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Abstract

Spiking neurons encode information through their spiking temporal patterns.

Although the precise spike-timing based encoding scheme has long been recog-

nised, the exact mechanism that underlies the learning of such precise spike-

timing in the brain remains an open question. Most of the existing learning

methods for spiking neurons are based on synaptic weight adjustment. However,

biological evidences suggest that synaptic delays can also be modulated to play

an important role in the learning process. This paper investigates the viability

of integrating synaptic delay plasticity into supervised learning and proposes a

novel learning method that adjusts both the synaptic delays and weights of the

learning neurons to make them fire precisely timed spikes, that is referred to

as synaptic delay-weight plasticity. Remote Supervised Method (ReSuMe) and

Perceptron Based Spiking Neuron Learning Rule (PBSNLR), two representative

supervised learning methods, are studied to illustrate how the synaptic delay-

weight plasticity works. The performance of the proposed learning method is

thoroughly evaluated on synthetic data and is further demonstrated on real-

world classification tasks. The experiments show that the synaptic delay-weight

learning method outperforms the traditional synaptic weight learning methods
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in many ways.

Keywords: spiking neurons, spiking neural networks, supervised learning,15

synaptic plasticity, synaptic weight, synaptic delay

1. Introduction

Spiking neural networks (SNNs) are biologically plausible models that are,

unlike their traditional rate-based counterparts, capable of capturing the rich

temporal dynamics of real biological neural assemblies and information rep-20

resentation and processing in the brain [1]. SNNs encode information in the

temporal patterns of the transmitted spike trains. Despite their promising ca-

pabilities in achieving a performance similar to living brains, the computational

efficiency and pattern classification potential have not been fully exploited. The

research community has been looking to how to benefit from the biologically in-25

spired computational models, such as SNN-based neuromorphic computing. The

prominent programs include the SpiNNaker Project [2], Neurogrid [3], Spaun

[4], TrueNorth Cognitive Computing [5, 6], SyNAPSE program [7], other neu-

romorphic circuits in [8], and Zeroth [9, 10].

Biological evidences suggest that the brain is able to perform supervised30

learning. The most documented findings for supervised learning in the central

nervous system come from the studies on the cerebellum and the cerebellar cor-

tex [11, 12]. For traditional rate-based neural networks, we have established

a solid foundation for supervised learning algorithms and their applications,

such as the perceptron learning rule [13] and the gradient backpropagation al-35

gorithm [14]. In SNNs, the computing unit is the spiking neuron whose funda-

mental computation is the transformation of incoming spike trains into precisely

timed firing [15]. The rate-based learning methods cannot be directly applied

to SNNs. To train the spiking neurons output precisely timed spikes, many

supervised learning algorithms assume weight plasticity by adjusting only the40

weights. They can be categorized into the spike-driven methods and membrane

potential-driven methods [16, 17] .
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In spike-driven methods, the error between the target and actual output

spikes are used to update the synaptic weights. SpikeProp [18] and the multi-

spike learning algorithm [19] represent typical examples of the spike-driven45

methods. They construct the error functions directly between the desired and

actual output spikes. The gradient descent of such errors is then used to adjust

the synaptic connection weights. ReSuMe [20] is another spike-driven method

which employs two weight update processes, namely strengthening synaptic

weights using spike-timing dependent plasticity (STDP) and weakening them50

using anti-STDP. The precise-spike-driven (PSD) learning rule [21] adopts a

learning mechanism similar to ReSuMe except that PSD applies different learn-

ing windows. The Chronotron E-learning [22] and the SPAN [23] learning rules

are two other spike-driven learning methods, which try to reduce the distance

between the actual and desired spike trains. The distance in Chronotron E-55

learning rule is defined by Victor and Purpura metric [24], and the SPAN applies

a metric similar to the van Rossum metric [25]. While the spike-driven learning

methods learn well in pattern classification tasks, their learning efficiency and

accuracy remain much to be desired [26].

Membrane potential-driven methods were proposed in an attempt to improve60

the learning performance for spiking neurons. Some typical examples include the

tempotron [27], PBSNLR [26], HTP [15], EMPD [17] and MemPo-Learn [28].

In contrast to the spike-driven methods, they take an entirely different approach

where they use the postsynaptic membrane potential rather than spike times as

the basis for synaptic updating. For instance, the tempotron [27] minimizes an65

error between the firing threshold and the maximum membrane potential. As

we don’t have the control over when the maximum membrane potential takes

place, the binary tempotron learning rule is unable to output precisely timed

spikes [29]. PBSNLR [26] and HTP [15] adapt the perceptron learning rule

such that the membrane potential is driven towards the firing threshold at the70

desired spike times, and kept below the firing threshold otherwise [30]. Due

to their linear property of perceptron learning, they cannot handle non-linearly

separable problems. EMPD [17] and MemPo-Learn [28] implement the gradient
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descent dynamics that minimize two different error functions defined at the

desired and undesired output times. Experiments suggest that both EMPD75

and Mempo-Learn outperform other learning methods due to their two error

function strategy.

In addition, there are several gradient based learning algorithms for train-

ing deep spiking neural networks[31, 32, 33, 34, 35], and these methods can be

grouped into two main categories. The first category trains a traditional arti-80

ficial neural network (ANN) and transforms it into its SNN version where the

rate of SNN neurons acts as the analog activity of ANN neurons [36, 37, 38].

The learning methods in the second category trains directly the SNN but dif-

fer in how they approximate the derivative of spike function. The SpikeProp

backpropagates errors only at spike times and the derivative is calculated by a85

linear assumption of threshold crossing [18]. Recently, H. Mostafa has proposed

a similar method without the assumption of linearization by using non-leaky

integrate-and fire neuron[39]. The surrogate gradients methods are another

kind of the second category, which provide an alternative approach to obtain

the derivative of spike function with the typical examples of [40, 41, 35]90

All of the above-mentioned learning algorithms are based solely on weight

adjustment, that we call weight-based learning. They completely ignore the

effect of synaptic delay. However, biological evidences suggest that the synaptic

delay modulation can occur during the learning process, that greatly affects the

learning performance [42, 43, 44, 45, 46]. A number of delay-based learning95

methods have been proposed, but they are far from perfect. For example, the

delay selection methods [47, 48, 19] apply multiple sub-connections with various

delays between two neurons, which increases the number of sub-connections,

thus the training time as well. Furthermore, delay selection methods adopt

constant synaptic delays that cannot be updated. The delay shift methods [49]100

are another type of synaptic delay-based learning. Unfortunately, they only

update the synaptic delays to train a coincidence detector (CD), while keeping

the synaptic weights constant.

The delay-learning remote supervised method (DL-ReSuMe) represents an
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attempt to integrate the delay shift approach and the weight adjustment method105

[50]. Unfortunately, DL-ReSuMe only allows the synaptic delays to be increased

in a one-way adjustment, that is biologically counter-intuitive, and limits the

ability to find the appropriate synaptic delays. In addition, the DL-ReSuMe

is limited to specific neuron model of which the postsynaptic potential (PSP)

is a exponential function. It remains an open question how to extend the DL-110

ReSuMe to other neuron models. Furthermore, the study of DL-ReSuMe has

yet to show that delay-learning can be generalized beyond ReSuMe learning

rule.

In this paper, we propose a synaptic delay learning method which can be

incorporated with the synaptic weight supervised learning methods. ReSuMe115

and PBSNLR are selected as two typical examples to illustrate how such synap-

tic delay-weight plasticity works. We discuss how the synaptic weights and

synaptic delays are adjusted to train the neuron to output the desired spikes,

and at the same time, suppress the undesired ones. Experiments show that

the ReSuMe and PBSNLR with synaptic delay-weight plasticity significantly120

outperforms the weight plasticity baseline in terms of efficiency and accuracy.

The remainder of this paper is organized as follows. Section 2 presents the

spiking neuron model and the proposed synaptic delay plasticity. In section 3,

ReSuMe and PBSNLR are selected as typical examples to illustrate how the

joint synaptic delay-weight plasticity works. Section 4 describes the experiments125

conducted to evaluate the learning performance of the proposed delay-weight

plasticity. The obtained results are discussed in section 5 and conclusions are

drawn in section 6.

2. Neuron Model and Synaptic Delay Plasticity

Let’s start by introducing the neuron model in our study. We will then130

formulate the learning of synaptic delays of the neuron model.
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2.1. Integrate-and-Fire Neuron

A spiking neuron model is a mathematical description of the properties of

certain cells in the nervous system that generate sharp electrical potentials

across their cell membrane [1]. It is a major signaling unit of the spiking neural135

network. The current-based leaky integrate-and-fire neuron (LIF) model pro-

vides a faithful description of biological neurons [29]. It is also mathematically

tractable. Hence, it has been widely used. To well connect our study with the

prior work, we adopt the LIF model, without loss of generality.

We consider a LIF neuron with I inputs, and its postsynaptic membrane

potential represented by Vj(t) remains at the resting potential Vrest = 0 when

it receives no spikes. When a spike produced at a pre-synaptic neuron i, a

postsynaptic potential (PSP) is induced in the LIF neuron. By integrating the

PSPs resulting from several incoming spikes, the LIF neuron fires a spike when

its membrane potential V (t) reaches the firing threshold ϑ. The dynamics of

the neuron postsynaptic membrane V (t) are governed by the following equation

Vj(t) = Vrest +

I∑
i

ωi

∑
tfi +di<t

K(t− tfi − di)− ϑ
∑
tsj<t

exp
(
−
t− tsj
τm

)
(1)

where tfi is the fth spike of the presynaptic neuron i, and ωi, di are the synaptic

weight and synaptic delay, respectively. î denotes the normalized PSP kernel

defined as

K(t− tfi − di)=V0
(
exp(

−(t− tfi − di)
τm

)− exp(
−(t− tfi − di)

τs
)
)

(2)

The shape of PSPs is governed by the integration time constant of the post-140

synaptic membrane τm, and the decay time constant of synaptic currents τs.

V0 normalizes PSP so that the maximum value of the kernel is 1. The dy-

namics of the K(t − tfi − di) are illustrated in Figure 1. The PSP gener-

ated by tfi will contribute maximum membrane potential at tfi + di + ψ, where

ψ = τmτs(ln τm − ln τs)/(τm − τs) [29]. The last term in Equation (1) is the re-145

fractoriness function, where tsj are the times of the output spikes emitted by the

learning neuron j. In the following experiments, the parameters of the spiking

neuron model are set as follows: τm = 5 ms,τs = 1.25 ms, and ϑ = 1 mV.
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Figure 1: The dynamics of the PSP kernel K(t−tfi −di). t
f
i is the fth spike of the presynaptic

neuron i, di is the synaptic delay, and di + ψ represents the delay by which the input spike

tfi contributes the maximum PSP to the postsynaptic neuron j.

2.2. The Proposed Synaptic Delay Plasticity

In supervised learning, a neuron is trained to fire spikes at the desired times150

in response to a given class of inputs. The neurons should keep silent otherwise.

ReSuMe and PBSNLR adjust the synaptic weights in a learning process to

achieve this. These weight-based learning methods regard the synaptic delay as

constant, in other words, they disregard the synaptic delay plasticity, and its

possible active role in the learning process.155

In this paper, we propose a novel learning rule for the synaptic delay plas-

ticity. It enables a neuron to fire spikes at the desired times, and to keep silent

otherwise. Next we study the properties of the learning rule in the two scenarios.

2.2.1. When a spike is supposed to fire

When a spike is supposed to fire at certain time, but the membrane poten-160

tial is below the firing threshold, the membrane potential of the post-synaptic

neuron should be increased. We propose a delay learning rule that applies a

synaptic delay shift to the synapses in a way that we increase the membrane

potential at the desired time. The delay learning rule is applied in 3 steps.

Step 1: Calculate the distanceDf
i of each input spike tfi , whereDf

i measures

the distance between the current desired output time t and the time when input
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spike tfi has a maximum PSP. Specifically, Df
i is calculated as

Df
i = |tfi + di + ψ − t| if t ≥ tfi + ψ (3)

where tfi + di +ψ is the time when the input spike tfi contributes the maximum165

membrane potential (see Figure 1), and t is the current desired output time.

Step 2: Find the synapse î that need to be adjusted. The synapse î is

subject to the following conditions: 1) synapse î is excitatory (ωî > 0, where

ωî is the weight of synapse î.) 2) the delay of synapse î has not been adjusted

previously, and 3) the synapse î has the spike tf̂
î

whose Df̂

î
is the smallest1170

among all Df
i .

Step 3: Update the delay of synapse î as

d′
î

=

dî +Df̂

î
if t > tf̂

î
+ dî + ψ, ωî > 0

dî −D
f̂

î
if t < tf̂

î
+ dî + ψ, ωî > 0

(4)

It is noted that the delay updating rule in Equation (4) adjusts the synaptic

delay to increase the membrane potential. As shown in Figure 2A, if t > tf̂
î

+

dî + ψ, the synaptic delay should be increased by Df̂

î
. On the other hand, as

shown in Figure 2B, if t < tf̂
î

+ dî + ψ, the synaptic delay should be decreased175

by Df̂

î
. By shifting the delays, the maximum PSP generated by tf̂

î
is pushed

towards the desired output time t,thus increasing the membrane potential and

the likelihood of firing at the desired time.

2.2.2. When no spikes are supposed to fire

Other than the desired firing times, the membrane potential should remain

below the firing threshold. In this case, we propose a delay learning rule that

adjusts the synaptic delays to reduce the membrane potential. The delay shift

process is shown in Equation (5) which is the same as Equation (4) except that

1Synaptic delay updating inevitably changes not only the membrane potential at the cur-

rent time but also the membrane potential elsewhere. This leads to learning interference. To

weaken this interference as much as possible, we select the smallest Df
i , which will result in a

minimal interference.
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A B

Figure 2: Illustration of the proposed delay learning at desired spike time. (A) The synap-

tic should delayed to increase the membrane potential; (B) The synaptic delay should be

decreased to increase the membrane potential.

the synapse î is selected from inhibitory synapses.

d′
î

=

dî +Df̂

î
if t > tf̂

î
+ dî + ψ, ωî < 0

dî −D
f̂

î
if t < tf̂

î
+ dî + ψ, ωî < 0

(5)

After updating the synaptic delays, the input spike tf̂
î

has the maximum value180

of PSP at the undesired output time. As this is an inhibitory synapse with

a negative weight ωî < 0, the weighted PSP reduces the membrane potential

maximum, and this reduction should drive the membrane potential below the

firing threshold.

3. Joint Synaptic Delay-Weight Plasticity185

3.1. ReSuMe with Joint Synaptic Delay-Weight Plasticity (ReSuMe-DW)

We now formulate the joint synaptic delay-weight plasticity by extending

the ReSuMe and PBSNLR frameworks.

3.1.1. ReSuMe Learning Rule

ReSuMe is a spike-driven supervised learning method for SNNs. It aims to

minimize the error between the desired and the actual output spikes by updating

the synaptic weights according to the following equation:

d

dt
wio(t) = [Sd(t)− So(t)][ad +

∫ ∞
0

Win(s)Si(t− s)ds], (6)
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where wio is the synaptic weight between the pre-synaptic neuron i and the

postsynaptic synaptic neuron o. Sd(t), So(t) and Si(t) are the target, post-,

and presynaptic spike trains, respectively. The spike trains take the following

form,

S(t) =
∑
f

δ(t− tf ), (7)

where f = 1, 2, ... is the index of the spikes and δ() is a Dirac function with

δ(t) = 1 for t = 0 (or 0 otherwise). The kernel Win(s) defines the shape of a

learning window,

Win(s) = A · exp(−s
τ

) (8)

where A is the maximal magnitude of the learning window and τ denotes the190

time constant of the learning process. The sign of the error signal (Sd(t)−So(t))

decides the direction of the synaptic adjustment. The kernel ad+
∫∞
0
Win(s)Si(t−

s)ds decides the amount of the weight change. We illustrate the ReSuMe rule

in Figure 3

Figure 3: Illustration of the ReSuMe learning rule. (A) The synaptic efficacy ωio between

any presynaptic neuron i and any postsynaptic neuron o, depends on the correlation between

the pre- and postsynaptic firing times and on the correlation between pre- and desired firing

times (a ‘remote’ teacher neuron d). (B) The synaptic efficacy is potentiated whenever a

desired spike is observed. The amplitude of change is determined by the learning windows

Win(s). (C) The synaptic efficacy is depressed whenever the trained neuron fires. This figure

is revised from [20, 51].
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3.1.2. ReSuMe-DW Learning Rule195

Applying the synaptic delay learning rule that we discuss in Section II to

ReSuMe, we propose a joint synaptic delay-weight learning rule, ReSuMe-DW.

During the learning process, both the synaptic delays and weights are trained.

The synaptic delays are trained according to Equation (4) and Equation (5),

and the weights are updated by the modified delay version of ReSuMe rule as200

d

dt
wio(t) = [Sd(t)− So(t)][ad +

∫ ∞
0

Win(s)Si(t− s− di)ds], (9)

where di is the time delay of synapse i.

The detailed pseudocode of the proposed ReSuMe-DW learning algorithm

is shown in Algorithm 1.

3.2. PBSNLR with Joint Synaptic Delay Plasticity (PBSNLR-DW)

3.2.1. PBSNLR Learning Rule205

The well-known perceptron learning rule (PLR) performs input-output map-

ping in a supervised manner [52]. Recent studies on Perceptron, such as the

PBSNLR and the HTP, suggest that the theoretical framework of PLR is well

suitable for supervised learning of spiking neural network.

For PLR to work for spiking neurons, the expression of the dynamics of

spiking neurons (Equation (1)) can be re-written in the Perceptron form as

follow:

V (t) = ωPt + b (10)

where ωT = {ω1, ω2, ..., ωn} is the synaptic weight vector. Pt = {P t
1 , P

t
2 , ..., P

t
n},

where P t
i is the sum of PSPs induced by all spikes emitted from synapse i at

time t. The P t
i is computed as,

P t
i =

∑
tfi +di<t

K(t− tfi ) (11)

In addition, the basis value of b in Equation (10) is defined as

b = −ϑ
∑
tsj<t

exp
(
−
t− tsj
τm

)
+ Vrest (12)
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Algorithm 1: The Learning Algorithm of ReSuMe-DW

Definition:

V (t): The membrane potential of the learning neuron.

td: The set of target output spikes {t1d, t2d,..., tNd } of the postsynaptic

neuron.

to: The set of actual output spikes {t1o, t2o,..., tNo } of the postsynaptic

neuron.

ϑ: Firing threshold of the spiking neurons.

Initialization:

The weight matrix ω={ω1, ω2, ...} is initialized randomly

The delay matrix D={d1, d2, ...} is initialized randomly

Training Epoch:

For each desired output time thd

Step 1: update synaptic weights by:

4ωio = ad +
∫∞
0
Win(s)Si(t− s− di)ds

Step 2: If V (t) < ϑ, then update synaptic delays according to

Equation (4);

EndFor

For each actual output time tho

Step 1: update synaptic weights as:

4ωio = −ad −
∫∞
0
Win(s)Si(t− s− di)ds;

Step 2: If tho /∈ td, then update synaptic delays according to

Equation (5);

EndFor

Testing:

Test the trained neuron with the new synaptic delays and weights. If

the trained neuron doesn’t produce the expected precisely-timed spike

train, we repeat the training cycle with one more epoch until it does.

The training will stop upon completing the maximum learning epochs.

12



0 T

V
(t

)

0 T

V
(t

)

0 T

V
(t

)

0 T

Time (ms)

V
(t

)

ϑ

ϑ

ϑ

ϑ

V
rest

V
rest

V
rest

V
rest

t
d
(1)

t
d
(1)

t
d
(2)

t
d
(2)

t
d
(2)t

d
(1)

t
d
(1) t

d
(2)

Figure 4: Illustration of the synaptic weight learning rule in PBSNLR. (A) Membrane poten-

tial trace of the neuron before learning. td(1) and td(2) are two desired output spikes. (B)

During the learning process, the neuron does not spike at threshold crossing and membrane

potential resets are forced at desired spike times. When the membrane potential is above

threshold at undesired times (gray shaded areas), synaptic weights will be depressed until the

membrane potential is driven below the firing threshold. When the membrane potential is

below the threshold at desired output times, the synaptic weights will be increased to make

a threshold crossing. (C) The voltage trace of the neuron after several learning epochs. (D)

The membrane potential trace after a successful learning.

where tsj is the desired output spike time.210

The PBSNLR [26] performs the supervised learning as a binary classifica-

tion problem where the perceptron learning rule is used to classify the actual

spikes into one of the two classes, that is positive when the spikes are expected,

and negative otherwise. The misclassification occurs when (1) the membrane

potential is below the firing threshold at the desired times and (2) it reaches

or exceeds the firing threshold when it shouldn’t. The synaptic weights are

13



updated in the supervised learning as follows:

ω
′

=


ω + βPt, if De(t) = 1 and V (t) < ϑ

ω − βPt, if De(t) = 0 and V (t) ≥ ϑ

ω, otherwise

(13)

where De(t) = 1 means t is the desired output time, and De(t) = 1 means

otherwise. The working principle of PBSNLR learning rule is illustrated in

Figure 4.

3.2.2. PBSNLR-DW Learning Rule

When a spike is supposed to fire at certain time, but the membrane potential215

is below the firing threshold, the membrane potential of the post-synaptic neu-

ron should be increased. In PBSNLR-DW, we adjust both the synaptic delays

and weights for the spikes to fire at the desired times.

The training samples P t
i are computed as follows whenever a synaptic delay

is updated,

P t
i =

∑
tfi +di<t

K(t− tfi − di) (14)

We summarize the algorithm in Algorithm 2.

4. Experiments220

Now let’s examine the performance of the proposed joint synaptic delay-

weight plasticity through experiments. In subsection 4.1, we will investigate the

learning capabilities of ReSuMe-DW and PBSNLR-DW. In subsection 4.2 to

subsection 4.4, we will investigate the effect of different factors on the learning

performance. The factors include the total time duration (Tt), the number225

of the synaptic inputs (Ns), the input spike frequency (Fin) and the output

spike frequency (Fo) of the spike trains. In subsection 4.5, we will look into

the robustness of ReSuMe-DW and PBSNLR-DW. We will further study the

proposed synaptic delay-weight plasticity for the learning of a real-world pattern

classification task.230
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Algorithm 2: The Learning Algorithm of PBSNLR-DW

Definition:

Pt: Pt = {P t
1 , P

t
2 , ..., P

t
n}, where P t

i is the sum of PSPs induced by all

spikes that emitted from synapse i at time t.

De(t): De(t) = 1 (or De(t) = 0 ) means t is the desired (or undesired)

output time.

Initialization:

The weight matrix ω={ω1, ω2, ...} is initialized randomly.

The delay matrix D={d1, d2, ...} is initialized randomly.

Training Epoch:

step 1: Constitute training samples {P1,d1}, {P2,d2}, ...

step 2: Update the synaptic weights and synaptic delays

If De(t) = 1 and ωPt + b < ϑ

ω
′

= ω + βPt;

Update delay of synapse î according to Equation (4);

EndIf

If De(t) = 0 and ωPt + b ≥ ϑ

ω
′

= ω − βPt;

Update delay of synapse î according to Equation (5);

EndIf

step 3: Update the training samples P t
i according to Equation (14),

return to step 2.

Testing:

Repeat the above steps until all training samples are correctly

classified. Then, test the trained neuron with the new synaptic delays

and weights.

15



4.1. Learning Sequence of Spikes

In this section, we present the experiments to demonstrate that spiking

neurons trained according to ReSuMe-DW and PBSNLR-DW are capable of

learning and precisely reproducing desired sequences of spikes. A spiking neuron

with 400 synaptic inputs is trained to emit a precisely timed spike sequence. The235

length of input and desired output spike trains is 400 ms. The mean frequency

of the input spike trains and the desired output spike train are set to Fin=2

Hz and Fo=100 Hz, respectively. The initial synaptic weights are selected as

the uniform distribution in the interval [0, 0.01]. The initial synaptic delays

are selected from the uniform distribution in the interval [0, 5]ms. We record240

the learning process of both ReSuMe-DW and PBSNLR-DW in Figure 5 and

Figure 6, respectively .

From Figure 5C, we note that the actual spikes are very different from the

desired output at the beginning. After several learning epochs, the difference is

reduced gradually. At about 25 epochs the actual output spike train becomes245

the same as the desired one. We use learning accuracy C [53] to quantitatively

evaluate the learning performance (C is assumed 0 for uncorrelated spike trains

and 1 for perfectly matched firing patterns). The learning accuracy C plotted

as a function of learning epoch is shown in Figure 5D, which indicates that the

initial value of C is close to 0.2, and C increases to 1 after about 25 learning250

epochs.

Figure 6 summarizes the learning process of PBSNLR-DW. At the beginning,

the trained neuron is observed to fire at arbitrary time, resulting in a small C

value. During the learning process, the neuron gradually learns to produce

spikes at the desired time, as evidenced by the increasing C. The learning255

accuracy increases sharply after 10 epochs, and saturates after 20 epochs.

4.2. Effect of the Total Time Duration of Spike Trains (Tt)

In the supervised learning algorithms that we discussed, a neuron learns

from a target spike train, that can be considered as an episode of a continuous

spike sequence. In this experiment, we would like to examine the effect of the260
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Figure 5: Illustration of ReSuMe-DW learning process of a neuron with 400 synapses over 50

epochs. Each colored line in panels (A) and (B) represents one synapse. (A) The evolution

of the synaptic weights. (B) The evolution of the synaptic delays. (C) The actual output

spike trains, denoted by • vs the target denoted by red ◦, during the learning process. (D)

The learning accuracy [53] as a function of the number of learning epochs.

duration of such a target spike train on the learning process. We continue to

test on a neuron of 400 synaptic inputs. The neuron is trained to produce target

spike trains of different lengths.

Every input spike train and the target output spike train are generated

according to a homogeneous Poisson process with firing rates Fin = 2 Hz and265

Fo = 100 Hz, respectively. The ratio between inhibitory and excitatory synapses

is set to 1/4, and the weights of excitatory synapses are initialized to 0.05 and the

weights of inhibitory synapses are initialized to −0.05. The length of the target

spike trains varies from 100 ms to 1000 ms with an interval of 100 ms. For each

Tt value, 20 experiments are carried out for different input and desired output270

spike trains. The average maximum value of C measure, the average number of
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Figure 6: Illustration of PBSNLR-DW learning process of a neuron with 400 synapses over

50 epochs. Each colored line in panels (A) and B represents one synapse. (A) The evolution

of the synaptic weights. (B) The evolution of the synaptic delays. (C) The actual output

spike trains, denoted by • vs the target denoted by red ◦, during the learning process. (D)

The learning accuracy [49] as a function of the number of learning epochs.

epochs and the average computing time that are needed to reach the maximum

of C are reported for comparison. The experimental results of ReSuMe-DW and

PBSNLR-DW are shown in Figure 7 and Figure 8, respectively.

Figure 7A and Figure 8A show the learning accuracy as a function of the275

durations of the spike trains. There is a trend that the learning accuracies

of these four methods drop as the length increases gradually. We are glad to

see that both ReSuMe-DW and PBSNLR-DW outperform the ReSuMe and

PBSNLR baseline consistently. For example, when Tt = 1, 000 ms, the learning

accuracy of PBSNLR-DW is almost 1, while the learning accuracy of PBSNLR280

is about 0.94. In addition, the standard deviations of the mean accuracies of

18
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Figure 7: A comparative study between ReSuME-DW and ReSuMe on their learning per-

formance as a function of the length of the target spike trains.(A) Learning accuracies of

ReSuMe-DW and ReSuMe. (B) Required learning epochs of ReSuMe-DW and ReSuMe. (C)

Required learning time of ReSuMe-DW and ReSuMe.
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Figure 8: A comparative study between PBSNLR-DW and PBSNLR on their learning

performance as a function of the length of the target spike trains. (A) Learning accuracies of

PBSNLR-DW and PBSNLR. (B) Required learning epochs of PBSNLR-DW and PBSNLR.

(C) Required learning time of PBSNLR-DW and PBSNLR.
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ReSuMe-DW and PBSNLR-DW are lower than those of ReSuMe and PBSNLR,

that suggest the joint synaptic delay-weight plasticity leads to a more stable and

robust neuron. Figure 7B and Figure 8B show that the required learning epochs

for ReSuMe-DW and PBSNLR-DW to reach the maximum accuracy C are less285

than that of ReSuMe and PBSNLR. For instance, when the length of the spike

train is 1,000, PBSNLR completes the training with about 630 learning epochs

while PBSNLR-DW just requires about 370 learning epochs. Figure 7C shows

that the required learning time of ReSuMe and ReSuMe-DW is comparable.

and ReSuMe-DW has a little advantage. However, as shown in Figure 8C, the290

learning time of PBSNLR-DW is clear shorter than that of PBSNLR, which

means that PBSNLR-DW outperforms PBSNLR in terms of learning efficiency.

4.3. Effect of the Number of the Synaptic Input (Ns)

As discussed in Section II, a neuron model is also defined by the number of

synaptic inputs, that has a direct impact on the size and efficiency of a spiking295

neural network. In this experiment, we investigate the effect of the number of the

synaptic inputs Ns. Every input spike train and the desired output spike train

are generated according to a homogeneous Poisson process with rates Fin = 2

Hz and Fo = 100 Hz, respectively. The length of the input and desired output

spike train is 400 ms. Ns varies from 50 to 500 with an interval of 50. The300

experimental results are shown in Figure 9 and Figure 10.

We note that both ReSuMe-DW and PBSNLR-DW achieve a higher learning

accuracy with a lower number of synaptic connections than their weight-based

counterparts. As shown in Figure 9, when Ns = 250, ReSuMe-DW reaches

a learning accuracy of 1 while ReSuMe only reaches around 0.9. In terms of305

learning efficiency, the learning epochs and learning time required by ReSuMe-

DW and PBSNLR-DW are less than ReSuMe and PBSNLR in most cases.

For example, when the number of synaptic inputs is 300, the training time of

PBSNLR-DW and PBSNLR measures 6 and 10 seconds respectively.
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Figure 9: A comparative study between ReSuME-DW and ReSuMe on their learning perfor-

mance as a function of the number of synaptic inputs.(A) Learning accuracies of ReSuMe-DW

and ReSuMe. (B) Required learning epochs of ReSuMe-DW and ReSuMe. (C) Required

learning time of ReSuMe-DW and ReSuMe.
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Figure 10: A comparative study between PBSNLR-DW and PBSNLR on their learning

performance as a function of the number of the synaptic inputs.(A) Learning accuracies of

PBSNLR-DW and PBSNLR. (B) Required learning epochs of PBSNLR-DW and PBSNLR.

(C) Required learning time of PBSNLR-DW and PBSNLR.
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4.4. Effect of Spike Train Frequency310

Both the input spike frequency and the target spike frequency has a great

impact on the learning performance as well [17] [26] [28]. For instance, a higher

target spike frequency means that more target spikes are desired, which certainly

increases the learning difficulty. In this section, experiments are conducted to

investigate the effect of the spike frequency on different learning algorithms.315

The firing rates of the input spike trains Fin vary from 1 Hz to 10 Hz with an

interval of 1 Hz. The firing rates of the target spike trains Fout vary from 10 Hz

to 100 Hz with an interval of 10 Hz. The length of spike trains Tt is set to 500

ms, and the number of the synaptic inputs is set to 400. For each Fin and Fout,

20 experiments are carried out, and the average maximum learning accuracy is320

reported in Figure 11 and 12
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Figure 11: The comparison of learning performance between ReSuMe-DW and ReSuMe with

different values of Fin and Fout. (A) Learning performance of ReSuMe-DW. (B) Leanrin

performance of ReSuMe.

It is observed from Figure 11 and 12 that all the methods have a higher

learning accuracy with a lower value of Fout, and there is a trend that the learn-

ing accuracy decreases as Fout increases. In addition, as shown in Figure 11,

when Fin varies from 5 Hz to 10 Hz, both ReSuMe and ReSuMe-DW reach325

a high accuracy. The learning accuracy of ReSuMe-DW outperforms ReSuMe

significantly when Fin varies from 1 Hz to 5 Hz. This also happens in Figure 12.
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Figure 12: The comparison of learning performance between PBSNLR-DW and PBSNLR

with different values of Fin and Fout. (A) Learning performance of PBSNLR-DW. (B)

Learning performance of PBSNLR.

4.5. Robustness to Noise

Now we move on to investigate the robustness of the joint synaptic delay-

weight plasticity. A neuron with 400 synaptic inputs is considered. The input330

and target spike trains are generated randomly according to a homogeneous

Poisson process with a frequency Fin = 2 Hz and F0 = 100 Hz, respectively.

The total trains length Tt is set to 500 ms, and the number of synaptic input Ns

is set to 400. After training, the reliability of the target recall is tested against

two noise cases: 1) background noise on the membrane potential; 2) presynaptic335

spike time jitter.

4.5.1. Membrane Potential Noise

In this case, background membrane potential noise is considered as the noise

source. After learning, the trained neuron is subjected to simulated background

Gaussian white noise. The mean value of the added noise is 0, and its variance340

σb is systematically increased within the range of [0.05, 0.5]. For each value

σb, 20 experiments are carried out. The learning accuracy C of a similarity

between the desired and actual output spike trains is calculated and reported.

The experimental results are shown in Figure 13.

Figure 13 shows that all learning methods work well with high learning345

accuracy when noise level is low. However, PBSNLR-DW and ReSuMe-DW
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Figure 13: Robustness of different learning algorithms against background membrane poten-

tial noise. (A) Robustness of ReSuMe-DW and ReSuMe against back ground voltage noise.

(B) Robustness of different learning algorithms against background membrane potential noise

outperform PBSNLR and ReSuMe consistently at all noise levels. These results

confirm that the neuron trained by the proposed joint synaptic delay-weight

plasticity helps the existing learning methods to improve their robustness.

4.5.2. Input Spike Time Jitter350

In this case, input jittering noise is considered as the noise source. After

learning, we jitter the input spike times. The jitter intervals are randomly

drawn from a Gaussian distribution with mean 0 and variance σj ∈ [0.2, 2] ms.

We report the recall accuracy C with spike time jitters in Figure 14.
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Figure 14: Robustness of different learning algorithms against jittering noise. (A) Robustness

of ReSuMe-DW and ReSuMe against jittering noise. (B) Robustness of different learning

algorithms against jittering noise

As shown in Figure 14, as the intensity of noise increases, the learning accu-355

racy C decreases. We note that neurons trained by ReSuMe-DW and PBSNLR-
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DW are more robust than those by ReSuMe and PBSNLR against jitering noise.

4.6. On Spiking Sparsity

In this section, we present the experiments to quantitatively evaluate the

spike sparsity improvement by incorporating the proposed synaptic delay. A360

spiking neuron with 400 synaptic inputs is trained to emit a precisely timed

spike sequence. The length of input and desired output spike trains is 400 ms.

The mean frequency of the desired output spike train is set to Fo=50 Hz, and

the firing rates of the input spike trains Fin vary from 1 Hz to 10 Hz with

an interval of 1 Hz. The initial synaptic weights are selected as the uniform365

distribution in the interval [0, 0.01]. The initial synaptic delays are selected

from the uniform distribution in the interval [0, 5]ms. We record the learning

accuracies of both ReSuMe-DW and ReSuMe in Figure 15.
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Figure 15: Learning accuracies of both ReSuMe and ReSuMe-DW with different input

frequency.

Figure 15 demonstrates that the learning accuracies of both ReSuMe and

ReSuMe-DW increase with the increase of the input spike frequency. The pro-370

posed ReSuMe-DW can make the learning neuron output desired precisely timed

spike with an input frequency of 5 Hz, while ReSuMe requires a 8 Hz input spike

frequency. To better illustrate the spiking sparsity improvement, Figure 16 gives

an example of input spike pattern with frequency of 5 Hz and 8 Hz. By incorpo-

rating the proposed delay learning, the number of required spikes is reduced by375

nearly half. Therefore, the proposed ReSuMe-DW works more effectively with
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Figure 16: Input spike patterns with different frequencies. Each spike is denoted by a dot.

(A) Input spike patterns with a frequency of 5 Hz. (B) Input spike patterns with a frequency

of 8 Hz.

sparse input spike patterns, which means better energy efficiency.

4.7. Speech Recognition

The proposed ReSuMe-DW and PBSNLR-DW train spiking neurons to trans-

form input spike patterns into a temporally specific output, and are hence well380

suited for processing temporally rich signals, such as motion and speech recogni-

tion. To demonstrate that the proposed learning algorithms are capable of cap-

turing rich temporal dynamics, we apply them to solve a speaker-independent

speech recognition task. The TIDIGITS corpus[54] is used in this experiment,

which is one of the most commonly used datasets for benchmarking in speech385

recognition tasks[55, 56, 57, 58, 38, 59]. This dataset consists of isolated spoken

digit strings from a vocabulary of 11 words (i.e.,’zero’ to ’nine’, and ’oh’) and

speakers from 22 different dialectical regions.

To fulfill the task of speech recognition, the raw speech waveforms are fur-

ther processed by an auditory neural encoding front-end, in which sparse rep-390

resentation of spike timing patterns are obtained (as shown in Figure 17). The

one-dimensional waveforms are first decomposed into 20 sub-channels with fre-

quency range between 0 to 8000Hz, by a time-domain Constant-Q Transform
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cochlear filter bank [57]. Then we get the logarithm scale of the 20 parallel

streams of sub-band signals, which mimics the function of energy detection of395

hair-cells in mammalian auditory systems. Finally each sub-band signal is en-

coded by threshold coding [29].

Figure 17: Illustration of the threshold coding mechanism. (a) The raw speech waveform

and the spectrogram generated from the CQT cochlear filter bank. (b) The spectrogram

is further encoded into spikes using the threshold coding. The top and bottom sub-figures

depict the upward (red dots) and downward (blue dots) crossing events, respectively. For

better visualization, only the output from the 1st cochlear filter is displayed. (c) The upward

and downward events from (b) are merged to visualize the neuronal activation trajectory. The

upward and downward crossing events for the 1st cochlear filter are represented by presynaptic

neurons 1-30, respectively. The threshold coding preserves temporal dynamics of the filtered

spectral information. (d) The entire threshold encoded spike pattern by concatenating the

spike events from (c) vertically. The spike events that corresponds to the first filter in (c) is

shaded in grey.

After threshold coding, the speech signals are transformed into spike pat-

terns, and then the encoded spike patterns are transmitted to the next layer for

learning and classification. There are eleven groups of output neurons in this400

layer with each group corresponding to one class. Each group consists of ten

neurons. In order to discriminate between different spoken digits, neurons are

trained to generate the desired spike train only when a spike pattern from their

assigned class is presented, and remain silent otherwise. However, how to set

the desired spike train remains an open question. To resolve this problem, we405
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Figure 18: Illustration of the dynamic output decoding strategy. (A)The membrane potential

remains lower than the firing threshold, then Td = t∗. (B) The neuron generates two spikes

and V (t∗) is less than the pre-defined ϑ∗, then Td = {t1o, t2o}. (C) The neuron generates two

spikes and V (t∗) is above ϑ∗, then Td = {t1o, t2o, t∗}.

propose a data-driven dynamic decoding scheme.

When a training spike pattern is presented, we observe the membrane po-

tential trace of the corresponding output neuron. The desired spike train Td is

decided based on the following cases:

• If the membrane potential V (t) remains lower than the firing threshold ϑ410

and no spike is generated (as shown in Fig. 18A), then Td = t∗, where

t∗ is the time at which the membrane potential V (t∗) is the maximum

among all peaks of subthreshold membrane potential.

• If the neuron generates a spike train To = {t1o, t2o, ...} and V (t∗) is less

than the pre-defined decoding threshold ϑ∗ (as shown in Fig. 18B), then415

Td = {To}.

• If the neuron generates a spike train To = {t1o, t2o, ...} and V (t∗) is above
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the pre-defined decoding threshold ϑ∗ (as shown in Fig. 18C), then Td =

{To, t∗}.

As shown in Table. 1, it is encouraging to note that the proposed PBSNLR-420

DW and ReSuMe-DW achieve competitive results compared with other SNN-

based models and traditional models. The classification accuracy of the pro-

posed PBSNLR-DW is 96.50%, which outperforms all other bio-inspired systems

on the TIDIGITS dataset. We note that the traditional RNN based systems

offers a better classification accuracy of 97.90%[60]. However, our methods is425

based on the research of brain information processing mechanisms, which is fun-

damentally different from traditional deep learning approaches. In addition, the

proposed delay learning rule can be applied to a deep spiking neural network to

further enhance its classification accuracy.

Table 1: Classification performance of the proposed framework and other baseline frameworks

on speech recognition task. The TIDIGITS corpus is used in this experiment, which consists

of isolated spoken digit strings from a vocabulary of 11 words (i.e.,’zero’ to ’nine’, and ’oh’)

and speakers from 22 different dialectical regions.

Model Accuracy

Single-layer SNN and SVM [61] 91.00%

Spiking CNN and HMM [62] 96.00%

AER Silicon Cochlea and SVM [58] 95.58%

Auditory Spectrogram and SVM [58] 78.73%

AER Silicon Cochlea and Deep RNN [38] 96.10%

Liquid State Machine [59] 92.30%

SOM and Tempotron Learning Rule [57] 92.10%

MFCC and GRU RNN [60] 97.90%

ReSuMe-DW 92.45%

PBSNLR-DW 96.50%
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5. Discussion430

5.1. On the Reasons of Better Learning Performance

The experimental results show that the proposed synaptic delay-weight learn-

ing method outperforms the traditional synaptic weight learning methods in

terms of learning accuracy and efficiency. In this section, we explore why the

proposed synaptic delay-weight learning can improve learning performance.435

As shown in Figure 19A, there are three input synapses, and one spike ar-

rives at each synapse. We would like to make the neuron j output a desired

spike at td. Figure 19B shows the response of neuron j before learning, in which

the membrane potential is below the firing threshold at td. To increase the

membrane potential towards the firing threshold ϑ, the weight-based learning440

methods, such as ReSuMe or PBSNLR, will increase the synaptic weights. Fig-

ure 19C shows the neuronal response after weight-based learning, in which the

neuron output a spike before td. By weight-based learning, the neuron cannot

precisely output a spike at td. However, this problem is solved by the joint

delay-weight learning rule. As shown in Figure 19D, the delay learning rule445

moves the input spikes toward the desired spike time.

As shown in Figure 20, there are 200 input spike trains, and the desired

spike train contains three spikes(td(1),td(2),td(3)). The spikes in the input spike

pattern are denoted by a dot. In Figure 20A, the spatiotemporal input pattern

does not have any spikes during the time interval shortly before the desired spike450

td(2), and this time interval is called the silent window. In this situation, the

weight-based learning rules, such as ReSuMe and PBSNLR, cannot make the

learning neuron fire a spike at td(2). However, this silent window problem can be

solved by the proposed delay-weight learning method. As shown in Figure 20B,

the proposed delay learning rule adjusts the synaptic delays to prepare some455

input spikes shortly before the desired spike td(2), then adjust the synaptic

weights to make the learning neuron fire a spike precisely at td(2). This is one

of the reasons for better learning performance of our method.
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Figure 19: The necessity of delay based learning. (A) Structure of the neuron with three

input synapses. (B) Membrane potential trace without learning. (C) Membrane potential

trace after training with weight-based learning rules. (D) Membrane potential trace after

traing with both weight-based and delay based learning rules.

5.2. On the Novelty of the Synaptic Delay Learning Rule

In section 1, we introduce several synaptic delay learning methods, such as460

delay selection [47],[48][19], delay shift method [49]. As DL-ReSuMe represents a

recent success in learning synaptic delays, it is worth investigating the difference

between the proposed joint synaptic delay-weight plasticity and DL-ReSuMe.

While DL-ReSuMe outperforms ReSuMe in general, the delay learning method

in DL-ReSuMe has some limitations. First, the synaptic delay in DL-ReSuMe465

can only be increased. Due to the one-way adjustment of synaptic delay, the

learning efficiency is greatly affected. However, our proposed delay learning

rule can both increase or decrease the synaptic delay to improve the learning

performance. Secondly, the PSPs in DL-ReSuMe are limited to the exponential
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Figure 20: (A) Spatiotemporal input spike pattern containing 200 spike trains associated

with 200 input neurons. Each spike is denoted by a dot. There are three desired spikes

td(1), td(2), td(3), and the input spike pattern does not have any spike in an interval shortly

before the desired spike at td(2). (B) The proposed delay learning rule adjust the synaptic

delay to shift the input spikes toward the desired spikes.

function, which is less biological plausible, and cannot be generalized. However,470

the proposed delay learning algorithm is applicable to different types of PSP

functions, and hence more general. Third, the delay learning rule in DL-ReSuMe

has only been applied to ReSuMe, it is not clear how the delay learning rule can

be generalized to other weight-based learning schemes. However, our proposed

delay learning algorithm can be applied to both spike driven methods (such as475

ReSuMe) and membrane potential driven methods (such as PBSNLR).

5.3. On When to Apply Synaptic Delay Learning

In Figure 11, we observe that the learning accuracy of ReSuMe-DW out-

performs ReSuMe significantly when Fin varies from 1 Hz to 5 Hz. However,

when Fin varies from 5 Hz to 10 Hz, ReSuMe-DW and ReSuMe perform equally480

well. We believe that a higher input firing rate implies a higher number of post-

synaptic potentials. In the case of high input spiking rate, the weight-based

learning rule effectively optimizes the potential objective functions to achieve
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the target spike trains. However, in the case of low input spiking rate, the

weight-based learning rule is less effective in moving the spiking time. There-485

fore, the synaptic delay learning is essential with sparse input spike patterns. In

addition, when we apply SNNs for some practical applications, energy consump-

tion is an important aspect of our consideration. The proposed delay-weight

plasticity works more effective with sparse input spike patterns than traditional

weight-based algorithms, which means better energy efficiency.490

5.4. On Potential Application Prospects

Recently, there are several gradient based learning algorithms for training

deep spiking neural networks, and these methods can be grouped into two

main categories. The first category trains a traditional artificial neural network

(ANN) and converts it into a SNN version with some accuracy loss [36, 37, 38].495

The second category trains directly on the SNN with the typical examples from

[31, 32, 33, 34, 35]. Experimental results demonstrate that these methods can

achieve a good performance, and promote the research of SNN. However, the

above mentioned learning algorithms are still based solely on weight adjustment,

which completely ignore the effect of synaptic delay.500

Despite the extensive exploration of learning algorithms, the exact learning

mechanisms of a biological neuron remain unknown, and exploration of effective

learning algorithm at the single neuron level is still necessary. To develop brain-

inspired computing, this paper takes from a single neuron as a starting point,

which proposes a new learning algorithm that adjusts both the synaptic delays505

and weights to make a neuron fire precisely timed spikes. This is a fundamental

work to develop a more complex spiking neural network. Several works have

attempted to integrate delay learning to deep spiking neural networks, and the

experimental results demonstrate that the delay learning method can enhance

the performance of deep SNNs[63]. Therefore, the proposed delay learning rule is510

a promising way to enhance the learning performance of deep SNNs on complex

and large-scale tasks.
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6. Conclusion

In this paper, we proposed a new delay based learning rule, which can

be integrated into other existing weight-based learning rules. We illustrated515

how the proposed joint delay-weight plasticity works through ReSuMe-DW

and PBSNLR-DW. Experimental results demonstrated that ReSuMe-DW and

PBSNLR-DW achieve high learning accuracy with a substantial improvement

in learning time and better robustness to different types of noise. Our future

work will explore the possibilities to extend the proposed delay learning rule to520

sequence learning [64, 65, 66] and deep spiking neural networks.
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