
Adaptive and Azimuth-Aware Fusion Network of Multimodal Local Features for
3D Object Detection

Yonglin Tiana,b, Kunfeng Wangb,c,∗, Yuang Wangd, Yulin Tiane, Zilei Wanga, Fei-Yue Wangb

aDepartment of Automation, University of Science and Technology of China, Hefei 230027, China
bThe State Key Laboratory for Management and Control of Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

cCollege of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
dUniversity of Science and Technology Beijing, Beijing 100083, China

eNorth China University of Technology, Beijing 100144, China

Abstract

This paper focuses on the construction of strong local features and the effective fusion of image and LiDAR data for
3D object detection. We adopt different modalities of LiDAR data to generate rich features and present an adaptive
and azimuth-aware network to aggregate local features from image, bird’s eye view maps and point cloud. Our net-
work mainly consists of three subnetworks: ground plane estimation network, region proposal network and adaptive
fusion network. The ground plane estimation network extracts features of point cloud and predicts the parameters of
a plane which are used for generating abundant 3D anchors. The region proposal network generates features of image
and bird’s eye view maps to output region proposals. To integrate heterogeneous image and point cloud features, the
adaptive fusion network explicitly adjusts the intensity of multiple local features and achieves the orientation consis-
tency between image and LiDAR data by introducing an azimuth-aware fusion module. Experiments are conducted on
KITTI dataset and the results validate the advantages of our aggregation of multimodal local features and the adaptive
fusion network.

Keywords:
3D object detection, point cloud, multimodal fusion, ground plane fitting

1. Introduction

3D object detection is a fundamental prerequisite for
intelligent transportation systems and autonomous vehi-
cles [1, 2]. Compared with 2D object detection [3, 4, 5],
3D detection needs more spatial information like pose
and size. Many studies have achieved precise localiza-
tion, size and orientation estimation as well as classifi-
cation of objects in different scenes. Among the state-
of-the-art methods for 3D object detection, camera and
LiDAR are two of the most widely used sensors. Cam-
era usually has a much longer perceptual distance and
higher resolution than LiDAR but loses the depth infor-
mation, while LiDAR has great superiority in precise
measurement of 3D positions. Although some LiDAR-
only models [6, 7] have demonstrated good perfor-
mance on 3D detection datasets like KITTI [8], adopt-
ing LiDAR-camera setup is prone to building a more re-

∗Corresponding author. Email address: wangkf@mail.buct.edu.cn

liable system in practice, especially for far and occluded
objects. Many works [9, 10, 11, 12, 13] have made sig-
nificant achievements by either using image and LiDAR
at different stages or fusing them at pixel and object lev-
els. However, due to the heterogeneous data formats
and distinct feature styles, the efficient extraction and
effective fusion of LiDAR and image features remain
challenging problems.

Image feature extraction has been well settled by re-
cent works [14, 15, 16, 17, 18] in 2D Convolutional
Neural Network (CNN). The key problem of feature ex-
traction in LiDAR-camera setup lies in the processing
of LiDAR data. Some works [9, 10, 19] project LiDAR
point cloud into Front View (FV) or Bird’s Eye View
(BEV) to obtain image-like data and use 2D CNNs to
extract LiDAR features. Some other works [6, 7] vox-
elize point cloud into regular grids and aggregate the
features in each grid. Both two methods achieve effi-
cient point cloud feature generation, but lose informa-
tion more or less during such quantification. PointNet

1

ar
X

iv
:1

91
0.

04
39

2v
2

 [
cs

.C
V

]
 3

 J
un

 2
02

0

[20] proposes a new way to process 3D data directly,
which is promising to maintain richer features in 3D
point cloud. Due to the unordered data format, local fea-
ture extraction is not as convenient as that in image-like
data processing, where relative position can be simply
determined by the indexes of pixels. PointNet++ [21]
addresses this problem by exploiting metric space dis-
tances. It promotes the performance on both point cloud
classification and segmentation, but is somewhat time-
consuming. To make full use of the information in point
cloud and achieve efficient feature extraction, we main-
tain both original point cloud data and projected BEV
maps in our network. BEV maps are used to generate
proposals with image data. Original point cloud is pro-
cessed by our ground plane estimation network which
generates global-level features for plane regression and
pixel-level features for subsequent aggregation. With
this hybrid design, we can make coarse but fast pro-
posal generation at the first stage and achieve efficient
local feature aggregation for point cloud data based on
the 3D Regions of Interest (RoI) at the second stage.
Using multiple local features from the image, BEV map
and point cloud, proposals can be further processed to
get the final detection results.

Fusion of multimodal features is another key prob-
lem in LiDAR-camera setup systems. Recent works in-
volve pixel-level fusion [11, 22] and RoI-based fusion
[9, 10, 13]. Pixel-level fusion matches points between
different modalities of data by projecting 3D points
to image or BEV plane. It achieves fine-grained fu-
sion style but neglects embedding structural informa-
tion inside original feature space. The RoI-based fusion
method projects 2D [13] or 3D [9, 10] RoIs into differ-
ent spaces and aggregates corresponding parts, which
retain both pixel features and local structural informa-
tion. These fusion methods emphasize more on the cor-
respondence between different features but ignore the
difference inside multimodal features. It is a fairly im-
portant problem and can be presented in many multi-
modal systems due to different data formats and feature
extractors. For LiDAR-camera setup, image array stores
the RGB information of each pixel and is processed by
CNNs generally. However, point cloud records the co-
ordinates of each point and needs to be coped with some
order-invariant methods. Therefore, the distribution of
features from different sources can be significantly var-
ied, so that it is inappropriate to fuse them directly.
For example, features with strong magnitude can easily
cover weaker ones and dominate the learning of follow-
ing network. Another neglected problem in RoI-based
fusion networks is the inconsistency of orientation of
object shown in image and LiDAR data. Due to the ef-

Figure 1: 3D object detection shown in image (upper one) and LiDAR
point cloud (lower one). Our method aggregates local features from
image, BEV maps and point cloud which are then fused effectively
with our adaptive fusion network.

fects of camera imaging, the orientation of object shown
in image is influenced by the relative position between
the object and the camera, while it is only concerned
with the object itself in LiDAR data. This kind of mis-
match can heavily confuse the orientation estimation.
To settle these two problems, we propose an adaptive fu-
sion network that consists of an adaptive weighting net-
work and a spatial fusion module. The adaptive weight-
ing network is inspired by recent works [18, 23, 24, 25]
on feature extraction. We design a feature-wise weight-
ing network to learn the weights for input features in an
unsupervised manner, which are multiplied with the cor-
responding inputs to adjust the distribution of multiple
features. It achieves a balance between diverse features
and lays the foundation for subsequent fusion. The spa-
tial fusion module tiles 2D feature inputs into 3D space
and uses azimuth information to achieve the orientation
consistency of image and LiDAR features. The final 3D
detection result is illustrated in Figure 1.

The main contributions of this work can be summa-
rized as follows:

• We present a data-driven plane estimation network
to achieve fast and precise ground plane prediction.

• We design a hybrid network that comprises differ-
ent kinds of feature extractors for both image-like
data (image and BEV maps) and point cloud to take
full advantage of mature 2D CNNs and the spatial
information inside 3D point cloud.

• We build an adaptive weighting network to dynam-
ically adjust the distribution of different features.

2

It balances the importance of various features for
each proposal and promotes the building of a sta-
ble detection system.

• We propose an azimuth-aware fusion module to
match the orientation information embedded in im-
age and LiDAR data. It tiles the features into 3D
space to approximate the spatial structure of ob-
jects and manipulate them there to achieve orienta-
tion consistency.

All these contributions help to build an effective
framework for 3D object detection. Experimental re-
sults verify the advantage of our method to utilize point
cloud data and the fusion style.

2. Related Works

Image and LiDAR data are two of the most widely
used sources for 3D object detection. Various setups
of input data and different fusion manners have been
explored in previous works.

2.1. Image-based approach

Although the performance of image-based method
lags that of LiDAR-involved one, it continues attract-
ing attention due to the economical deployment in au-
tonomous vehicles. Image-based methods can be sum-
marized as monocular and stereo approaches. Monoc-
ular approach usually makes 2D predictions of objects
on the image plane firstly and relies highly on the ge-
ometry priors [26, 27] or 3D object models [28, 29] to
make up for the loss of depth information. Inferring
3D location and size from a sigle 2D image is actu-
ally an ill-suited problem; however, more satisfactory
results can be got with more 2D information introduced
to constrain the projection form 3D plane to 2D im-
age, such as bounding boxes [27], segmentation results
[28], depth maps [28] and key points [29]. Recently,
Thomas et al. [30] propose Orthographic Feature Trans-
form (OFT) to transform the features from image space
to BEV space and highlight the superiority of the lat-
ter in 3D object detection. Using two different cameras
simultaneously, stereo approach can predict a more ac-
curate depth map [31, 32]. Either concatenating depth
map with image features [32] or turning it into pseudo
LiDAR [31, 33] has shown better results than monocu-
lar approach. Stereo R-CNN [34] takes 3D object de-
tection as a learning-aided problem and solves it with
the discrepancy of bound boxes and key points between
left and right images. Image-based approach has great

advantage in the cost and deployment in reality; how-
ever, no competitive results have been achieved com-
pared with the LiDAR-involved method.

2.2. LiDAR-based approach

LiDAR is one of the sensors used to generate a collec-
tion of sparse points in 3D space. To deal with the un-
ordered LiDAR point cloud, many methods reorganize
it into regular format. Some of them divide the point
cloud into equally spaced 3D voxels and aggregate the
points in each voxel into one feature vector. 3D CNN
[6, 7, 35, 36] can be applied to further process these
features and generate the final detection. However, this
approach is not efficient enough. Most of the voxels are
empty due to the sparsity of point cloud. Yan et al. [7]
present a new sparse convolutional middle extractor to
speed up the computation and reduce memory usage.
Some other methods [37, 38] apply the 2D CNN to deal
with LiDAR data by projecting it into image-like data
from different perspectives. This takes the full advan-
tage of existing 2D networks but destroys the structure
inside 3D data. PointNet [20] and PointNet++ [21] pave
a new way for the processing of point cloud which pro-
pose an effective method to handle unordered point set.
They directly extract point-level features and aggregate
them with a max-pooling to cope with the disordering.

2.3. Image-LiDAR approach

Simultaneously taking image and LiDAR data as the
source of detection system is prone to giving more ac-
curate performance. One popular way to use multi-
sensor data deploys different signals at different stages
[12, 13, 39]. Image is usually used for proposal gener-
ation and LiDAR data is used for box refinement. This
method often leads to a poor recall because depth is un-
able to be inferred from image alone and it is easy to
miss objects during proposal generation. Another ap-
proach [9, 10] projects the LiDAR data into 2D plane,
so both image and projected LiDAR data can be used
in either proposal generation or refinement network. It
improves the recall rate of the proposals but the stereo
structure suffers from the projection. In our network,
both image and LiDAR data are used in both stages
but in different modalities to alleviate the information
loss and leverage the mature 2D CNNs. Most of the
image-LiDAR approaches fuse these features at point-
level [11, 22] or region-level [9, 10, 13]. Point-level fu-
sion finds the correspondence of points in image and Li-
DAR data by aid of the 2D-3D projection. It is straight
forward but ignores the original structure of features in
different spaces. Region-level fusion takes 2D or 3D

3

Figure 2: The proposed framework for 3D object detection. Main components of our network are Ground Plane Estimation Network, Region
Proposal Network and Adaptive Fusion Network. LiDAR point cloud data is firstly processed to predict a ground plane which is used to generate
3D anchors. Lots of region proposals are produced in RPN with both image and projected BEV maps. Different local features from image, BEV
maps and point cloud are aggregated in Adaptive Fusion Network. The Adaptive Weighting module learns to adjust the magnitudes of these local
features and the Spatial Fusion module extends 2D features to 3D space and aligns the orientation indicated by image and BEV features.

RoI as the bridge between multiple features and keeps
the structural information by cropping local regions in
different data. Recently, MMF [40] exploits the sup-
plementary effects of multi-task network and gets good
performance on KITTI dataset.

2.4. Ground plane fitting in point cloud

There are many classic methods proposed for curve
and plane fitting, such as least square method and
eigenvalue-based methods [41]. These approaches work
well for clean data but are unable to get satisfactory re-
sults for ground plane fitting in point cloud. They can be
easily misled by the irrelevant points in the LiDAR data
such as buildings, trees and other objects. RANSAC
[42] presents a robust method to fit the model to data
with significant noise. Different from these methods,
we propose a data-driven subnetwork to estimate the
parameters of ground plane which can either be trained
separately or be plugged into our detection network.

3. Proposed Method

In this section, we describe the architecture of our
3D detector as shown in Figure 2. It mainly comprises

three parts: Ground Plane Estimation Network (GPEN),
Region Proposal Network (RPN) and Adaptive Fusion
Network (AFN).

3.1. Ground plane estimation network

We assume a ground plane here which is reasonable
for most cases and adopt a variant of PointNet as our
point feature encoder to predict the parameters of the
plane. Considering that we only need to detect objects
shown in the image, points outside the view of camera
are filtered out. We also remove points whose y coor-
dinates are not in range [-1,3] meter to further reduce
computation. With points of shape [N, 3] as input to our
point feature encoder, we transform them into higher
dimension and get point features of shape [N,C] which
can be used for ground plane parameters estimation or
local feature aggregation. The details of our GPEN are
shown in Figure 3. We apply a max-pooling operator to
get the global features and use fully-connected layers to
regress the plane.

To train GPEN in a supervised manner, we transform
the labeled 3D bounding boxes in each frame to param-
eters of a pseudo ground plane. In our assumption, the

4

Figure 3: The variant of PointNet used to extract features for point
cloud.

ground plane can be formulated as

a∗x + b∗y + c∗z = d∗, (1)

where [a∗, b∗, c∗] is the unit normal vector indicating the
direction of plane and d∗ is the distance from the origin
to the plane. To get ground plane label, we use Singular
Value Decomposition (SVD) to analyze the bounding
boxes and produce pseudo ground labels. With a set of
m 3D bounding boxes B = {b1, b2, ..., bm} in each frame,
we can get 4m points P = {p1, p2, ..., p4m} by gathering
the corners on the bottom of each bounding box. All
points are then decentered and reformulated as a matrix
P̄. We use SVD to get the singular vector with the maxi-
mum singular value and take it as the unit normal vector
of the ground plane. Finally, d∗ can be determined by
putting the center of all points in each frame to Equation
(1). The pseudo ground label generation algorithm for a
single frame of data is shown in Algorithm 1.

The loss function in our GPEN is composed of two
smooth L1 loss :

Lossgpen =αv ∗ smoothL1(Vec,Vec∗)+
αd ∗ smoothL1(d, d∗),

(2)

where Vec∗ is the ground truth unit normal vector
[a∗, b∗, c∗] and Vec is the predicted vector [a, b, c], d∗

is the distance from the origin to the ground plane and
d is the predicted distance. We use αv and αd to bal-
ance these two loss and they are set to 5 and 50 in our
experiments.

3.2. Region proposal network

Region Proposal Network (RPN) is first proposed in
[43]. It is the first stage of our framework, aiming at
proposing regions that potentially include objects. An-
chors are distributed on the ground plane with an in-
terval of 0.5 meter. The size of anchors is decided by
the clustering results on training set and the direction
is simply set to 0 and 90 degree with the forward di-
rection. We assign positive labels to the anchor whose
IoU with the groud-truth on BEV plane is greater than

Algorithm 1: Pseudo ground label generation algo-
rithm

Input: Bounding set: B = {b1, b2, ..., bm};
Output: Ground plane parameters [a∗, b∗, c∗, d∗];

1 Get bottom corner set P = {p1, p2, ..., p4m} from
bounding box set B;

2 Calculate the mean of all points: p̄= 1
4m
∑4m

i=0 (pi);
3 Decenter all points with p̄: pi ← pi − p̄;
4 Refomat all points in a matrix P̄;
5 Decompose P̄ with SVD algorithm: P̄ = UΣVT ;
6 Set the first vector in U as the unit normal vector of

the ground plane: [a∗, b∗, c∗] = UT [0];
7 Calculate d∗: d∗ = [a∗, b∗, c∗] · [p̄[0], p̄[1], p̄[2]]T

0.5 and negative labels to those whose IoU with ground-
truth is lower than 0.3. We take image and BEV maps
of point cloud as inputs and predict the binary classi-
fication RPNcls and axis-aligned 3D bounding box es-
timation RPNreg comprising box center RPNcenter and
box size RPNsize of each proposal. To generate BEV
maps, we filter out points that are outside the field of
camera and [-0.2, 2.3] meter with relative to the pre-
dicted ground plane along the vertical axis. The hori-
zontal plane is divided into small grids with resolution
of 0.1 × 0.1 m2 and a density map is produced by cal-
culating the density of points in each grid. We equally
slice the space into five parts along the vertical axis and
get five height maps that represent the maximum height
of points within each bin. Totally, we get six BEV maps
which are used as the substitution for point cloud.

As shown in Figure 2, we use two convolutional net-
works with VGG backbone and FPN [17] structure to
extract the features of image and BEV maps. To fuse
these two kinds of features, we adopt anchor-based fu-
sion strategy. We first reduce the number of channels
of image and BEV features to 1 with 1 × 1 convolu-
tion. Then, we project each 3D anchor to image plane
and BEV plane respectively and crop the corresponding
features. These cropped features are resized to the same
size of 3 × 3 and fused by element-wise addition. Fi-
nally, we use two branches of fully-connected layers to
further process the fused features and generate classifi-
cation and box regression results for each anchor. Af-
ter the NMS, we get the proposed regions of interest.
Cross-entropy loss and smooth L1 loss are used for clas-
sification and box regression respectively. The RPN loss
is defined as follows:

Lossrpn =βc ∗ cross entropy(RPNcls,RPN∗cls)+
βr ∗ smoothL1(RPNreg,RPN∗reg),

(3)

5

where RPN∗cls is the binary label and RPN∗reg denotes the
ground-truth center and size of the proposal. βc and βr

are set to 1.0 in our experiments.
Taking BEV maps as substitute for original point

cloud here is primarily for the fact that proposals are
usually far more than objects included in the image or
point cloud. A large number of proposals and our fol-
lowing refinement network can well compensate for the
loss of useful information introduced by the mapping
process from point cloud to BEV maps. So, we empha-
size more on efficiency than precision at this stage.

3.3. Adaptive fusion network

With the proposals generated by RPN, we propose
a novel fusion network to make the final predictions.
Both image and LiDAR features are used here. Dif-
ferent from previous fusion-based works that use either
BEV maps or point cloud as representation of LiDAR
data, we maintain two modalities of LiDAR data at this
stage. For clarity, features extracted from BEV maps
are denoted as BEV features and those extracted from
the original point cloud are denoted as point features in
our work.

Local feature extraction. Image and BEV features have
been generated in RPN using VGG network and FPN.
To get features for each proposal, we need to map the
3D boxes to 2D regions on the image plane and BEV
plane. This can be formulated as:

Regionimg = RoIPimg(box3d),
Regionbev = RoIPbev(box3d),

(4)

where ROIPimg (ROIPbev) is the RoI pooling operation
between the 3D space and image (BEV) space. The
corresponding regions in image and BEV features are
cropped and then resized into the same size for later fu-
sion. We denote the extracted image and BEV features
as fil and fbl respectively which have the shape of [7, 7,
32].

To generate local features in point cloud, we select
the points that are located in the range of the proposal
from the point cloud and get a tensor with shape [Ni,C].
Ni indicates the number of points in the i-th proposal
and C is the dimension of features generated in GPEN.
Ni varies considerably due to the uneven distribution of
points in point cloud. For convenience of later process-
ing, we randomly sample M points for proposals that
hold more than M points, and pad points with zeros for
those that possess less than M points. With point pool-
ing, we get a set of point features fp with shape [M,C].
And after a max-pooling operator, the point features are

Figure 4: Adaptive weighting module. Image features, BEV features
and point features are shown in red, green and blue respectively.

aggregated into local features fpl with respect to each
proposal.

Unsupervised adaptive weighting module. The goal of
our Adaptive Weighting (AW) module is to balance
three kinds of features mentioned above in an unsu-
pervised manner. As we all know, the results of cam-
era imaging and LiDAR scanning vary with the envi-
ronment conditions like weather, as well as the condi-
tions related to the objects such as pose, location and
occlusion. Therefore, the importance of different fea-
tures can be changeable depending on the context where
the object lies. It is vital for a multi-sensor system
to include a mechanism encouraging different data to
compensate for each other. Here, we take image fea-
tures, BEV features and point features as inputs to our
AW module as shown in Figure 4. 1 × 1 convolu-
tional layers are used to reduce the dimension of fea-
tures to a quarter of original ones. All the features are
flatten to a one-dimensional vector and fused together
by element-wise summation. A Multi-Layer Perceptron
(MLP) with softmax function processes fused features
and predicts three decimals between 0 and 1, which de-
note the weights of three kinds of features. Then the
weights are multiplied with the input features to achieve
balance between multiple signals for each proposal.

Spatial fusion module. The difference of local orienta-
tion shown in image and LiDAR data of the same object
is illustrated in Figure 5. Due to the change of azimuth
between object and camera, local orientation shown in
the image can be varied even when the object keeps the
same direction in world coordinate system. In order
to achieve an azimuth-aware fusion while considering
the spatial information of the 3D object, we propose a
novel Spatial Fusion (SF) module to project the 2D fea-
ture maps to a local 3D space to approximate the geo-
metric structure of the 3D object and rotate image fea-
tures according to the azimuth to achieve orientation-
consistency with LiDAR features. The whole fusion

6

Figure 5: Left part: Image and the cropped region of a moving car. Right part: LiDAR data and the cropped region of the car. As can be seen, the
orientation shown in image region varies while remaining unchanged in LiDAR data.

process is shown in Figure 6. In image tiling, we sim-
ply approximate the central projection of imaging pro-
cess with orthographic projection based on the fact that
the proposal usually occupies a minor part in the whole
filed of the camera. Then fi3d and fb3d are summed up
and we get a merged feature fm3d that incorporates the
features from image and BEV. To alleviate the compu-
tational burden caused by the additional dimension, we
employ a mean-pooling layer to aggregate fm3d along
x-axis, y-axis and z-axis. The aggregated features are
added together and flattened to a one-dimensional fea-
ture fml with the same shape as fpl for later averaging
fusion. The result of spatial fusion module is denoted as
fs, which includes information from image, BEV and
point cloud features and has potential to promote the
performance of the detection network.

Final results and training objectives. The fused fea-
tures mentioned above are used to generate the final
results. We divide the target into three sub-tasks, i.e.,
classification, corner prediction and angle prediction
and define the objective for each task following [10].
Three fully-connected layers of size 2048 are used to
further process the fused features which are shared by
three sub-tasks. A Non-Maximum Suppression (NMS)
with threshold of 0.01 is used to remove overlapping
detection during inference stage. Classification branch
outputs the scores Re fcls for all classes including back-
ground. Cross-entropy loss is used for this task. For
corner estimation branch, coordinates of four 2D cor-
ners and two heights are predicted to calculate 3D cor-
ners Re fcor as [10] and smooth L1 loss is applied here.
Angle prediction branch gives the sine and cosine of the

predicted angle denoted as Re fang which are used to out-
put the final angle prediction when combined with the
estimation of four corners. Another smooth L1 loss is
used for this branch. Loss of the refinement network can
be formulated as:

Lossre f =γc ∗ cross entropy(Re fcls,Re f ∗cls)+
γr ∗ smoothL1(Re fcor,Re f ∗cor)+
γa ∗ smoothL1(Re fang,Re f ∗ang),

(5)

where Re f ∗cls, Re f ∗cor and Re f ∗ang are ground-truth for
three sub-tasks. We set the thresholds to 0.65 and 0.55
for positive and negative proposals according to their
IoU with ground-truth box on BEV plane. To balance
different tasks, γc, γr and γr are set to 1.0, 5.0 and 1.0
respectively. Only positive proposals involve the calcu-
lation of corner and angle loss. The details of each loss
function are ignored because they are well elaborated in
[10]. Our total loss can be denoted as follows:

Lossall = Lossrpn + Lossre f + Lossgpen. (6)

4. Experiments

4.1. Performance evaluation for ground plane fitting
To evaluate our ground plane fitting algorithm, we

train the GPEN separately to get a fair comparison
with other methods. KITTI dataset is split into training
and validation set following [9]. To calculate pseudo
ground plane parameters, we use the bounding boxes
of all valid classes in each frame. Following Algorith
1, the ground plane vector [a∗, b∗, c∗, d∗] is obtained
for each frame. We train our GPEN wth a point set

7

Figure 6: Spatial fusion module. Parts in the red and blue box are
the tiling process for image and BEV. Tiled image features are then
rotated according to the azimuth between the proposal and the camera.
To get axis-aligned features, we crop rotated image features and pad
them into the same shape with BEV features. The cubes in the lower
right are the merged features which contain information from image
and BEV. Mean pooling operator reduces the dimension along x, y
and z axis and sums features to output one-dimensional features that
are then added with point features.

D = [x1, x2, x3, ..., xk] sampled from the preprocessed
point cloud. In our experiments, k is set to 521 and
the model is trained for 30 epochs with an ADAM op-
timizer. Batch size is set to 32 which leads to about
2G GPU memory consumption. Learning rate is set to
0.001 initially and decays for every 10 epochs with a
rate of 0.7.

Naive method means that we directly set the ground
plane parameters to [0,-1,0,1.65]. It corresponds to the
flat plane in camera coordinates whose normal vector is
upward and distance to camera is 1.65 meters. For Least
Square (LS) method, we minimize the square loss and
get the corresponding parameters. For PCA method,
we choose the eigenvector with the largest eigenvalue
of the covariance matrix XXT as the normal vector
[a∗, b∗, c∗] of the plane and solve d∗ using the mean
of all points,where X is the matrix form of the point
set for each frame. Actually, PCA method is equiva-
lent with LS method here [41]. We calculate the Root
Mean Squard Error (RMSE) of angle (in degrees) and
height (in meters). Angle error is defined as the devia-
tion of angel between pseudo normal vector [a∗, b∗, c∗]
and predicted normal vectors [a, b, c]. The results are
shown in Table 1. The comparison demonstrates the su-
periority of our method both on precision and speed. We
can achieve 128 Frames Per Second (FPS) with a Titan

Method RMSEang RMSEheig Speed(fps)
Naive 1.74 0.10 –

LS 2.94 1.29 17.80
PCA 2.95 1.29 18.10

RANSAC [42] 1.62 0.12 2.14
Ours 1.28 0.10 128.64

Table 1: Comparison of our method with Naive method, Least Square
(LS) method, Principal Components Analysis (PCA) method and
RANSAC method on KITTI validation set for ground plane fitting.

Method Type Easy Moderate Hard
VoxelNet [6] LiDAR 81.97 65.46 62.85
SECOND [7] LiDAR 87.43 76.48 69.10

MV3D [9] Li-Cam 71.29 62.68 56.56
PointFusion [13] Li-Cam 77.92 63.00 53.27
F-PointNet [12] Li-Cam 83.76 70.92 63.65
Cont Fuse [11] Li-Cam 86.32 73.25 67.81

AVOD-FPN [10] Li-Cam 84.41 74.44 68.65
IPOD [44] Li-Cam 84.10 76.40 75.30
MMF [40] Li-Cam 87.90 77.86 75.57
Ours (AW) Li-Cam 86.00 76.79 75.57

Ours (AW+SF) Li-Cam 86.77 76.84 75.92

Table 2: Comparison of our method with other state-of-the-art ap-
proaches on the car class of KITTI validation set for 3D detection.
Type “LiDAR” denotes methods that use LiDAR data only and “Li-
Cam” marks methods that adopt LiDAR-camera setup.

X GPU (PASCAL) using Tensorflow. This makes it af-
fordable when plugging our GPEN into other detection
systems. Figure 7 shows the demos of the results of our
GPEN.

4.2. Performance evaluation for 3D detection

We train our network on the KITTI dataset and fo-
cus on the car class like [9, 11, 39] because it has the
most samples among all classes of the dataset. The
dataset is split into training and validation set follow-
ing [9]. We use the same RPN module as [10]. The
number of proposals is set to 1024 during training and
300 for validation. For feature extraction, point features
are resized to [128, 1568] and both image and BEV fea-
turesare cropped and resized into [7, 7, 32] for each pro-
posal. The batch size is set to 1 considering the memory
usage, and learning rate is set to 0.0001 that decays ex-
ponentially with a factor of 0.8 for every 30k iterations.
We train our network for 120k iterations with an ADAM
optimizer. The inference speed of our model on KITTI
dataset is 0.12 second per frame on our workstation with
an Intel Xeon CPU (E5-2650@2.2GHz) and a NVIDIA
Titan X GPU (PASCAL).

8

Figure 7: Demos of our GPEN. We plot the location of each point and
attach a color according to its distance to the predicted ground plane.
The relationship of color and distance (in meters) is shown at the right
side.

For comparison with other state-of-the-art ap-
proaches [6, 7, 9, 10, 11, 13, 12, 44], we evaluate
our method on the KITTI validation set using Aver-
age Heading Similarity (AHS) and Average Precision
(AP) at 0.7 3D IoU. Table 2 and Table 3 show the re-
sults of AP on 3D detection and BEV detection respec-
tively. For 3D detection under moderate mode, we are
2.40% higher than AVOD [10] which uses image and
BEV features and 5.92% higher than F-PointNet [12]
which mainly relies on point features. It demonstrates
that aggregating richer local features from image, BEV
and point cloud can promote the performance of 3D
detection. Although PointFusion [13] and Cont Fuse
[11] also design particular modules for the fusion of
LiDAR and image data, their performance are 13.84%
and 3.59% lower than ours respectively under moderate
mode, which shows the advantages of our proposed fu-
sion method. For BEV detection, we also get ahead on

Method Type Easy Moderate Hard
VoxelNet [6] LiDAR 89.60 84.81 78.57
SECOND [7] LiDAR 89.96 87.07 79.66

MV3D [9] Li-Cam 86.55 78.10 76.67
PointFusion [13] Li-Cam 87.45 76.13 65.32
F-PointNet [12] Li-Cam 88.16 84.02 76.44
Cont Fuse [11] Li-Cam 95.44 87.34 82.43

AVOD-FPN [10] Li-Cam - - -
IPOD [44] Li-Cam 88.30 86.40 84.60
MMF [40] Li-Cam 96.66 88.25 79.6
Ours (AW) Li-Cam 89.66 86.95 79.77

Ours (AW+SF) Li-Cam 89.95 87.70 86.95

Table 3: Comparison of our method with other state-of-the-art ap-
proaches on the car class of KITTI validation set for BEV detection
(localization). Type “LiDAR” denotes methods that use LiDAR data
only and “Li-Cam” marks methods that adopt LiDAR-camera setup.

Method Easy Moderate Hard
AVOD-FPN [10] 84.19 74.11 68.28

Ours (AW) 85.89 76.40 74.88
Ours (AW+SF) 86.75 76.53 74.90

Table 4: Comparison of our method with AVOD on the car class of
KITTI validation set for AHS.

both moderate and hard mode. Recent work MMF [40]
demonstrates a strong approach that incorporates both
image and LiDAR features. The main contributions of
MMF [40] include the design of supplementary tasks to
extract better features and the fusion of multimodal fea-
tures on both point-level and ROI-level. By contrast, we
focus more on the generation of diverse features from
LiDAR data to maintain more 3D informaiton and pro-
pose an attention-based fusion mechanism when aggre-
gating image and LiDAR features. MMF uses image
and BEV features to make the final prediction while we
also extract point features from original point cloud to
maintain more spatial information. Compared with the
addition or concatenation used by MMF to fuse different
features, our adaptive weighting network can dynam-
ically adjust the importance of different features and
improve the representation ability of the fusion mod-
ule. MMF gets better performance than ours on easy
and moderate modes while our approach shows advan-
tage in hard mode. Considering the complexity of traffic
dataset like KITTI, hard examples usually lack support-
ive evidence to be precisely detected. Current voxeliza-
tion method and downsampled BEV-based features can
further aggravate the situation of hard cases. Voxelza-
tion operation merges the points inside the same voxel
into a single vector which inevitably loss part of the 3D
information. And BEV-based network generally makes

9

Figure 8: Visualization of the baseline and our detection results.
Boxes in red denote the ground truth. Boxes in blue are the results
of our baseline which only uses image and BEV features. Boxes in
green are the results of our method that adds point features.

the final detection on the low-resolution feature maps
which are downsampled by 4 or 8 times compared with
the original input. Both of them can degrade the local-
ization ability of the 3D detection network especially
for hard cases. Our point-based branch well makes up
for the information loss caused by voxelization and fea-
ture downsampling. We extract point features directly
from the original LiDAR data to maintain the full 3D
information and combine them with BEV and image
features. This helps us to make preciser localization as
shown in Fig 8. We think that is the advantage of our
method and the reason why we get better results than
MMF for hard cases. The comparison of the heading
estimation performance with AVOD is shown in Table
4. The model with AW and SF modules beats that with
only AW for easy and moderate modes, which shows
that the introduction of orientation consistency between
different features helps to achieve better angle estima-
tion. Figure 9 visualizes our detection results on some
samples in KITTI dataset.

4.3. Ablation study

In this part, we analyze the effectiveness of our pro-
posed modules and the function of different features
used in our model, i.e. image features, BEV features
and point features. For clarity, we use three kinds of
features for every experiment in Table 5. Due to the

PL PointNet AW SF 3DM BEVM

×
√ √ √

65.10 78.28
√

× × × 72.48 85.70
√ √

× × 73.18 86.15
√ √

×
√

73.72 86.49
√ √ √

× 76.79 86.95
√ √ √ √

76.84 87.70

Table 5: Results on the car class of KITTI validation set for 3D and
BEV detection when using different setups of the proposed modules
(“PL” means plane loss, “AW” means adaptive weighting module and
“SF” means spatial fusion module).

image BEV point 3DM BEVM√ √
× 72.48 85.70

√
×

√
73.80 86.07

×
√ √

53.53 67.14
√ √ √

76.79 86.95

Table 6: Results on the car class of KITTI validation set for 3D and
BEV detection when using different combinations of features in the
refinement network.

fact that SF module necessarily feeds on all these fea-
tures, we delete the SF module for experiments in Ta-
ble 6 and evaluate the function of different features in
the refinement network. All the models are trained on
KITTI training set and evaluated on the validation set
for 3D and BEV detection under moderate mode. Ta-
ble 5 shows the results when we use different com-
binations of the proposed modules. To illustrate the
necessity of ground plane estimation, we remove the
plane loss in our network and use naive plane param-
eters ([0,-1,0,1.65]) to generate anchors. In this case,
PointNet doesn’t predict ground plane parameters and
is used only for the point feature extraction. Without
plane loss, the detection performance lags 11.74% and
9.42% behind the full model, thereby verifying the ne-
cessity to make precise ground plane estimation. It is
important especially for large scenes like traffic scene
where a small angle deviation of the ground plane can
lead to significant gaps between objects and their corre-
sponding anchors. The experiments with different com-
bination of modules demonstrates our intention to im-
prove the performance of 3D object detector by making
full use of the LiDAR data and fusing it with image fea-
tures effectively. In detail, the introducing of PointNet
to extract point features increases the performance for
both 3D and BEV detection. Although the BEV features
have a good representation of the LiDAR data [10], it is
better to keep the original point cloud. This conclusion
is further verified in Table 6, where 3D and BEV detec-
tion AP increase 1.32% and 0.37% respectively when

10

Figure 9: Visualization of our detection results. 2D detection results are shown in the left side and 3D detection results are shown in the right side.

Reduction method 3DM BEVM AHS M

Max-Pool (yz) 76.00 86.74 75.95
Mean-Pool (yz) 76.74 87.49 76.48
Mean-Pool (xyz) 76.84 87.70 76.53

Table 7: Results on the car class of KITTI validation set for 3D detec-
tion, BEV detection and AHS with different reduction methods in our
SF module.

we replace BEV features with point features. It shows
that features extracted from the original 3D point cloud
are more suitable for 3D refinement which may allevi-
ate the loss of useful information when processing Li-
DAR data thanks to recent point-based feature extrac-
tors [20, 21]. Secondly, AW and SF modules compose a
more effective fusion style. 3D detection AP grows by
3.61% when the AW module is added. This illustrates
the importance to adjust the strength of different fea-
tures especially when we face heterogeneous data. For
different features of positive proposals on KITTI valida-
tion set, we plot distributions of their intensity as shown
in Figure 10. Intensity of features is calculated by aver-
aging their values. It is clear to see the huge difference
on intensity between original features. Stronger ones
like BEV features can easily cover those with a weak
strength like point features and dominate the training

process thus leading to a vulnerable model. Our AW
module changes this situation by dynamically adjusting
the intensity and achieves a balance between different
features. From Table 5, we can also see that AW module
is not only beneficial but also necessary for the follow-
ing SF module because only adding SF to the PointNet-
deployed network does not give a significant increase.
It illustrates again the importance of balancing multi-
modal data.

Results in Table 6 show a large drop of AP after we
remove image features, which can probably be inter-
preted by the important role of image in classification
task of our framework since we witness massive missed
detection without image features. Table 6 also shows
that although redundancy lies between BEV and point
features, retaining them at the same stage helps to pro-
mote the performance of 3D detection.

In Table 7, we show the performance of different
pooling methods to reduce 3D features (fm3d in Figure
6) into 2D ones in SF module. As shown in Figure 6,
mean pooling achieves better results than max pooling
when we pool 3D features along the y axis and z axis.
One advantage of mean pooling is that it keeps the orig-
inal features before tiling. Taking the pooling along y

11

Figure 10: Distributions of the intensity of different features on the car
class of KITTI validation set. The upper subfigure shows the intensity
of original features and the lower one shows that of features after our
adaptive weighting module.

axis as an example, the generated feature fpooly is:

fpooly = MeanPooly(fm3d)
= MeanPooly(fi3d + fb3d)
= MeanPooly(fi3d) + MeanPooly(fb3d)
= MeanPooly(fi3d) + fbl,

(7)

where MeanPooly is the mean pooling along y axis.
When the pooling results along x axis is added, we get
better results. It shows the new perspective (x axis) ben-
efits the perception of 3D objects.

5. Conclusion

In this paper, we propose a 3D detection network that
aggregates rich local features from image, BEV maps
and point cloud. We design a ground plane fitting net-
work to estimate the ground parameters and produce
point cloud features. Image and BEV maps are pro-
cessed in RPN by 2D CNNs to generate image-like fea-
tures. With such a design, we utilize mature 2D CNNs
and point-based 3D extractors to explore the potential of
LiDAR data for 3D object detection. Besides, our adap-
tive fusion network provides an effective way to fuse
features from multimodal data. The adaptive weighting
module adjusts the strength of each signal and chooses
information for later operation, and the spatial fusion
module incorporates the azimuth and geometry infor-
mation into the mergence of multiple features. Experi-
mental results on KITTI dataset illustrate the validity of
our method. In the future, we plan to reduce the reliance
on the plane assumption and extend our approach to fit
curved ground and build a more robust network.

6. Acknowledgements

This work was supported partly by The Intel Col-
laborative Research Institute for Intelligent and Auto-
mated Connected Vehicles (ICRI-IACV), and National
Natural Science Foundation of China (No. 61533019,
U1811463).

References

[1] F.-Y. Wang, Y. Yuan, J. Li, D. Cao, L. Li, P. A. Ioannou, M. Á.
Sotelo, From intelligent vehicles to smart societies: A parallel
driving approach, IEEE Transactions on Computational Social
Systems 5 (3) (2018) 594–604.

[2] F.-Y. Wang, P. Wang, J. Li, Y. Yuan, X. Wang, Social transporta-
tion: Social signal and technology for transportation engineer-
ing, IEEE Transactions on Computational Social Systems 6 (1)
(2019) 2–7.

[3] Y. Tian, X. Li, K. Wang, F.-Y. Wang, Training and testing object
detectors with virtual images, IEEE/CAA Journal of Automatica
Sinica 5 (2) (2018) 539–546.

[4] W. Zhang, K. Wang, Y. Liu, Y. Lu, F.-Y. Wang, A parallel vision
approach to scene-specific pedestrian detection, Neurocomput-
ing (2019).

[5] W. Liu, S. Liao, W. Hu, Towards accurate tiny vehicle detection
in complex scenes, Neurocomputing 347 (2019) 24–33.

[6] Y. Zhou, O. Tuzel, VoxelNet: End-to-end learning for point
cloud based 3D object detection, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4490–4499.

[7] Y. Yan, Y. Mao, B. Li, SECOND: Sparsely embedded convolu-
tional detection, Sensors 18 (10) (2018) 3337.

[8] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous
driving? the KITTI vision benchmark suite, in: IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012, pp.
3354–3361.

[9] X. Chen, H. Ma, J. Wan, B. Li, T. Xia, Multi-view 3D object
detection network for autonomous driving, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[10] J. Ku, M. Mozifian, J. Lee, A. Harakeh, S. L. Waslander, Joint
3D proposal generation and object detection from view aggre-
gation, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2018, pp. 1–8.

[11] M. Liang, B. Yang, S. Wang, R. Urtasun, Deep continuous fu-
sion for multi-sensor 3D object detection, in: Proceedings of the
European Conference on Computer Vision, 2018, pp. 641–656.

[12] C. R. Qi, W. Liu, C. Wu, H. Su, L. J. Guibas, Frustum PointNets
for 3D object detection from RGB-D data, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 918–927.

[13] D. Xu, D. Anguelov, A. Jain, PointFusion: Deep sensor fusion
for 3D bounding box estimation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018,
pp. 244–253.

[14] K. Simonyan, A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, arXiv preprint
arXiv:1409.1556 (2014).

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with con-
volutions, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

12

[16] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Be-
longie, Feature pyramid networks for object detection, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[18] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7132–7141.

[19] B. Yang, W. Luo, R. Urtasun, Pixor: Real-time 3d object detec-
tion from point clouds, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7652–
7660.

[20] C. R. Qi, H. Su, K. Mo, L. J. Guibas, PointNet: Deep learning
on point sets for 3D classification and segmentation, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[21] C. R. Qi, L. Yi, H. Su, L. J. Guibas, PointNet++: Deep hi-
erarchical feature learning on point sets in a metric space, in:
Advances in Neural Information Processing Systems, 2017, pp.
5099–5108.

[22] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei,
S. Savarese, Densefusion: 6d object pose estimation by iterative
dense fusion, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 3343–3352.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in:
Advances in Neural Information Processing Systems, 2017, pp.
5998–6008.

[24] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.-S. Chua,
SCA-CNN: Spatial and channel-wise attention in convolutional
networks for image captioning, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5659–5667.

[25] S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional
block attention module, in: Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018, pp. 3–19.

[26] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, R. Urtasun,
Monocular 3D object detection for autonomous driving, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2016, pp. 2147–2156.

[27] A. Mousavian, D. Anguelov, J. Flynn, J. Kosecka, 3D bounding
box estimation using deep learning and geometry, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 7074–7082.

[28] A. Kundu, Y. Li, J. M. Rehg, 3D-RCNN: Instance-level 3D ob-
ject reconstruction via render-and-compare, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 3559–3568.

[29] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, T. Chateau,
Deep MANTA: A coarse-to-fine many-task network for joint 2D
and 3D vehicle analysis from monocular image, in: IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp.
1827–1836.

[30] T. Roddick, A. Kendall, R. Cipolla, Orthographic feature
transform for monocular 3D object detection, arXiv preprint
arXiv:1811.08188 (2018).

[31] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, R. Urtasun, 3D
object proposals using stereo imagery for accurate object class
detection, IEEE Transactions on Pattern Analysis and Machine
Intelligence 40 (5) (2018) 1259–1272.

[32] C. C. Pham, J. W. Jeon, Robust object proposals re-ranking
for object detection in autonomous driving using convolutional
neural networks, Signal Processing: Image Communication 53
(2017) 110–122.

[33] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell,

K. Q. Weinberger, Pseudo-LiDAR from visual depth estimation:
Bridging the gap in 3d object detection for autonomous driving,
in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 8445–8453.

[34] P. Li, X. Chen, S. Shen, Stereo R-CNN based 3D object detec-
tion for autonomous driving, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019, pp.
7644–7652.

[35] D. Maturana, S. Scherer, VoxNet: A 3D convolutional neural
network for real-time object recognition, in: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2015, pp.
922–928.

[36] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao,
3D ShapeNets: A deep representation for volumetric shapes, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1912–1920.

[37] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, L. J. Guibas, Vol-
umetric and multi-view CNNs for object classification on 3D
data, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 5648–5656.

[38] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view
convolutional neural networks for 3D shape recognition, in:
Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 945–953.

[39] K. Shin, Y. P. Kwon, M. Tomizuka, RoarNet: A robust 3D ob-
ject detection based on regiOn approximation refinement, arXiv
preprint arXiv:1811.03818 (2018).

[40] M. Liang, B. Yang, Y. Chen, R. Hu, R. Urtasun, Multi-task
multi-sensor fusion for 3d object detection, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 7345–7353.

[41] C. Wang, H. Tanahashi, H. Hirayu, Y. Niwa, K. Yamamoto,
Comparison of local plane fitting methods for range data, in:
Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1,
IEEE, 2001, pp. I–I.

[42] M. A. Fischler, R. C. Bolles, Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography, Communications of the ACM 24 (6)
(1981) 381–395.

[43] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards
real-time object detection with region proposal networks, in:
Advances in Neural Information Processing Systems, 2015, pp.
91–99.

[44] Z. Yang, Y. Sun, S. Liu, X. Shen, J. Jia, IPOD: Intensive
point-based object detector for point cloud, arXiv preprint
arXiv:1812.05276 (2018).

13

	1 Introduction
	2 Related Works
	2.1 Image-based approach
	2.2 LiDAR-based approach
	2.3 Image-LiDAR approach
	2.4 Ground plane fitting in point cloud

	3 Proposed Method
	3.1 Ground plane estimation network
	3.2 Region proposal network
	3.3 Adaptive fusion network

	4 Experiments
	4.1 Performance evaluation for ground plane fitting
	4.2 Performance evaluation for 3D detection
	4.3 Ablation study

	5 Conclusion
	6 Acknowledgements

