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Abstract

Complex networks are widely used in the research of social and biological fields. Analyzing
real community structure in networks is the key to the study of complex networks. Modularity
optimization is one of the most popular techniques in community detection. However, due to
its greedy characteristic, it leads to a large number of incorrect partitions and more communities
than in reality. Existing methods use the modularity as a Hamiltonian at the finite temperature to
solve the above problem. Nevertheless, modularity is not formalized as a statistical model in the
method, which makes many statistical inference methods limited and cannot be used. Moreover,
the method uses the sum-product version of belief propagation (BP) which has not better per-
formance than its max-sum version, since it calculates per-variable marginal probabilities rather
than the joint probability. To address these issues, we propose a novel Markov Random Field
(MRF) method by formalizing modularity as an energy function based on the rich structures of
MREF to represent properties and constraints of this problem, and use the max-sum BP to infer
model parameters. In order to analyze our method and compare it with existing methods, we
conducted experiments on both real-world and synthetic networks with ground-truth of commu-
nities, showing that the new method outperforms the state-of-the-art methods.

Keywords: Complex Networks; Community Detection; Overfitting; Belief Propagation;
Modularity; Markov Random Field.

1. Introduction

Many complex systems in different fields (e.g., social science, genetic science, and informa-
tion science) are generally abstracted as networks, where nodes represent elements, and edges
represent mutual interactions between elements in the system. One of the significant property of
the network is community detection, which refers to the aggregation of nodes in the network into
communities. Generally, nodes within a community are densely connected, while connections of
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nodes between communities are sparse. Detecting communities of a network can help us discover
objects with the same function in the system, study the relationship between different commu-
nities, infer the attribute values missing from the objects, predict the relationships that have not
been discovered between the objects, and so on [19]. Community detection has been success-
fully used in many applications, e.g., terrorist identification [36], behavior prediction [37], and
recommendation system [38].

Researchers have conducted extensive research on community detection, resulting in a large
number of community detection algorithms based on various assumptions and techniques, as
reviewed in [1]. They include hierarchical clustering [27], spectral clustering [28], modularity
optimization [2], Markov dynamic algorithms [29], and statistical model based methods [30].

Among these methods, we would like to highlight the optimization of network modularity
(i.e., a function that quantifies the pros and cons of a community partition by comparing the
difference between the edge density of each community in the real network and the correspond-
ing subgraph in the random network [3]), which is to find community structures with the largest
modularity. Though this method has been actively studying, it still suffers from some problems.
Maximizing modularity often leads to overfitting, that is, the number of communities divided
from a network is often larger than the real number of communities and more nodes are incor-
rectly allocated than existing methods (e.g., Mod [13]) Furthermore, there are many local optimal
solutions for modularity in real networks, while there is no clear correlation between them [10].

Fortunately, Zhang et al [13] take network modularity as a Hamiltonian at the finite tem-
perature, use belief propagation (BP) for inference, and give a principled way to determine the
number of communities. Their method can obtain the consensus of many community partitions
with high modularity values rather than looking for a single partition which maximizes modular-
ity, so that it is possible to avoid these above drawbacks. However, Zhang et al did not formalize
modularity as a statistical model, which makes their method limited to using BP alone to per-
form optimization and not free to various types of statistical inference methods that may be more
powerful. At the same time, the special BP algorithm they used (the sum-product version) is
only to compute the marginal probabilities of the joint probability distribution. However, the
calculation of the largest joint probability directly is often believed having better performance
than the optimization of individual per-variable marginal probabilities [19].

This paper is to solve these problems. We first formalize network modularity as a pairwise
Markov Random Field (pMRF) via reparameterization of pairwise potentials using Gibbs dis-
tribution. In this way, modularity can be optimized by some different types statistical inference
methods (e.g., belief propagation with both the sum-product and max-sum visions, variable elim-
ination and MCMC), since pMREF is a typical undirected probabilistic graphical model. We then
give a BP algorithm with the max-sum vision, which is to maximize the joint probability of com-
munity memberships (rather than maximizing the per-variable marginal probabilities as other
work done [13]) for model inference. At this time, this above method is still not satisfactory
since the pMRF model uses fully-connected pairwises and the calculation of joint probability
is also time consuming. So, we further improve the mechanism of message propagation in BP
by using the statistical properties of networks to introduce an external field [15, 20], which can
reduce its time complexity from cubic to linear in the case of having certifiable results.

The rest of the paper is organized as follows. A brief review of the related work is given
in Section 2. In Section 3, we first give the related preliminary knowledge and then present the
model and inference as well as its speedup method. The experimental results and analysis are
described in Section 4. We conclude this paper with some highlights in Section 5.
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2. Related Work

Our work is inspired by the recent work on modularity and MRF for community detection
and image processing respectively.

2.1. Modularity Optimization for Community Detection

Network modularity, proposed by Newman and Girvan [3], is applied to measure the signif-
icance of community structures. Since the definition of modularity was given, several optimiza-
tion strategies for modularity have been proposed [4] for community detection. They include
greedy algorithms [2, 11, 12], simulated annealing [7], extremal optimization [8], spectral clus-
tering [9] etc. Take Louvain method [2] as an example, it is often believed to run very fast and
have good performance. However, these methods are more inclined to find coarse community
structures than precise ones, and suffer from overfitting. That is, they produce many illusory
communities in the networks which often do not exist. Although some variants of modularity
that improved the accuracy have been proposed [23, 24, 25], the overfitting has been still not
solved and the generalization of the models needs to be further strengthened.

In order to solve the problems caused by maximizing modularity, Zhang et al [13] propose to
use modularity as a Hamiltonian at the finite temperature and propose a new method to calculate
the number of communities. Thereafter, they introduce Gibbs distribution as a function of inverse
temperature. In model inference, they give a belief propagation (BP) algorithm to approximate
the marginal probabilities. Although this method has greatly improved the accuracy of commu-
nity partitions and avoids overfitting, they overlook two important problems. First, they did not
formalize modularity as a type of statistical models, which makes that many statistical inference
methods cannot be freely used in learning. Second, they did not consider the difference between
the real joint probability distribution and its marginal probabilities approximation. That is, the
marginal probabilities may lead to that some useful information is not properly utilized, resulting
in dissatisfactory community partitions; while the joint probability distribution is often expected
to provide better solutions than the optimization of individual per-variable marginal probabilities
as they used.

2.2. Markov Random Field for Image Segmentation

Markov Random Field (MRF), as a type of undirected probabilistic graphical model, has
achieved great success in image processing and computer vision [14]. The objective function of
MRF model is generally defined as an energy form, which is the core of the model, and then
the energy function is subsequently transformed to a probabilistic objective function by using
a Gibbs distribution. Some popular inference methods such as belief propagation, mean field,
and Monte Carlo approaches can be used to learn the MRF models. Here, we are particularly
interested in pairwise MRF (pMRF), which is one of the most popular type of MRFs in image
segmentation [26, 31, 32]. Energy function of the pMRF model often consists of unary potentials
and pairwise potentials, which are defined by pixel features and adjacency relationships respec-
tively. For example, Krhenbhl and Koltun [33] apply the fully connected pairwise MRF model
to deal with the image segmentation problem, where the unary potentials used in their imple-
mentation take shape, texture, location, and color descriptors into consideration, and pairwise
potentials are defined by a linear combination of Gaussian kernels in an arbitrary feature space.
Here we wish to formalize network modularity as an energy function of pMRF which has been
not considered by previous works.



3. The Method

We first introduce some notations and preliminaries. We then present 1) how to formalizes
network modularity as pMRF energies, 2) how to perform model inference by maximizing the
joint probability distribution, and 3) how to further speed up the inference by using external field
theory. We finally give its complexity analysis.

3.1. Preliminaries

The notations and the definition of the problem of community detection are first introduced.
We then discuss the definition of modularity and pMRF respectively.

3.1.1. Notations and the Problem

Consider an undirected and unweighted network G = (V, E) with n nodes and m edges, where
V denotes all nodes in the network G and E denotes the edge set. We use a n X n adjacent matrix
A to denote whether there is an edge between nodes. That is, if nodes i and j are connected,
A;jis 1 or 0 otherwise. C = {cy, ¢2, ¢y, ..., C4} is used to represent a community partition, where
¢; denotes to which community node 7 belongs. The task of community detection is to divide n
nodes into K communities.

3.1.2. Network Modularity

Network modularity which is a mostly used quality measure of community structures has
been proposed by Newman and Girvan in [3]. It is defined as the fraction of edges that the number
of edges between nodes within communities minus the expected value of the same quantity in
a network with the same community partitions but edges are assigned at random, conditional
on the given community memberships and the degrees of nodes. More formally, let ¢; be the
community to which node i is assigned. Modularity Q of the community partition is defined as:

00 =~ (A,-,« - %)6(ci,cj) )

m i,jev 2m

where d; denotes the degree of node i, and ¢ (c,-, c j) is the Kronecker delta, which is 1, if ¢; = ¢},
or 0 otherwise. If Q equals to 0, the community structure derived is almost random. But if O
approaches the maximum, which is 1, we have a very strong community structure.

3.1.3. Pairwise Markov Random Field

Pairwise Markov Random Field (pMRF) has been typically used in image segmentation. For
example, let n be the set of pixels in an image, X = (X;);c, the random field of classes, Y = (¥});c,
the random field of observations, K the number of classes, and C a set of variable cliques which
are defined by the neighborhood system. Then, the idea of pMRF models is to consider directly
the Markovianity of the pairwise random field Z = (X,Y). The energy function is composed
by a set of unary potentials }’; 6;, which measures the cost that nodes have labels, and a set of
pairwise potentials }’;;; yec 0:j, which represents the sum of the cost that node pairs have labels,
respectively, as showed in Fig. 1. The distribution of a general case of pMRF can then be written

as:
P(X = x,Y =y) = dexp [— do- > eij) )
i ij(i,))eC
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Unary potentials

Pairwise potentials

Figure 1: Graphical representation of a typical pMRF model. The black circles denote pixels. {01, ..., 69} and {612, ..., O30}
denote the set of unary potentials and pairwise potentials, respectively.

Completely connected MRF

Figure 2: Graphical representation of the proposed model in network community detection. The black, green and purple
circles denote nodes. {62, ..., 055} denotes the set of pairwise potentials. The data in the purple part and the green part
denote the real number and expected number of edges between nodes, which are only partially shown for illustrating.
The red dashed line represents the construction process of pairwise potentials.



3.2. Formalization of Modularity as MRF

We start to formalize modularity as an energy function of MRF, and then propose an efficient
model inference algorithm and finish with a complexity analysis.

3.2.1. The Model

Our proposed method falls into pMRF with modularity so that it is termed as ModMRF for
short. The core of this method is how to transform the modularity into the energy function of
MRE. By doing so, more inference algorithms can be used to calculate community partitions
such as the max-sum version of BP.

To be specific, first, the energy function of a pMRF model is the sum of pairwise potentials
for all node pairs of a given network due to the lack of node feature information for building
unary potentials and there is the property that the minimum of the energy function corresponds
to the best possible community partition [26]. Meanwhile, the pairwise potential between nodes
i and j, i.e., 6;;, should represent the cost that they have labels ¢; and ¢;. Second, modularity
is the sum of the difference between the real ratio of each edge between a pair of nodes within
communities in the given network (the purple part in Fig. 2) and the expected one in a random
graph (the green part in Fig. 2). The larger the difference, the larger the possibility that the two
nodes are in a community will be. Then its negative value corresponds to that: the smaller the
pairwise potential between two nodes, the smaller the cost of having labels ¢; and c; will be.
Therefore, the pairwise potentials can be defined based on the relative density of edges between
each pair of nodes. So the pairwise potential between nodes i and j can then be defined as (the
red dashed line part in Fig. 2):

0;j (Ci, Cj;Aij) == (Aij - %) 0 (c,-, C,i) )

where the definitions of symbols are the same as that in (1). The energy function with exclusively
the pairwise potentials of our model can then be defined as:

E(C) = Z 9,'(,' (C,',C]‘;Aij) = Z - (Aij - %)(5(01} Cj) (4)
ijev ijev

It satisfies that the larger the modularity is, the smaller the energy function is, and thus the
more likely the community partition will be.
Then Gibbs distribution is introduced as a function of inverse temperature S3:

P(C) e« exp {=BE(C)} (&)

Therefore, the joint probability that each node belongs to which community in the entire
network can be expressed as:

P(C) = %exp Z,B(Aij - %)5(@,@) (6)

2
ijev m

where Z is a partitioning function, which depends on the adjacency matrix [A; j]nxn and helps

guarantee that P(C) satisfies the definition of a probability distribution. Finally, we can get a
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globally optimal community partition by maximizing:
é‘ = arg max P(C)
¢ )

= arg max...max P(C)
1

Cn

3.2.2. Max-Sum BP for Model Inference

After network modularity is formalized into the energy function of MREF, a series of infer-
ence algorithms can be used to learn the model. In order to obtain the community partition C that
maximizes the probability distribution P(C) of the MRF model, we adopt the max-sum version
of BP algorithm to find a configuration of community memberships of all nodes. This algorithm
finds a configuration of variables that has the largest joint probability, which is often believed
having better performance than the sum-product version of BP that computes marginal proba-
bilities of the joint probability distribution [19]. For instance, as shown in Table 1, the marginal
probabilities of nodes A and B both belonging to community 1, which are the maximum and
are 0.6 and 0.7, respectively, corresponding the joint probability value 0.3. But this is smaller
than the real maximization of joint probability that node A belongs to community 2 and node B
belongs to community 1, which is 0.4. This is because the joint probability considers the hidden
relationship between communities, and hence it will be more reasonable to obtain community
partitions by maximizing joint probability rather than maximizing marginal probabilities (as did
in [34]).

Table 1: Probability distribution of communities of two nodes in a toy network.

Node A’s label . . .

Node B’s label Community 1 Community 2 Marginal prob of B
Community 1 0.3 0.4 0.7
Community 2 0.3 0.0 0.3

Marginal prob of A 0.6 0.4

We now introduce how to use the max-sum version of BP algorithm to derive the optimal
community structure in the model. First, this method collects messages that are passed by all
nodes except the node for which the calculations are performed, and the messages are passed
along the edges. If this is a ring network, a certain number of iterations are required until the
final messages and beliefs reach convergence. Because each node has more than one state space,
the message is a set of vectors as the same dimension as the number of states. Here the number of
states of the nodes is the total number of communities K. miT_)j (c;) indicates the message sent by

node i to its neighbor node j at a certain time 7. The new message for each iteration is calculated

as:
i)« ) {max [6 (circx) (Aik - %)/3 +m) (ck)}} ®)

keanj \ 2m

where i is the set of neighboring nodes of node i. Note that the graph here is not the original
network itself, but a fully connected graph (the black part in Fig. 2). So di is the set of all nodes
in the network except i. Messages are normalized in every iteration by moving the minimum of
the message for any community state c; € {1, ..., K} to zero, according to [26]. Then, the variable
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beliefs in different states can be calculated as:

dd,
bi(e) = ) {ngjx [6 (cinci) (Aik - 2—mk)ﬂ i (ck)]} ©)

k#i

This belief can be taken as a scoring function to find the community to which the node most
likely belongs to. At this point, the community label of node i (i.e., ¢;) can be selected based on
the nodes max-belief b; (c;), i.e.,

¢; = arg max...max b; (¢;) (10)

The detailed description of the algorithm is as follows.

Algorithm 1 exact BP-inference.
Input: A network A;j, criterium, t,,ax and g;
Output: Community partition C = {cy, ..., Cn};

1: Initialize the g-component normalized vectors {m?_}}. (ci)} randomly;
2: conv « criterium + 10; t « 0;

3: while conv > criterium and t < t,,,,: do

4:  conv «— 0;t—t+1;

5. for every message {mﬁ_v (ci)} (in random order): do

6: Update all g-components of {mfi} i (c;)}

7: cony « cony + mi:l] (ci) — mlf_)j (ci)

8:  end for
9: end while
10: Compute variable max belief b;(c;) for each node i;

11: return group assignments C;

3.2.3. Speedup the Model Inference

Since our ModMRF model is a fully connected pairwise MRF, messages on all edges of
the complete graph (the black part in Fig. 2) need to be computed in each iteration for a total
of n(n — 1) messages, where n is the number of nodes. Also, according to (8) the time for
computing each message is O(n). So, the complexity of the exact algorithm above is O(n?),
which is only suitable for small networks. However, the scale of real networks is usually much
larger. Therefore, here we further speed up the above method. Based on the cavity theory in
statistical physics [35], we can ultimately reduce the computational complexity to linear under
the condition that remain the good performance.

To be specific, each node can then send a same message which equals to the belief of node
i (i.e., b;(c;)) to all its non-neighbors of the original network, since the terms of subleading
order can be neglected according to the cavity theory [15]. Thereafter, the messages sent to non-
neighbors can be replaced by an external field [15]. In this case, in each iteration we only need
to update O(m) messages where m is the number of edges. Then the message that node i sends



to its neighbor j can be computed as:

mil, (c)) « Z {milX [5(%%)(1 - %)/3 +m ) (Ck)]}

keoi
did _
+ Z | {rr{ilx [(—,82—’;)5(01‘, ) +m) (Ck)]} (1D
kgdi\ j

= bi (Ci) + 0(%)

where 0i is the set of neighboring nodes of node i in the observed network. Therefore, the
messages from non-neighbors can be calculated based on auxiliary external field as follows:

,T_>, (ci) « Z {m?x [6 (ci, ck) (1 - %)ﬂ +my ) (cr)

kedi

}+H(D) (12)

where 0i is the neighborhood of node i on network G, and H (D) is the external field, that is:

y Dd
HD)=)" {rriax [(—ﬁz—mk) 8 (cinc;) + b (ck)]} (13)
3 k

where D are the distinct degrees. Assuming that L is the number of the distinct degrees, there
are L external fields that need to be calculated in each iteration, which are brought into equation
(12). Then, the belief can be calculated based on the auxiliary external field according to:

bi(c;) < Z {mfx [6 (cicx) (l - %)ﬁ +my_,; (i)

kedi

}—i—H(D) (14)

In order to find a fixed point of (12), when calculating the message miT_U. (¢;), the old value is
subtracted from the new one, and then the belief b; (c;) and the external field H(D) can be updated
respectively. Similarly, when there are loops in the network, the calculation will be repeated more
times until convergence. The detail description of the whole algorithm is described as follows:

3.3. Complexity Analysis

The time complexity algorithm 1 is O(n?), where 7 is the number of nodes. After speeding up
(i.e., algorithm 2), for each edge (i, j), we require O(K>d;) time to calculate the message ml.T_)]. (cp)
and the belief b; (c;) according to (12) and (14), respectively, where d; is the degree of node i.
Also, for the calculation of the external field according to (13), the complexity of each iteration
is O(K?L). Therefore, for the entire network system, the total time consumed for one iteration is
O(mK*(dmax + L)), Where dmay denotes the maximum value of degrees of all nodes. But due to
the sparsity of large networks, dp.x and L are very small relative to the number of nodes n. And
also, the number of iterations is often taken as a constant (such as 100 as used in general). So,
the time complexity of algorithm 2 is O(m), which is nearly linear to large sparse networks.

4. Experimental Results and Analysis

Here we validate the effectiveness of our newly proposed MRF method by comparing several
existing methods on some widely used benchmarks.
9



Algorithm 2 approximate BP-inference.
Input: A network A;j, criterium, t,,ax and g;
Output: Community partition C = {cy, ..., Cn};
1: Initialize the g-component normalized vectors {m?_}}. (c,-)} randomly;

Compute belief b;(c;) for each node i;
Compute the g-component auxiliary field H(c;);
conv « criterium + 10;t « 0;
while conv > criterium and t < t,,,,: do

conv «— 0;t—1t+1;

for every message {mf_)j (ci)} (in random order): do

Update all g-components of {m{j}j (c,-)};

mit] () —mi_ (c)| 3

10: Update b;(c;) using the new value of {mfi)'} (c,-)};
11: Update the external field H;

12:  end for

13: end while

14: Compute variable max belief b;(c;) for each node i;

9: cony < cony +

15: return group assignments C;

We apply our algorithm (i) first to 10 real-world networks and (ii) then to synthetic networks.
In real-world datasets, we compare and analyze the approach we have designed with five baseline
methods. They include FN [5], LEV [16], CNM [6], Louvain [2] and Mod [13]. The first
four methods obtain the results of community partition by finding the largest modularity and,
according to our knowledge, Louvain is one of the best and most widely used algorithms in the
modularity optimization family. Mod was designed by Zhang et al [13] based on the modularity
theory and is learned by the sum-product BP method. To further illustrate that our method has
better performance than Mod, we conducted further analysis on synthetic networks.

4.1. Metrics and the Number of Communities

We present the metrics used to verify the performance of our method and the determination
of the number of communities.

4.1.1. Metrics

We will use three different metrics to measure the quality of the community partition, namely
modularity, NMI (normalized mutual information) and AC (accuracy), because all methods are
based on the modularity theory and the ground-truth of communities is known. We use the E.q.
(1) to calculate modularity Q.

NMI is commonly used to measure the similarity between the detected community structure
and the real one in clustering approaches [18]. NMI is an important measurement used in the case
of community detection with ground-truth. It can be used to objectively evaluate the accuracy
of the results of a community partition and standard community results. The NMI value ranges
from O to 1, and the higher the value, the closer the partition result to the exact answer, which

10



means the higher the accuracy of the partition. The formula of NMI is defined as:

252 X3 Cijlog (CyN/CiC) (15)

I(A.B) = — =
S5 Cilog (Ci/N) + £, C;log (C;/N)

where A and B denote two given community structures, and [C;;]jaixpjis a scrambling matrix. C;;
denotes the members of community j in B and the same parts of community i in A. N is the
number of nodes in the network. C; is the sum of all the elements in the i-row of the matrix
[Cijliaxp- Similarly, C; is the sum of the elements of the j-column in the matrix.

AC is used to measure the percentage of correct labels obtained by using above algorithms.
Given a network with N nodes. Assume C; is the community label we obtained by an above
algorithm, and R; is the label in the ground-truth. The accuracy AC is defined as:

N 8 (Ri,map (C;))
N

AC =

(16)

where 6 (R;, map (C;)) is the Kronecker delta, and map (C;) is the mapping function that maps
each community label C; to the equivalent label from the ground truth. The best mapping can be
found by using the Kuhn-Munkres algorithm [22].

4.1.2. The Number of Communities

For choosing the number K of communities in a network, it is a classic model selection
problem. Setting K by maximizing the modularity is a widely used heuristic in community
detection, but it has been prone to overfitting. Zhang ef al [13] provide a principled way to choose
the number of communities, which uses the retrieval modularity as a criterion for choosing K,
namely, for larger K, the retrieval phase becomes narrower, and the retrieval modularity does not
increase [13], unlike other algorithms that tend to overfit. Thus, we also determine the value of
K by introducing the way proposed by Zhang et al, rather than overfitting. Although our method
is able to recognize how many communities there is, in order to compare fairly with the Mod
method, we set K as that of Mod method, which is learned by adopting the way proposed by
Zhang et al [13].

4.2. Real-World Networks

In this section, we first briefly describe the real-world networks used. Then on the real-world
networks, FN, LEV, CNM, Louvain, Mod and the proposed approach ModMRF were compared
and analyzed in terms of the above-mentioned three metrics (i.e. modularity, NMI and AC).

4.2.1. Datasets Description

In Table 2, a total of 10 real-world networks are listed. The scale of the datasets ranges from
dozens of nodes to tens of thousands of nodes, and even the maximum number of edges can reach
hundreds of thousands. More detailed analysis of these networks can be found in [17, 21, 23].
In the next demonstration of the experimental results, we will represent these networks with the
abbreviation of the datasets.
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Table 2: Datasets descriptions of ten real-world networks. n is the number of nodes, m the number of edges, and ¢ the
number of communities. "High school friendship6’ and *High school friendship7’ have the same network with different
“true” community partitions.

Datasets’ name n m ¢ Abbreviation
Zacharys Karate club 34 78 2 Karate
High school friendship6 69 220 6 School6
High school friendship7 69 220 7 School7
Political books 105 441 3 Polbooks
American college football 115 613 12 Football
Cora 2,708 5,429 7 Cora
Citeseer 3,312 4,732 6 Cite
UAI2010 3,363 45,006 19 Uai2010
Northeastern 13,882 381,935 7  Northeastern
PubMed diabetes 19,729 44,338 3 Pubmed

Table 3: Comparison of 6 methods in terms of modularity on 10 real networks. Bold figure means better performance.
The ’/-/” denotes run time >48 hours.

Modularity

FN LEV CNM Louvain Mod ModMRF
Karate 0.372 0.393 0.381 0.419 0.371 0.422
Friendship6  0.585 0.544 0.545 0.593 0.597 0.614
Friendship7  0.571 0.544 0.545 0.593 0.597 0.614
Polbooks 0.501 0.467 0.502 0.52 0.521 0.533
Football 0.507 0.493 0.55 0.605 0.572 0.586
Cora 0.758 0.741 0.806 0.813 0.759 0.77
Cite 0.783 0.875 0.892 0.9 0.786 0.788
Uai2010 /-/ 0.35 0.394 0.461 0.435 0.437
Northeastern /-/ 0.382 0411 0.506 0.496 0.498
Pubmed /-/ 0.657 0.728 0.77 0.748 0.722

Datasets

4.2.2. Quantitative Analysis

To validate the performance of our method, we compared ModMRF with two types of the
state-of-the-art community detection methods, which are modularity optimization based methods
[2, 5, 6, 16] and modularity as a Hamiltonian [13] respectively. In the experiment, we used all
the datasets from Table 2 and tested the six algorithms on each of the datasets. Each setting
of the experiment was repeated 20 times. We report the result with the highest objective. The
experimental results are shown in Tables 3, 4 and 5.

Based on the modularity, ModMREF is on average 5.78%, 8.99%, 3.84%, and 1.70% more
accurate than FN, LEV, CNM, and Mod, respectively. As shown in Table 3, except Louvain,
ModMRF performs better than the other four methods on most of the datasets. Although some
other approaches are superior to ModMREF in Cora and Cite datasets, modularity only tends to
evaluate the clarity of community structure (i.e., the larger the modularity, the tighter connec-
tions within the community and the sparser connections between communities), and whether the
communities to which nodes are correctly classified cannot be precisely judged. In addition, due
to that we adopt the real-world networks with ground-truths of communities, the comparison is
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Table 4: Comparison of 6 methods in terms of NMI on 10 real networks. Bold figure means better performance. The
’/-/” denotes run time >48 hours.

Datasets NMI
FN LEV CNM Louvain Mod ModMRF
Karate 0.837 0.677 0.692 0.587 1 1

Friendship6  0.721 0.843 0.735  0.852 0.93 0.961
Friendship7 0.744 0.865 0.742  0.878  0.887 0.916
Polbooks 0.534 052 0.531 0.512  0.542 0.537
Football 0.673 0.699 0.698 0.89 0.71 0.718
Cora 0.374 0421 0455 0.456 0.33 0.384
Cite 0.109 0331 0.34 0.337 0.18 0.146
Uai2010 /- 0.118 0.147  0.192  0.152 0.152
Northeastern /- 0.303 0427 0473  0.549 0.55
Pubmed /- 0.18  0.22 0.204  0.183 0.172

Table 5: Comparison of 6 methods in terms of modularity on 10 real networks. Bold figure means better performance.
The ’/-/ denotes run time >48 hours.

AC
Datasets FN LEV CNM Louvain Mod ModMRE
Karate 0971 0618 0735 0647 1 1

Friendship6  0.667 0.768 0.71 0.826 0.928 0.942
Friendship7 0.739 0.826 0.725 0.913 0.841 0.855
Polbooks 0.819 0.714 0.81 0.724  0.829 0.819
Football 0.522 0.626 0.574 0.87 0.487 0.504
Cora 0.53 0422 0.396 0.368 0.484 0.547
Cite 0.312 0.187 0.191 0.185 0.301 0.315
Uai2010 /-/ 0.233 0.192 0.265 0.251 0.267
Northeastern /-/ 0.442 0.551 0.647 0.694 0.69
Pubmed /-/ 0.291 0.413 0.205 0.275 0.277

more compelling. So, the gold metric, i.e., accuracy, can be also used to evaluate the performance
of different methods. Accuracy can more precisely assess the quality of community partition.

Tables 4 and 5 show the NMI and AC values of the six methods tested on the ten datasets.
We observe that ModMREF has the best performance on 4 and 5 of the 10 networks in terms of
NMI and AC, respectively. Using the NMI, ModMREF is on average 14.37%, 10.46%, 9.92%,
2.80% and 1.32% more accurate than FN, LEV, CNM, Louvain and Mod, respectively. We also
obtained better results in terms of AC. Those are 8.47%, 17.52%, 14.78%, 9.11% and 2.03%
for FN, LEV, CNM, Louvain and Mod, respectively. About 80% AC results of the first four
methods are worse than those of ModMREF, although on the Cora, Cite and Uai2010 datasets, the
modularity results (Table 3) e.g. for Louvain, are better than the ones for ModMRF. Comparing
with the competitive Mod algorithm, the NMI and AC of ModMRF are better than that of Mod
on 7 and 8 out of the 10 used datasets, respectively. These further validate the superiority of
ModMREF over others in finding communities.
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4.2.3. Qualitative Analysis

To further validate the performance of our method, here we first show the number of com-
munities learned by LEV, CNM and Louvain methods on Cora and Cite datasets due to their
better performance than ModMREF in terms of modularity, and then illustrate the number of com-
munities in the test datasets of Karate which were determined by CNM, Louvain, Mod and our
method, respectively, because they are all considered to be the more advanced algorithms.

First, we observe that the real number of communities on the Cora and Cite datasets are 7
and 6 groups respectively. But the number of communities extracted by LEV, CNM and Louvain
methods are 106 and 392, 105 and 398, and 102 and 392 on the Cora and Cite datasets, respec-
tively. This is because they use the method of maximizing modularity to discover the commu-
nities in the network, so that the network is partitioned into too many very small communities.
The number of communities obtained by our method are 7 and 8 on Cora and Cite respectively,
which is almost the same as the real number of communities. By the above experimental results,
we can observe that modularity is biased as a measure in fact.

Furthermore, we visualize the community partitions on Karate club network given by CNM,
Louvain, Mod and ModMREF. Since Mod and our methods partition results are the same as the
real network partition, they are shown in Fig. 3 (a). Each node in the graph represents a member
in the club, including the coach (node 1) and the administrator (node 34). Different colors rep-
resent different communities. The size of the node indicates the size of the degree of the node.
As shown in (a), our method accurately divides the karate dataset into two communities that are
centered on nodes 1 and 34, respectively, while the CNM and Louvain algorithms divided the
network into 3 and 4 clubs, respectively, because of maximizing the modularity. Therefore, our
method is superior to the method based on modularity optimization in terms of performance.

' B © 2 . ® ® g
® ® /. ® O 9 19 ® ®
3 ¢ ¢ ~ ® 6 € . 3 o9
0. g T N . g &\, 6 g T a
_d A\ Sl \
o 9 g®® o & g@O 5 o “goo
. @ 30 QG \\!/\‘ ‘22 )i 30 Q@ _ -~ . \‘ .
0 ©® ® e » B 9 @ @ 7\
(] 4 4 ‘ :
o0 ea®9 o Dea®O o0 g ®O
6 . 26
LRI B e o vee®
@ ) ©

Figure 3: Comparison of 4 methods, including CNM, Louvain, Mod and the proposed method ModMREF in terms of
the real community partition on the Zachary’s karate club dataset. (a) For the real network partition result, Mod and
our algorithm’s results are the same, for a total of 2 communities; (b) CNM’s result, for a total of 3 communities; (c)
Louvain’s result, for a total of 4 communities.

4.3. Synthetic Networks

Mod method is competitive with our method ModMRF, which can be seen from the exper-
iments of the real datasets. In order to more clearly and intuitively see the difference between
the these two algorithms, we use the currently accepted LFR benchmark network with known
community structures as the artificial datasets to further evaluate the performance of our method
regarding modularity, NMI and AC.
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4.3.1. Experimental setup

LFR was proposed by Lancichinetti [18], which considers the heterogeneity of the real net-
works. So the LFR benchmark network is considered to be the closest to a real-world network.
We designed two groups of experiments by changing different parameters on the benchmark net-
work, and then used modularity, NMI and AC to evaluate the performance of our method. Some
important parameters of the network are shown in Table 6.

Table 6: Parameters of the LFR benchmark networks

Symbols Descriptions

N number of vertices

<d> average degree

dinax maximum degree
@ exponent of the degree distribution
B exponent of the community size distribution
U mixing parameter

Chin minimum community sizes

Cnax maximum community sizes

=+ Mod —*— ModMRF

0.8
=y
&
S 0.6
k]
o
=
0.4
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
1 1 1 1
0.9 0.9 0.9 0.9
H
2 0.8 0.8 0.8 0.8
0.7 0.7 0.7 0.7
a=27=1 w«=2/3=2 a=3,43=1 a=3,4=2
0.6 0.6 0.6 0.6
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
1 1 1 1
0.8 0.8 0.8 0.8
Q
<
0.6 0.6 0.6 0.6
0.4 a=273=1 0.4 a=2/73=2 0.4 a=3,3=1 0.4 a=33=2
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Mixing parameter p Mixing parameter ;: Mixing parameter j: Mixing parameter g

Figure 4: Comparison of Mod and ModMRF methods in terms of modularity, NMI and AC on LFR benchmark networks.
The number of nodes N = 1, 000. Each point corresponds to an average over 20 graph realizations.
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First group: We design small networks with 1,000 nodes. We generated four pairs of graphs
that correspond to 4 pairs of parameters (@,8) = (2,1),(2,2) (3, 1) (3,2) respectively. Because
there are the similar results when the average degree of the nodes has different values, it is set to
15 and the maximum degree is 50 (and C,,;;, = 20, C,,ox = 60). We change the mixing parameter
u from 0.1 to 0.6 with an increment of 0.05. When the mixing parameter is larger, the community
structure is harder to detect.

Second group: To check how the performance of our method is affected by the size of the
network, we further compared our method with the Mod algorithm on a benchmark network
with 5,000 nodes. We only changed the maximum degree of the node and the size of the largest
community (the change of the two does not affect the shape of the results curve).

[ ——Mod —s—ModMRF|
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e e
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e
n

0.2 0.4 0.6

0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
a=2,/4d=2 a=3,4=1 a=3,0=2
0.6 0.6 0.6
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

0.8 0.8 0.8
Q
<
0.6 0.6 0.6
0.4 a=2,/49=1 0.4 a=2,0=2 0.4 a=3,4=1 0.4 a=3,0=2
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Mixing parameter p Mixing parameter Mixing parameter p. Mixing parameter

Figure 5: Comparison of Mod and ModMRF methods in terms of modularity, NMI and AC on LFR benchmark networks.
The number of nodes N = 5,000, the other parameters are the same as those in Fig. 4. Each point corresponds to an
average over 20 graph realizations.

4.3.2. Experimental Results

We first compared ModMRF with Mod method on the datasets with 1,000 nodes. As shown
in Fig. 4, when the mixing parameter u is close to 0, the community structure of the network
is very obvious. The gap between the community structure detected by the two algorithms and
the real community structure is very small. The NMI values of the two algorithms are almost
all above 0.95 and the values of AC are about 0.8. However, with the increase of the parameter
M, the community structure gradually becomes insignificant. Although the modularity of Mod
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is still close to our algorithm, the NMI and AC values are much smaller than the ModMRF we
designed. It shows that the proposed algorithm ModMRF outperforms Mod approach in this
artificial network.

We further compared our method with Mod on benchmark networks with 5,000 nodes. As
shown in Fig. 5, the curves corresponding to the same parameters are similar to Fig. 4, while
quickly drop to the bottom for larger networks, especially for the Mod algorithm. However, our
method still performs better than the Mod algorithm. Especially, when the value of y is in the
range of 0.3 to 0.6, it further shows better performance of our method.

5. Conclusion

In this paper, we proposed a new MRF approach, namely ModMREF, to formalize modularity
as the energy function for community detection in undirected static networks. Experimental
results showed that our method offers better accuracy than the state-of-the-art algorithms. In
addition, for the efficiency problem, ModMREF has reduced the time complexity to a nearly linear
case. This level of time complexity in community detection algorithms can be qualified as very
efficient. Finally, we hope that the study of this paper will further help to improve existing
methods and provide useful information for designing new community detection methods.
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