to new MDP M0 with and
without the safe condition. The results is shown in Figure1d,
1e and 1f. Note that W − SC means that the experiment is

(a) (d)

(b) (e)

(c) (f)

Figure 1: Left three figures are the learning errors w.r.t the
three types of different MDPs ( Be different in γ, r, P re-
spectively ). Right three figures are the learning error w.r.t
the three different distance transfer task and both training
with/without the safe condition.

run with the safe condition and WO − SC means without
the safe condition.

We have the following observations. (1) TTQL method out-
performs Q-learning in all experiments. (2) Running TTQL
on the more similar MDPs will lead to the faster convergence
rate. Note that the curve in Figure 1e are closed to each other.
It is because the infinity norm of the P will be small because
the scale of the P is small and is consistent with the Propo-
sition 1. (3) The safe condition is necessary to ensure the
convergence of the algorithms in various situation. All these
observations are consistent with our theoretical findings.

Conclusion
In this paper, we proposed a new transfer learning in RL
method target transfer Q-learning(TTQL). The method trans-
fer the Q-function learned in the source task to the target of
Q-learning in the new task when the safe conditions are satis-
fied. We prove the TTQL method do converge with the safe
condition and the convergence rate is quicker than Q-learning
if the two MDPs are not faraway from each other. The theo-
retical analysis helps to design safe conditions which is key
to guarantee the convergence of TTQL. As far as we known,
it is the first convergence rate guaranteed transfer leaning in
reinforcement learning algorithm. In the future, we will apply



the TTQL to the more complex tasks and study convergence
rate for the TTQL with complex function approximation such
as the neural network.
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