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Abstract

Global Average Pooling (GAP) is used by default on the
channel-wise attention mechanism to extract channel de-
scriptors. However, the simple global aggregation method
of GAP is easy to make the channel descriptors have homo-
geneity, which weakens the detail distinction between fea-
ture maps, thus affecting the performance of the attention
mechanism. In this work, we propose a novel method for
channel-wise attention network, called Stochastic Region
Pooling (SRP), which makes the channel descriptors more
representative and diversity by encouraging the feature map
to have more or wider important feature responses. Also,
SRP is the general method for the attention mechanisms
without any additional parameters or computation. It can
be widely applied to attention networks without modify-
ing the network structure. Experimental results on image
recognition datasets including CIAFR-10/100, ImageNet
and three Fine-grained datasets (CUB-200-2011, Stanford
Cars and Stanford Dogs) show that SRP brings the signifi-
cant improvements of the performance over efficient CNNs
and achieves the state-of-the-art results.

1. Introduction

Convolutional neural network (CNN) is an effective
method to solve the computer vision tasks [21, 35, 8]. Fur-
thermore, combining it with attention mechanisms can bet-
ter solve them [1, 40, 46, 32], such as channel-wise atten-
tion networks [13, 27, 12, 42, 54]. They usually use Global
Average Pooling (GAP) to squeeze the entire feature map
into a descriptor [13, 14, 27, 42]. However, GAP tends to
ignore the detail area in feature map with lower magnitude,
which easily leads to the homogeneity of the channel de-
scriptors. To alleviate this problem, some researchers com-
bine channel-wise attention with spatial attention to make
the attention module to pay attention to the spatial details of
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the feature map [27, 29]. And some researcher even design
a 3D-like attention module to extract the channel descrip-
tors with spatial information [12]. However, these methods
bring a lot of additional parameters and computational con-
sumption. Therefore, it is expected that the attention mech-
anism is paid attention to the details of feature maps under
the framework of the channel-wise attention mechanism but
with only a little additional cost.

This paper attempts to improve the representation of de-
scriptors extracted by GAP through providing the feature
maps with higher quality. The proposed method is called as
Stochastic Region Pooling (SRP), which does not brings ex-
tra parameters and computation in test phase. SRP empha-
sizes more local features in the convolutional layer, making
the channel descriptors extracted by GAP more representa-
tive and thus making the channel-wise attention mechanism
works better. In more details, it stochastically selects the
region from the feature map and used GAP to obtain the re-
gion descriptor, where the descriptor is the accurate repre-
sentation of the region. Subsequently, the region descriptors
are used in the follow-up attention structure. In such case,
the back propagation [24] will encourage these regions to
have more important feature responses to represent its orig-
inal entire feature map.

This paper proposes a simple method to implement SRP,
named as Single Square SRP (SS-SRP), which stochasti-
cally selects a single square region from feature map to ex-
tract the descriptor. In order to consider local response of
irregular shape in feature map, another method named as
Multiple Squares SRP (MS-SRP) is proposed that stochas-
tically selects multiple square regions from the feature map
and then extracts the descriptor from their union regions.
These two methods are illustrated in figure.1. On the other
hand, in residual networks, most of attention mechanisms
only act on the residual branch of residual block. In order
to make the feature maps of identity branch also have more
feature responses, we use SRP to extract the channel de-
scriptors of both identity branch and residual branch, which
are then applied to serve the follow-up attention structure.
The main contributions are as follows:
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Figure 1: The framework of Stochastic Region Pooling (SRP) with applications to one branch or double branch attention
block, where SS-SRP and MS-SRP are considered.

• A new method SRP is proposed that make more lo-
cal regions in the feature map to have more important
feature responses, so that the channel descriptors ex-
tracted later by GAP are more representative and ro-
bust.

• SRP obtains the significant improvement of the per-
formance for one branch or double branch block of
channel-wise attention structures without any addi-
tional parameters and computation in test phase. It
can also work well with some augmentation methods
to further improve the performance.

• A linear strategy is proposed to make SRP work well
that gradually reduces the scale ratio of region as the
depth of the layer increases.

• Experiments are conducted on serval datasets, includ-
ing CIFAR-10/100, ImageNet and three Fine-grained
datasets (CUB-200-2011, Stanford Cars and Stanford
Dogs), which verified the effectiveness of SRP.

2. Related Work
Improving representation of feature maps. A common
way to obtain high-quality feature maps is to find efficient
network structures, such as [35, 38, 8, 15, 45] to extract
more and better features. However, the feature maps learned
by these networks are still not diverse enough. Another way

is regularization. Some regularization for channel can main-
tain high quality channels by removing or retraining the in-
efficient channels [10, 52, 5, 11]. For [10, 52], they will
change the network structure. And for [5, 11], we have
not found the evidence to prove that they are suitable for
channel-wise attention neural networks. Other regulariza-
tions such as dropout [36], droppath [22], dropblock [6],
cutout [3] can enhance the robustness of the feature by in-
troducing randomness. And our method is closely related to
Dropblock [6] which drops spatially correlated information
to promote the network to reconstruct the important fea-
tures from its surrounding. However, our method is aims
to solve the problem that the descriptor in the channel-wise
attention network contains few detailed information of the
feature map, such as by promoting the feature map to have
more or wider important feature responses.

Extracting descriptors by spatial feature pooling. The
idea of spatial feature pooling was proposed by Hubel
and Wiesel [16], and then Yann Lecun [25] successfully
applied it to CNN. Furthermore, Spatial Pyramid Match-
ing(SPM) [23, 44] manually designed the pooling weights
to obtain spatial feature pyramid, Malinowski [31] param-
eterized pooling operator to learn the pooling regions, and
Lee [26] combined the max pooling and the average pool-
ing to obtains a generalized pooling function. Some re-
searchers also use the second-order pooling even the third-
order pooling instead of the first-order pooling (i.e., GAP)
to collect richer statistics of the last convolution layer in
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Algorithm 1: Stochastic Region Pooling
Input: Feature map:U , height and width of the feature map: H andW , scale ratio:λ, the number of square regions:M ,

mode.
Output: The channel descriptors z (zc is the cth channel descriptor of z).

1 if mode != TrainingStage then
2 ∀c : zc = Fsq(uc) B Fsq computes Eq. (1);
3 return z;
4 end
5 Calculate the height and width of square region: H ′ = bλH + 1

2c,W
′ = bλW + 1

2c;
6 Stochastically sample M positions Pm

i,j from the feature map U where 1 ≤ i ≤ H −H ′ + 1, 1 ≤ j ≤W −W ′ + 1;
7 Crop M square regions from the feature map U with the left-top position as Pm

i,j , where the width and height of square
region are W ′ and H ′ respectively; ∀c : zc = F sq(uc, Pi,j , H

′,W ′) B F sq computes Eq. (3) or Eq. (5);
8 return z ;

CNN [2, 28, 41]. Introducing randomness can also improve
the performance of spatial pooling. For example, stochas-
tic pooling [48] randomly selects the activation value based
on a multinomial distribution formed by activations of each
pooling region to regularize the network, and S3Pool [49]
randomly picks feature map’s rows and columns and then
performs the max pooling operation to implicitly introduce
data augmentation. However, using the above method to
extract the channel descriptor will bring a lot of extra con-
sumption, or it will still not make the descriptor’s repre-
sentation stronger. We select a simplest way, which takes
GAP to extract the descriptor because it is widely used, does
not bring any extra parameters, and has the potential to get
global spatial information.

Methods of spatial pooling in attention mechanism.
Channel-wise attention mechanisms have developed rapidly
in recent years [32, 1, 27, 13, 12, 42] and the channel de-
scriptors are crucial to them. In order to extract more rep-
resentative descriptors, CBAM [42] combines the output of
the global max pooling and the global average pooling as
the pooling method, and GEnet [12] uses the depth-wise
convolution with large kernel to replace GAP. However, the
global max pooling in CBAM is prone to network over-
fitting [48], and CBAM also cannot enhance the channel
descriptor with more spatial details. Besides, GENet will
brings a lot of additional parameters or computation. Differ-
ent from them, SRP is a training method that can encourage
the descriptors to have more information about the feature
map details. The reason why SRP uses GAP instead of the
above methods to extract the descriptor is not only because
GAP is simple and does not bring any additional param-
eters, but also that GAP is widely used for attention net-
works. This enables SRP to be conveniently used on these
networks without modifying the network structure.

3. Stochastic Region Pooling

Many channel-wise attention block applied GAP oper-
ation to obtain the descriptor of feature map. Formally,
given the feature maps U = [u1, u2, · · · , uc] ∈ RH×W×C

in the convolutional layer and the function S(·) squeezes
the global spatial information into a channel descriptor z =
[z1, z2, · · · , zC ] ∈ RC , the cth channel descriptor of z can
be calculated in GAP by

zc = S(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (1)

From the Eq.1, it can be concluded that GAP regards
each position of the space to make the same contribution,
even if the elements of some local regions have the low
magnitude [48]. This will weaken the details of the feature
map and easily leads to high similarity between descriptors.
Here we propose Stochastic Region Pooling (SRP) method
that stochastically selects the region from the feature map
instead of the whole map to extract descriptors during the
training stage. SRP is presented as Algorithm 1.

SS-SRP is a simple method to be implemented, which
stochastically selects a single square region from map. Sup-
posing that the scale ratio λ controls the size of square re-
gion, the width and height of the square region can be for-
mulated as follows,

H ′ = bλH +
1

2
c,W ′ = bλW +

1

2
c. (2)

For each feature map, we stochastically select a position
P (a, b) as the upper left corner of the square region R ∈
RH′×W ′ , where the spatial position P (a, b) subject to 1 ≤
i ≤ H − H ′ + 1, 1 ≤ j ≤ W − W ′ + 1. Now we use
the average pooling as the squeeze operator S(·) to extract
the descriptors z, and the cth channel descriptor of z can be
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calculated by

zc = S(uc) =
1

H ′ ×W ′
a+H′−1∑

i=a

b+W ′−1∑
j=b

uc(i, j). (3)

The module of SS-SRP can be seen in the Figure 1.
MS-SRP is applied to consider the non-regular shape of

the local region in feature map, which stochastically selects
multiple square regions from the feature map and then ex-
tracts the descriptor from their union regions. Suppose that
we stochastically chooseM square regions from the feature
map, defined as R ∈ RM×H×W , the target region we want
is their union area R∗.

Let Ω∗ be the set of all the points in R∗ and Ωm be the
set of all points in the mth square region Rm, we have

Ω∗ =
M⋃

m=1

Ωm =
M⋃

m=1

{
(x, y) | (x, y) ∈ Ωm

}
. (4)

The global average pooling is used as we did before to
squeeze the regional spatial information. Thus the cth chan-
nel descriptor of z can be calculated by

zc = S(uc,Ω
∗) =

1

| Ω∗ |
∑

(i,j)∈Ω∗

uc(i, j), (5)

where | Ω∗ | is the number of elements in Ω∗,i.e. the num-
ber of points in region R∗. The module of MS-SRP can be
seen in the Figure 1.
One branch or double branch attention block. After
calculating the channel descriptors, a one branch attention
block applies an excitation operation TO(·) to obtain the
relationship α ∈ RC between the channels of the resid-
ual branch, which is α = TO

(
zr) where zr is the chan-

nel descriptor of the residual branch. And a double branch
attention block utilizes TD(·, ·) to compute the relation-
ship among channels of the residual branch, which is α =
TD
(
zid, zr), where zid and zr are the channel descriptors

of the identity branch and the residual branch respectively.
For the one branch attention block, we use two fully con-

nected(FC) layers as the function TO
(
zr) as described in

SENet [13]. For the double branch attention block, we fold
two branch’s descriptors and use convolution 3×3 to model
their relationship as the function TD

(
zid, zr) as described

in CMPE-SENet [14].
Finally, these recalibrated feature maps Ũ ∈ RH×W×C

can be calculated by Ũ = α ·U , where · is the element-wise
multiplication.
Scheduled SRP. The neurons in the shallow layers of the
network have smaller receptive field. In order to maintain a
majority of responses in the region selected by SRP in the
shallow layers, we gradually reduce λ from 1 to the smaller
value as the depth of the layer increases, instead of setting λ

Datasets #Class #Train #Test

CUB-200-2011 200 5,994 5,794
Stanford Cars 196 8,144 8,041
Stanford Dogs 120 12,000 8,580

Table 1: Statistics of three common Fine-grained datasets.
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Figure 2: Testing acc (%) of SS-SRP (with or without
scheduled) applied to One or Double branch block on
CIFAR-100 data with the different λ.
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Figure 3: Test acc (%) of MS-SRP applied to One or Double
Branch block on CIFAR-100 dataset under different hyper-
parameters (λ,M ).

to a fixed value. In our experiments, we use linear strategy
to reduce λ, which is inspired by ScheduledDropPath [55],
but ScheduledDropPath changes its parameters over train-
ing time.

4. Experiments

Some experiments are conducted to validate the pro-
posed method on the CIFAR-10/100[20], ImageNet[33],
and three fine-grained datasets (CUB-200-2011[39], Stan-
ford Dogs[17] and Stanford Cars[19]). For experiments on
CIFAR and fine-grained datasets, we report the average ac-
curacy by running five times, while on ImageNet, we report
the average accuracy by doing three times due to the limi-
tation of computational resources. In the following subsec-
tions, SRP-O indicates that SRP is applied to the one branch
attention block, and SRP-D indicates that SRP is applied to
the double branch attention block.
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4.1. Experiment Settings

CIFAR. Following [9, 47, 43], we use stochastic gradient
descent (SGD) with 0.9 Nesterov momentum and batchsize
of 128. The learning rate is set to be 0.1, which is then di-
vided by 10 at epochs 100, 150 for ResNet, divided by 5 at
epochs 60,120,160 for WRN, and divided by 10 at epochs
150,225 for ResNeXt. We train the model by 200 epochs
for ResNet and WRN, and 300 epochs for ResNeXt. The
weight decay is 0.0001 for ResNet, 0.0005 for WRN and
ResNeXt. we use the standard data augmentation (transla-
tion/mirroring) for the training sets.
ImageNet. The ILSVRC 2012 contains 1.2 million train-
ing images and 50K validation images with 1K classes. We
adopt the standard data augmentation for the training sets,
which randomly samples a 224×224 crop from the origi-
nal images or their horizontal flip, and applies a single-crop
with the size 224×224 at testing stage. We train our models
for 100 epochs and drop the learning rate by 0.1 at epoch
30, 60, and 90, and use SGD with the mini-batch size of
256 on 4 GPUs (64 each). The weight decay is 0.0001 and
Nesterov momentum is 0.9. In experiments, we report the
classification accuracy on the validation set.
Fine-grained Datasets. We conduct experiments on three
fine-grained datasets, including CUB-200-2011,Stanford
Dogs and Stanford Cars. The detailed statistics of each
dataset are shown in Table 1. For all fine-grained datasets,
we resize the input images to 512×512 and randomly crop
the smaller images with 448×448 from it, and then gener-
ates the horizontal flip of the cropped images for training.
At the testing stage, we only use a single cropped image
with 448×448 from the input image which have been re-
sized to 512×512. We fine-tune networks (pre-trained on
ImageNet) using SGD with the batch size of 16, momen-
tum of 0.9 and weight decay of 0.00001. For all fine-grained
datasets, we train the networks for 90 epochs. The learning
rate begins with 0.001 and then divided by 10 at epoch 30
and 60.

4.2. Impact of Hyper-parameters

In order to demonstrate the influence of two hyper-
parameters (scale ratio λ and the square regions number
M ) on the performance of our model, experiments are con-
ducted on CIFAR-100, where SRP applied on attention net-
works with different hyper-parameter settings.
SS-SRP. It only randomly selects one square region, which
becomes standard mothod when we set λ = 1. It can be
seen from figure 2 that an appropriate λ can improve the
network performance and the lower λ will result in the poor
results. In the following experiments of SS-SRP, we use
λ = 0.8 unless specified elsewhere, because SS-SRP ob-
tains the better results at λ = 0.8. From figure 2, it can be
also observed that SRP with the fixed scale ratio λ can ef-
fectively improve the network performance, but the sched-

Model depth params C10 C100

FractalNet [22] 21 38.6M 95.40 76.27
WRN-28-10 [47] 28 36.5M 96.00 80.75
ResNeXt-29(8x64d) [43] 29 34.4M 96.35 82.23
ResNeXt-29(16x64d) [43] 29 68.1M 96.42 82.69
DenseNet(k=24) [15] 100 27.2M 96.26 80.75
DenseNet-BC(k=40) [15] 190 25.6M 96.54 82.82
PyramidNet(bottleneck,α = 270) [7] 272 27.0M 96.52 82.99

mixup [50], WRN-28-10 [47] 28 36.5M 97.30 82.50
mixup [50], DenseNet-BC(k=40) [15] 190 25.6M 97.30 83.20
mixup [50], SE-WRN-28-10 [13] 28 36.8M 97.32 83.23

SS-SRP-O, WRN-28-10 28 36.8M 96.28 81.38
SS-SRP-O, ResNeXt-29(8x64d) 29 34.9M 96.52 82.59
SS-SRP-D, WRN-16-8 16 11.1M 96.02 80.89
SS-SRP-D, WRN-28-10 28 36.9M 96.50 81.78

MS-SRP-O, WRN-28-10 28 36.8M 96.34 81.38
MS-SRP-O, ResNeXt-29(8x64d) 29 34.9M 96.53 82.62
MS-SRP-D, WRN-16-8 16 11.1M 96.10 80.98
MS-SRP-D, WRN-28-10 28 36.9M 96.61 81.91

MS-SRP-O, mixup, WRN-28-10 28 36.8M 97.48 84.08
MS-SRP-D, mixup, WRN-16-8 16 11.1M 96.84 82.71
MS-SRP-D, mixup, WRN-28-10 28 36.9M 97.56 84.12

Table 2: Comparison of test accuracy (%) with different
methods on the CIFAR-10 and CIFAR-100. The best results
are highlighted in red, and the best records of our models
are in bold. Combined with the augmentation method of
mixup [50], SRP can challenge state-of-the-art results.

Model params top-1 top-5

CliqueNet-S3 [45] 14.4M 75.95 92.85
ResNet-50 [8] 25.6M 75.30 92.20
ResNet-101 [8] 44.6M 76.40 92.90
SE-ResNet-50 [13] 28.1M 76.71 93.38
ResNet-152 [8] 28.1M 77.00 93.30
DenseNet-201 [15] 20.2M 77.42 93.66
SE-ResNet-101 [13] 49.4M 77.62 93.93
CBAM-ResNet-50 [42] 25.9M 77.34 93.69
GE-θ+-ResNet-50 [12] 33.7M 78.12 94.20

SS-SRP-O-ResNet-50 28.1M 77.43 93.81
MS-SRP-O-ResNet-50 28.1M 77.58 93.88
SS-SRP-D-ResNet-50 29.2M 77.94 94.35
MS-SRP-D-ResNet-50 29.2M 78.09 94.40

Table 3: Comparison of test accuracy (%) between SRP and
other different methods on the large ImageNet, where a sin-
gle crop method is applied.

uled SRP makes the network work better. In all following
experiments of SRP, scheduled SRP is used.
MS-SRP. In MS-SRP, there are two hyper-parameters that
affects the network performance, i.e., the scale ratio λ and
the square number M . By observing the results in figure
3, MS-SRP outperforms standard method SRP (i.e., λ =
1) and SS-SRP within a wider range of hyper-parameters.
Since λ = 0.6 and M = 5 can obtain the better results, we
use these hyper-parameters for all experiments of MS-SRP
unless stated elsewhere.
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Model Anno. 1-Stage Acc.

DVAN [53] × × 79.0
Part-RCNN [51] X × 81.6
PA-CNN [18] X X 82.8
RAN [40] × × 82.8
FCAN [30] X X 84.7
RACNN [4] × × 85.3

VGG-19 [35] × X 77.8
ResNet-50 [8] × X 81.7
DenseNet-161 [15] × X 84.2
FCAN [30] × X 84.3
ResNet-101 [8] × X 84.5

SS-SRP-D-ResNet50 × X 84.9
MS-SRP-D-ResNet50 × X 85.6

(a) CUB-200-2011.

Model Anno. 1-Stage Acc.

DVAN [53] × × 87.1
RAN [40] × × 91.0
FCAN [30] X X 91.3
RACNN [4] × × 92.5
PA-CNN [18] X X 92.8

VGG-19 [35] × X 84.9
FCAN [30] × X 89.1
ResNet-50 [8] × X 89.8
DenseNet-161 [15] × X 91.8
ResNet-110 [8] × X 91.9

SS-SRP-D-ResNet50 × X 92.3
MS-SRP-D-ResNet50 × X 92.8

(b) Stanford Cars.

Model Anno. 1-Stage Acc.

DVAN [53] × × 81.5
RAN [40] × × 83.1

VGG-16 [35] × X 76.7
ResNet-50 [8] × X 81.1
DenseNet-161 [15] × X 81.2
FCAN [30] × X 84.2
MAMC-ResNet50 [37] × X 84.8
ResNet-101 [8] × X 84.9

SS-SRP-D-ResNet50 × X 85.9
MS-SRP-D-ResNet50 × X 86.3

(c) Stanford Dogs.

Table 4: Comparison results on three Fine-grained datasets including CUB-200-2011, Stanford Cars and Stanford Dogs.
”Anno.” represents using extra annotation in training. ”1-Stage” represents whether the training can be done in one stage.
”Acc.” represents the test set accuracy (%)
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Figure 4: In ImageNet, the Grad-CAM [34] visualiza-
tion for double branch block of attention ResNet50 model
trained without SRP and trained with SRP. Best viewed in
color.

4.3. CIFAR Classification

Table 2 presents the results of SRP and compared state-
of-the-art CNN architectures on CIFAR. It can be observed
that SRP method consistently achieve the better effective
performance when applied it to other networks. Further-
more, the small network trained with SRP can achieve the
comparable accuracy to some larger models, such as MS-
SRP-O-ResNext-29 (34.9M) vs ResNext-29 (68.1M) [43],
MS-SRP-D-WRN-16-8 (11.1M) vs DenseNet (27.2M) [15]
or WRN-28-10 (36.5M) [47]. On the other hand, SRP may
further improve network performance when augmentation
methods are applied, such as mixup [50]. Combined with
mixup in the training stage, MS-SRP-D surpasses all the
comparison methods, and can challenge state-of-the-art re-
sults.

4.4. ImageNet Classification

We next investigate the effectiveness of SRP on large
dataset, the ILSVRC 2012 dataset.

Comparison with state-of-the-arts CNNs. It can be ob-
served from Table 3 that SRP can still improve the network
performance effectively on the large data sets and achieved
very competitive accuracy. For example, it exceeds all the
methods in terms of top-5 accuracy, while it is much close
to the state-of-the-art method by top-1. For SE-ResNet-50,
the accuracy improvement of SRP is 0.87% on top-1 and
0.5% on top-5. And the best result of SRP surpasses the ba-
sic ResNet-50 and SE-ResNet-50 more than 2% and 1% re-
spectively, by both top-1 and top-5. Compared with the GE-
θ+ [12], SRP can achieve comparable or better performance
but obviously uses fewer parameters. Moreover, compared
with the counterparts, SRP can achieve higher accuracy by
top-5 while their accuracy are similar by top-1. This is be-
cause SRP promotes the feature maps to contain more fea-
tures response, making the network have better generaliza-
tion ability.

SRP learns more and wider regions. The model trained
with SRP will promote more local feature responses in the
convolutional layer, making the network focus on the more
and wider regions. Here, we use Grad-CAM [34] to visu-
alize the importance of the spatial position in the convolu-
tional layer. The visualization results of SRP networks (SS-
SRP-D-ResNet50, MS-SRP-D-ResNet50) and the baseline
(ResNet50 with double branch attention block) can been
seen in Figure 4. It can be clearly observed that the Grad-
CAM masks of SRP cover the target object better and wider
than the baseline. That is, the model trained with SRP tends
to focus on several spatially distributed regions, and aggre-
gate information from multiple or wider regions.
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Figure 5: The feature maps of ResNet-50 with different mode. D-ResNet means ResNet-50 with double branch attention
block. SRP-O-ResNet and SRP-D-ResNet means ResNet-50 with one or double branch attention block and train with MS-
SRP. These feature maps are from the residual branch or identity branch of the 14th block of the network. We only display
the first 20 feature maps. Best viewed in color.

4.5. Fine-Grained Classification

The difficulty of fine-grained classification tasks is that
even with different categories of objects, they are still very
similar. This requires the network to have the ability to learn
multiple and more accurate region features. In this section,
we investigate the performance of SRP on fine-grained clas-
sification tasks.

We first analyze the results on CUB-200-2011 dataset,
as shown in Table 4a. Our method achieves strong per-
formance with ResNet-50, which surpasses some deeper
or larger network such as DenseNet-161 [15] or ResNet-
110 [8] more than 1%. Also, compared with the method
using extra annotation (FCAN [30]), the method using mul-
tiple training stage (Part-RCNN [51]), and the method us-
ing both extra annotation and multi-stage (RACNN [4]), our

method outperforms them by 0.9%, 4.0% and 0.3% respec-
tively.

Our method also obtains the good performance on the
Stanford Cars and Stanford Dogs, as shown in both Table
4b and Table 4c. On Stanford Cars, SRP outperforms all
the comparison methods, except PA-CNN that uses extra
annotation. On Stanfor Dogs, SRP surpasses the best result
of other methods about 1.4% in Table 4c. Also, SRP out-
performs its deeper or larger counterparts such as ResNet-
110 and DenseNet-161 by about 1.0% on Stanford Cars
and 3.3% on Stanford Dogs averagely. Furthermore, on
these two datasets, SRP exceeds the efficient methods like
DVAN [53] and RAN [40] by about 5.2% and 2.5% respec-
tively, while DVAN and RAN both use extra annotation and
multi-stage.

These facts indicate that SRP can obtain the significant
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Figure 6: In Fine-Grained dataset, the Grad-CAM [34]
visualization datasets for double branch block of attention
ResNet50 model trained without SRP, trained with MS-
SRP(M = 5, λ = 0.6), and trained with MS-SRP∗(M =
5, λ = 0.2). It indicates that SRP can promote the network
to learn more detailed features of object, while SRP with
too smal λ will make the network pay attention to some
unimportant fragment regions. Best viewed in color.

improvement on fine-grained datasets, which even chal-
lenge the state-of-the-art results. It is worth mentioning that
our method is a general method for the attention mecha-
nisms. It may further improve the classification accuracy
by combining with the better base network or some meth-
ods which are specifically for the fine-grained image classi-
fication.

5. Discussion and Analysis
Scheduled SRP. The results in figure 2 shows that the
scheduled SRP is superior to SRP with fixed λwithin a wide
range of hyper-parameters. This indicates that the sched-
uled SRP is effective and practical. The possible reason
is that the receptive field of shallow neurons in CNN are
small. When SRP takes the fixed λ, the attention mecha-
nism will receive a over-fragmented information about the
feature map in shallow layer, which will in turn disturb
the learning of the attention mechanism. Scheduled SRP
avoided this problem by reducing λ from 1 to the target
value as the depth of layer increases.
Feature maps analysis. The purpose of SRP is to improve
the representation of channel descriptors by increasing or
widening the important responses in the feature map. Hence
we output some feature maps of SRP-O-ResNet, SRP-D-
ResNet and D-ResNet to analyze the effects of SRP visu-
ally, as shown in Figure 5. For SRP-O-ResNet, SRP only
acts on the residual branch. For SRP-D-ResNet, SRP acts
on both the residual and identity branchs. For D-ResNet,
SRP is not used. It can be seen that in the residual branch,
the feature map of SRP-O-ResNet and SRP-D-ResNet con-

tains more and wider responses than D-ResNet (double
branch attention of ResNet-50). In the identity branch, the
feature map of SRP-D-ResNet contains more and wider re-
sponses than both SRP-O-ResNet and D-ResNet. These
facts indicate that due to the effect of SRP, the feature maps
from corresponding branch will have more and wider object
responses.
SRP on fine-grained Recognition. In order to investigate
the reason why SRP is more effective in fine-grained classi-
fication tasks, we use Grad-CAM to compare the visualiza-
tion results of network train with or without SRP in CUB-
200-2011. As we can see in Figure 6, SRP can promote the
network to focus on more details of the bird, such as the tip
of the wing, the tail or the claw, while the network without
SRP mostly tends to focus on one region. This indicates
that SRP can promote the network to learn more detailed
features of object, which becomes the key to the success
of SRP in fine-grained classification tasks. It can be also
observed that the network will pay attention to some unim-
portant fragment regions when λ of SRP is too small. We
conjecture that a too small λ will cause SRP to obtain the
over-fragmented information about the feature map, which
may affect the performance of the attention mechanism.

6. Conclusion

In this paper, we propose a new method called Stochastic
Region Pooling(SRP) for channel-wise attention networks.
SRP stochastically selects the region from the feature map
to extract descriptor in the training stage, promoting convo-
lutional layer have more important feature responses, and
making the network to focus on more and wider spatially
distributed regions. Besides, SRP is the general method
that can be applied to attention network without modify-
ing the network structure and increasing any additional pa-
rameters. Our experiments show that the channel-wise at-
tention network trained with SRP can achieve significant
performance improvements on various image classification
tasks and challenge the state-of-the-art methods. It is also
proved that gradually decreasing the scale ratio of region as
the depth of layer leads to the better accuracy.
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Appendix
1. Area ratio of region in SRP

The area ratio of region selected by SRP is different un-
der different hyper-parameters(M,λ); the area ratio is equal
to the area of region divided by the area of the feature map.
Figure 7 shows the curve of the area ratio of region selected
by SRP on different depths of network (ResNet-110, WRN-
28-10 and ResNet-50). Under the sampe depth, the area
ratio of region takes value in a large range in the MS-SRP,
but is a fixed value in the SS-SRP. We speculate that this
smoothing is one of the reasons that make MS-SRP bet-
ter than SS-SRP and allows SRP steadily promote network
learning.
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Figure 7: The curve of region area ratio on different depth
of netwrok blocks, where the region is seleted by SRP. The
red line is the value of the region area ratio in SS-SRP. The
blue line is the mean of the region area ratio in the MS-SRP,
and the value of area ratio in MS-SRP has a probability of
95% on the blue shadow. Best viewed in color.

2. Feature maps of network block at different
depths

Figure 8 shows the visualization of feature maps from
the network which trained with or without SRP at different
depth. We can observe that the deeper the network block,
the more obvious the SRP characteristic that makes the fea-
ture map contains more and wider feature responses. At the
same time, we found that too small λ values tend to generate
more but messy responses in deep layer.
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Figure 8: The visualization of feature maps from network
block of different depths in Fine-Grained dataset. The
Base model means D-ResNet-50, the MS-SRP means D-
ResNet-50 trained with SRP(M = 5, λ = 0.6) and the MS-
SRP∗ means D-ResNet-50 trained with SRP(M = 5, λ =
0.2). We only display the first 20 feature maps. Best viewed
in color.
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