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Abstract

Nonlocal self-similarity and group sparsity have been widely utilized in image

compressive sensing (CS). However, when the sampling rate is low, the internal

prior information of degraded images may be not enough for accurate restora-

tion, resulting in loss of image edges and details. In this paper, we propose a

joint group and residual sparse coding method for CS image recovery (JGRSC-

CS). In the proposed JGRSC-CS, patch group is treated as the basic unit of

sparse coding and two dictionaries (namely internal and external dictionaries)

are applied to exploit the sparse representation of each group simultaneously.

The internal self-adaptive dictionary is used to remove artifacts, and an exter-

nal Gaussian Mixture Model (GMM) dictionary, learned from clean training

images, is used to enhance details and texture. To make the proposed method

effective and robust, the split Bregman method is adopted to reconstruct the

whole image. Experimental results manifest the proposed JGRSC-CS algorithm

outperforms existing state-of-the-art methods in both peak signal to noise ratio

(PSNR) and visual quality.

Keywords: compressive sensing, group sparse coding, nonlocal self-similarity,

Gaussian Mixture Model, split Bregman
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1. Introduction

Compressive sensing [1, 2, 3]-also known as compressed sensing- is a novel

framework for signal processing and compression. It states that if a signal

is sparse in some domains, we can perfectly recover it from fewer samples or

measurements than Nyquist rate. This indicates that we are able to sample and

compress signal at the same time. Due to its advantages of down-sampling and

accurate recovery, compressive sensing has been widely applied in many fields,

such as digital imaging [4], channel estimation [5], wireless sensor network [6],

medical imaging [7] and remote sensing [8].

Suppose a finite length signal x ∈ Rn and its measurement y ∈ Rm generated

by linear projection:

y = Φx, (1)

where Φ ∈ Rm×n(m� n) is a random sensing matrix. Since m� n, recovering

x from y is an ill-posed problem. However, if x can be sparsely represented in

some basis Ψ ∈ Rn×n and the sensing matrix Φ meets the restricted isometry

property (RIP) [1, 3], we can reconstruct the original signal by solving this

optimization problem:

arg min
θ
‖θ‖0 s.t. y = ΦΨα, (2)

where ‖·‖0 is a pseudo norm, counting the non-zero entries of its argument.

However, since ‖·‖0 is non-convex, solving Eq.(2) is an NP-hard problem.

So the l0 norm is often replaced by the l1 norm:

arg min
θ
‖θ‖1 s.t. y = ΦΨα. (3)

Eq.(3) can be transformed to Lagrangian form:

α= arg min
α

‖y − ΦΨα‖22 + λ‖α‖1, (4)

where ‖y − ΦΨα‖22 is the cost function and λ denotes the regularization pa-

rameter. Eq.(4) can be solved by various algorithms, such as split Bregman

algorithm [9] and alternative direction multiplier method (ADMM).
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Since most natural images have priori characteristics, the optimization prob-

lem of image compressive sensing can be formulated as:

arg min
u

‖y − Φu‖22 + λR(u), (5)

where R(u) is the regularization item that represents the prior information of

images. Conventional image prior, such as total variation (TV) that characterize

the local smoothness of images, has been employed for image CS [10]. But it

may favor piecewise constant solution, resulting in over-smooth. To overcome

this problem, many methods have been proposed. For example, Candes et al.

[11]presented the weighted total variation to enhance the sparsity of TV norm.

In [12], Zhang et al. proposed a framework that introduced nonlocal means

(NLM) into traditional TV. Chen et al. [13] combined fractional-order total

variation with image sparsity regularization, and obtained better PSNR than

[10].

Recently, patch-based nonlocal similarity has shown its potential in image

processing[14][15][16][17][18]. As an extension of the BM3D (Block-Matching

and 3D filtering) denoising algorithm[14], BM3D-CS [15] introduced 3D collab-

orative filter into the CS framework, and brought obvious improvement to the

recovery quality. Eslahi et al. [18] combined 3D sparsity filter with local spar-

sity, proposing a new regularization called joint adaptive sparsity regularization

(JASR). Elad et al. [19] proposed a patch-based sparse representation algo-

rithm for image denoising, leading to state-of-the-art denoising performance.

Motivated by [19], many patch-based sparse coding methods for image CS have

been proposed [20] [21] [22] [23]. For instance, Dong et al. [20] combined patch

sparsity estimation with weighted nonlocal self-similarity constraint to balance

the adaptation and robustness of the proposed algorithm. In [23], the sparsity

of natural images is characterized by non-convex patch-based sparse coding, and

a new framework is proposed to solve the L0 minimization problem.

More Recently, instead of image patch, patch group is used as the basic unit

of sparse coding, and achieves better performance than patch-based algorithms

[24] [25] [26] [27]. In [25], structural group sparsity representation (SGSR) is
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proposed to characterize both local and nonlocal similarity of images. Zha et al.

[27] incorporate a non-convex penalty function to group sparse representation,

and obtain state-of-the-art reconstruction performance.

However, most previous methods for CS image reconstruction only consider

internal prior information. In this paper, we incorporate external and inter-

nal prior into a unified framework, and propose a joint group and residual

sparse coding method for CS image reconstruction (JGRSC-CS). In the pro-

posed JGRSC, a patch group and its residual are encoded with internal and

external dictionaries respectively. For each group, the internal dictionary is

generated by singular value decomposition (SVD), and the external dictionary

is learned from clean images based on Gaussian Mixture Model (GMM). To

make the algorithm tractable, the split Bergman method is employed to ef-

ficiently solve the optimization problem. Experimental results show that the

proposed algorithm outperforms many state-of-the-art algorithms in terms of

PSNR and visual perception quality.

The rest of this paper is organized as follows. Section 2 presents a brief

introduction of group sparse coding and Gaussian mixture model. In Section 3,

we elaborate the joint group and residual sparse coding method for CS image

recovery. Experimental results are presented in Section 4. In Section 5, we

conclude the paper.

2. Background

2.1. Group sparse coding

Patch-based sparse coding assumes that every image patch could be sparsely

represented by an over-completed dictionary. Suppose an image x ∈ RN and a

patch xi of size
√
n×
√
n at location i, i = 1, 2, . . . , N . Noting that all patches

are overlapped. Then we have

xi = Ri(x). (6)
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Ri(·) is an operator extracting the ith patch from the image. For every patch,

given a dictionary Di, it can be written as

xi = Diαi. (7)

So the whole image can be reconstructed from

x ≈ (

N∑
i

RTi Ri)
−1(

N∑
i

RTi Diαi). (8)

Patch-based sparse coding methods ignore the relationship between similar

patches. To overcome this disadvantage, group sparse coding is proposed. In-

stead of single patch, group sparse coding treats the patch group as the basic

unit of sparse coding. For each patch xi, we search its (m − 1) most simi-

lar patches within a searching window, and stack these patches into a matrix

xGi ∈ Rn×m. Every group is encoded with a dictionary DGi , then we can

recovery the image by averaging all the patches

x ≈ (

N∑
i

RTGiRGi)
−1(

N∑
i

RTGiDGiαGi), (9)

where RGi is the the matrix that extracts the most matched patches of xi, and

αGi is the sparse coefficient of patch group xGi .

2.2. Gaussian mixture model

For a single variable x that follows the Gaussian distribution, it can be

modeled as

N (x
∣∣µ, σ2 ) =

1

(2πσ2)
e−

1
2σ2

(x−µ)2 , (10)

where µ is the mean and σ2 is the variance. In the case of a vector x ∈ RN , its

Gaussian distribution takes the form

N (x |µ,Σ) =
1

(2π)
N
2 |Σ|

1
2

e−
1
2 (x−µ)TΣ−1(x−µ), (11)

where µ is a N-dimensional mean vector and Σ is a covariance matrix of size

N × N . Gaussian mixture model (GMM) is a linear combination of Gaussian

distributions

Pr(x) =

K∑
k=1

πkN (x |µk,Σk ). (12)
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Pr(x) is a superposition ofK Gaussian components. In Eq.(12),N (x|µk,Σk)

is a component of the mixture. µk and Σk are the mean and covariance of the

ith component, respectively. πk are the normalized mixing coefficients

K∑
k=1

πk = 1. (13)

Since GMM has been successfully used in various inverse problems [28] [29] [30]

[31] [32] [33] [34], we will adopt it to train the external dictionary.

3. The proposed method

Most existing image compressive sensing methods only consider the nonlocal

similarity of the processed image itself, and few utilizes the nonlocal prior of

external clean images. In this section, we propose a joint group and residual

sparse coding method for CS image recovery, and an efficient framework is

developed to solve the optimization problem.

3.1. Training external dictionary by GMM

The external dictionary for residual sparse coding is trained from clean im-

ages. As mentioned in Section 2.1, for a image patch, we find its (M − 1) most

matched patches to form a group xm. Then we subtract the mean µm of this

group and get the residual group

xm = xm − µm,m = 1 . . .M. (14)

We collect N residual groups from clean images

Xn = xm,n, n = 1 . . . N. (15)

Considering that GMM has been widely used in image processing, we apply

the method mentioned in [28][33][34] to learn the prior, and our goal is learning

K Gaussian components from these N groups. Supposing that patches in Xn

follows the same Gaussian component, the likelihood of {Xn} is

Pr(Xn) =

K∑
k=1

πk

M∏
m=1

N(xm,n |µk ,Σk). (16)
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Assuming that all the residual groups are independent, the likelihood func-

tion is

L =

N∏
n=1

Pr(Xn). (17)

According to the Maximum Likelihood Estimation (MLE), we maximize the

log function of Eq.(15):

lnL =

N∑
n=1

ln Pr(Xn). (18)

After initializing the means µk, covariances Σk, mixing coefficients πk and

the value of the log likelihood, Eq.(16) can be optimized using the expectation-

maximization (EM) algorithm. In the E step, we then calculate the posterior

probability with current parameter values

γn,k =

πk
M∏
m=1
N (xn,m|µk,Σk)

K∑
l=1

πl
M∏
m=1
N (xn,m|µ l,Σl)

, (19)

where γn,k is the probability that Xn belongs to the kth component. In the M

step, we estimate µk, Σk and πk using γn,k

Nk =

N∑
n=1

γn,k, (20)

µnewk =
1

Nk

N∑
n=1

γn,k

M∑
m=1

xn,m, (21)

Σnewk =
1

Nk

N∑
n=1

γn,k

M∑
m=1

xn,mxTn,m, (22)

πnewk =
Nk
N
. (23)

We alternate these two steps until the result of Eq.(18) converges, and then

the K Gaussian components will be obtained.
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3.2. Joint group and residual sparse coding model

For a patch group xG ∈ Rn×m, the sparse coding model over a given dictio-

nary DG can be formulated as

arg min
αG

1

2
‖xG −DGαG‖22 + λ‖αG‖0. (24)

where α is the sparse coefficient and λ is the regularization parameter. In a

patch group, the first column xG1 is the reference patch and xGi , i = 2, . . .m

are the m − 1 most matched patches of xG1 . To obtain a better estimation of

xG, in the proposed model, we divide the patch group into two parts

xG = xG + xGr, (25)

where xG is the mean of all patches and can be calculated as

xG =
1

m

m∑
i=1

xGi , (26)

and xGr represents the residual of the group. After selecting a proper dictionary,

xGr can be reconstructed via

arg min
αGr

1

2
‖xGr −DGrαGr‖22 + λ‖αGr‖1. (27)

Incorporating Eq.(27) into Eq.(24), we can obtain the proposed model

arg min
αG,αGr

1

2
‖(xG + xGr)−DGαG‖22 +

1

2
‖xGr −DGrαGr‖+λ1‖αG‖0 +λ2‖αGr‖1.

(28)

We propose a simple alternating method to solve Eq.(28). For a patch group,

we calculate its mean via Eq.(26) and obtain its residual matrix by subtracting

it from the original matrix. For fixed αG, the αGr-subproblem is

arg min
αGr

1

2
‖xGr −DGrαGr‖22 + λ2‖αGr‖1. (29)

Similar to [28] [29] [33], we assume that xGr follows the Gaussian distribution

and select its most matched Gaussian from the trained mixture. The probability

of every component can be calculated as

Pr(k |xGr ) =

m∏
i=1

N(xiGr
∣∣0,Σk + σ2

n I)

K∑
j=1

m∏
i=1

N(xiGr |0,Σj + σ2
n I)

, (30)
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where σn is the variance Gaussain white noise.The component with the most

highest probability will be selected to generate the dictionary, and the dictionary

can be produced by singular value decomposition

Σk = DGrΛGrD
T
Gr, (31)

where DGr is the an orthonormal matrix composed of the eigenvectors and ΛGr

is the diagonal matrix of eigenvalues. Since DGr can represent the structural

variations of the selected component, we use it as the dictionary of residual

sparse coding.

Now we go back to Eq.(29). Under the framework of Bayesian, the MAP of

αGr with xGr is

αGr = arg max
αGr

logP (αGr |xGr )

= arg max
αGr

{logP (xGr |αGr ) + logP (αGr)}. (32)

Assuming xGr is characterized by the Gaussian noise of σn and the sparse

coefficient αGr follows i.i.d Laplacian distribution, we obtain

arg min
αGr

1

2
‖xGr −DGrαGr‖22 + 2

√
2σ2

n ×
n∑
i=1

1

σi

∣∣αiGr∣∣, (33)

where σi is the standard deviations of αiGr. By comparing Eq.(29) with Eq.(33),

we can see that λ2 =
2
√

2σ2
n

σi
. So Eq. (29) admits a close-form solution

αGr = sgn(DT
GrxGr) •max(

∣∣DT
GrxGr

∣∣− 2
√

2λ2σ
2
n

σi
, 0). (34)

For fixed αGr, the αG-subproblem is

arg min
αG

1

2
‖(xG + xGr)−DGαG‖22 + λ1‖αG‖0. (35)

Applying the singular value decomposition (SVD) to (xG + xGr), we have

(xG + xGr) = UGΣGV
T
G , (36)

where ΣG is a diagonal matrix formed by the eigenvalues. The adaptive internal

dictionary is defined as

DG=UGV
T
G . (37)
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So Eq.(33) has a close-form solution

αi
G = hard(ΣiG,

√
2λ1) = ΣiG • (

∣∣ΣiG∣∣−√2λ1), (38)

where hard is hard thresholding function [35] and • represents the element-wise

product. After getting αG, we can reconstruct the group by x̃G = DGαG.

3.3. CS reconstruction via joint group and residual sparse coding

In this section, we rewrite Eq.(2) as

arg min
x

1

2
‖y − Φx‖22 + λ‖α‖0 s.t. x = Dα. (39)

Its unconstrained form is

arg min
x

1

2
‖y − Φx‖22 + λ‖α‖0 +

µ

2
‖x−Dα.‖22 (40)

Eq.(40) can be effectively solved by the split Bergman iteration (SBI) method

[9]. The main idea of the SBI is to split an unconstrained problem to several

subproblems and Bergman iteration. Applying the SBI framework to Eq.(40),

it is converted to the following three iterations:

x(l+1) = arg min
x

1

2
‖y − Φx‖22 +

µ

2

∥∥∥x−Dα(l) − b(l)
∥∥∥2

2
, (41)

α(l+1) = arg min
x

λ‖α‖0 +
µ

2

∥∥∥x(l+1) −Dα− b(l)
∥∥∥2

2
, (42)

b(l+1) = b(l) − (x(l+1) −Dα(l+1)), (43)

where b is an auxiliary variable and l is the iteration number. Eq.(40) is trans-

formed to x subproblem and α subproblem. In the following, we will show how

to solve these subproblems efficiently. To avoid confusion, the superscript l will

be omitted.
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3.3.1. x subproblem

For a fixed α, the x subproblem becomes:

x = arg min
x

1

2
‖y − Φx‖22 +

µ

2
‖x−Dα− b‖22 , (44)

Eq.(44) is a quadratic optimization problem and its close-form solution is

x = (ΦTΦ + µI)−1(ΦTy + µDα+ µb), (45)

where I is identity matrix. However, Φ is a random matrix, and it is costly to

invert (ΦTΦ + µI). In practice, it can be accelerated by utilizing the gradient

descent method:

x = x− η · ∇, (46)

where η is the step size and ∇ represents the gradient direction of Eq.(44).

Therefore, we can update x by calculating:

x = x− η(ΦTΦx− ΦTy + µx− µDα− µb). (47)

3.3.2. α-subproblem

For a fixed x, the α subproblem is

α = arg min
α

1

2
‖x−Dα− b‖22 +

λ

µ
‖α‖0. (48)

We define xn = x− b, and xn can be seen as the noisy observation of x. So

Eq.(48) can be rewritten as

α = arg min
α

1

2
‖x−Dα‖22 +

λ

µ
‖α‖0. (49)

[26] proved that Eq.(49) has an equivalent form as

α = min
αG

M∑
k=1

(
1

2
‖xGk −DGkαGk‖

2
2 + τ‖αGk‖0

)
, (50)

where τ = λQ
µN and Q = n×m×M . M is the number of groups. Eq.(50) reveals

the relationship between the regularization parameter τ and other parameters.

Following this theorem, we assign λ1 = λQ
µN in Eq.(28).

Considering that each image patch has roughly the same probability of ap-

pearing in a patch group, Eq.(48) can be solved by solving every αiG via Eq.(28)

[36]. The summary of the proposed method is given as Algorithm 1.
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Algorithm 1 Joint Group and Residual Sparse Coding for CS (JGRSC-CS)

Input: y:measurement; Φ:measurement matrix;

Initialization:

(1) Estimate an initial image xinit;

(2) Set parameters m, m, K, σn, b, λ, µ;

1: for i = 1, . . . ,Max Iter do

2: Compute x via Eq.(43);

3: for j = 1, . . .M do

4: (1) Group xG for each image patch;

5: (2) Compute xGr;

6: (3) Select the external dictionary via Eq.(30);

7: (4) Compute αGr via Eq.(34);

8: (5) Compute αG via Eq.(38);

9: end for

10: Update b via Eq.(43)

11: end for

Output: The reconstructed image xRe

4. Experimental results and analysis

In this section, we present the performance of the proposed method. The

measurement matrix is obtained by generating a Gaussian random matrix of size

32×32. In the training stage, the external dictionary is trained from the Kodak

PhotoCD Dataset1, and the number of Gaussian components K is 64. In the

recovery stage, the number of similar patches is set to 60, and the size of patch
√
n, λ, µ are set to (6, 0.082, 0.0025), (8, 0.146, 0.0025), (8, 0.146, 0.0025)

when subrate=0.1, 0.2, 0.3, respectively. The maximum iteration is 120, and

the algorithm will terminate until the maximum iteration number is reached or

the PSNR begins to decrease.

1http://r0k.us/graphics/kodak/
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4.1. Comparison with other methods

We compare our method with several representative methods: BCS[37], MH-

BCS[38], RCoS[17], SGSR[25], ALSB[23], GSR-NCR[27]. BCS and MH-BCS

are block compressive sensing methods with fixed bases; RCoS combines 2D

sparsity with 3D sparsity; ALSB is a patch-based method; SGSR and GSR-

NCR are group-based methods, and the difference between them is that SGSR

uses the l0 norm to constrain the sparse coefficient, while GSR-NCR utilizes the

non-convex lp norm. Seven test images are shown in Fig. 1, and PSNR as well

as FSIM [39] are calculated to evaluate the quality of reconstructed images.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. Seven test images. (a) Barbara. (b) Boats. (c) Cameraman. (d) Fingerprint. (e)

House. (f) Lena. (g) Parrots.

The PSNR and FSIM results are shown in Table 1-2, and the highest score

is marked in bold. From the tables, we can see that the proposed method

achieves the highest PSNR and FSIM in most cases. Specifically, the average

PSNR gain of the proposed JGRSC-CS method over BCS, MH, RCoS, SGSR,

ALSB, GSR-NCR are 5.22dB, 2.28dB, 2.62dB, 0.80dB, 0.86dB and 0.34dB,
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respectively. The average improvements for FSIM over other method is 0.0885,

0.0295, 0.0514, 0.0102, 0.0124 and 0.0067.

Some results are shown in Fig. 2- 6. It is evident that the proposed method

outperforms other methods in terms of visual quality. For instance, the text on

the boats in Fig. 2, the texture on the wall in Fig. 4 and the ripples on the

water in Fig. 5 are reconstructed sharply, while other methods still suffer from

over-smooth or artifacts.

Table 1: The PSNR (dB) results of various methods

Subrate Method House Barbara Boats C.man Lena Parrots F.print Average

0.1

BCS 26.90 22.80 24.52 21.60 25.20 23.45 17.15 23.09

MH 30.28 26.73 26.11 22.13 26.13 25.34 20.08 25.26

RCoS 32.06 23.78 27.85 22.97 27.53 25.60 16.30 25.16

SGSR 32.77 28.70 27.74 22.60 27.10 26.03 20.50 26.49

ALSB 32.38 27.30 28.12 22.97 27.04 26.03 20.68 26.36

GSR-NCR 32.83 28.70 27.96 22.50 27.02 26.03 20.50 26.51

proposed 32.80 28.66 28.44 23.40 27.82 27.07 20.72 26.99

0.2

BCS 30.58 24.31 27.05 24.65 28.04 26.29 18.55 25.64

MH 33.84 30.82 29.91 25.88 29.81 29.23 23.17 28.95

RCoS 35.22 27.19 31.42 25.68 30.36 28.61 19.64 28.30

SGSR 35.81 33.45 32.41 26.53 30.89 30.55 23.62 30.47

ALSB 35.86 31.98 33.27 26.65 30.73 29.73 23.64 30.27

GSR-NCR 36.56 33.92 33.30 26.30 30.87 30.18 23.67 30.69

proposed 37.18 34.48 33.49 27.00 31.27 30.82 23.91 31.16

0.3

BCS 32.87 25.70 28.93 27.12 30.08 28.62 20.05 27.62

MH 35.69 33.00 32.25 28.08 31.99 31.01 24.73 30.96

RCoS 36.87 30.06 34.32 27.98 32.41 30.53 22.74 30.70

SGSR 37.37 35.91 35.22 28.89 33.26 32.16 25.84 32.66

ALSB 38.25 34.76 36.59 29.01 33.30 31.98 25.81 32.81

GSR-NCR 39.38 37.19 37.27 29.37 33.94 33.07 26.35 33.80

proposed 39.45 37.14 36.94 29.54 33.97 33.73 26.31 33.87
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Table 2: The FSIM results of various methods

Subrate Method House Barbara Boats C.man Lena Parrots F.print Average

0.1

BCS 0.8455 0.7891 0.8029 0.7605 0.8553 0.8786 0.6165 0.7926

MH 0.8935 0.8909 0.8489 0.7692 0.8913 0.8981 0.8512 0.8633

RCoS 0.8989 0.8065 0.8765 0.7942 0.8863 0.8919 0.6027 0.8224

SGSR 0.9187 0.9149 0.8918 0.8065 0.9061 0.9142 0.8672 0.8885

ALSB 0.9121 0.8945 0.8934 0.8021 0.8965 0.9105 0.8682 0.8825

GSR-NCR 0.9132 0.9215 0.8980 0.8012 0.9106 0.919 0.8688 0.8903

proposed 0.9272 0.9207 0.9049 0.8335 0.9166 0.9279 0.8649 0.8994

0.2

BCS 0.9014 0.8429 0.8640 0.8357 0.9053 0.9188 0.7378 0.8580

MH 0.9389 0.9394 0.9159 0.8552 0.9348 0.9405 0.9103 0.9193

RCoS 0.9388 0.8977 0.9348 0.8645 0.9331 0.9311 0.7923 0.8989

SGSR 0.9502 0.9615 0.9465 0.8847 0.9472 0.9457 0.9207 0.9366

ALSB 0.9540 0.9502 0.9522 0.8759 0.9440 0.9460 0.9208 0.9347

GSR-NCR 0.9507 0.9643 0.9526 0.8797 0.9470 0.9435 0.9225 0.9372

proposed 0.9670 0.9692 0.9569 0.9003 0.9546 0.9539 0.9272 0.9470

0.3

BCS 0.9298 0.8780 0.8995 0.8798 0.9327 0.9418 0.8191 0.8972

MH 0.9569 0.9588 0.9439 0.8938 0.9538 0.9563 0.9331 0.9424

RCoS 0.9560 0.9398 0.9615 0.9089 0.9555 0.9501 0.8937 0.9379

SGSR 0.9648 0.9762 0.9684 0.9219 0.9643 0.9594 0.9480 0.9576

ALSB 0.9727 0.9718 0.9748 0.9190 0.9650 0.9620 0.9471 0.9589

GSR-NCR 0.9795 0.9816 0.9783 0.9305 0.9715 0.9660 0.9534 0.9658

proposed 0.9795 0.9816 0.9773 0.9358 0.9715 0.9693 0.9530 0.9669
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Reconstruction of Boats with subrate=0.1. (a) Original image (b) BCS

(PSNR=24.52dB, FSIM=0.8029); (c) MH (PSNR=26.11dB, FSIM=0.8489); (d) RCoS

(PSNR=27.85dB, FSIM=0.8765); (e) SGSR (PSNR=27.74dB, FSIM=0.8918); (f) ALSB

(PSNR=28.12dB, FSIM=0.8934); (g) GSR-NCR(PSNR=27.96dB, FSIM=0.8980); (h) the

proposed JGRSC-CS (PSNR=28.44dB, FSIM=0.9049).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Reconstruction of Parrots with subrate=0.2. (a) Original image (b) BCS

(PSNR=26.29dB, FSIM=0.9188); (c) MH (PSNR=29.23dB, FSIM=0.9405); (d) RCoS

(PSNR=28.61dB, FSIM=0.9311); (e) SGSR (PSNR=30.55dB, FSIM=0.9457); (f) ALSB

(PSNR=29.73dB, FSIM=0.9460); (g) GSR-NCR(PSNR=30.18dB, FSIM=0.9435); (h) the

proposed JGRSC-CS (PSNR=30.82dB, FSIM=0.9539).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Reconstruction of House with subrate=0.2. (a) Original image (b) BCS

(PSNR=30.58dB, FSIM=0.9014); (c) MH (PSNR=33.84dB, FSIM=0.9389); (d) RCoS

(PSNR=35.22dB, FSIM=0.9388); (e) SGSR (PSNR=35.81dB, FSIM=0.9502); (f) ALSB

(PSNR=35.86dB, FSIM=0.9540); (g) GSR-NCR(PSNR=36.56dB, FSIM=0.9507); (h) the

proposed JGRSC-CS (PSNR=37.18dB, FSIM=0.9670).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Reconstruction of Cameraman with subrate=0.3. (a) Original image (b) BCS

(PSNR=27.12dB, FSIM=0.8798); (c) MH (PSNR=28.08dB, FSIM=0.8938); (d) RCoS

(PSNR=27.98dB, FSIM=0.9089); (e) SGSR (PSNR=28.89dB, FSIM=0.9219); (f) ALSB

(PSNR=29.01dB, FSIM=0.9190); (g) GSR-NCR(PSNR=29.37dB, FSIM=0.9305); (h) the

proposed JGRSC-CS (PSNR=29.54dB, FSIM=0.9358).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Reconstruction of Barbara with subrate=0.3. (a) Original image (b) BCS

(PSNR=25.70dB, FSIM=0.8780); (c) MH (PSNR=33.00dB, FSIM=0.9588); (d) RCoS

(PSNR=30.06dB, FSIM=0.9398); (e) SGSR (PSNR=35.91dB, FSIM=0.9762); (f) ALSB

(PSNR=34.76dB, FSIM=0.9718); (g) GSR-NCR(PSNR=37.19dB, FSIM=0.9816); (h) the

proposed JGRSC-CS (PSNR=37.14dB, FSIM=0.9816).

4.2. Convergence Analysis

Fig. 7 shows the PSNR curves of four test images with subrate= 0.1 and 0.2.

It is obvious that with the iteration number increases, all the curves increase

rapidly, and then gradually become stable. This also proves the robustness and

effectiveness of the proposed method.
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(a) (b)

Fig. 7. Evolutions of PSNR versus iteration number for four test images. (a) Subrate=0.1;

(b) Subrate=0.2.

4.3. Computational complexity

All experiments are implemented under Matlab R2018b environment on a

machine with Intel Core i5-6500 CPU of 3.2Ghz and 8.0 GB RAM. We calculate

the average run time of reconstructing an image in the case of subrate=0.2, and

the results are shown in Table 3. We can see that BCS is the fastest method,

while its performance is the worst. JGRSC has comparable time consumption

with SGSR and ALSB. This is because the proposed method use the SVD

decomposition in every iteration, which has high computational complexity.

However, this can be accelerated by parallel computing.

Table 3: Average run time (seconds) with subrate=0.2

Method BCS MH RCoS SGSR ALSB GSR-NCR Proposed

Time 5.42 25.76 2521.22 491.56 573.24 2677.69 576.43

5. Conclusion

In this paper, we proposed a joint group and residual sparse coding method

for image compressive sensing (JGRSC-CS). For a patch group, its residual is

coded using an external dictionary that learned from clean images, and the
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whole group is coded with adaptively SVD dictionary. An effective framework

is also present to solve the optimization problem. Experimental results show

that the proposed JGRSC-CS not only outperforms many existing methods in

terms of PSNR and FSIM, but also has better visual quality.
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