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Abstract

The goal of few-shot learning is to recognize new visual concepts with just a few
amount of labeled samples in each class. Recent effective metric-based few-shot ap-
proaches employ neural networks to learn a feature similarity comparison between
query and support examples. However, the importance of feature embedding, i.e., ex-
ploring the relationship among training samples, is neglected. In this work, we present
a simple yet powerful baseline for few-shot classification by emphasizing the impor-
tance of feature embedding. Specifically, we revisit the classical triplet network from
deep metric learning, and extend it into a deep K-tuplet network for few-shot learning,
utilizing the relationship among the input samples to learn a general representation
learning via episode-training. Once trained, our network is able to extract discrimi-
native features for unseen novel categories and can be seamlessly incorporated with
a non-linear distance metric function to facilitate the few-shot classification. Our re-
sult on the miniImageNet benchmark outperforms other metric-based few-shot classi-
fication methods. More importantly, when evaluated on completely different datasets
(Caltech-101, CUB-200, Stanford Dogs and Cars) using the model trained with mini-
ImageNet, our method significantly outperforms prior methods, demonstrating its su-
perior capability to generalize to unseen classes.

Keywords: Few-shot learning, metric learning, feature representation, deep learning.

1. Introduction

Learning from a few data is a hallmark of human intelligence, however, it remains
a challenge for modern deep learning systems. Recently, there has been a growing in-
terest in few-shot learning [1–26], which aims to recognize new visual concepts with
just a small amount of labeled data for training. In other words, the goal of few-shot
learning is to classify unseen data instances (query examples) into a set of new cate-
gories, given just a small number of labeled instances in each class (support examples).
In this work, we focus on the case of few-shot classification, where only a few labeled
examples per class are given.
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Obviously, naively fine-tuning a model on the novel labeled data would easily over-
fit the few given data. Hence, data augmentation and regularization [27, 28] are often
employed to somehow relieve the overfitting. Later, the meta-learning paradigm [3,
4, 29, 30] shed light to the few-shot learning problem; several metric learning-based
methods [2, 31–33] were developed. For instance, the matching network [32] uses
an end-to-end trainable k-nearest neighbors algorithm on the learned embedding of
the few labeled examples (support set) to predict the classes of the unlabeled samples
(query set), while the prototypical network [2] further builds a pre-class prototype rep-
resentation. More recently, Sung et al. presented the relation network [33], which
learns a nonlinear distance metric via a shallow neural network instead of using a fixed
linear distance metric, eg, Cosine [32] and Euclidean [2]. These methods used sam-
pled mini-batches called episode to train an end-to-end network, aiming at making the
training process more faithful to the test environment. Although these methods utilize
deep networks to extract expressive deep features, they do not take full advantages of
the relationship among the input samples. Hence, we are motivated to explore strate-
gies to improve the feature embedding in terms of their efficiency to be transferable to
handle unseen class samples and their generality for few-shot classification. Although
the triplet-like feature embedding is a longstanding topic in the computer vision area,
its importance and effectiveness for the few-shot classification is neglected by the com-
munity.

In this work, we revisit metric learning and investigate the potential of triplet-like
feature embedding learning for few-shot classification. We aim to meta-learn a feature
embedding that performs well, not only on the training classes but more importantly, on
the novel classes. Specifically, the feature embedding should map the similar samples
close to one another and dissimilar ones far apart. This is well-aligned with the philos-
ophy of triplet-like learning. However, the general triplet network only interacts with
a single negative sample per update, while few-shot classification requires a compari-
son with multiple query samples, typically of different classes. Hence, we formulate
an improved triplet-like metric learning, namely the deep K-tuplet Network, to im-
prove the few-shot classification. Particularly, the deep K-tuplet Network generalizes
the triplet network to allow joint comparison with K negative samples in each mini-
batch. It makes the feature embedding learning process more faithful to the few-shot
classification problem with improved feature generalization. Moreover, we present the
semi-hard mining sampling technique, an effective sampling strategy to sample infor-
mative hard triplets. Hence, we can speed up the convergence and stabilize the training
procedure.

Our technique is simple yet powerful, and can be seamlessly incorporated with the
learnable non-linear distance metric [33] for few-shot classification. To demonstrate
the generalization capability of our presented few-shot classification framework, we
train our model on the miniImageNet dataset [32], and conduct few-shot classification,
not only on the miniImageNet testing data, but also on other novel classes in other
datasets (e.g., Caltech-101, CUB-200, Stanford Dogs and Cars). Experimental results
demonstrate that our method effectively generalizes for unseen novel class samples,
even across different datasets.

The main contributions of this work are threefold:
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1. We present a simple and powerful baseline method to investigate the importance
of feature embedding for few-shot classification, where the effectiveness of fea-
ture embedding is neglected by previous works.

2. We present the deep K-tuplet Network to effectively learn the discriminative fea-
ture embedding on unseen class samples for few-shot learning. Our method
outperforms other metric-based methods and achieves competitive performance
over other meta-based methods on the miniImageNet.

3. More importantly, prior works evaluated the few-shot learning within one dataset, i.e.,
the novel classes and base classes are sampled from the same dataset. This ex-
periment setting may be not representative in the real world setting. We establish
a new experimental setting for evaluating the cross-domain generalization abil-
ity for few-shot classification algorithms. Our result generalized on CUB-200,
Stanford Dogs, Stanford Cars and Caltech-101 excels other methods, showing
the excellent cross-domain generalization capacity of our method.

2. Related Work

Few-shot learning is an important area of research. Early works on the few-shot
learning focused on generative models and inference strategies [34, 35]. In [34], the au-
thors assumed that one can utilize knowledge coming from previously-learned classes
to make predictions on new classes only with one or few labels. However, these meth-
ods do not involve deep learning. Recently, with the success of deep learning, signifi-
cant progress has been achieved in the few-shot learning area.

2.1. Meta-learners for Few-Shot Learning

One category of the few-shot learning is meta-learner based methods [3, 4, 29, 30,
36]. The meta-learning algorithm (MAML) [3] used a model agnostic meta-learner to
train a good basic model on a variety of training tasks, such that given a new task with
only a few training samples, a small number of gradient steps is sufficient to produce
a good generalization model. Ravi & Larochelle [4] further proposed an LSTM-based
meta-learning model to learn the optimization algorithm of training a network, where
the LSTM updates the weights of a classifier for a given episode. Both methods, how-
ever, need to fine-tune the basic model on the target problem. Munkhdalai & Yu [30]
introduced a novel meta-learning architecture that learns meta-level knowledge across
tasks and produces a new model via fast parameterization for rapid generalization. San-
toro et al. [29] introduced a memory-augmented neural network to quickly encode and
retrieve new data and make accurate predictions with only a few samples. Lately, some
other works [37–39] focused on meta-learners for few-shot classification. However, all
these methods need to fine-tune or update the parameters for new unseen tasks, while
our method performs the target tasks based entirely on feed-forward without requiring
further parameter updates.

2.2. Deep Metric Learning

Our work is related to deep metric learning, which involves a large volume of met-
ric learning methods [40–44]. Below, we briefly review the more relevant ones. The
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Figure 1: The framework of deep K-tuplet Network for few-shot learning. We train a embedding network
to learn transferable feature embedding via the K-tuplet loss from the training dataset. The anchor interacts
with multiple negative images in the tuplet, and contributes to the discriminative features. The well-learned
embedding features are fed into the non-linear distance metric module to learn similarity among the query
image and samples in the support set. Finally, we perform few-shot classification on the novel category.

goal of metric learning is to minimize intra-class variations and maximize inter-class
variations. Early works used the siamese architecture [41, 45] to capture the simi-
larity between images. The recent works [42, 46, 47] adopted the deep networks as
the feature embedding function and used triplet losses instead of pairwise constraints
to learn the metric. These metric learning strategies have been widely used in image
retrieval [46], face recognition [47–50] and person re-identification [50, 51]. For exam-
ple, Lu et al. [49] proposed a discriminative deep metric learning method for face and
kinship verification, where the distance of each positive pair is reduced and that of each
negative pair is enlarged. Hu et al. [50] proposed a multi-view metric learning (MvML)
to jointly learn an optimal combination of multiple distance metrics on multi-view rep-
resentation. It learns a shared representation for different views and the method is
applied on face verification, kinship verification, and person re-identification. Duan et
al. [52] presented a deep adversarial metric learning (DAML)to generate synthetic hard
negatives from the observed negative samples, where the potential hard negatives are
generated to the learned metric as complements. More recently, Wu et al. [53] pre-
sented a feature embedding method based on neighborhood component analysis. These
works show that combining deep models with proper objectives is effective in learn-
ing the similarities. Unlike these methods, we consider using triplet-like networks to
improve the feature discrimination on the unseen class images for few-shot learning
problem.

2.3. Metric Learning for Few-shot Learning
The second branch are metric based approaches [2, 31–33, 53–56]. Metric learning

based methods learn a set of project functions (embedding functions) and metrics to
measure the similarity between the query and samples images and classify them in a
feed-forward manner. The key difference among metric-learning-based methods lies
in how they learn the metric. Koch et al. [31] presented the siamese neural networks to
compute the pair-wise distance between samples, and used the learned distance to solve
the one-shot learning problem via a K-nearest neighbors classification. Vinyals et
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al. [32] designed end-to-end trainable k-nearest neighbors using the cosine distance
on the learned embedding feature, namely matching network. Lately, Snell et al. [2]
extended the matching network by using the Euclidean distance instead of the cosine
distance and building a prototype representation of each class for the few-shot learning
scenario, namely prototypical network. Mehrotra & Dukkipati [57] trained a deep
residual network together with a generative model to approximate the expressive pair-
wise similarity between samples.

Recently, Ren et al. [58] extended the prototypical network to do semi-supervised
few-shot classification, while Garcia et al. [55] defined a graph neural network to con-
duct semi-supervised and active learning. Sung et al. [33] argued that the embedding
space should be classified by a nonlinear classifier and designed the relation module
to learn the distance between the embedded features of support images and query im-
ages. The relation network extends the matching network and prototypical network
by including a learnable nonlinear comparator. Notably, the prototypical networks [2],
siamese networks [31], and relation net [33] all adopt the episode-based training strat-
egy, where each episode is designed to mimic few-shot learning. More recently, Li et
al. [59] proposed category traversal module (CTM) to look at all categories in the sup-
port set to find task-relevant features. Li et al. [6] present the deep nearest neighbor
neural network to improve the final classification in the few-shot learning. Although
the excellent performance achieved in the few-shot classification, the importance of
feature embedding has not paid sufficient attention.

3. Method

3.1. Overview

Few-shot classification involves three datasets: a training set Dtrain, a support set
Dsupp, and a query set Dquery. In short, we want to train a model to learn transferable
knowledge from Dtrain, and apply the knowledge in the testing phase to classify the
samples inDquery givenDsupp.

• Dtrain = {(xi, yi)}Ni=1 is used for training the model, where xi is a training image,
yi ∈ Ctrain is the label of xi, and N is the number of training examples.

• Dsupp =
{
(x j, y j)

}M

j=1
is the set of M labeled examples given in the testing phase,

where y j ∈ Csupp is the label of x j but Ctrain ∩ Csupp = ∅.

• GivenDquery =
{
x j

}n

j=1
, the goal of few-shot classification is to classify the sam-

ples inDquery.

Note that the support set Dsupp and the query set Dquery share the same label space. If
the support set has K labeled examples for each of the C classes in Csupp, i.e., M =
C × K, then the few-shot problem is called C-way K-shot.

Figure 1 overviews our few-shot learning framework. First, we meta-learn a trans-
ferable feature embedding through the deep K-tuplet network with the designed K-
tuplet loss from the training dataset. The well-learned embedding features of the query
image and samples in the support set are then fed into the non-linear distance metric to
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learn the similarity scores. Further, we conduct few-shot classification based on these
scores.

3.2. Meta-learn Feature Embedding

Such nonlinear mapping should be generalizable to work with samples of novel
classes, meaning that the mapping should preserve the class relationship on the unseen
class samples in Dsupp and Dquery. We adopt a triplet-like network to learn the feature
embedding onDtrain.

Specifically, for an input image xi, function f (·; θ) : X → Rd maps xi to an embed-
ding vector f (xi), where θ denotes the parameters of the embedding function; d is the
dimension of the embedded features, and f (xi) is usually normalized to unit length for
training stability and comparison simplicity. To learn parameter θ, the traditional triplet
loss is widely used, where the objective is based on a relative similarity or distance
comparison metric on the sampled pairs. In short, the training samples are randomly
selected to form a triplet (xa, xp, xn) with an anchor sample xa, a positive sample xp,
and a negative sample xn. The label of the selected samples in a triplet should satisfy
ya = yp , yn. The aim of the loss is to pull f (xa) and f (xp) close to each other, while
pushing f (xa) and f (xn) far apart.

However, the above traditional triplet loss interacts with only one negative sample
(and equivalently one negative class) for each update in the network, while we actually
need to compare the query image with multiple different classes in few-shot classifica-
tion. Hence, the triplet loss may not be effective for the feature embedding learning,
particularly when we have several classes to handle in the few-shot classification set-
ting. Inspired by [43], we generalize the traditional triplet loss to a tuplet loss with
K-negatives, namely K-tuplet loss, to allow simultaneous comparison jointly with K
negative samples, instead of just one negative sample, in one mini-batch. This exten-
sion makes the feature comparison more effective and faithful to the few-shot learning
procedure, since each update, the network can compare a sample with multiple negative
classes altogether.

In particular, we randomly choose the K negative samples xni , i = {1, 2, ..,K} to
form into a triplet. Accordingly, the optimization objective is formulated as:

L(xa, xp, xni ) =
1
K

∑
i∈U

[∥∥∥ fa − fp

∥∥∥2
−

∥∥∥ fa − fni

∥∥∥2
+ α

]
+
,K = |U | (1)

where [·]+ = max(0, ·) denotes the hinge loss function, α is the hyperparameter margin
and U denotes the set of triplets, and we write f (x) as f to omit x for simplicity. For
the anchor sample xa, the optimization shall maximize the distance to the negative
samples xni to be larger than the distance to the positive sample xp in the feature space.
To form one mini-batch to train the network, we randomly select B anchor samples
from the training set, where B is batch size. For each anchor sample xa, we then
randomly select another positive sample xp of the same class as xa and further randomly
select K other negative samples whose classes are different from xa. Among the K
negative samples, their class labels may be different. Figure 2 visualizes the K-tuplet
loss and triplet loss. When K equals to 1, K-tuplet loss becomes triplet loss. The
classification accuracy is improved with a larger K,since the anchor sample interacts
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Figure 2: The visualization of K-tuplet loss function. When K equals to 1, K-tuplet loss becomes triplet loss.

with more samples in one mini-batch and makes the gradient more stable. However,
when K increases, the computational burden increases and it becomes too heavy-lifting
to perform standard optimization, i.e., stochastic gradient descent (SGD) with a mini-
batch. In other words, the classification accuracy would decrease as K continues to
increase. From our experiments, we can achieve the best performance when setting K
to 5. Compared with the traditional triplet loss, more inter-class variations have been
considered in each forward update by using our K-tuplet loss, thus making the learned
feature embedding more discriminative for samples from different classes.

3.3. Efficient Training with Semi-hard Mining

The semi-hard mining strategy is motivated by the observation that when the model
starts to converge, the “well-learned easy samples” will obey the margin and could not
contribute to the optimization in the learning process. However, the “hard samples” still
fail to satisfy the optimization goal. This phenomenon degrades the model performance
and also slows down the convergence of the training. We, thereby, design a semi-hard
mining strategy to sample more informative hard triplets in each mini-batch when the
model starts to converge. The informative hard triplets are selected by whether the
condition in the loss function is satisfied or not. The loss function of semi-hard mining
can be described as the following:

Lsemi−hard(xa, xp, xni ) =
1
s

∑
i∈S

[∥∥∥ fa − fp

∥∥∥2
−

∥∥∥ fa − fni

∥∥∥2
+ α

]
+
,

where S = {i ∈ U | ‖ fa − fni‖
2 − ‖ fa − fp‖

2 ≥ α} and s = |S |

(2)

where [·]+ = max(0, ·) denotes the hinge loss function and α is hyperparameter margin.
xa, xp, xn denote an anchor, positive and negative sample, respectively. s is the number
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of elements in set S , where set S represents the triplets that are selected as informative
and hard. We write f (xa) as fa to omit x for simplicity.

This semi-hard loss function is utilized when the model starts to converge (80
epochs in our experiments) and we continue to fine tune it for 100 epochs. We uti-
lize Adam optimizer with a learning rate of 0.001 to train the network. We analyze the
effectiveness of this technique in Table 5. From our experiments, we can see that this
semi-hard mining strategy helps improve the training efficiency and contributes to the
learning of feature embedding.

3.4. Non-linear Distance Metric Learning

Furthermore, we adopt the non-linear distance metric module [33] to learn to com-
pare the embedded features in few-shot classification. Given image xs from the support
set and image xq from the query set, their similarity score is learned by concatenat-
ing fθ(xq) and fθ(xs) and then feeding the combined feature into a non-linear distance
metric. The non-linear distance metric has two convolutional blocks and two fully-
connected layers. Each convolutional block consists of a 3 × 3 convolution with 64
channels followed by a batch normalization, an ReLU activation function, and a 2 × 2
max-pooling. The fully-connected layers have 8 and 1 outputs, followed by a sigmoid
function to get the final similarity scores between the query image xq and samples in the
support set. In the end, our non-linear distance metric learns to produce the similarity
score by calculating the mean square error loss, following the same spirit as [33].

Figure 3 shows the detailed network architecture of our nonlinear metric learning
module. The input is the concatenation of features from the images of the support set
and the query set. The output is the similarity scores of the query images with images
in the support set. The few-shot classification prediction is the label of the image that
has the maximum similarity score in the support set.
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Figure 3: The detailed network architecture of our nonlinear metric learning module. The last number in
each box denotes the number of feature channels.

3.5. Technique Details

We employed the ResNet34 architecture [60] for learning the feature embedding.
When meta-learning the transferable feature embedding, we used Adam optimizer [61]
with a learning rate of 0.001 and a decay for every 40 epochs. We totally trained 100
epochs and adopted the semi-hard mining strategy when the loss starts to converge (at
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around 80 epoches). To learn the non-linear distance metric, we followed the episode-
based strategy and also employed the Adam optimizer with a learning rate of 0.001.
Different from the general episode sampling procedure, we sampled multiple episodes
to form each mini-batch to train the non-linear distance metric. This strategy increases
the data diversity, i.e., the number of different class samples) and makes the training
more stable.

We evaluate the accuracy of few-shot classification by averaging the randomly-
generated episodes from the training set, following [2]. For 5-way 1-shot test, each
query image is compared with five samples in the support set. The prediction is the
label of the sample that has the maximum similarity score within the support set. For
5-way 5-shot test, we sum the features of all the samples in each class in the support set
as the feature map of the class and then follow the same procedure with 5-way 1-shot
setting to get the query image label.

4. Experiments

We first evaluate our few-shot classification method on the public miniImageNet
dataset. We then show the generalization of our approach by directly evaluating on
completely different datasets using the model trained with miniImageNet. Lastly, we
extensively analyze the different components of our method.

4.1. Few-shot Classification on the miniImageNet

The miniImageNet dataset is derived from the ILSVRC-12 dataset [62], consisting
of 60,000 color images with 100 classes and 600 samples per class. In order to directly
compare with state-of-the-art algorithms, we follow the splits introduced by Ravi and
Larochelle [4], with 64, 16 and 20 classes for training, validation and testing, respec-
tively. The validation dataset is used for monitoring generalization performance of the
network only and not used for training the network.

We compare our approaches with several state-of-the-art methods reported on the
miniImageNet [2, 32, 33], as shown in Table 1. Most of the existing methods employed
the shallow neural network, i.e., four convolutional layers, to extract the feature. Since
our method is based on the well-learned feature embedding, the shallow embedding
network did not make adequate usage of our method’s expressive capacity. Thus, we
follow the recent works [11, 37, 63] to use a deeper embedding network, i.e., ResNet,
to prevent the underfitting.

Compared with metric-based methods, we can see that our method achieves the
highest accuracy on 5-way 1-shot setting and very competitive accuracy on 5-way 5-
shot setting, as shown in Table 1. Note that Li et al. [6] achieves 54.37 ± 0.36 % and
74.44 ± 0.29 % with ResNet backbone on 5-way 1-shot and 5-way 5-shot respectively.
However, our result outperforms their method on 5-way 1-shot and shows competitive
result on 5-way 5-shot setting. We report the few-shot classification accuracy of our
method using the K-NN classifier with the Euclidean distance on the embedded feature;
see Ours+Euclid in Table 1. In this setting, we remove the non-linear metric and use
K nearest neighbors (K = 1) on the embedded features of query images and support
images for classification. It is observed that the Euclid version of our method still
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achieves the competitive results, showing the generalization and discrimination of the
learned feature embedding on unseen novel categories.

Beside metric-based methods, there are several state-of-the-art meta-learning ap-
proaches for the few-shot learning problem [11, 36, 38, 39]. For example, Gidaris et
al. [38] propose a dynamic-net, and report 56.20 ± 0.86 (%) on 5-way 1-shot and
72.81 ± 0.62 (%) on 5-way 5-shot setting. Andrei A et al. [36] proposed a latent em-
bedding optimization (LEO) meta-learning approach that decouples the gradient-based
adaptation procedure from the underlying high-dimensional space of model parame-
ters. Their method achieved 61.76 ± 0.08 (%) on 5-way 1-shot settings. More recently,
Kwonjoon et al. [11] explored two properties of linear classifiers in meta-learning, i.e.,
implicit differentiation of the optimality conditions of the convex problem and the dual
formulation of the optimization problem. Their method achieved 62.64 ± 0.61 (%) on
5-way 1-shot and 78.63 ± 0.46 (%) on 5-way 5-shot setting. However, this method is
based on the ResNet 12 backbone and the direct comparison is not fair. As our work
learns deep metrics in the embedding space, we mainly compare with metric-based ap-
proaches. More importantly, our method has only one single unified network, which
is much simpler than these meta-learning-based methods with additional complicated
memory-addressing architectures.

In Figure 4, we show the 10 nearest neighbor images of the query image on the
miniImageNet testing dataset with the Euclid distance of our learned embedding fea-
tures. We can see our feature embedding preserves apparent visual similarity better and
facilitates the accurate recognition.

Table 1: Average few-shot classification accuracies (%) on the miniImageNet. Note that ‘-’ denotes not
reported. All accuracy results are averaged over 600 test eposides and are reported with 95% confidence
intervals.

Model Year 5-way Acc.
1-shot 5-shot

Matching Nets [32] 2016 NIPS 46.6 ± 0.8 60.0 ± 0.7
Meta-Learn LSTM [4] 2017 ICLR 43.44 ± 0.77 60.60 ± 0.71

MAML [3] 2017 ICML 48.70 ± 1.84 63.11 ± 0.92
Meta Nets [30] 2017 ICML 49.21 ± 0.96 -
Proto Net [2] 2017 NIPS 49.42 ± 0.78 68.20 ± 0.66

Proto Net (ResNet) [2] 2017 NIPS 51.15 ± 0.85 69.02 ± 0.75
Triplet ranking [64] 2018 Arxiv 48.76 -

GNN [55] 2018 ICLR 50.33 ± 0.36 66.41 ± 0.63
Masked Soft k-Means [58] 2018 ICLR 50.41 ± 0.31 64.39 ± 0.24

Relation Net [33] 2018 CVPR 50.44 ± 0.82 65.32 ± 0.70
Relation Net (ResNet) [33] 2018 CVPR 52.13 ± 0.82 64.72 ± 0.72
large margin few-shot [65] 2018 Arxiv 51.08 ± 0.69 67.57 ± 0.66

SNAIL [37] 2018 ICLR 55.71 ± 0.99 68.88 ± 0.92
R2D2 [8] 2019 ICLR 51.2 ± 0.6 68.8 ± 0.1
DN4 [6] 2019 CVPR 51.24 ± 0.74 71.02 ± 0.64

Ours+Euclid - 54.46 ± 0.89 68.15 ± 0.65
Ours - 58.30 ± 0.84 72.37 ± 0.63

4.2. Generalizing to Other Datasets
A new dataset may present data distribution shift, and the classification accuracy

of widely used models drops significantly [67]. In current setting of few-shot classifi-
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Query Nearest neighbors

Figure 4: Nearest neighbors from the learned feature embedding of our method on the miniImageNet testing
dataset. Given a query image, we shows 10 nearest neighbor images.
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Figure 5: Examples of visualized results of few-shot classification on (a) miniImageNet, (b) CUB-200, (c)
Stanford Cars and (d) Stanford Dogs dataset. The images in the support set is sorted by the similarity with
the test image (from left to right and only showing top-5 images). Purple box denotes the ground-truth class
in the support set.
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Table 2: Average few-shot classification accuracies (%) on other datasets using the models trained with the
miniImageNet. Note that all the experiments are conducted with the same network for fair comparison.

Dataset Proto Net [2] Relation Net [33] Cosface embed [66] Ours

Caltech-101 5-way 1-shot 53.28 ± 0.78 53.50 ± 0.88 57.22 ± 0.85 61.00 ± 0.81
5-way 5-shot 72.96 ± 0.67 70.00 ± 0.68 75.34 ± 0.69 75.60 ± 0.66

CUB-200 5-way 1-shot 39.39 ± 0.68 39.30 ± 0.66 39.60 ± 0.70 40.16 ± 0.68
5-way 5-shot 56.06 ± 0.66 53.44 ± 0.64 55.70 ± 0.66 56.96 ± 0.65

Stanford Dogs 5-way 1-shot 33.11 ± 0.64 31.59 ± 0.65 43.16 ± 0.84 37.33 ± 0.65
5-way 5-shot 45.94 ± 0.65 41.95 ± 0.62 49.32 ± 0.77 49.97 ± 0.66

Stanford Cars 5-way 1-shot 29.10 ± 0.75 28.46 ± 0.56 29.57 ± 0.70 31.20 ± 0.58
5-way 5-shot 38.12 ± 0.60 39.88 ± 0.63 40.78 ± 0.68 47.10 ± 0.62

cation, most methods conduct training and testing phases within the same dataset, i.e.,
miniImageNet. Although the training classes and testing classes do not share the same
label space, they still comes from the same data distribution. While, in the real world,
the unknown novel classes may comes from an agnostic data distribution. Therefore,
to validate the generalization capability of our approach, we conduct the few-shot clas-
sification on novel classes from the following four datasets using the model trained on
the miniImageNet training dataset.

• Caltech-101. The Caltech-101 dataset [34, 68] contains objects belonging to 101
categories. Each category contains about 40 to 800 images. Most categories have
about 50 images.

• Caltech-UCSD Birds-200-2011 (CUB-200). Caltech-UCSD Birds 200 (CUB-
200) [69] contains photos of 200 bird species (mostly North American). In this
fine-grained dataset, subtle differences between very similar classes can hardly
be recognized even by humans.

• Stanford Dogs. The Stanford Dogs dataset [70] contains images of 120 breeds
of dogs from around the world. This dataset has been built using images and
annotation from ImageNet for the task of fine-grained image categorization.

• Stanford Cars. The Stanford Cars [71] contains 16,185 images of 196 classes
of cars.

Following the same data selection principal as miniImageNet [32], we randomly
select 20 classes in each dataset as the test dataset. Note that the test datasets do not
share the same label space with the training images. Please see the section 1 in the
supplementary files for detailed selected class in each dataset. Without any fine-tuning,
we directly use the model trained on the miniImageNet training dataset to perform few-
shot classification on the new datasets. Table 2 shows the classification performance of
Relation Net, Proto Net and our method on the four datasets. The results are achieved
by the model with the same network backbone. It is observed that our model performs
consistently better than Relation Net and Proto Net on all four datasets. To compare
the results on the different datasets, the accuracy on Caltech-101 are much higher than
the results of other three datasets, even than the miniImageNet testing dataset. This
is because the Caltech-101 contains a single object with pure background and it is
much easier to be recognized, while the CUB-200, Stanford Dogs and Stanford Cars
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have relative complex background. We visualize the results of 5-way 5-shot setting
achieved by Relation Net and our model in Figure 5. We can see that our method is
very discriminative to similar objects. These comparisons clearly demonstrate that our
approach is able to learn more generalized transferable features for few-shot classifica-
tion among different datasets. Please see more visualized results in the section 3 in the
supplementary files.

4.3. Analysis of Our Method

To better understand our method, we conduct the following experiments on the
miniImageNet dataset.

4.3.1. Results with Different Network Backbones
We compare the few-shot classification performance of our approach under dif-

ferent network backbones, i.e., AlexNet [72], VGG [73] and ResNet [60]. We con-
duct experiments on the miniImageNet with the same experiment setting for network
architectures. Note that the performance is evaluated by one nearest neighborhood
(1-NN) with Euclidean distance to better show the influence of different network back-
bones. From the results in Table 3, it is observed that the classification accuracy of
AlexNet and VGG11 are similar, while the few-shot classification accuracy is largely
improved (about 10% improvement in both 5-way 1-shot and 5-way 5-shot settings)
with a more deeper ResNet. The reason may be that we can extract more representa-
tive features with the deeper ResNet and thus improve the accuracy on few-shot test-
ing. ResNet18 and ResNet34 achieve similar results on 5-way 5-shot evaluation, but
ResNet34 achieves a bit higher performance on 5-way 1-shot setting. However, the
classification accuracy would be decreased as the model complexity continues to grow
(e.g., from ResNet34 to ResNet50). This finding indicates that too many parameters
may lead to overfitting on the training tasks and thus decrease the classification results
on novel categories. Therefore, an effective network backbone can indeed contribute to
the transferable feature extraction and improve the accuracy on few-shot classification.
Overall, in our experiment, we choose the ResNet34 as the network backbone.

Table 3: Few-shot classification accuracy (%) for 600 runs with 95% confidence intervals with different
network backbones on the miniImageNet testing data.

Backbone 5-way Acc.
1-shot 5-shot

AlexNet 44.78 ± 0.78 58.69 ± 0.71
VGG 11 44.74 ± 0.81 58.55 ± 0.66

ResNet18 53.62 ± 0.84 68.27 ± 0.67
ResNet34 54.46 ± 0.89 68.15 ± 0.65
ResNet50 53.46 ± 0.88 65.32 ± 0.72

4.3.2. The Tuplet-loss with Different Negative Pairs
We compare the performance of our method with different K in the tuplet loss,

where K is the number of negative samples from different classes in each tuplet. We
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Table 4: Few-shot classification accuracy (%) for 600 runs with 95% confidence intervals on the miniIma-
geNet testing data with different number of negatives in the tuplet loss .

Number of K
5-way Acc.

1-shot 5-shot
K=1 (triplet loss) 40.15 ± 0.75 54.62 ± 0.68

K=4 51.22 ± 0.81 65.66 ± 0.68
K=5 54.46 ± 0.89 68.15 ± 0.65
K=8 53.17 ± 0.81 66.77 ± 0.68

K=16 46.03 ± 0.79 60.02 ± 0.67

also report the classification accuracy using the one nearest neighborhood (1-NN) clas-
sifier with Euclidean distance. As shown in Table 4, the accuracy is a little low if we
set K as 1 in the tuplet loss (equivalent to traditional triplet loss). The classification
accuracy is improved with a larger K, since the anchor sample interacts with more
samples in one mini-batch and makes the gradient more stable. In another aspect, the
classification accuracy would be saturated with a bigger K, and we can achieve the best
performance when setting K to 5.

It is worth mentioning that when K equal to 1, K-tuple loss is triplet loss. Com-
pared with triplet loss, the classification accuracy is improved with K-tuplet loss, since
the anchor sample interacts with more samples in one mini-batch and makes the gradi-
ent more stable. As shown in firs line in Table 4, the performance of triplet loss (K =1)
on our few-shot learning task is 40.15% and 54.62% for 1-shot and 5-shot learning.
While our K-tuplet loss can achieve 54.46% and 68.15% for 1-shot and 5-shot learn-
ing respectively, surpassing the triplet loss by around 14% on both 1-shot and 5-shot
setting.

4.3.3. Effects of Semi-hard Mining
Table 5 shows the effects on our feature embedding when trained with and without

semi-hard mining. We report the few-shot classification accuracy on the miniImageNet
testing data with the two resulting learned feature embedding. “w/o semi-hard” denotes
the model trained with equation (1) for 100 epochs while “w semi-hard” refers to model
trained with equation 1 for 80 epochs and then utilize equation (2) for remaining 20
epochs. It is observed that with semi-hard mining, the few-shot classification accuracy
on both 1-shot and 5-shot scenarios can be further improved by relative 1.6% and 1.0%
respectively. This comparison demonstrates the effectiveness of “semi-hard mining
strategy” to improve feature embedding learning.

Table 5: The effects of semi-hard mining. The report results are averaged few-shot classification for 600
runs with 95% confidence intervals (Unit: %).

Setting 5-way acc
1-shot 5-shot

w/o semi-hard 53.62 ± 0.84 67.48 ± 0.68
w semi-hard 54.46 ± 0.89 68.15 ± 0.65
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Table 6: Few-shot classification accuracy (%) for 600 runs with 95% confidence intervals on the miniIma-
geNet testing data with different margins.

Margin α 5-way Acc.
1-shot 5-shot

0.10 54.46 ± 0.89 68.15 ± 0.65
0.30 57.10 ± 0.64 71.02 ± 0.58
0.50 58.30 ± 0.84 72.37 ± 0.63
0.80 53.05 ± 0.41 62.02 ± 0.51
1.00 49.30 ± 0.07 59.62 ± 0.07

Table 7: Averaged accuracy for 600 runs with 95% confidence intervals on the miniImageNet testing data
with additional training classes from ImageNet dataset. N is the the number of extra classes in the notation
of “64+N”.

Training Class 5-way Acc.
1-shot 5-shot

64 + 0 58.30 ± 0.84 72.37 ± 0.63
64 + 64 61.12 ± 0.06 75.14 ± 0.67

64 + 128 65.60 ± 0.07 77.74 ± 0.07

4.3.4. The Analysis of Different Margin
We also investigate the effect of different margin α in the tuplet loss and the results

of our whole framework with different settings are shown in Table 6. The experimental
results show that with margin 0.5, the feature embedding in this task is the best. A
smaller margin will decrease the performance due to the inter-class variation is not
well-learned. And a larger margin may increase the difficulty in the training.

4.3.5. The Results with More Training Classes
We would like to explore whether the few-shot classification accuracy will increase

if more training classes are available. Thus, we conduct experiments with additional
class images from the ImageNet dataset. Note that the additional dataset does not share
the same labels with the testing images. Table 7 presents the accuracy on the miniIm-
ageNet testing dataset of our method trained with different number of training classes.
We can see that our method can be further improved with extra training classes data
available. This is conform with our expectation that we can learn more transferable
generalized feature embedding from more training samples. Based on the generalized
feature, we can further improve the few-shot classification accuracy on the novel cate-
gories.

5. Comparison of Visualized Features

The effectiveness of our method is mainly due to a well-learned feature embed-
ding, which improves the few-shot classification performance on the novel classes. To
show the generalization and discrimination of our learned feature embedding on novel
class samples, we visualize the features in comparison with Proto Net [2] and Relation

15



Proto Net Relation Net Ours

Figure 6: T-SNE visualization of features in Proto Net, Relation Net and our method on the same set of
samples in the test dataset (example 1).

Proto Net Relation Net Ours

Figure 7: T-SNE visualization of features in Proto Net, Relation Net and our method on the same set of
samples in the test dataset (example 2).

Net [33]; see Figures 6 and 7. The feature embedding is learned from the miniIma-
geNet training dataset and tested on the miniImageNet test dataset. For each figure, we
mimic the test procedure by randomly selecting five classes from the test dataset. Then,
we compute the features of 200 samples per class and create the visualizations of the
features shown in each figure using t-SNE [74], where we use the same 200 samples
for different methods in each figure.

From Figure 6, we can see that our feature embedding can well separate the five
classes, especially for cuirass, crate, and mixing bowl, as compared to Proto Net and
Relation Net. Although it is quite challenging to distinguish the two species of dogs
shown in the unseen novel classes, our method can still better separate their features
compared with Proto Net and Relation Net. Since the feature embeddings are visu-
alized on the novel classes, the results clearly demonstrate that our method produces
better feature embeddings on the novel classes compared to the other two methods.
Therefore, our results make it easier for the subsequent K-NN to perform the classifi-
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cation, thus leading to more promising few-shot classification results. Please see more
visualized results in the section 2 in the supplementary file.

6. Conclusion

In this work, we revisit the metric learning and propose a simple and effective
K-tuplet network for few-shot learning. We present an efficient K-tuplet network to
utilize the relationship of training samples to learn the transferable feature embedding
that performs well not only on the training samples but also on the novel class samples.
Built on top of this generalized feature embedding, we can largely improve the few-

shot classification accuracy. Our method is simple yet effective, and outperforms other
metric-based few-shot classification algorithms on the public benchmark dataset. More
importantly, our method can generalize very well to the novel categories even on other
four datasets.
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