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Abstract

In recent years, single image super-resolution (SR) methods based on deep convolutional neural networks (CNNs) have made
significant progress. However, due to the non-adaptive nature of the convolution operation, they cannot adapt to various charac-
teristics of images, which limits their representational capability and, consequently, results in unnecessarily large model sizes. To
O address this issue, we propose a novel multi-path adaptive modulation network (MAMNet). Specifically, we propose a multi-path
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)

adaptive modulation block (MAMB), which is a lightweight yet effective residual block that adaptively modulates residual feature
responses by fully exploiting their information via three paths. The three paths model three types of information suitable for SR:

1) channel-specific information (CSI) using global variance pooling, 2) inter-channel dependencies (ICD) based on the CSI, 3) and
channel-specific spatial dependencies (CSD) via depth-wise convolution. We demonstrate that the proposed MAMB is effective and

E parameter-efficient for image SR than other feature modulation methods. In addition, experimental results show that our MAMNet
outperforms most of the state-of-the-art methods with a relatively small number of parameters.
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1. Introduction

>

(/) Single image super-resolution (SR) is the process of infer-
O ring a high-resolution (HR) image from a single low-resolution
(LR) image. It is one of the computer vision problems pro-
(\] gressing rapidly with the development of deep learning. Re-
— cently, convolutional neural network (CNN)-based SR meth-
o) ods[1,2,3,4,5,6,7,8, 9] have shown better performance com-
g pared with previous hand-crafted methods [10, 11, 12, 13, 14].
(\]  Stacking an extensive amount of layers is a common practice
« to improve performance of deep networks [15]. After Kim et
j al. [2] first applying residual learning in their very deep CNN
« for SR (VDSR), this trend goes on for SR as well. Ledig et
00 al. [3] propose a deeper network (SRResNet) than VDSR based
=1 on the ResNet architecture. Lim et al. [4] modify SRResNet and
S propose two very large networks having superior performance:
-= wider one and deeper one, i.e., enhanced deep ResNet for SR
(EDSR) and multi-scale deep SR (MDSR), respectively. In ad-
dition, there have been approaches adopting DenseNet [16] for

SR, e.g., [5, 7.

While a huge size of CNN-based SR network tends to yield
improved performance, it still has some limitations due to its
non-adaptive nature, i.e., convolution is performed with fixed
weights regardless of the input. First, most CNN-based meth-
ods internally treat all types of LR images equally, which may
not effectively distinguish the detailed characteristics of the
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content (e.g., natural vs. computer-generated ones). Second, all
regions are considered equally within an LR image, which may
not effectively distinguish the detailed characteristics of each
region (e.g., low vs. high frequency). These limitations restrict
the representational capability of SR networks, which leads to
inefficient parameter usage, i.e., excessively large model sizes.
Therefore, designing flexible networks for various situations is
required for effective and efficient SR.

A few recent SR methods [9, 17] attempt to address this is-
sue. They design adaptive SR networks by modulating con-
volutional feature responses utilizing their information. Zhang
et al. [9] propose the residual channel attention block (RCAB)
that modulates channel-wise feature responses by exploiting
inter-channel dependencies. Hu et al. [17] propose the channel-
wise and spatial attention residual (CSAR) block to adaptively
modulate feature responses by explicitly modelling channel-
wise and spatial interdependencies. However, these methods
do not make full use of information from feature responses for
imposing sufficient adaptability on SR networks. Specifically,
although the CSAR block exploits two types of interdependen-
cies between feature responses, channel-specific information is
not exploited for feature modulation.

Furthermore, from a network design perspective, these meth-
ods do not fully take into account the characteristics of SR,
which differ from those of high-level vision problems such as
image classification. First, both RCAB and the CSAR block use
the squeeze-and-excitation (SE) block [18] for modelling the
inter-channel dependencies, which uses global average pool-
ing to extract channel-wise statistics. However, since image
SR ultimately aims at restoring high-frequency components
of images, it is more reasonable to exploit frequency-related



information as statistics representing channels. Second, the
CSAR block models spatial interdependencies without con-
sidering channel-specific characteristics, i.e., the same spatial
modulation is performed for all channels. While such a feature
modulation strategy is effective when certain spatial regions of
an image are more important than others (for, e.g., image clas-
sification [19]), it is not suitable for image SR where all areas
of images have similar importance.

To address these issues, we propose a novel multi-path adap-
tive modulation network (MAMNet), whose overall architec-
ture is illustrated in Figure 1. Specifically, we design a novel
multi-path adaptive modulation block (MAMB) (Figure 2), a
lightweight yet effective residual block, which adaptively mod-
ulates residual feature responses by fully exploiting their in-
formation via three paths in a SR-optimized manner. The
three paths correspond to the three different types of infor-
mation, i.e., channel-specific information (CSI), inter-channel
dependencies (ICD), and channel-specific spatial dependencies
(CSD). For modelling CSI, we extract a statistic representing
each channel by performing global variance pooling that can re-
flect frequency-related information, which is a more reasonable
approach to SR compared to global average pooling. To the best
of our knowledge, this concept has not been adopted in existing
image SR methods. Based on the extracted channel-wise vari-
ances, we model ICD using two fully-connected layers. Lastly,
for modelling CSD, we generate a spatial modulation map for
each channel via a depth-wise convolution layer. Compared to
the previous methods [19, 17], our method is effective for SR in
that it models spatial dependencies with preserving the charac-
teristics inherent to each channel.

In summary, our main contributions are as follows:

e We propose a novel multi-path adaptive modulation net-
work (MAMNet) for effective and parameter-efficient
image SR. The proposed MAMNet resolves the non-
adaptivity inherent in most of the previous CNN-based SR
networks, by adaptively modulating convolutional feature
responses.

e As the key component of our MAMNet, we propose a
multi-path adaptive modulation block (MAMB) to fully
exploit information of the feature responses for their mod-
ulation. The information exploitation proceeds via three
paths corresponding to the three types of information, i.e.,
channel-specific information (CSI), inter-channel depen-
dencies (ICD), and channel-specific spatial dependencies
(CSD).

e We model the three types of information in a SR-optimized
manner. First, we extract CSI by performing a global vari-
ance pooling that reflects frequency-related information.
In addition, we model CSD via a depth-wise convolution,
which not only exploits spatial dependencies but also pre-
serves channel-specific characteristics.

The rest of this paper is organized as follows. Section 2
reviews the deep CNN-based image SR methods and atten-
tion mechanisms in CNNs. Section 3 introduces our proposed

MAMNet in detail. We discuss the differences between relevant
studies and the proposed method in Section 4. Section 5 ana-
lyzes the proposed method in detail and provides performance
comparisons with other methods experimentally. Finally, we
conclude our work in Section 6.

2. Related Works

Many CNN-based networks have been proposed to improve
the performance of image SR [1, 2, 3, 4, 5, 6, 7, 8, 9]. As
mentioned in Section 1, they have evolved toward deepening
networks. We first review deep CNN-based SR networks de-
veloped in previous studies.

Our proposed method is related to the attention mecha-
nism [18], which is one of the notable network structures to
recalibrate the feature responses so that more adaptive and ef-
ficient training is possible. We briefly review the methods in
which attention mechanisms are applied to CNNs.

Deep CNN-based image SR. After Lim et al. [4] propos-
ing huge ResNet-based SR models, i.e., EDSR and MDSR,
and Tong et al. [5] adopting the DenseNet structure for im-
age SR, i.e., SRDenseNet, there have been some approaches
to further improve the performance of image SR [6, 7, 8, 9].
Zhang et al. [7] propose a residual dense network (RDN) to
fully exploit hierarchical features from LR images. RDN con-
sists of stacked residual dense blocks (RDBs), which combine
the ResNet and DenseNet structures. Haris et al. [6] propose
deep back-projection networks (DBPNs), which exploit the mu-
tual dependencies of LR and HR images. Inspired by [20],
while most recent models use the post up-sampling approach,
DBPNs consist of iterative up- and down-sampling layers to ex-
plicitly model an error feedback mechanism. Inspired by the in-
ception block [21], Li et al. [8] propose the multi-scale residual
network (MSRN), which employs different convolution kernels
with different sizes in its basic building block. The aforemen-
tioned deep CNN-based SR methods have achieved good per-
formance through various network structures. However, they
treat all types of information equally and are not adaptable to
various situations.

Attention mechanism. In the cognitive process of human,
the use of selective information, i.e., focusing on more im-
portant information, generally occurs [22]. This process is re-
ferred to as the attention mechanism, which is widely used in
various applications [23, 24]. Recently, there are some ap-
proaches to apply attention mechanisms to ResNet-based net-
works [25, 18, 19, 9, 17]. Wang et al. [25] propose a residual
attention network (RAN) to improve the performance of image
classification. Since their attention module generates 3D atten-
tion maps using 3D feature maps directly, it is helpful to im-
prove performance, but is relatively heavy. Hu et al. [18] intro-
duce a compact attention mechanism, i.e., the SE block, which
adaptively recalibrates 3D feature maps by explicitly modelling
inter-channel dependencies. The SE block generates 1D chan-
nel attention maps using only 1D global average pooled fea-
tures. While the attention mechanism in the SE block uses
only inter-channel relation for refining feature maps, the con-
volutional block attention module (CBAM) [19] exploits both
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Figure 1: Overall architecture of our proposed network.

inter-channel and spatial relationships of feature maps through
its channel and spatial attention modules, respectively, which
are performed sequentially. The channel attention module in
CBAM is different from the SE block in that global max pooling
is additionally performed to extract multiple channel statistics.

As mentioned in Section 1, while Zhang et al. [9] and Hu et
al. [17] try to apply the attention mechanism to image SR, they
do not fully exploit feature responses and different characteris-
tics between high- and low-level computer vision problems are
not adequately considered. Differences between these methods
and ours are explained in Section 4.

3. Proposed Method

3.1. Network Architecture

The overall architecture of our MAMNet is illustrated in Fig-
ure 1. It can be divided into two parts: 1) feature extraction part,
and 2) upscaling part. Let I'R € R#*">3 and I5% denote the in-
put LR image and the corresponding output image, respectively.
At the beginning, one convolution layer is applied to I*¥ to ex-
tract initial feature maps, i.e.,

Fo = fo(IF), (1

where f;(+) denotes the first convolution and Fy means the ex-
tracted feature maps to be fed into the first MAMB, which is
described in detail in Section 3.2. F, is updated through R
MAMBEs and one convolution layer. Then, the updated feature
maps are added to Fy by using the global skip connection:

Ffeat = FO + ffeal(FR)’ (2)

where Fy is the output feature maps of the R-th MAMB and
ffm,(~) and F y,,, are the last convolution layer and feature maps
of the feature extraction part, respectively.

For the upscaling part, we use the sub-pixel convolution lay-
ers [26], which are followed by one convolution layer for re-
construction:

PR = frocon(fup(Ffear)) 3)

where f,,(-) and frecon(-) are the functions for upscaling and
reconstruction, respectively.

3.2. Multi-path Adaptive Modulation Block

The structure of MAMB is illustrated in Figure 2. Let F,_;
and F, be the input and output feature maps of the r-th MAMB.
Then, F, can be formulated as

F. = fuams(Fr-1) =Fooi + fuamn(Xe), 4

Figure 2: Multi-path adaptive modulation block (MAMB).

where fisamp.-(+) denotes the operations of the r-th MAMB, X,
is the resultant feature maps having spatial dimensions H x W
and a channel dimension C after sequentially applying convo-
lution, ReL.U, and convolution on F,_, and fjas(-) means our
multi-path adaptive modulation (MAM) that simultaneously ex-
ploits the three types of information, i.e., CSI, ICD, and CSD.
The feature modulation is performed as follows:

Xr = fMAM(Xr) (5)
=oc(MP' oMY o M*P) @ X,
where M,CS L MiCD , and M,CS D are the modulation maps using
CSL ICD, and CSD, respectively, @ and ® denote element-wise
addition and multiplication, respectively, o-(-) is the sigmoid
activation function, and X, is the modulated feature maps. In
order to enable the element-wise addition, MS* and M/? are
resized to the size of MfSD via nearest-neighbor interpolation.
Channel-specific information (CSI). Each channel of X, is
the responses to a particular filter, which tend to vary depending
on the characteristics of LR images. Therefore, we utilize the
CSI to adaptively modulate each channel. It is important to ex-
tract a statistic that can effectively represent the characteristics
of each channel. Since image SR ultimately aims at restoring
high-frequency components of images, we choose to use the
variance, a frequency-related measure, for modelling the CSI.
Given X, = [X,.1,X,.2, ..., X.c |, the c-th modulation map mff’ of
M&57 s calculated by:
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where the modulation map is used after standardization.
Inter-channel dependencies (ICD). An LR image shows
different interdependencies between channels depending on the
types of textures it contains [27]. For example, an image with a
repeated pattern shows high interdependencies among channels
related to the pattern. For generating the modulation map M,I_CD ,
we exploit this information, i.e., ICD, by employing two fully-
connected layers whose structure is the same to that in [18, 17]:

M = Was (W M), ®)

where W, € Ri6* € and W, € RE*% are the parameters of the
fully-connected layers, and 6(-) is the ReLU activation func-
tion.

Channel-specific spatial dependencies (CSD). Each chan-
nel in the feature maps X, has a different meaning depending
on the role of the filter used. For example, some filters may ex-
tract the edge components in the horizontal direction, and some
other filters may extract the edge components in the vertical
direction. From the viewpoint of SR, where it is important to
extract as much information as possible from LR images, it is
expected that every channel plays its own important role. In
addition, the importance of the channels varies spatially. For
example, in the case of edges or complex textures, detailed in-
formation, i.e., those from complex filters, would be important.
On the other hand, in the case of the region having almost no
high-frequency components such as sky or homogeneous ar-
eas of comic images, relatively less detailed information would
be more important and need to be attended. Therefore, it is
necessary to model spatial interdependencies within each chan-
nel, i.e., CSD. To preserve channel-specific characteristics, we
obtain a different 2D modulation map for each channel using
depth-wise convolution [28], where independent convolution
operations are performed for each channel:

MEP = fopn (X)), )

where fze,m(-) denotes the 3 x 3 depth-wise convolution.

4. Discussion

Difference from the SE block and RCAB. The residual
channel attention network (RCAN) [9] adopts the channel at-
tention mechanism in RCAB, which is the same to the SE
block [18]. It relies on global average pooling to extract repre-
sentative statistics. However, it is designed for high-level com-
puter vision tasks such as image classification, and thus may not
be optimal for image SR. We propose a variance-based channel
modulation using ICD to improve the SR performance, as will
be shown experimentally (Table 2). In addition, we exploit not
only ICD but also CSI and CSD, which leads to fully utilize the
information of residual feature maps.

Difference from CBAM. The channel attention module in
CBAM [19] uses both global average and max pooling, achiev-
ing performance improvement in high-level computer vision

tasks. However, as will be shown later (Table 2), the addi-
tional use of max pooling lowers SR performance, indicating
that it is important to choose appropriate statistics according
to the application. We demonstrate that the frequency-related
statistic, i.e., variance, is effective for image SR. In addition, it
should be noted that the spatial attention module in CBAM and
our method modelling CSD are largely different. After com-
pressing the information via global average and max pooling
in the channel direction, CBAM generates a single 2D spatial
attention map through a convolution layer. This approach has
two drawbacks in SR: Each channel has different information
(e.g., frequency-related information) and plays a specific role.
Therefore, it is not reasonable to squeeze information through
pooling. In addition, it is not suitable for SR to apply a sin-
gle 2D spatial attention map without reflecting channel-specific
characteristics. As shown in Table 3, this method causes perfor-
mance degradation. On the other hand, our method is applied
for each channel to modulate it in a spatially adaptive manner.
Furthermore, CBAM does not fully exploit information of fea-
ture responses, because it does not consider CSI for the feature
modulation.

Difference from the CSAR block. The CSAR block [17]
also employs the SE block for modelling ICD. In addition, it
generates a single 2D map like CBAM for modelling spatial
interdependencies, while in our MAMB, we model CSD in-
stead. As shown in Table 3, this approach degrades the SR
performances. It should be noted that such results are obtained
with employing overly large numbers of parameters because it
does not adequately consider the characteristics of image SR.
Moreover, the CSAR block also does not utilize CSI for feature
modulation.

5. Experiments

Datasets and metrics. In our experiments, we follow the
evaluation protocol commonly used in many previous stud-
ies [4, 7, 9]. We train all our models using the training images
from the DIV2K dataset [29]. It contains 800 RGB HR train-
ing images and their corresponding LR training images. For
evaluation, we use five datasets commonly used in SR bench-
marks: Set5 [30], Set14 [31], BSD100 [32], Urban100 [14],
MangalQ9 [33]. The Set5, Setl4, and BSD100 datasets con-
sist of natural images. The Urban100 dataset includes images
related to building structures with complex and repetitive pat-
terns, which are challenging for SR. The Mangal(09 dataset
consists of images taken from Japanese cartoon, which are
computer-generated images and have different characteristics
from natural ones. To evaluate SR performance, we calculate
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index on the Y channel after converting to YCbCr chan-
nels.

Implementation Details. To construct an input mini-batch
for training, we randomly crop a 48x48 patch from each of the
randomly selected 16 LR training images. For data augmen-
tation, the patches are randomly horizontal-flipped and rotated
(90°, 180°, and 270°). Before feeding the mini-batch into our
networks, we subtract the average value of the entire training



Methods Set5  Setl4 BSDI100 Urbanl00 Mangal09 Methods # params. (K)  Set5 Setl4 BSDI100 Urbanl00 Mangal09
Baseline 3790 33.58 32.17 32.13 38.47 Baseline 1370 3790 3358 3217 32.13 38.47

+ Max 37.94 33.53 32.16 32.09 38.44 SAM of CBAM [19] 1371 37.84 3352 32.12 31.93 38.31

+ Avg 37.96  33.59 32.07 32.04 38.65 SA of CSAR block [17] 1505 3791 3356  32.14 32.02 38.33

+ Var 3703 3361 3217 3208 38.64 Ours (CSD) 1380 37.95 3359 3217 32.13 38.46
+ Power 37.92  33.59 32.16 32.20 38.51

+ Standardized var (Ours) 37.95 33.63 32.17 32.33 38.73

Table 1: Effect of using different pooling methods for CSI. Average PSNR
values (dB) for x2 SR on the five datasets are shown. Red and blue colors
indicate the best and second best performance for each dataset, respectively.

Methods Set5  Setl4 BSDI00 Urbanl00 Mangal09
Baseline 37.90 33.58 32.17 32.13 38.47
+ CAM of CBAM [19] (Max & Avg) 37.91 33.51 32.14 32.14 38.19
+ RCAB [9] (Avg) 37.96 33.58 32.17 32.24 38.60
+ Var 37.93  33.55 32.17 32.26 38.67
+ Standardized var (Ours) 37.97 33.66 32.17 32.32 38.71

Table 2: Effect of using different CSI for modelling ICD. Average PSNR values
(dB) for x2 SR on the five datasets are shown. Red and blue colors indicate the
best and second best performance for each dataset, respectively.

images for each RGB channel of the patches. We set the size
and number of filters as 3x3 and 64 respectively in all convolu-
tion layers except those for the upscaling part. All our networks
are optimized using the Adam optimizer [34] to minimize the
L1 loss function, where the parameters of the optimizer are set
as Bl = 0.9, B2 = 0.999, and € = 1078, The learning rate is
initially set to 10™*, which decreases by a half at every 2 x 10°
iterations. We implement our networks using the Tensorflow
framework with NVIDIA GeForce GTX 1080 GPU'.

5.1. Model Analysis

In this section, we analyze the three paths (i.e., CSI, ICD, and
CSD) of our proposed MAMB. In MAMB, employing one or
multiple path(s), except for CSI, increases the number of model
parameters, and as the network becomes deeper, the number of
such additional parameters becomes large. We want to min-
imize the possibility to obtain improved performance simply
due to such an increased number of parameters and, as a re-
sult, analyze the effect of our methods fairly. To this end, we
conduct experiments with networks having 64 filters (C=64)
and 16 residual blocks (R=16), which are not too deep or wide.
In addition, we analyze convergence of MAMNet with various
configurations of R and C.

CSI. We examine the effectiveness of modelling CSI for im-
age SR. For the experiment, we construct six networks, one
without feature modulation (i.e., baseline) and the rest with only
a CSI path using different global pooling methods for modelling
CSI, which are the maximum, average, variance, standardized
variance, and power. Here, “power” means the average of
squared channel responses. Table 1 shows the result. Unlike
the result in the image classification task [19], the max pool-
ing rather degrades SR performance, which shows the impor-

'0ur code is publicly available at https://github.com/junhyukk/
MAMNet-tensorflow

Table 3: Performance and parameter efficiency of modelling CSD. Average
PSNR values (dB) for x2 SR on the five datasets are shown. Red and blue colors
indicate the best and second best performance for each dataset, respectively.

Components Different combinations of CSI, ICD, and CSD

CSI X v X x v v x v
ICD X X v X v x v v
CSD x x x v x v v v
Set5 37.90 37.95 3797 3795 3797 3797 3798 37.99
Set14 33.58 33.63 33.66 3359 33.71 33.63 33.64 33.64
BSD100 3217 32,17 3217 3217 32.17 3218 3218 32.19
Urban100 32,13 3233 3232 3213 3234 3235 3234 3238
Mangal(09 38.47 3873 38.71 3846 38.75 3872 3875 38.80
Average 3440 3455 3454 3440 3456 3456 3456 34.59
# params. (K) 1370 1370 1379 1380 1379 1380 1389 1389
# params. 1 (%) - 0 068 075 068 075 1.43 1.43

Table 4: Ablation study on effects of CSI, ICD, and CSD. Average PSNR values
(dB) for x2 SR on the five datasets are shown. The row “Average” means the
average PNSR values for all images in the five datasets. Red and blue colors
indicate the best and second best performance for each dataset, respectively.
The row “# params. 1" shows the ratio of the increased number of parameters.

tance of using appropriate methods for modelling CSI depend-
ing on the nature of the problem being solved. For all datasets,
our standardized variance-based method shows the best or sec-
ond best SR performances, which demonstrates that using the
frequency-related measure for CSI is effective for image SR.

ICD. We analyze whether the proposed variance-based CSI
is also effective in modelling ICD for image SR. We com-
pare our method with the channel attention module (CAM) of
CBAM and RCAB. To model ICD, all the methods employ two
fully-connected layers having the same structure. The differ-
ence between them is that which CSI is used for modelling ICD.
Similar to the result of Table 1, the proposed method shows the
best SR performance for all datasets in Table 2, which strength-
ens the above conclusion that it is important to represent CSI
appropriately. In addition, using both average and max pooling
shows lower SR performance compared to the baseline, which
means that the max pooling is not helpful for image SR.

CSD. We compare the proposed CSD with the previous
methods, the spatial attention module (SAM) of CBAM and
the spatial attention (SA) unit of the CSAR block, both of
which model spatial feature interdependencies without consid-
ering channel-specific characteristics. Table 3 shows the re-
sult. CBAM shows lower SR performance than the baseline
for all datasets. The CSAR block shows better SR perfor-
mance than CBAM, but it is still worse than the baseline for all
datasets except for Set5. On the other hand, our method main-
tains similar or better performance in comparison to the base-
line, which demonstrates that it is more effective to consider
channel-specific characteristics when modelling spatial inter-
dependencies. Note that our method uses far fewer additional
parameters than the CSAR block (0.7% vs. 9.9%).
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Figure 3: Visualization of each path of our proposed multi-path adaptive modulation for “ppt3” from Set14 [31].

MAMB. Table 4 shows the ablation study on the three paths
(CSI, ICD, and CSD) of the proposed MAMB. First, without
CSI, ICD and CSD, the network exhibits the worst performance
on average for the five datasets (34.40 dB), which implies the
non-adaptive SR network does not effectively extract features
from LR images. This demonstrates that simply stacking resid-
ual blocks leads to limited representational power of deep net-
works for image SR.

Then, we add one of the three paths to the baseline (the sec-
ond, third, and fourth columns of Table 4). We confirm that CSI
and ICD effectively lead to performance improvement (+0.15
dB and +0.14 dB, respectively) on average with no and neg-
ligible increase of the number of parameters (0% and 0.68%,
respectively). CSD also yields the SR performances similar to
or slightly better (+0.05 dB for Set5) than the baseline.

In addition, we experiment on three networks using two of
the three paths (the fifth, sixth, and seventh columns of Table 4).
We observe that the networks perform better than those using
only one path. Then, the best performance is achieved when
all the three paths are used simultaneously, which is shown in
the last column of Table 4. The experimental results demon-
strate that feature modulation exploiting sufficient information
(CSI, ICD, and CSD) via multiple paths is effective for image
SR. Moreover, the performance improvement is achieved in a
parameter-efficient manner (+0.19 dB with only 1.43% addi-
tional parameters).

To further analyze the role of each path of the proposed
MAMB, we visualize the modulation map of each path in Fig-
ure 3. Figure 3a shows those corresponding to CSI and ICD
in the fourth, eighth, and last MAMBSs, respectively. Here,

we have two interesting observations. First, when the values
of M3 are similar across the channels, which means that the
channels contain similar amounts of information, the values of
M/ vary significantly from channel to channel (the left and
right panels of Figure 3a). Second, when M/“? is hardly acti-
vated differently across the channels, the values via M3 are
largely different depending on the channel and the information
of the CSI is used dominantly for feature modulation, as shown
in the middle panel of Figure 3a. These observations imply that
although both CSI and ICD are derived from the channel-wise
pooling, they have their own roles, which appear even comple-
mentary, for adaptive feature modulation. Figure 3b shows the
32nd and 64th channels of M®? in each MAMB of Figure 3a.
Each map has spatially varying values, which demonstrates that
each map spatially modulates each channel adaptively. In ad-
dition, the distribution of the map is different for each channel.
For example, the 64th channel of the 4th MAMB has a modula-
tion map with relatively similar values in the spatial domain,
which means that CSI and ICD can provide sufficient infor-
mation for feature modulation. On the other hand, the 32nd
channel of the 16th MAMB has a modulation map with largely
different values depending on the spatial location. Specifically,
the left area containing text has relatively large values, while
the rest shows small values. Through these results, it is con-
firmed that each channel requires different spatial modulation
depending on its characteristics, i.e., CSD.

Effect of R and C. The structure of our MAMNet is deter-
mined by the number of MAMB (R) and the number of chan-
nels (C) used in each MAMB. In this experiment, we examine
the effect of these two variables on performance. Starting from
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the case with R = 16 and C = 64 (R16C64), we increase R or C.
The convergence analysis of the networks with different config-
urations according to the number of training iterations is shown
in Figure 4, where CARN [35], MSRN [8], and D-DBPN [6]
are compared as references. A larger value of R or C leads
to performance improvement, which means that our proposed
method allows deeper and wider structures through effective
feature modulation.

5.2. Comparison with Other Feature Modulation Methods

To demonstrate effectiveness and efficiency of our proposed
MAMB, we evaluate our MAMB by comparing with other fea-
ture modulation strategies for image SR [9, 17]. For fairness,
we construct networks in the form of implementing the feature
modulation methods in each residual block of the baseline net-
work.

Quantitative comparison. We compare performances
across networks of varying sizes (R), which are shown in Fig-
ure 5. We can see that our method performs better for all net-
work sizes than the others. In other words, our network needs

only a relatively small number of parameters to achieve the
same performance.

Qualitative comparison. We further provide qualitative
comparison of the feature modulation methods for R=16 and
C=64 in Figure 6. Our method shows superior performance
particularly in difficult cases (Figure 6b), while maintaining
similar performance with the others in relatively easy cases
(Figure 6a). The result shows that our method succeeds in effec-
tive feature modulation, thereby improving the ability to adapt
to various situations.

5.3. Comparison with State-of-the-art Methods

Quantitative and qualitative comparisons. We finally
evaluate our proposed MAMNet by comparing with 11 state-
of-the art SR methods: VDSR [2], LapSRN [36], DRRN [37],
MemNet [38], SRDenseNet [5], DSRN [39], SRMDNF [40],
IDN [41], CARN [35], MSRN [8], and D-DBPN [6]. Here,
EDSR [8], RDN [7], and RCAN [9] are excluded from the com-
parison because they have extremely larger numbers of param-
eters. We select MAMNet with R = 64 and C = 64 (MAM-
Net_R64C64) as our final model. The x2, x3 and x4 SR quan-
titative results are summarized in Table 5. MAMNet shows the
highest PSNR and SSIM values on all datasets for all scaling
factors, and the performance gap with the other methods is par-
ticularly prominent in Urban100 and Mangal09. These results
demonstrate the effectiveness of our proposed MAMNet.

We also provide the visual results of x2 super-resolved im-
ages in Figure 7, where only our model successfully restores
complex patterns. For “img_092” from Urban100, our proposed
method takes advantage of the peripheral information more ac-
tively, i.e., the information about the repeated pattern. Simi-
larly, in “img_004”, it can be seen that the learning of the re-
peated pattern is not performed well by merely using the lo-
cal information from the LR image. On the other hand, our
model recovers the pattern correctly. Furthermore, we show the
x4 super-resolved images from BSD100 and Urban100 in Fig-
ure 10. For the “253027” image, we can see that our network
expresses the complicated stripes more finely. For “img_061",
the outputs of the other models look blurry or have patterns in
wrong directions, while only our MAMNet restores the correct
pattern.

Visual results of challenging images for x4 SR are shown
in Figure 9. Here, we focus on comparison with the top two
models, MSRN [8] and D-DBPN [6]. For image “Akuhamu”,
MAMNet restores better the densely written letters, “A” and
“K”. For images “YasasiiAkuma” and “YumeiroCooking”,
MAMNeEet reconstructs complicated straight lines and curves
more clearly. For images “img_011”, “img_012”, “img_019”,
and “img_093”, while the others fails to restore the patterns in
terms of thickness, direction, and spacing, MAMNet success-
fully generates the repeated patterns. For image “img_082”,
MAMNeEet restores black sharp lines relatively well. These re-
sults demonstrate the strength of our proposed method in vari-
ous difficult SR tasks.

Model efficiency. MAMNet enables highly effective and ef-
ficient SR through multi-path adaptive modulation. It is pow-
erful, but relatively lightweight and fast compared to the other



Set5 Set14 BSD100 Urban100 Mangal09
Scale Method

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
VDSR [2] 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
LapSRN [36] 37.52/0.9591 33.08/0.9130 31.80/0.8950 30.41/0.9101 37.27/0.9740
DRRN [37] 37.74/0.9591 33.23/09136 32.05/0.8973 31.23/0.9188 37.92/0.9760
MemNet [38] 37.78/0.9597 33.23/09142 32.08/0.8978 31.31/0.9195 37.72/0.9740

DSRN [39] 37.66/0.9590 33.15/0.9130 32.10/0.8970 30.97/0.9160 -/-
x2 ~ SRMDNF [40]  37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

IDN [41] 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 -/-

CARN [35] 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -/-
MSRN [8] 37.90/0.9597 33.62/09177 32.16/0.8995 32.22/0.9295 38.40/0.9761
D-DBPN [6] 38.05/0.9599 33.79/0.9193 32.25/0.9001 32.51/0.9317 38.81/0.9766
MAMNet 38.10/0.9601 33.90/0.9199 32.30/0.9007 32.94/0.9352 39.15/0.9772
VDSR [2] 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
LapSRN [36] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350
DRRN [37] 34.02/0.9244 30.08/0.8361 28.95/0.8007 27.54/0.8378 32.72/0.9380
MemNet [38] 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

<3 DSRN [39] 33.88/0.9220 30.26/0.8370 28.81/0.7970 27.16/0.8280 -/-
SRMDNF [40]  34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

IDN [41] 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 -/-

CARN [35] 34.29/0.9255 30.29/0.8407 29.06/0.8034 27.38/0.8404 -/-
MSRN [8] 34.38/0.9265 30.37/0.8428 29.12/0.8056 28.31/0.8553 33.59/0.9442
MAMNet 34.61/0.9281 30.54/0.8459 29.25/0.8082 28.82/0.8648 34.14/0.9472
VDSR [2] 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
LapSRN [36] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09 / 0.8900
DRRN [37] 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46 /0.8960
MemNet [38] 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

SRDenseNet [5] 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 -/-

d DSRN [39] 31.40/0.8830 28.07/0.7700 27.25/0.7240 25.08/0.7170 -/-
SRMDNF [40]  31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

IDN [41] 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 -/-

CARN [35] 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -/-
MSRN [8] 32.21/0.8949 28.61/0.7827 27.60/0.7372 26.20/0.7903  30.53 /0.9090
D-DBPN [6] 32.40/0.8966 28.75/0.7854 27.67/0.7385 26.38/0.7938 30.89/0.9127
MAMNet 32.42/0.8972 28.77/0.7854 27.70/0.7406 26.59/0.8013 30.94/0.9142

Table 5: Quantitative evaluation results of SR models for scaling factors of 2, 3 and 4. Red and blue colors indicate the best and second best performance,

respectively.

state-of-the art models. We show the efficiency of our MAM-
Net in Figure 10. MAMNet_R64C64 show the best perfor-
mance on both datasets with smaller numbers of parameters
and shorter running time than D-DBPN and MSRN. MAM-
Net_R32C64 has similar or better performance on both datasets
with only 43.69% and 43.52% of the number of parameters of
MSRN and D-DBPN, respectively. In addition, its running time
is only 22.59% (BSD100) and 26.76% (Urban100) of that of
MSRN, and 19.26% (BSD100) and 17.56% (Urban100) of that
of D-DBPN. For both datasets, MAMNet_R16C64 outperforms
MSRN with only 23.42% parameters of MSRN. It takes only
12.20% (BSD100) and 13.66% (Urban100) of the running time
of MSRN.

6. Conclusion

In this paper, we proposed a novel multi-path adaptive mod-
ulation network (MAMNet) for image SR. We proposed three
feature modulation methods by exploiting the convolutional

feature responses effectively. We demonstrated that the pro-
posed MAMB is more effective and parameter-efficient than
existing feature modulation methods for SR. The experimen-
tal results also demonstrated that the proposed MAMNet can
achieve improved SR performance compared to the state-of-
the-art methods with a relatively small number of parameters.
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Figure 10: PSNR (dB) vs. running time (s) for x2 SR. The PSNR values and
running times are average values for each dataset. Two existing methods are
shown with blue color, and our models with varying the number of parameters
(R) are shown with red color. The area of each circle is proportional to the
number of parameters in each model (also shown as numbers in parentheses).
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