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The optimization of energy use in family homes and public buildings is an ongoing topic of discussion.
State-of-the-art research has almost always focused on reducing the consumption of heating systems,
air-conditioning or lighting. Despite their importance, user-related variables, such as comfort, are nor-
mally not included in the optimization process. These aspects should be considered to be able to effec-
tively minimize energy consumption. Thus, there is a need for a comprehensive energy optimization
approach, one that will consider both climatological factors and user behaviour. Learning about user
behaviour is key to effective optimization. In this work, the proposed architecture’s capacity to organize
Virtual Agent Organizations (VAO) allows it to adapt to highly variable user behavior and preferences.
This agent methodology has the ability to manage Wireless Sensor Networks (WSNs), Artificial Neural
Networks (ANN) and Case-Based Reasoning (CBR) to obtain user preferences and predict their behaviour
in the home or building. The proposed approach has been tested in two different buildings, a traditional-
construction house and a modular home, obtaining savings of 30.16% and 13.43%, respectively. These
results validate the proposed mixed approach of temperature adjustment algorithms together with the
extraction of user behavior patterns for the establishment of a threshold based on preferences.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Climate change is currently one of the greatest concerns of gov-
ernments around the world, given the dangers that climate change
entails for our planet.The goal of the EU is to reduce greenhouse
gas emissions by 80–95% by 2050 compared to those in 1990 [1,2].

EU leaders are committed to transforming Europe into a low
carbon and high-efficiency economy. They establish actions that
will help reduce the greenhouse effect and achieve high energy
efficiency by reducing energy consumption in homes and public
buildings [3]. Although it is a complex problem, everyone’s indi-
vidual effort, no matter how small, can contribute positively to
minimizing this problem or transforming it altogether. Some of
those measures simply involve raising awareness among the
inhabitants about their use of energy at home and changing their
habits to more energy-efficient. This can be achieved through rec-
ommendation systems which analyze user behavior data and
suggest actions that will save energy.

The need to achieve greater energy efficiency has led to studies
such as [4] which demonstrated that the annual energy bill can be
reduced by 70% if appropriate energy-saving measures are taken.
Heating and cooling systems are responsible for a large part of
the overall energy consumed in homes and other buildings. In this
research, the factors (environmental and human) that cause the
systems’ consumption to increase, have been identified. One of
those factors is the importance of maintaining a steady level of
temperature since drastic changes in temperature cause a signifi-
cant increase in consumption. Moreover, to ensure user comfort,
it is essential that the inhabitant’ habits and preferences be taken
into account when adjusting temperature in their homes. The
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correct regulation of the Heating, Ventilation and Air Conditioning
(HVAC) system makes it possible to reduce energy bills and energy
waste. When the temperature inside a home increases by one
degree there is a 7% increase in energy consumption, so appropri-
ate temperature adjustments can help prevent drastic changes in
temperature from one moment to another [5].

However, previous research works in this area have not taken
into account the behavior of users which is at the center of energy
consumption because many of the activities performed by users
have a direct impact on the levels of energy being consumed [6].
As a result, it is necessary to develop a system that extracts user
behavior patterns and establishes an ideal temperature according
to this information. This enables the system to reduce the con-
sumption of energy while meeting user preferences. Through the
extraction of user behavior, the times at which users are present
at home are determined, so that the temperature of heating can
be programmed and adjusted to the schedules of the people who
live in the house.

The objective of the presented proposal is to optimize the use of
energy and satisfy the user by correctly adjusting a building’s tem-
perature, [7]. This will be achieved through the analyses of the
main parameters that influence the consumption of energy in
homes and buildings, related not only to the monitoring of envi-
ronmental factors but also to the extraction of user behaviour char-
acteristics. The architecture is based on a system of virtual
organizations which coordinate their agents to make energy-
efficient decisions. The decision-making process involves analyzing
the information that is provided by the deployed sensor network,
including temperature and presence data. This WSN also facilitates
communication between the different devices that interact with
the system’s agents.

This proposal’s main contributions include: extraction of user
behavior patterns, which are used by the intelligent temperature
adjustment algorithm; an energy consumption prediction algo-
rithm that predicts if the temperature values established by the
intelligent temperature adjustment algorithm are going to reduce
energy consumption; the architecture’s agents execute all activi-
ties, this means that they are automated and there is no need for
the user to intervene at any stage of the process.

The motivation behind this work is to develop an architecture
based on virtual organizations of agents, that considers user habits
and preferences as well as the environmental variables that affect
the consumption of energy. Thus, this architecture, will cover the
shortcomings of the state-of-the-art described above [8].

This article is organized as follows: Section 2 describes the
state-of-the-art literature on energy optimization, Section 3 outli-
nes the proposal, Section 4 presents the results and Section 5 the
conclusions.
2. Artificial intelligence for optimized energy use.

This section outlines the technologies and the methodologies
that have been used in previous architectures based on virtual
organizations of agents for intelligent adjustment of temperature
in buildings and homes. The following subsections review the cur-
rent state of the techniques used by systems designed to save
energy.
2.1. Factors involved in the consumption of energy

User activity is the main energy consumption factor in any
home or public building. However, factors other than user prefer-
ences and habits can directly influence the behavior of users,
including climatic factors (outdoor temperature, outdoor lighting,
humidity, etc.), social factors (price of energy, environmental/so-
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cial awareness, etc.) or emotional factors (joy, sadness, etc.). Until
now, energy optimization proposals for homes and buildings have
focused exclusively on climatic factors.

For this reason, the current research trend in the area of energy
optimization is not only to focus on climatic factors but also on the
patterns in the inhabitants’ behavior [9]. This dual approach makes
it possible to design systems driven by artificial intelligence algo-
rithms that adjust the temperature according to a user behaviour
model. In the energy balance of a building, the influence exerted
by the user is clearly decisive, as a result some research works ana-
lyzed the users’ lifestyle and their temperature preferences in
order to program these systems and accommodate them to the
needs of their users[10].

A research by Hoes et al. [11] studied the human activity
parameters that influenced consumption, especially the opening
of windows such as the season, outdoor and indoor temperature,
time of day, presence. However, the results of this study cannot
be applied to any building in general since these variables are for
a specific type of building, location, climate or culture. Harris and
Cahill [12] proposed the CAPM framework for effective energy
management, it uses Bayesian networks to predict user behaviour
patterns from multimodal sensor data.

Therefore, an automated system must be developed in order to
independently obtain the variables that influence energy con-
sumption (acquisition of environmental data and user data), taking
into account the presence of people in the building.

2.2. Context and user behaviour pattern extraction

There are many factors that are related to the consumption of
energy in buildings and homes. The three major factors in energy
consumption are climate, environmental characteristics and user
behavior [13]. However, user behaviour is the most influential fac-
tor because ultimately, it is the inhabitants’ activity that causes
energy consumption to increase or decrease. Users may decide,
for example, to raise or lower the temperature of the heating or
the air conditioning systems, to turn the electrical devices on/off
(lighting, oven, etc.). In this respect, it is fundamental to obtain
not only information about the climate and the environment, but
also to extract user behavior patterns. Thanks to the extraction of
user behavior and knowledge of the times at which each user is
in the home or building, it is possible to intelligently adjust the
temperature.

To measure the values of those factors and learn about the
behaviour of users, it is necessary to deploy a sensor network in
the building or home. These networks acquire and send values to
the platform, where they are used by decision making and temper-
ature adjustment algorithms. To extend the monitoring of param-
eters to other rooms or homes at any time, the sensor system must
be scalabe so that it will be possible to add new sensors easily. To
learn about the behavior of users, some authors have proposed the
use of motion sensors, acoustic sensors and presence sensors [14],
so as to obtain information about the presence or absence of peo-
ple in the home. Thus, a network of distributed sensors is an essen-
tial component for data collection and analysis in a home or a
building.

WSNs provide parameter values and directly incorporate them
into other devices within the system that need this information
to perform their tasks (weather forecasting, learning user behavior,
predicting energy consumption or temperature adjustment). These
WSNs have been used in proposals that require the deployment of
a large number of sensors, often the number of sensors is not
known, examples of such works include [15–17].

Apart of the information that the system acquires through the
sensors, the system must be able to predict future conditions that
will help it adjust its values before the actual information is available.
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This includes weekly temperature forecasts that can be obtained
through the APIs of platforms like OpenWeatherMap or the State
Agency of Meteorology (AEMET).

Although energy optimization architectures can obtain valid
data through APIs, some authors have discovered that greater pre-
cision is achieved if the context information from the case study is
used instead to predict future conditions [18,19].

Neural networks are a computational model that has been
widely used in the literature for the analysis and recognition of
patterns based on similar data. Multiple researches have employed
this model to classify the fatigue of computer-person interaction
[20], firearm classification [21], cattle detection [22] (See Tables
1 and 2).

The Multilayer Perceptron (MLP) is a model of neural networks
that bases its classification capacity on linearly dependent sets, this
means that MLP is a suitable approach for forecasting weather
when trained with previous weather data of similar characteristics,
i.e. to forecast the weather in a particular place for a given month,
it is necessary to train the MLP with data from the same place and
period. It is good to train MLP with data from the last thirty years,
to prevent any deviation in temperature, humidity or precipitation,
due to the changes in weather.

Numerous approaches have also been adopted in the extraction
of the inhabitants’ behaviour patterns, such as finding out when
users return to their home, or how many hours they spend outside
or inside the household. There are many researches in the litera-
ture focused on the modeling and prediction of occupation in
buildings and very diverse techniques have been used for this pur-
pose. The review by Yang et al. shows the main models for per-
forming occupancy modeling such as Markov model [23],
Presence model-stochastic process-Markov chain [24], Markov
Chain [25], Probabilistic-based model [26] or Non-probabilistic
model [27].
Table 1
Variables used in the MLP training. The displayed sensors collect the value of each
variable every hour.

Variable Description Units

tempmax Maximum temperature �C
tempmin Minimum temperature �C
windmax Maximum wind speed km=day
windmin Minimum wind speed km=day
pavg Average precipitation mm
RHavg Average relative humidity %
SRavg Average solar radiation MJ=m2=day

Table 2
Variables used in CBR cases. The value of each variable is collected every day from the
sensors, except timeperiod , which is established by the system.

Variable Description Units/Value

timenow Current time hh : mm : ssdd=MM=yyyy
timeleave The time the inhabitant

left home
hh : mm : ssdd=MM=yyyy

timeleavePeriod The period of time spent
away from home

min

timeback The time of the
inhabitant’s return home

hh : mm : ssdd=MM=yyyy

timebackPeriod Time the user spends at
home

min

timeperiod If today is a working day WorkingjNonWorking½ �
timeperiodDay Time of day MorningjAfternoonjEveningjNight½ �
periodsout Number of periods the

user spends out of home
1;2; . . . ;n½ �
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However, these works have a high error rate in the modelling of
user behaviour, it is necessary to know when there will be human
presence in the home in advance. Case-based Reasoning (CBR) sys-
tems perfectly suit the needs of our problem; a CBR system stores
all the past problems it has solved successfully and uses their solu-
tions to find a solution to a new, similar problem. That is to say,
once user behavior parameters are known, it is possible to predict
their future behavior in the home; when they are present/absent
from their home and at what times they enter/leave. To this end,
it is necessary to model cases for each user with the following
behavior variables: i) time at which they leave the dwelling, ii)
time at which they enter the dwelling, iii) time spent outside the
dwelling, iv) time spent inside the dwelling, v) whether it is a
working day or not, vi) time of day, and vii) the period spent out-
side the dwelling on that day.

2.3. Energy consumption prediction

There are a number of techniques for predicting and estimating
future values. In the field of energy optimization they have been
used to calculate the energy demand of buildings or homes [28].
In this paper, prediction will be used to validate whether the deci-
sions of intelligent temperature adjustment algorithms produce
the desired results (reduced energy consumption).

In the literature, there have been many techniques that use a
time series and then intend to estimate how the value of a variable
is going to evolve by studying previous values and the pattern of
evolution of the variable.New techniques and more evolved mod-
els have been developed on the basis of time series and informa-
tion obtained through data mining techniques [29]. Some of
these techniques make use of neural networks such as MLP
[30,31] and RBF (Radial Basis Function) [32,33], regression tech-
niques such as ARIMA (AutoRegressive Integrated Moving Average)
[34,35], SVR (Support Vector Regression) [36,37], fuzzy networks
and [38] or expert systems and hybrid methods [38–40] or Linear
Regression (LR)[41] among others. The prediction of consumption
in buildings and dwellings makes it possible to estimate the future
evolution of a variable that is linked to energy consumption, this
means that possible peaks can be foreseen and energy consump-
tion can be predicted for a particular day in the future. In the case
of electricity consumption, prediction is an essential tool to be
applied to various case studies.

As mentioned previously, energy consumption in buildings is
influenced by certain environmental variables, which must be con-
sidered if precise consumption prediction is to be achieved [42,43].

Therefore, the analysis of the environmental variables will
allow to incorporate important information into the models in
order to improve the prediction results. There are multiple algo-
rithms such as Linear Regressions (LR), Support Vector Regression
(SVR), Gaussian Process Regression (GP), Random Forests (RF), or
K-Nearest Neighbours (KNN) to perform such processes with a
high degree of precision. In the work of Yan et al. several highly
accurate methods are compared [44]. Therefore, a review of these
methods will be carried out so that their implementation is inte-
grated in the system to predict energy consumption in homes. Pre-
dicting energy consumption makes it possible to validate whether
the decisions taken by the rest of the architecture will have the
ideal results in terms of reducing energy consumption.

2.4. Distributed architectures

A distributed architecture is essential if a priori the number of
deployed sensors and IoT devices is not known, it must also have
the capacity to incorporate acquisition systems or analysis tech-
niques autonomously and dynamically, without endangering the
stability of the system at any time. Like in any distributed architec-
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ture, the relationship between the systems’ agents and their com-
munication with the rest of the elements in the system is intrinsi-
cally complex to model and design.

However, agent systems also have many advantages that make
them an ideal approach to problems like the one presented in this
research. The agents that make up this type of architecture have a
shared goal and a protocol that allows them to collaborate with
each other. They group activities according to their core compe-
tences. They work together in teams (called layers in multi-agent
systems; organizations in virtual organizations of agents) in order
to bring their core competences to the value chain. They process
and distribute the information throughout the whole system in
real time, making decisions and coordinating the rest of the agents.
These architectures make it possible to aggregate new agents to
the system whenever new competences are required, all this can
be done without stopping the operation of the system.

Furthermore, the autonomy with which the agent systems are
equipped enables them to interact with each other without human
intervention. Their ability to perceive and react to changes in the
environment makes this methodology an ideal approach for
obtaining environmental data and responding to these changes
with appropriate actions. Features such as extensibility and flexi-
bility make it possible to add new features or include other algo-
rithms and sensors.

One of the disadvantages is that there is no standard methodol-
ogy to model MASs, so it is necessary to evaluate the different
methodologies in order to choose the one that best suits the pre-
sent work.

MAS design and modelling is undergoing diverse changes. This
has resulted in multiagent systems that are much more evolved
than the initial ones. This has led to the emergence of systems
based on virtual organizations of agents, which introduce concepts
derived from the social organization, such as roles, groups and
rules. This enables VOs to operate in highly dynamic environments
more efficiently. Unlike multi-agent systems, in virtual organiza-
tions agents are free to move between organizations and can take
on a different roles if required, moreover, organizations can be
cloned if a larger number of the same type of agents is required.

The roles are assigned to agents according to their capacities
because these systems must be able to adapt to highly dynamic,
real environments. The change of an agent from one organization
to another entails a reorganization and restructuring of the agents
within the virtual organizations that compose the system. In addi-
tion, since the paradigm of virtual organizations is based on human
societies, it is necessary for the architecture to have a series of
rules, for when and how reorganizations are to be performed and
under what circumstances. These rules will ensure that the process
of reorganization is efficient [45].

Agent-based systems have often been applied in the field of
building automation due to their ability to monitor large surfaces
through the deployment of new agents. It can be concluded that
this approach facilitates the growth of simple systems into more
complex ones, either through the deployment of new agents, such
as sensor control agents, communication agents, data analysis
agents or decision-making agents.

These advantages have led McArthur et al. [7,46] to apply multi-
agent systems to the problem of energy wastage produced as a
result of drastic changes in temperature. Virtual agent organiza-
tions have also been used for this purpose, although the developed
system was more simple [47]. Other proposals based on agent sys-
tems focused on adjusting temperature in HVAC systems for opti-
mized energy use [48]. An outstanding proposal that can be found
in the literature is that of Wang et al.who used an agent-based sys-
tem that implements a control system with an intelligent temper-
ature optimizer. The developed system effectively managed the
consumption of energy while ensuring a degree of comfort for
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the inhabitants of a house or a building. The goal of their work
was to achieve energy efficiency through the deployment of sen-
sors and an agent architecture, in this way creating intelligent
buildings [49]. Another remarkable work is that carried out by
Cai et al. whose agent system managed the central air conditioning
systems of a building [50]. In this work, the optimization problem
was reformulated as several sub-problems, each of which was
solved by an individual agent.

However, the success rate of th(averages are obtained of all the
values collected by all the sensors. The systems described above
would have been higher if the developed architectures had been
implemented using virtual agent organizations. This is because,
virtual agent organizations would have provided a range of solu-
tions for each of the sub-problems of the optimization problem,
allowing the choice of the solution that offers the best results
and the implementation of different artificial intelligence tech-
niques. One important proposal that leverages Virtual Organiza-
tions in an energy optimization problem is the one proposed by
Al-Daraiseh et al. whose system focuses on optimizing energy con-
sumption in educational institutions by predicting the periods in
which HVAC systems were turned on and off [6]. In that paper,
the authors considered the influence of certain factors, such as
external climatic conditions and the presence of people. However,
the proposed system lacked automation and the values had to be
entered manually, making it impossible to achieve visible energy
savings.

The shortcomings of state-of-the-art research, identified in the
area of energy optimisation, make evident the need for an architec-
ture based on virtual agent organisations. This architecture is going
to cover the current research gap by providing several solutions for
intelligent temperature adjustment in the home, for greater com-
fort and energy optimization. These deficiencies can be solved
through the design of an architecture based on virtual organiza-
tions that model a MAS following the structural model of human
organizations. The use of this kind of agent structure allows us to
limit the unpredictability of the systemwithin a grouping of agents
subject to a series of defined roles. VOs try to delimit some prob-
lems of autonomy of the agents by grouping them within layers
in the MAS. These complex systems depend largely on external
conditions and the needs of end users as is the case of the problem
that in this article is raised in which it is intended through virtual
organizations of agents to collect the values of parameters that
influence energy consumption and thus adjust the temperature
intelligently to reduce energy consumption.

An example of a system whose aim is similar to that of the
research presented in this article, is that of Claus et al. [51] where
virtual organizations are used to integrate distributed energy
resources agents in virtual power plants (VPP). The approach mod-
els distributed energy resources and virtual power plants as agents
with multi-objective reasoning and of multiple questions. This
allows the VPP’s shaped one that resources of energy constitute
distributed complex and heterogeneous with multiple local aims
and points of decision. This approach is similar to ours however,
our vision is to create a system that users are going to be able to
manage effectively. To this end, our approach relies on organiza-
tions of agents which obtain the users’ preference values, indoor
and outdoor temperature of a building and detecting the presence
of inhabitants.
3. Overview of the proposed architecture

This section details the technical aspects of the proposed agent-
based architecture, related to the collection of data through sen-
sors, weather forecasts, extraction of user characteristics such as
daily schedule, intelligent temperature adjustment algorithm and



Fig. 1. MLP structure for weather forecasting.
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the temperature adjustment decision validation system for effec-
tive energy saving.

3.1. Sensor deployment and data acquisition

The sensors implemented by the system detect the presence of
people in the home/building and collect outdoor and indoor tem-
perature values.

� Amperimetric clamp: The Energy Meter Gen5 (Aeotec) https://
aeotec.com/z-wave-home-energy-measure measures the volt-
age in the AC and DC ranges and obtains consumption measure-
ments in real time with an accuracy of 99%. Measurements are
sent via wireless connectivity that is optimised to transmit over
greater distances and even through walls. Without interference,
Home Energy Meter can transmit a home’s electricity use over a
distance of 492 feet/ 150 metres with the data securely broad-
cast using AES-128 encryption.

� Smart thermostat: The Secure Controls SRT 323 Thermostat
https://www.securemeters.com/index.php/products/residen-
tial/home-heating-hot-water-controls/room-thermostats/
srt323-z-wave/ has been used. This thermostat can directly
replace traditional thermostats and there is no need to change
the wiring. As a result of this device, the heating adjustment
value is sent remotely through the Z-Wave gateway.

� Multisensor: The Aeotec MultiSensor 6 (Motion, Temperature,
Lighting, Humidity, Vibration and UV) https://aeotec.com/z-w
ave-sensor has been used to obtain the value of the variables
with which it predicts meteorological conditions (Temperature,
Lighting, Humidity and UV) and to extract user behavior pat-
terns (Motion and Vibration).

� Opening sensors: The Aeotec Door/Window Sensor Gen5
https://aeotec.com/z-wave-door-window-sensor has been used
to detect open doors or windows. It is used jointly with the mul-
tisensor to detect presence in houses or buildings. This value is
used to extract users’ behavior pattern.

� Smart Plug: The Fibaro Wall Plug https://www.fibaro.com/en/
products/wall-plug/ has been used, it is a remotely controlled
plug-in switch with the ability to measure power and energy
consumption. It uses a LED frame to visualize the current load
and operating mode with color changing lighting. This smart
plug makes it possible to control electrical devices in a conve-
nient and maintenance-free way.

� Gateway Z-wave: The Gateway is the intermediary between the
previously described devices and the system that implements
the proposed architecture. The Gateway acts as a communica-
tion link between devices and the platform.For the system to
correctly adjust temperature and take the appropriate energy
optimization decisions, it is necessary for it to have data on
the presence of people in the home, indoor and outdoor temper-
ature and weather forecasts. Prior knowledge of those factors is
essential. If the system knows the times at which the inhabi-
tants will be present at home, it will be able to regulate the tem-
perature accordingly; lower the temperature or turn off the
radiators when inhabitants away. However, the system will
not switch off all the heating since the cooler the home gets
the more energy is required to heat the house before the inhab-
itants return, causing greater consumption than if an optimal
temperature was maintained.

3.2. ANN for weather forecasting

The system has an agent in the AI Analysis VO layer which fore-
casts the weather. Temperature is adjusted on the basis of the data
this agent provides. It forecasts weather data for the next thirty
days. It models an algorithm that uses an ANN, specifically, a
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Multi-Layer Perceptron (MLP) as shown in Fig. 1 with a Sigmoid
activation function and the Resistant Propagation function used
as the training method.

The agent in charge of forecasting weather for the next month
(thirty days), trains the MLP with the meteorological data for that
month from the last two years and with data from the last thirty
days. These data are provided in Table 4. This makes it possible
to obtain a predictable weather forecast for the next thirty
days. Training data must be in CSV format with the following
header: tempmax1;tempmin1;windmax1;windmin1;pavg1;RHavg1;SRavg1,
tempmax2; tempmin2; windmax2; windmin2; pavg2; RHavg2; SRavg2, . . .,
tempmax30;tempmin30;windmax30;windmin30;pavg30;RHavg30;SRavg30, ...,
tempmax60;tempmin60;windmax60;windmin60;pavg60;RHavg1;SRavg60, ...,

tempmax90; tempmin90; windmax90; windmin90; pavg90; RHavg90; SRavg90;

tempmax91; tempmin91; windmax91; windmin91; pavg91; RHavg91; SRavg91.
Where the first thirty values correspond to the values obtained
over thirty days, two years ago(1–30), the next thirty values
correspond to the previous year (30–60) and the last thirty values
correspond to the last thirty days (60–90) and tempmax91;
tempmin91; windmax91; windmin91; pavg91; RHavg91; SRavg91 are the
values predicted by the MLP. To prevent the architecture from suf-
fering cold starts (lack of data), Weather_history_agent provides
weather data by checking the weather history data on Weather
Underground (https://www.wunderground.com/history/). The sys-
tem trains the algorithm with data for the period and city selected
in the system. These two parameters can be configured by the
inhabitants themselves.

3.3. CBR system for learning user behaviour

A Case Based Reasoning System (CBR) learns user behaviour
with the data obtained by the sensor network. A CBR system learns
schedules automatically from the cases collected in the baseline
period and thus obtains or predicts the future behaviour of users
on the basis of their past behaviour (when users leave the home
and when they come back). In the literature, agent architectures
have been identified of systems for similar purposes [5].

The architecture has an agent that implements a CBR system
within the virtual organization. This agent performs the extraction
of user characteristics through the deployed sensor network, that
is, it obtains information about the times at which users are pre-
sent in the house, at what times they leave and enter and for
how long they stay. This feature extraction process allows to create
the cases with which the CBR will perform different models of user
behavior (information and schedules).

Once the different user schedule models have been created
(that is to say, the cases of the CBR have been constructed) for a
set of users living in a house, the database that stores the cases
with which the CBR works, is constructed to learn and predict
the predominant schedules and to send this information to the



Fig. 2. The CBR Cycle according to Aamodt and Plaza [52].
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intelligent temperature adjustment algorithms (The schema of the
developed CBR is shown in Fig. 2).

To create models of schedules for a group of users living
together in a dwelling,CBR systems carry out a process based on
four different sub-processes (Retrieve, Reuse, Review, Retain).
Retrieve: the system retrieves cases that are similar to the current
case (cases that share values of similar variables) in order to
resolve it. Each of the recovered cases contains the values of its
variables, the solution to the problem and possible annotations
on the solution. A Euclidean distance-based algorithm has been
used to extract cases, as shown in (1)

d ¼
Pn

i¼1wisim f Ii ; f
R
i

� �
Pn

i¼1wi
ð1Þ

where:

� i variables (timenow; timeleave; timeleavePeriod;
timeback; timebackPeriod; timeperiod; timeperiodDay);

� wi the weight of the ith variable;

� f IR ith variable value for the input case;

� f Ri ith variable value for the retrieved case;

� sim f IR; f
R
i

� �
the similarity between f IR and f Ri .

This is done in the first stage of the CBR process. Each of these stages
is detailed below. Reuse: The solution obtained in a similar past
case is chosen as a basis for the solution of current problem. At this
stage it is possible that the solution must be adapted to the new sit-
uation. Review: Once the solution to the current problem has been
assigned, the new solution is tested in a simulation process in order
to find out if it requires revision. Retain: Once the solution has been
successfully applied to solve the current problem, a new case is
stored in the database, with the values of the variables, adopted
solution and notes about the solution.

3.4. Intelligent temperature adjustment algorithm

The intelligent temperature adjustment algorithm is fed with
the data acquired by the system, based on the current environmen-
tal information, user characteristics, the weather forecast, that is,
the factors that must be considered when adjusting temperature
in the home. The algorithm provides the temperature value that
must be set on the thermostat to achieve a reduction in energy
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consumption. The algorithm makes decisions about the tempera-
ture adjustment and the switching off and on of the HVAC system
or the devices connected to the smart plugs. The use of smart ther-
mostats allows to modify the value of the temperature set in the
home, minimizing sudden temperature changes (an increase or
decrease by several degrees within a short period of time, these
changes are the ones that the architecture avoids in order to reduce
the consumption of unnecessary energy). The developed algorithm
takes advantage of the knowledge of all the factors thanks to the
communication between virtual organizations, as well as of the
data provided by the MLP in terms of meteorological prediction
or by the CBR in order to know when the residents leave home
every day, timeleave, and the time that elapses until they return
timeback, also the time that elapses inside the home timebackPeriod.
Temperature parameters are obtained by sensors, temperature
variables include indoor tmpindoor and outdoor temperature
tmpoutdoor , desired temperature tmpdesired and forecast temperature
tmpforecast . The system must also consider whether air conditioning
units and radiators are switched on or off, tmpstatus. The tempera-
ture adjustment period of the HVAC system will increase or
decrease the temperature according to the inhabitants’
preferences.

Algorithm1: Temperature adjustment

1: Procedure TEMPERATUREADJUSTMENT period
2: if timeperiodDay – Night then
3: n ¼ timenow
4: if timeperiodDay == Morning then
5: while timeperiodDay = Morning do

6: thermostatstmp ¼ Pn
i¼7tmpindoori .Set temperature

7: if tmpdesired ¼ thermostatstmp then
8: break loop
9: else if timeperiodDay == Afternoon then
10: while timeperiodDay = Afternoon do

11: thermostatstmp ¼ Pn
i¼15tmpindoori .Set

temperature
12: if tmpdesired ¼ thermostatstmp then
13: break loop
14: else if timeperiodDay == Evening then
15: while timeperiodDay = Evening do

16: thermostatstmp ¼ Pn
i¼21tmpindoori .Set

temperature
17: if tmpdesired ¼ thermostatstmp then
18: break loop
19: else if timeperiod == NonWorking ^timeperiod P10 days

then
20: thermostatsstatus = Off
21: thermostatsstatus = Off
22: else
23: thermostatsstatus = On
As observed in Algorithm1, first, the algorithm considers the
time of day and formats this value to a float number in order to
set the variable n to this value, which will be used to exit the tem-
perature adjustment loops. The output of the loop also occurs if the
temperature is increased by one degree every hour, reaching the
temperature desired by users. The algorithm takes into account
serveral aspects, such as, whether it is a non-working period, if
the inhabitants will be away for more than 10 days or if the heating
is turned off completely (this information is obtained by the agents
that implement the CBR).
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Algorithm2: Adjustment in periods of absence

1: Procedure ABSENCEPERIODSADJUSTMENT period
2: if timeperiod == Working ^ presence ==Yes then
3: tmpnow = tmpdesired - tmpindoor
4: if ((Tback - 60 min

�tmpnow 6 timeÞ ^ timebackPeriod >60 min) Tback 6 timeð +
30 min ^time1 : backPeriod >60 min) then

5: if tmpnow > 0 then
6: while proxTback - 60 min �tmpnow do
7: thermostattmp + 1 .Increased temperature
8: else if tmpnow < 0 then
9: while proxTback - 60 min �tmpnow do
10: thermostattmp - 1 .Decrease temperature
Fig. 3. Proposed architecture based on virtual agent organizations for intelligent
temperature adjustment by extracting user’s behavior characteristics.
In addition, the previous algorithm is executed in coordination
with Algorithm2, which allows to switch on the heating or
increase the temperature when users are about to return home
shortly. This algorithm increases or reduces the temperature
depending on whether the user is inside or outside the home.
Depending on when the user is going to return, the temperature
of the home is set accordingly so that by the time the inhabitants
arrive the correct temperature is established with the minimum
possible consumption. All this is done in the longest time period
possible to prevent drastic increases or decreases in temperature
over a short period of time, given that this provokes an increase
in energy consumption.

3.5. Gaussian process regression for household energy consumption

The architecture has agents (Energy Consumption Prediction
Agent in AI Analysis VO) that validate the effectiveness of the algo-
rithms’ temperature adjustment decisions. These agents ensure
that after the algorithms’ decisions are applied, the consumption
of energy is reduced. To validate the decisions the agents imple-
ment an algorithm that predicts energy consumption using the
data collected by the rest of the agents in the architecture. The
architecture applies a machine learning model to meteorological
data, weather data and the home energy consumption history data
to predict future energy consumption. The algorithm performs a
training with these data by communicating with agents from other
virtual organizations, in this way measuring hourly and daily con-
sumption of electricity.

The chosen machine learning model is Gaussian Process Regres-
sion, it predicts energy consumption accurately and in this way
allows to validate the effectiveness of the algorithms’ temperature
adjustments. Lately, Gaussian Process Regression has been fre-
quently used by the machine learning community due to its high
accuracy in comparison to other methods, such as Random Forests
or Linear Regression.

The agent that implements Gaussian Process Regression uses
data collected over an entire year to perform the training process.
To avoid a cold start, a crawler agent obtains daily consumption
data from the energy supplier. Once data have been collected by
the architecture’s sensor network for at least six months, it will
no longer be necessary for the crawler to obtain daily consumption
data. The agent that implements Gaussian Process Regression uses
Jython (Python Interpreter in Java) to execute the script that imple-
ments the Gaussian Process Regression Algorithm in python using
numpy and matplotlib libraries. These libraries are a very useful
statistical modeling tool for automated tasks, especially since
Gaussian Process Regression results are in the form of probability
distributions, introducing uncertainty.
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3.6. VAO Architecture

VOs of agents are a type of distributed architecture in which the
agents communicate, coordinate and cooperate to achieve multiple
aims such as obtaining sensor data, data analysis through artificial
intelligence techniques or the execution of the actions proposed by
algorithms. The data obtained by each organization can be sent to
any other agent from any other organization that requests them for
the organization’s internal processes. This makes virtual organiza-
tions of agents an ideal approach for the processing of context data
coming form various data sources.

The characteristics of virtual organizations of agents make it
possible to adopt the artificial intelligence techniques described
in the previous subsections. The integration of those techniques
will result in a system that feeds on the data processing of each
agent. Thus, it is intended to adjust temperature at home in an
intelligent way, through the application of algorithms and artificial
intelligence techniques in the analysis of the environmental data
obtained by sensors. The system has four VO, as observed in Fig. 3.

� Sensor Network VO. This organization’s agents are in charge of
obtaining the values of the variables that the MLP uses to make
a meteorological forecast. These agents also obtain the values of
the variables of the CBR cases for the identification of user beha-
viour models in the dwelling. The values are collected every
minute and sent via Z-Wave protocol to the Data Gateway
Agent. Data Gateway Agent preprocesses the data in such a
way that erroneous values are eliminated. Each agent in this
organisation communicates with each of the sensors described
in sub-Section 3.1.

� AI Analysis VO. This organization is the core of system intelli-
gence since it is the organization responsible for all data analy-
sis processes. The system’s decisions are made on the basis of
those processes. Obtaining the indoor and outdoor temperature
values allows to calculate the difference between the tempera-
ture at home and the outside temperature. In addition to those
values, the solar radiation value is obtained to calculate the



Fig. 5. Example of how the sensors were deployed in the modular home (Home 2).

Fig. 4. Example of how the sensors were deployed in the traditional construction
house (Home 1).
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temperature that the thermostat should be working at to
achieve energy savings. When determining the ideal tempera-
ture in the home, it is necessary to consider if people are present
at home, since otherwise this temperature may be lower (out-
side temperature is lower than the inside temperature) or
higher (outside temperature is higher than the inside tempera-
ture) in order to save even more energy. The decisions of the
algorithms are validated by the system thanks to Energy_Con
sumption_Prediction_Agent

� Action VO: The decisions taken by the AI Analysis VO are sent
to the Action VO for intelligent temperature adjustment, once
received they are validated by the Decision_Making_Agent
using the Gaussian Process Regression. Once the decision has
been validated, the temperature is set by means of the Smart
thermostat and consumption is monitored through the Smart
Plug. This VO contains the Consumption_Visualization_Agent
that shows an energy consumption level achieved with the sys-
tem and the energy that would have been consumed if the sys-
tem had not been used. Moreover, this VO is responsible for
exporting this data in a CSV for subsequent analysis with statis-
tical tools such as SPSS.

4. Case study

A case study was designed in order to prove the feasibility of the
proposed architecture based on virtual organisations of agents, to
this end it was implemented in a home [53,54].

4.1. Experimental set-up

The case study was divided into two phases (Baseline period
and Evaluation period), each lasted one month: an energy con-
sumption control phase during which the system only monitored
variables but did not make any decisions and the evaluation period
in which the system could make decisions. The environment in
which the functionality of the developed architecture has been
evaluated has been carried out in two, north-facing dwellings. A
traditional construction house, a flat of 69.98 m2, (Home 1) and a
modular house, a flat of 124 m2, (Home 2) constructed by BHS,
(http://www.barcelonahousingsystems.com/es/).

The variables associated with climatological factors are key to
the system since they allow it to effectively reduce consumption.
In the first part of the optimization algorithm execution, the sys-
tem uses the values of these variables to adjust the temperature
of the HVAC system. In the second part of the execution of the algo-
rithm, the second adjustment is carried out considering the thresh-
old that is established according to the preferences of the home
inhabitants. For the two periods (Baseline period and Evaluation
period) the values of these variables will be compiled to analyse
how the system’s actions contribute to the reduction in energy
consumption.

The MLP has been trained with meteorological data from Octo-
ber to December 2015 and 2016 (the case study was being per-
formed during those months), as well as the data from the
previous 30 days. Since this system had never been used previ-
ously, its sensor network had not collected any weather data so
these data were acquired by the Weather_history_agent of the AI
Analysis VO.

Each of the two periods in which the experiment was divided
had a duration of one month. The Baseline period lasted from Octo-
ber 23th, 2017 to November 23th, 2017 and the Evaluation period
from November 23th, 2017 to December 23th, 2017. These two
periods were chosen to perform the experiment because they have
a similar holiday period and their maximum and minimum tem-
peratures barely vary from week to week. Thus, the conditions of
the experiment were very similar in the two phases.
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The values of the variables in past CBR cases were acquired in
the Baseline Period. At this stage, the system stored new cases
every day which have been solved successfully for every inhabitant
(the annotation of each case was done manually).

Figs. 4 and 5 illustrate the distribution of sensors in the case
study homes. An outdoor temperature sensor was placed at each
window of the house, two sensors in each room, except the two
bathrooms where only one was placed, a presence sensor in each
room except the living room where two sensors were placed. Aver-
ages have been obtained of all the values collected by all the
sensors.).
4.2. Results

The following data were collected by the system every 15 min:
indoor (tmpindoor) and outdoor (tmpoutdoor) temperature, presence of
people (presence) in the home. This information is managed by the
Sensor Network VO thanks to the communication between sensors.
The variables used by the optimization algorithm (roomtype;

thermostatstatus; thermostattmp; timenow; timeperiodDay; tmpnow, tmpdesired)
are obtained by the AI Analysis VO. The information it uses
includes the weather forecast and time period (forecast, time per-
iod) and the other variables used by the algorithm, obtained by the



Fig. 6. Example of validation of actions (Decision Making Agent); training Gaussian
Process Regression (Predicted vs. Observed).

Table 4
Data collected by the system in each phase.

Period Variable Home 1 Home 2

Baseline period Avg. Out. Temp (�C) 9.36 11.23
Avg. In. Temp (�C) 24.2 23.3
Energy (Wh) 128930 136370

Evaluation period Avg. Out. Temp (�C) 6.38 7.86
Avg. In. Temp (�C) 20.7 21.1
Energy (Wh) 90.04 118.06

Table 3
Header of the training dataset.

Weekday Day Week Presence Wh

2016-12-01 3 336 48 0.3 3129.0
2016-12-02 4 337 48 0.3 2366.0
2016-12-03 5 338 48 0.4 2388.0
2016-12-04 6 339 48 0.0 6029.0
2016-12-05 0 340 49 0.1 2345.0
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Multi-Layer Perceptron (MLP), such as timeback; timebackPeriod;
timeleave; timeleavePeriod. The rest of the information required by the
algorithm is obtained by the Information Management VO. Once
the Intelligent Temperature Adjustment Agent (AI Analysis VO)
generates a temperature, it must be validated that it will reduce
energy consumption.
Fig. 7. Prediction of future energy consumption u
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The intelligent temperature adjustment validation process is
mainly performed by the Energy Consumption Prediction Agent
(AI Analysis VO) and Decision Making Agent (Action VO). The first
agent implements the Gaussian Process Regression algorithm, an
algorithm that predicts consumption, for which it first performs
a training process. In the Fig. 6 there is an training and testing sam-
ple, in which a Training R2 Score has been obtained: 0.8709 and
the Test score R2: 0.8163. Table 3 shows the Header of the training
dataset.

Once the classifier has been trained, it is ready to be used to pre-
dict future energy consumption. Fig. 7 shows the prediction pro-
cess performed by the Energy Consumption Prediction Agent
using Gaussian Process Regression. The results obtained of this
agent validated by the Decision Making Agent in the Action VO
(The temperature set by the system is considered valid if the con-
sumption loss is lower than the one predicted for that day) prior to
running the algorithm. In the validation phase, given that a large
dataset was not available, the Energy Consumption Prediction
Agent collected a set of consumption data through a crawler script
from the energy company’s website which gives the client’s energy
use history (23/10/2017–23/12/2017). The agent predicts energy
consumption at a 95% confidence interval and the majority of our
predictions are within this interval.

Once the ideal temperature has been established, it is sent to
the smart thermostat so that it can be executed. The adoption of
these temperatures has allowed to reduce the consumption of
energy. In the baseline period, which lasted one month, the system
had only collected household data without taking any action. In the
evaluation period, the system not only collected the values of all
the variables but also made appropriate decisions on the basis of
these values, as shown in Table 4.

Table 5 shows electrical consumption for each stage (Baseline
and evaluation period). Table 6 shows the results of the Student’s
t-test and the Levene test for equality of variances. The difference
between the baseline period and the evaluation period is signifi-
cantly lower with a p-value close to 0.000. These results demon-
strate that the algorithm achieves energy savings efficiently.

Although the system could achieve a greater reduction in con-
sumption, this would nevertheless affect the added value offered
by the system (achieving a reduction in energy consumption by
trying not to affect the feeling of comfort by users too much).

There are similar proposals, which like the one presented in this
work, manage to reduce energy consumption without affecting the
comfort of users. A similar proposal has proven to save at least 10%
energy in deployed systems without affecting customer comfort
just by cutting peaks [55]. Our system shows greater savings but
does not offer all the functionality such as load shifting e. g., to sup-
port combined heat and power generation that this system offers.
This is now a commercial product provided by Noda Intelligent
sing GPR, based on data collected by sensors.



Table 5
Total consumption in Wh in the baseline and evaluation periods, as well as the savings achieved in the second period.

Home 1 Home 2

Without system With system Without system With system

Baseline period (Wh) 128930 128930 136370 136370
Evaluation period (Wh) 127000 90040 141440 118060
Difference (Wh) 1930 38890 �5070 18310
Savings (%) �1.50 �30.16 +3.72 �13.43

Table 6
Result of the Student’s t-test and Levene’s test, performed to assess the difference of means and variances between the Baseline data and the Evaluation period.

Baseline period Evaluation period

Mean Std. Mean Std. t p-Value (2-Tailed) F p-Value

Home 1 4297.6667 1904.22703 2904.5161 1096.60640 3.516 0.001 7.933 0.004
Home 2 4545.6667 2207.57893 3808.3871 1290.40845 1.599 0.115 10.474 0.002
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Systems AB (www.noda.se), which was formed in 2005 as a spin-
off company by the researchers.

The obtained results show how the system is capable of achiev-
ing a higher energy optimization percentage (30.16% reduction in
energy consumption) in the traditional home compared to the
modular home. The cost of the proposed sensors and IoT devices
is around 400€, reducing the average energy bill of 60 euros by
about 25% (the percentage achieved in both houses) would amor-
tize the cost in two years and three months.
5. Conclusions

The presented research work has focused on the development
of a system for optimized use of energy in homes and buildings.
The developed system is based on virtual organizations of agents
and implements intelligent temperature adjustment algorithms
which achieve considerable energy savings. The proposal also
includes social computing algorithms which make it possible for
users to adapt the temperature values according to their prefer-
ences. The use of VOs has been the key to achieving the proposed
objectives; it is a simple method of deploying the temperature
adjustment and social computation algorithms within a single sys-
tem, it also enables the deployment of agents with different roles:
energy consumption prediction, consumption monitoring, extrac-
tion of information from sensors or execution of actions (radiators
switched on/off or temperature regulation through a smart
thermostat).

A case study has been performed in two dwellings (a traditional
construction house and a modular home), demonstrating the effec-
tiveness of the presented architecture. The architecture adjusts
temperature through an smart thermostat, this prevents drastic
changes in the temperature of the house, significantly decreasing
electricity consumption. The case study, carried out over a period
of two months, shows that the proposed solution achieves a signif-
icant reduction in energy consumption. The decision to introduce a
modular house in the case study is motivated by the energy effi-
ciency of those houses as opposed to traditional construction
houses. The results have demonstrated that the system is able to
achieve higher energy optimization (30.16% reduction in energy
consumption) in a traditional house versus a modular house
(13.43% reduction in energy consumption). As for the results of
383
the algorithms used by virtual agent organizations, the Gaussian
Process Regression-based energy consumption prediction algo-
rithm has had an average accuracy of 87.09% and the algorithm
for calculating user presence in the house has an accuracy of 76.4%.
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