
ar
X

iv
:1

90
7.

06
37

7v
2 

 [
cs

.L
G

] 
 1

1 
Fe

b 
20

20

Sequential online prediction in the presence of outliers

and change points: an instant temporal structure

learning approach

⋆Bin Liu1,2, Yu Qi3 and Ke-Jia Chen1,2

1 School of Computer Science, Nanjing University of Posts and Telecommunications
2 Jiangsu Key Lab of Big Data Security & Intelligent Processing

3College of Computer Science and Technology, Zhejiang University
⋆Corresponding author. Email: bins@ieee.org

Abstract

In this paper, we consider sequential online prediction (SOP) for streaming data

in the presence of outliers and change points. We propose an INstant TEmporal

structure Learning (INTEL) algorithm to address this problem. Our INTEL al-

gorithm is developed based on a full consideration of the duality between online

prediction and anomaly detection. We first employ a mixture of weighted Gaus-

sian process models (WGPs) to cover the expected possible temporal structures

of the data. Then, based on the rich modeling capacity of this WGP mixture, we

develop an efficient technique to instantly learn (capture) the temporal struc-

ture of the data that follows a regime shift. This instant learning is achieved

only by adjusting one hyper-parameter value of the mixture model. A weighted

generalization of the product of experts (POE) model is used for fusing pre-

dictions yielded from multiple GP models. An outlier is declared once a real

observation seriously deviates from the fused prediction. If a certain number of

outliers are consecutively declared, then a change point is declared. Extensive

experiments are performed using a diverse of real datasets. Results show that

the proposed algorithm is significantly better than benchmark methods for SOP

in the presence of outliers and change points.

Keywords: online prediction, change point detection, outlier detection,

streaming data, regime shift, instant learning

Preprint submitted to Elsevier February 12, 2020

http://arxiv.org/abs/1907.06377v2


1. Introduction

Driven by the fast development of communication, sensor and storage tech-

nologies, streaming data abounds in many application areas such as transporta-

tion [1], manufacturing [2], network security [3], agriculture monitoring [4] and

medical diagnosis [5]. In this paper, we are concerned with the issue of sequen-

tial online prediction (SOP) for streaming data. An online real-time prediction

algorithm is critical for many use cases, e.g., preventative maintenance, fraud

prevention, and real-time monitoring. Compared with batch processing meth-

ods that need to access each data point repeatedly, an online prediction algo-

rithm access each data point only once, and thus is beneficial for saving costs

in computation and storage.

In many time-series data, outliers and change points exist. An outlier is

typically a single observation whose statistical property is independent of and

different from that of the rest data. Different from outliers, a change point

stands for a data point in the time-series, at which an endogenous regime shift

of the system happens. That says, after a change point, the statistics of the

system changes. It is an issue also known as concept drift.

If not appropriately dealt with, the presence of outliers and change points

can lead to detrimental effects on the prediction. To clarify the necessity and

importance for outlier and change point detection, let consider a sensor network

based real-time monitoring scenario. Sensor failures shall produce outliers [6,

7], while, when an abnormal event like a forest fire, a leakage of poisonous

gas or debris flow happens, it will lead to a regime shift, corresponding to a

change point in sensor measurements [8]. In this scenario, undiscovered outliers

shall produce unreliable predictions, and, more crucially, if a regime shift is not

detected and addressed well in time, it can lead to a disaster.

Approaches to outlier and change point detection can be roughly categorized

into two classes, namely retrospective methods and online approaches. For

the former class, the full dataset is available for analysis, and the locations of

anomalies are identified in a batch mode [9, 10]. Many previous approaches to

2



anomaly detection are retrospective, while the batch processing feature makes

them not suitable for use in an online prediction system.

Compared with retrospective methods, online approaches have received less

attention. This is possibly due to that the online setting is quite different from

traditional situations that make traditional approaches inapplicable. Bayesian

modeling and inference approaches have been explored for developing online

change point detection methods in e.g., [11, 12, 13, 14, 15]. In the Bayesian

online change point detection (BOCPD) algorithm of [11, 12], authors design

an underlying predictive model (UPM) and a hazard function to describe un-

certain factors regarding the run length, namely the time since the last change

point. For BOCPD, it assumes that all data points within a regime are iden-

tically and independently distributed (iid) according to a specific distribution,

e.g., Gaussian. This assumption makes BOCPD a pure change point detection

method without the capability to do online prediction. In [16], the Gaussian

process (GP) is introduced into the BOCPD framework to exploit the temporal

structure of the data, while its central aim is still to improve the change point

detection performance.

Outliers and change points are usually separately considered in the literature

(with few exceptions in e.g., [17]), under the name of outlier detection, fault

detection, and change point detection. In this paper, we consider them together

and propose an SOP algorithm that is robust to both outliers and change points.

Our algorithm is based on the Gaussian process time-series (GPTS) model. GPs

are Bayesian nonparametric models that have widely used for approximating

complex nonlinear functions. It has been proved that the prediction performance

of GP is comparable to that of artificial neural networks (ANN) [18]. Further,

GP has two merits compared with ANN. First, the probabilistic nature of GP

can give us a byproduct, i.e., an uncertainty measure for the prediction it makes.

This is a desirable property for human operators to make decisions. Second, as

a generative model, GP is more interpretable.

GPTS models have recently been studied for developing robust SOP meth-

ods [19, 20, 21, 22, 23]. For example, in [21], the authors take into account

3



the presence of faulty observations in the GPTS model by using a heavy-tailed

student’s t likelihood function. A similar idea has been used in [22], which takes

account of faulty data by a Gaussian distribution with a very wide variance. In

[23], the authors design a non-stationary kernel function to take account of the

appearance of change points. Although these methods are powerful, when using

them, one has to pay some price, that is the significantly increased complexity

in the inference. This is due to the lack of an analytically tractable inference

algorithm for those models. Specifically, for the student’s t model of [21], ap-

proximate methods such as Gibbs sampling [24] and variational methods [25]

are needed for inference. For the model of [23], a complex Bayesian quadrature

procedure is required for calculating the predictive distribution.

In this paper, we propose an INstant TEmporal structure Learning (INTEL)

algorithm for SOP, which has desirable features as follows:

1. Different from the aforementioned GPTS based methods, our INTEL al-

gorithm allows closed-form inference and prediction, and thus is more

computationally efficient and easier to code;

2. The INTEL algorithm is robust to both outliers and change points;

3. As a GP based algorithm, INTEL inherits all merits of GPs. For example,

it can produce an uncertainty measure for each prediction it makes. It also

has the desirable interpretability;

4. As an SOP algorithm, it can also provide real-time anomaly detections as

a byproduct.

To the best of our knowledge, INTEL is the only algorithm in the literature

that owns all the above features. The other contributions of this paper are

summarized as follows:

1. We present a mixture modeling approach to pre-cover temporal structures

of unobserved time-series data based on a template model trained with a

relatively small number of observed data points. Using this method, we

obtain a mixture model that has a much richer modeling capacity than

the template model.

4



2. Based on the rich modeling capacity of the aforementioned mixture model,

we propose an efficient approach to quickly capture the temporal structure

of the new regime upon a change point is detected. We term this mech-

anism of fast temporal structure capturing as instant learning. Striking

different from traditional machine learning (ML) methods, instant learning

emphasizes the use of prior knowledge and does not require any training

dataset.

3. We present a weighted generalization of the POE model of [26] for fusing

predictions yielded from multiple GPTS models.

4. We use a bunch of real datasets to evaluate the performance of our method.

Results demonstrate the superiority of our method.

The remainder of this paper is organized as follows. In Section 2, we present

the GPTS model we use for developing the proposed INTEL algorithm. In

Section 3, we introduce INTEL in detail and provide a formal analysis of its

computational complexity. In Section 4, we discuss its connections to relevant

works in the literature. In Section 5, we evaluate the performance of INTEL

using a bunch of real datasets. Finally, we conclude the paper in Section 6.

2. Sequential online prediction with GP

In this section, we briefly introduce the GPTS model used here. The aim

is to fix notations and introduce the necessary background information for pre-

senting the INTEL algorithm later in Section 3. For more details on GP and

its applications in time-series prediction, readers are referred to [19, 27].

2.1. GP

Let start by introducing the GP. GP is a probability distribution defined on

a function. Consider a function f drawn from a GP as follows

y = f(x), f ∼ GP (µ, kθ) , (1)

where x is the input of the function, y is the output, GP (µ, kθ) denotes a GP

with mean function µ(·) and covariance kernel function kθ(·, ·). Here θ denotes

5



the hyper-parameter of the kernel function. Given any two (arbitrary) input

locations, say xi and xj , the kernel function defines the covariance element

between them. For a set of input locations x = {x1, . . . , xn}, the covariance

elements can then be described by a covariance matrix

Kθ(x,x) =

















kθ (x1, x1) kθ (x1, x2) . . . kθ (x1, xn)

kθ (x2, x1) kθ (x2, x2) . . . kθ (x2, xn)

...
...

...
...

kθ (xn, x1) kθ (xn, x2) . . . kθ (xn, xn)

















. (2)

One can see that the function evaluations at the input points in x are a sample

from a multivariate Gaussian distribution,

p(y(x)) = N (µ(x),Kθ(x,x)). (3)

Here y = {y1, y2, . . . , yn} are dependent function values evaluated at input

locations x1, x2, . . . , xn, and µ is a vector of mean function values evaluated at

x1, x2, . . . , xn.

In most situations, especially in the context of time-series analysis, our ob-

servations are data corrupted by a noise process. We can take account of this

by defining

y = f(x) + η, (4)

in which η denotes the noise item. In common practice, η is assumed to be

Gaussian distributed η ∼ N
(

0, σ2
n

)

, where σ2
n denotes the variance of the noise.

For noisy observations, the form of the covariance matrix becomes

Vθ(x,x) = Kθ(x,x) + σ2
nI (5)

where I is the identity matrix.

The form of the kernel function together with its hyper-parameter θ has a

great impact on the efficacy of GP approximation. The most commonly used

kernel function is arguably the squared exponential (SE) function, given by

kθ (xi, xj) = h2 exp

[

−
(

xi − xj

λ

)2
]

, (6)

6



in which θ , [h, λ] is the hyper-parameter. In this paper, we adopt the Matern

5/2 kernel function, defined as

kθ (xi, xj) = σ2
f

(

1 +

√
5r

σl

+
5r2

3σ2
l

)

exp

(

−
√
5r

σl

)

, (7)

where r =

√

(xi − xj)
T
(xi − xj) is the Euclidean distance between xi and xj .

The SE kernel function is infinitely differentiable and thus may yield unreal-

istic results for physical processes [28]. In contrast with the SE kernel function,

the Matern class kernel function is better for capturing temporal structures in

physical processes due to its finite differentiability [28]. Specifically, the Matern

5/2 kernel function is twice differentiable and has been widely used in GP [27].

Now we have θ , [σf , σl]. The hyper-parameter of the kernel function describes

the general properties of our function [27]. As shown in Eqn. (7), σf governs

the output scale of our function, σl determines the input scale, and thus the

smoothness of our function. For other types of kernel functions used for GP

regression, see [27].

Denote ǫ , {θ, σn} as the hyper-parameter of the GP model. Then, given

an observed dataset {x,y}, the value of ǫ can be determined by maximizing the

log marginal likelihood [27]:

log p(y|x) = −1

2
y⊤
(

Kθ(x,x) + σ2
nI
)−1

y (8)

−1

2
log
∣

∣Kθ(x,x) + σ2
nI
∣

∣− n

2
log 2π.

A conjugate gradient descent optimization algorithm included in the GPML

toolbox [29] is often used to address the above maximization problem.

Now let consider how to predict the observation y∗ at a test input location

x∗ based on an observed dataset {x,y} (i.e., the training dataset in the ML

jargon). According to the definition of GP, y and y⋆ are jointly distributed as

follows

p









y

y∗







 = N









µ(x)

µ (x∗)



 ,





Kθ(x,x) Kθ (x, x∗)

Kθ (x∗,x) kθ (x∗, x∗)







 (9)

7



where Kθ (x, x∗) = [kθ(x1, x∗) . . . kθ(xn, x∗)]
⊤ and Kθ (x∗,x) is the transpose of

Kθ (x, x∗). Using some linear algebra operations, one can derive the posterior

distribution of y∗, which is Gaussian with mean

m∗ = µ (x∗) +Kθ (x∗,x)Kθ(x,x)
−1(y − µ(x)) (10)

and variance

σ2
∗ = kθ (x∗, x∗)−Kθ (x∗,x)Kθ(x,x)

−1Kθ (x, x∗) . (11)

To take account of the observation noise, we can simply substitute the Kθ(x,x)

term from Eqns. (9)-(11) with the Vθ(x,x) in Eqn. (5).

2.2. The GPTS model

Let consider a time-series {t, yt}, t = 1, 2, . . ., in which t ∈ N denotes the

time index, yt the data observed at t. At each time step t, we are interested in

calculating the predictive distribution of yt+1 given all the observations up to

time t, namely p(yt+1|y1:t). Here, y1:t , {y1, . . . , yt}. In real practice, a time

window can be used to save computation cost or account for non-stationarity of

the system. Then the target predictive distribution becomes p(yt+1|yt−τ+1:t),

where τ ∈ [1, . . . , t] is the length of the time window.

Now we adapt the GP model into the context of time-series. We describe

time-series observations using the model of the form

yt = f(t) + ηt, f ∼ GP (µ, kθ) , ηt ∼ N
(

0, σ2
n

)

, (12)

where the time index t is taken as the input (namely the x term in Eqns.(1)-

(11)), while the observation yt is the output. Then, given an observed dataset

{t,y}, in which t = {t − τ + 1, . . . , t}, y = {yt−τ+1, . . . , yt}, the predictive

distribution of yt+1 is given by the mean

mt+1 = µ (t+ 1) +Kθ (t+ 1, t)Vθ(t, t)
−1(y − µ(t)) (13)

and the variance

σ2
t+1 = kθ (t+ 1, t+ 1)−Kθ (t+ 1, t)Vθ(t, t)

−1Kθ (t, t+ 1) . (14)

8



This GPTS model generalizes classical time-series models, e.g., autoregres-

sive (AR), autoregressive moving average (ARMA), and Kalman filter [30, 16,

31].

3. The proposed INTEL algorithm

In this section, we present details about our INTEL algorithm, which is

developed for SOP in the presence of outliers and change points.

3.1. GPTS Mixture for capturing complex temporal structure

The main idea underlying our algorithm is as follows. We treat a data

stream in which outliers and change points are present as a function f with

time-varying temporal structures. We use GPTS models to capture temporal

structures of f . In a GPTS model, each hyper-parameter describes one aspect

of the temporal structure underlying the data. For example, for a model with

a Matern 5/2 kernel function, the hyper-parameter σf describes the amplitude

of the function, σl determines its smoothness and σ2
n represents the variance of

the observation noise. Given specific values of its hyper-parameters, a GPTS

model can capture a specific temporal structure of the data. Suppose that a

historical dataset {t0,y0} is pre-available, then we can use a template modelM0

to capture the temporal structure underlying these data. In most situations,

it can be reasonably assumed that a relatively small number of historical data

points are pre-available. SinceM0 is obtained based on a very limited number of

historical data, its modeling capacity shall be very limited too. That means only

using M0 is impossible to capture temporal structures underlying future data

points since non-stationarity is the basic feature of time-series data. We come

up with an idea to enlarge the modeling capacity ofM0. GivenM0 with hyper-

parameters σf,0, σl,0, σn,0, we construct a set of candidate modelsM1, . . . ,MM

based on M0. That says these candidate models are variants of M0. We let

all variants share the same mean function with M0, but take different hyper-

parameter values. Note that the term temporal structure used here is defined

9



with hyper-parameters σf , σl, σn, and is not related to the mean function. We

use a weighted mixture of these models to cover temporal structures underlying

unseen data in future. Although only a limited number of GPTS models can

be used, the number of their combinations, defined by their weights, is infinite.

It means that the modeling capacity of this mixture model can be much larger

than that of M0, as conceptually illustrated in Figure 1. Hence, we may get

much better SOP result based on this mixture model, while, to make the above

idea work, we need to answer two questions at first, namely, how to build up

the variant models and how to combine all models in an appropriate way to

capture the true temporal structure underlying the data. We propose specific

techniques to answer the above questions.

Figure 1: A schematic diagram on the modeling capacity of a GP mixture compared
with that of a single GP. A black dot denotes the modeling capacity of a single GP.
The modeling capacity of the GP mixture is correspondingly a plane spanned by the
black dots.

Let take an example to show how to construct variants ofM0. Suppose that,

givenM0 at the beginning, we believe that the input scale will decrease later,

namely, our function will become rougher later. Then we can translate the above

belief by introducing a variant model Mi, i > 0, for which we assign a smaller

input scale value, say σl,i = 0.2σl,0. The coefficient 0.2 is related to the limit

of the input scale we expect. If we are uncertain whether the input scale will

decrease or increase, then exceptMi, we can introduce another variant model

Mj, j > 0, j 6= i, for which we use a bigger input scale value, say σl,j = 5σl,0.

Notice that for a time-series, abrupt changes in the temporal structure only

appear at locations of outliers and change points. Therefore the temporal struc-

ture information learned from the historical data can provide important clues

10



for guessing temporal structures in the future data. Our method makes use of

such clue information by constructing candidate models on the basis ofM0 and

thus is much better than brute force methods that construct candidate mod-

els arbitrarily from scratch. The proposed mechanism to handle outliers and

change points is deferred to subsection 3.4.

For the issue of model combination, we treat each model as a hypothesis.

Each model is associated with a weight, which represents the probability that

this hypothesis is true. The weights of the models are tuned over time to let the

weighted mixture of these models capture the non-stationary temporal structure

of the data. We resort to a dynamic version of the Bayesian model averaging

(DMA) technique to tune the model weights. For more details on the DMA

method, see [32, 33, 34]. Suppose that, at time step t, the model Mi has a

weight ωi,t > 0, i ∈ {0, 1, . . . ,M}, ∑M

i=0
ωi,t = 1. Then the predictive weights

of the models at time step t+ 1 are calculated as follows

ω̂i,t+1 =
ωα
i,t

∑M

j=0
ωα
j,t

, i = 0, . . . ,M, (15)

where 0 < α < 1 is termed the forgetting parameter. Upon the arrival of

the observation yt+1, the model weights are updated according to Bayesian

formalism as follows

ωi,t+1 =
ω̂i,t+1p (yt+1|Mi)

∑M

j=0
ω̂j,t+1p (yt+1|Mj)

, i = 0, . . . ,M, (16)

where p (yt+1|Mi) denotes the likelihood of yt+1 under the hypothesisMi, i =

0, . . . ,M .

3.2. Fusion of GPTS predictions

Now we consider how to combine predictions provided byM0,M1, . . . ,MM ,

to yield a fused prediction. Recall that prediction with a single GPTS model is

presented in Section 2.2. Following the setting in Section 2.2, we focus on the

calculation of the predictive distribution of yt+1, namely p(yt+1|yt−τ+1:t) (or

p(yt+1) for short). Denote the predictive distribution of yt+1 corresponding to

Mi as pi(yt+1|yt−τ+1:t) (or pi(yt+1) for short). The mean and the variance of

11



pi(yt+1), denoted as mi,t+1 and σ2
i,t+1, are calculated using Eqns.(13)-(14). To

calculate p(yt+1) based on pi(yt+1), i = 0, . . . ,M , the POE model of [26] can

be used. Given multiple probability densities, pi(yt+1), i = 0, . . . ,M , the POE

model describes the target distribution p(yt+1) as follows,

p(yt+1) =
1

Z
ΠM

i=0pi(yt+1), (17)

in which Z is a normalizing constant that makes p(yt+1) a probability distribu-

tion that integrates to 1. Since pi(yt+1), i = 0, . . . ,M , are all Gaussian, p(yt+1)

calculated with Eqn.(17) is still Gaussian, with its mean and variance given by

[26]

mt+1 =

(

M
∑

i=0

(mi,t+1Pi)

)(

M
∑

i=0

Pi

)−1

, (18)

σ2
t+1 =

(

M
∑

i=0

Pi

)−1

, (19)

where Pi =
(

σ2
i,t+1

)−1
. One can see that the information of the model weights

is not involved in the above calculation. In fact, in the original POE model, all

models are treated to be equally weighted. Here we generalize the POE model

to incorporate the information of the model weights by letting

p(yt+1) ∝ ΠM
i=0 (pi(yt+1))

ω̂i,t+1 . (20)

Note that, here we use ω̂i,t+1 other than ωi,t+1. This is because the calculation

of ωi,t+1 requires access to yt+1, see Eqn. (16). However, the calculation of the

predictive density of yt+1 is performed at time step t. At that time, the real

observation yt+1 is not accessible. So ω̂i,t+1 is used instead of ωi,t+1 in Eqn.(20).

Since pi(yt+1), i = 0, . . . ,M , are Gaussian, p(yt+1) calculated with Eqn. (20) is

still Gaussian, with its mean and variance given by [35]

mt+1 =

∑M

i=0
(mi,t+1ω̂i,t+1Pi)

∑M

i=0
(ω̂i,t+1Pi)

, (21)

σ2
t+1 =

(

M
∑

i=0

(ω̂i,t+1Pi)

)−1

. (22)

12



The mean mt+1 is taken as the prediction of yt+1 made at time step t. A

confidence interval associated with this prediction is also available. For example,

a 99.75% confidence interval is shown to be [mt+1 − 3σt+1,mt+1 + 3σt+1].

3.3. Online outlier detection

Considering that SOP and online outlier detection are a pair of dual prob-

lems, we do outlier detection based on the prediction given by the GPTS mixture

mentioned above. Assume that a GPTS mixture model with a rich enough mod-

eling capacity is built up. That says it can produce a reliable prediction for an

observation, say yt+1, based on the observed data {t,y}, provided that yt+1 and

the elements included in y are within the same regime. Then outlier detection

is performed simply as follows. If the real observation yt+1 departs from the

confidence interval [mt+1−3σt+1,mt+1+3σt+1], then declare it to be an outlier.

3.4. Change point detection and instant temporal structure capturing

Recall that, in the GPTS model, the predictive distribution of yt+1 is cal-

culated based on the training dataset {t,y}, in which t = {t − τ + 1, . . . , t}
and y = {yt−τ+1, . . . , yt}, see Eqns.(13)-(14). This calculation does not take

into account the possible presence of outliers or change points in the training

dataset. The inclusive of an outlier or a change point will bring detrimental

effects to the prediction performance [36]. To this end, we develop a technique,

called adaptive training set formation, to eliminate the negative effects of out-

liers and change points. We use a potential change point bucket (PCB), denoted

as {t′,y′} to save outliers that have been declared consecutively till now. Specif-

ically, if an outlier is declared at t, then add t and yt into t′ and y′, respectively.

Otherwise, we empty t′ and y′ and add t and yt into t and y, respectively. After

that, we check if the number of elements in t′ (or y′) achieves a certain number,

say N . If so, we declare a change point detection.

Upon a change point is declared, we set t = t′, y = y′, and then empty t′

and y′. In this way, a new training dataset {t,y} is formed, based on which

we can do predictions for future observations in the new regime. To achieve

13



a fast detection of the regime shift, N should take a small value, while, to

learn a qualified model to capture the temporal structure of the new regime,

the bigger is N , the better. We break this dilemma by proposing an instant

learning technique with the help of the rich modeling capacity of our GPTS

mixture. Recall that in the setting of this paper, a GPTS model is defined

by its hyper-parameters σf , σl, σn which describe the temporal structure and

the mean function µ(·) = C that describes the major trend. So constructing a

qualified GPTS model is equivalent to finding appropriate values for such hyper-

parameters and C. If we only have a relatively small number N of labeled data

points, it is impossible to find appropriate values for all these parameters. Our

idea is to borrow the power of the adaptive weighted mixture model mentioned

above to automatically capture the temporal structure of the new regime, while

only update the value of C based on these data points, namely

µ(·) = C =
1

N

∑

i∈t

yi. (23)

See Figure 3 for an example performance show of the above mechanism. We can

see from the middle panel of Figure 3, when a regime shift appears at t = 2971,

the weight of the previously dominated model M0 falls rapidly, while, at the

same time, the weight ofM1, whose hyper-parameter setting is more fit to the

new regime, rises abruptly. The above result clearly shows that the adaptive

model weighting mechanism of our method takes effect, rendering our mixture

model capture the temporal structure of the new regime instantly.

3.5. Implementation of the INTEL algorithm

A pseudo-code to implement the INTEL algorithm is presented in Algorithm

1. The computational complexity of each major operation is marked. A formal

computation complexity analysis is deferred to subsection 3.7.

3.6. Algorithm initialization

Given the mean function µ(·), ǫ0 is initialized by maximizing the log marginal

likelihood based on an observed dataset {t0,y0}. Then ǫi, i > 0 is specified

14



Algorithm 1: The Proposed INTEL Algorithm

1: Input: N , τ , µ(·), α, ωi,0, ǫi, i = 0, . . . ,M , L (refer to subsection 3.1 for
initialization issues about the input).

2: t← {}, y← {},t′ ← {}, y′ ← {};
3: for t=0, 1, . . . do

4: for i = 0, 1, . . . ,M do

5: Calculate mi,t+1, σ
2
i,t+1 using Eqns.(13)-(14); (O

(

τ3
)

)
6: end for

7: Calculate ω̂i,t+1 with Eqn.(15), i = 0, . . . ,M ; (O (M))
8: Calculate ωi,t+1 with Eqn.(16), i = 0, . . . ,M ; (O (M))
9: Calculate mt+1, σ

2
t+1 using Eqns.(21)-(22); (O (M))

10: if yt+1 < mt+1 + 3σt+1 & yt+1 > mt+1 − 3σt+1 then

11: Add t+ 1, yt+1 into t and y, respectively;
12: t′ ← {}, y′ ← {};
13: if the size of t achieves multiples of L then

14: Let µ(·) = C, where C equals the average of the last L data items
that have been added into y; (O (L))

15: end if

16: else

17: Add t+ 1, yt+1 into t′ and y′, respectively;
18: if the size of t′ achieves N then

19: (Optionally) declare yt+1 to be a change point;
20: t← t′; y← y′;
21: Update µ(·) with Eqn.(23); (O (N))
22: else

23: (Optionally) declare yt+1 to be an outlier;
24: end if

25: end if

26: if ∃j ∈ t, j < t+ 1− τ + 1 then

27: Remove j, yj from t and y, respectively;
28: end if

29: Output mt+1, σ
2
t+1.

30: end for

15



in a way as presented in the second paragraph of subsection 3.1. Note that

the efficiency of our algorithm does not depend on a fixed model set, because

different model sets can have the same function for one specific dataset. In

subsection 5.1, we present an example case that shows the experimental evidence

of the above argument. In that example, the inclusive of low-quality models

have little impact on the prediction performance, because the model weighting

procedure (see Eqns.(15)-(16)) automatically assigns tiny weights to those low-

quality models, and thus eliminates their negative effects.

Now we discuss initialization issues about the other parameters. We specify

µ(·) to be a constant value function, µ(·) = C, where C is initialized to be the

average of those data points included in y0. All model weights are initialized to

be 1/(M + 1). As for N , the smaller is its value, the earlier a change point can

be detected, while, it can not be arbitrarily small, otherwise, a detected change

point may be an outlier. We set its value at 3 to give a balance between the

timeliness of change point detection and the discrimination between a change

point and outliers. For α, we follow our previous work in [34], setting its value

at 0.9. The parameter τ represents the length of the time window, while in

our algorithm, it just determines the maximum number of training data points

allowed for use in calculating the predictive distribution, see Eqns.(10)-(11).

The actual number of training data points and which data points within the

time window will be selected as training data points are both determined by

the adaptive training set formation procedure described in subsection 3.4. That

says the value of τ has much less impact on the prediction performance of our

algorithm than for traditional time window based methods. In our experiments,

we set τ = 20. Lastly, the parameter L controls the period for fine-tuning the

mean function. We select to update the mean function periodically, because,

even within one regime, the time-series data may still be non-stationary. Fine-

tuning the mean function is beneficial for capturing the changes in the trend of

our function. In our experiments, we set L = 10.

16



3.7. A formal analysis of the computational complexity of the INTEL algorithm

We mark the computational complexity for each major operation in Algo-

rithm 1. It shows that the most computationally complex operation is the

inversion of a τ × τ matrix in line 5, which scale as O
(

τ3
)

. The matrix inver-

sion operation is performed M times, leading to a complexity O
(

Mτ3
)

in total.

The calculation in line 7 consists of simple numerical operations that scales as

O (M). The computation in line 8 involves M + 1 Gaussian likelihood calcu-

lations scaling as O (M). The operation in line 9 involves multiplication and

addition calculations that scale as O (M). The remaining operations include

the comparison operation in line 10, the average operations in lines 14 and 21,

whose computational complexity is negligible compared with others. To sum-

marize, all operations in the INTEL algorithm are of the linear algebra type

and scale as O
(

Mτ3
)

. This algorithm shall be highly computationally efficient

if τ and M take small values.

4. Connections to relevant works in the literature

As a GPTS model-based method, our INTEL algorithm is relevant with

all existent works that involve the GPTS model and take into account outliers

or change points. See e.g., [15, 16, 19, 20, 23, 22], to name just a few. A

common feature of these existent works is that they all try to design one accurate

complex model to cover all cases that may happen in the future, including

the appearance of outliers or change points. For example, the algorithm in

[21] employs a heavy-tailed student’s t observation noise model to take into

account the presence of outliers. The fault bucket algorithm in [22] takes account

of faulty data with a Gaussian distribution with a very wide variance. The

approach in [23] uses a non-stationary kernel function to take into account the

appearance of change points. A price to pay for applying such complex models

is a significantly increased complexity in the inference. For example, to use

the student’s t model of [21], one has to use Gibbs sampling [24] or variational

17



methods [25] for inference. To use the model of [23], one has to address a

complex Bayesian quadrature to calculate the predictive distribution.

Different from the aforementioned methods, neither Monte Carlo sampling

nor quadrature operation is required to implement our INTEL algorithm, since

all operations are of the linear algebra type, see details in subsection 3.7. The

INTEL algorithm does not try to design one accurate complex model, but to

construct a model set to cover possible temporal structures in future data. Each

member in the model set is an inaccurate model, while it captures one type of

temporal structure and allows closed-form inference. A dynamic data-driven

weighting mechanism is used to combine members in the model set, rendering

the resulting mixture of GPTS models owns a rich modeling capacity to cover

complex temporal structures that may appear in future data.

Lastly, our method has connections to regime-switching Markov or state-

space model based approaches for non-stationary time series [37, 38, 39], online

metric learning methods in e.g., [40], and deep neural networks (DNN) based

sequence data representation learning methods [41, 42, 43, 44, 45]. The link

between state-space models and GP is can be found in [46, 47, 48, 49]. The

connection between GP and neural networks traces back to Neal’s work in [50],

which shows that certain types of neural networks with one hidden layer of

infinite size are identical to a GP model with a specific type of covariance func-

tion. A recent study on relationships between DNN and GP can be found in

[51]. Despite of the intrinsic theoretical link between GP and DNN, from the

application point of view, there are several basic differences between GP and

DNN. Specifically, the former belongs to the class of nonparametric modeling

approaches, while the latter is usually parametric. The former can produce a

point estimate as well as its uncertainty measure, while the latter usually can

only yield a point estimate. The former is more attractive for adding side in-

formation, a property we adopt here to develop the INTEL algorithm, due to

its Bayesian nature; while the latter is more attractive for dealing with larger

datasets that own non-local smoothing features in e.g., natural languages and

speeches [43, 41].

18



5. Experiments

We conducted extensive experiments to evaluate our INTEL algorithm. In

subsection 5.1, we present an experiment conducted to validate the efficacy of

the model initialization procedure presented in subsection 3.1. In subsection

5.2, we show results about its performance for online outlier and change point

detection. A quantitative evaluation of its prediction performance is presented

in subsection 5.3. Finally, in subsection 5.4, we tested its robustness when

working under undesirable cases.

5.1. An experiment for testing the model initialization procedure

We check the efficacy of our method for initializing Mi’s, i > 0, which is

presented in subsection 3.1. We use a CPU usage dataset collected from a server

in Amazon’s east coast data center [52], as shown in Figure 2. In this dataset,

a change point appears at around the 3,000th time step (which is exactly the

2,971st time step). After that, both the mean and the output scale of the

dataset change significantly. We take the first 200 data points as the historical

dataset used for initializing hyper-parameters of M0. Now let compare two

initialization settings forMi, i > 0.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-2

-1

0

1

2

3

4

5

6

y

Figure 2: A CPU usage dataset collected from a server in Amazon’s east coast data-
center [52]

In the first setting, only one variant of M0 is used. The hyper-parameter

values ofM1 are the same as that ofM0, except that σf,1 = 0.2σf,0. As shown

in Figure 2, the real situation is that the output scale of the data decreases

19



markedly after the 2,971st time step. Therefore, the hyper-parameter setting

ofM1 is more suitable for the temporal structure of the data after the 2,971th

time step. We wonder if our INTEL algorithm can automatically capture this

regime shift by increasing the weight of M1 at that time. The answer is yes,

as shown in Figure 3. It is shown that the weight of M1 rises rapidly, while

that of M0 decreases abruptly, at the 2,971st time step. This result confirms

the INTEL algorithm’s capability for instant temporal structure learning.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
od

el
 w

ei
gh

t

M
0

M
1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(
)

Figure 3: The output of the INTEL algorithm for the CPU usage dataset. This result is
associated with the first initialization setting for INTEL (see the text in subsection 5.1
for more details). In the upper panel, the symbol SD represents standard derivation,
namely the σ in Eqn.(22). The middle panel presents the model weights (corresponding
to ωi,t+1 in Eqn.(16)). The bottom panel presents the mean function µ(·), see lines
14 and 21 in Algorithm 1 for its adaptation. The first 200 data points are used for
hyper-parameter initialization for M0.

20



In the second initialization setting, we maintain the sameM0 andM1 for use

as in the first initialization setting, while adding two new low-equality models,

M2 andM3, for which we set σf,2 = 15σf,0 and σf,3 = 10σf,0, respectively. The

values of the other hyper-parameters ofM2 andM3 are the same as that ofM0

and M1. Here the goal is to check if the inclusive of such low-quality models

can lead to the failure of INTEL. The result is shown in Figure 4. Comparing

Figure 4 with Figure 3, one can see that after adding the low-quality models,

the prediction performance of INTEL is almost unchanged. That says, for this

case, the INTEL algorithm is robust to a model set that contains low-quality

models. As shown in the middle panel of Figure 4, the reason for this robustness

is that the INTEL algorithm only assigns tiny weights to M2 and M3 almost

all the time, except at t = 1, 272 and t = 2, 971, where there is an outlier or

change point declared.

5.2. Experiments for online outliers / change points detection

Although the central aim of the INTEL algorithm is to do online predic-

tion, we are also interested in whether it can declare outliers and change points

in the right way. We used a bunch of real datasets to do the test. We also

included the fault bucket algorithm of [22], which is GPTS model-based, and

the BOCPD algorithm of [12], which is not GPTS model-based, but Bayesian-

based, as benchmark methods for comparison. Except for providing anomaly

detections, the fault bucket algorithm and INTEL also do one-step-ahead pre-

diction. Every dataset is pre-processed by a data normalization operation. The

normalized dataset has mean zero and standard error 1. For each algorithm, we

selected the same portion of the dataset as the historical data used for hyper-

parameter initialization. For the INTEL algorithm, we used 8 candidate models,

each corresponding to a combination of values for the hyper-parameters σf , σl

and σn. There are two candidate values for each hyper-parameter, e.g., for σf ,

one candidate value is σf,0, and the other is r · σf,0, where the value of r is

selected based on prior knowledge. For example, for the CPU usage data case

mentioned above in subsection 5.1, we set r = 0.2 for σf to describe our prior

21



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
od

el
 w

ei
gh

t

M
0

M
1

M
2

M
3

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(
)

Figure 4: The experimental result associated with the second initialization setting
(see the text in subsection 5.1 for more details). Compared with Figure 3, two new
low-quality models, namely M2 and M3, are added into the model set. The middle
panel shows that the INTEL algorithm assigns for M2 and M3 tiny weight values
almost all the time, except at t = 1272, 2971, where a regime shift happens.

22



knowledge that the observation amplitude will decrease during some period. In

subsection 5.4, we tested the robustness of INTEL when adopting inaccurate

prior knowledge by setting an inappropriate r value.

5.2.1. Well-log dataset

The well-log dataset is widely used in the context of change point detection

[12, 31]. It is a time-series consisting of 4,050 measurements of nuclear magnetic

response, which are made during the drilling of a well [23]. The change here

has a clear physical meaning, namely a transition between different strata of

rock. The result is plotted in Figure 5. It is shown that INTEL and BOCPD

successfully report all major regime transitions, while the fault bucket algorithm

fails to adapt to regime shifts and reports too many false anomaly detections.

We checked the reason for the failure of the fault bucket algorithm and found

that its performance is highly dependent on the selected data points used for

hyper-parameter initialization. If we use the first 150 data points, which contain

rougher temporal structures during the first 50 time steps, for hyper-parameter

initialization, then the fault bucket algorithm performs much better, as shown

in Figure 6. This is due to that the presence of the first 50 data points in

the training dataset renders the model capable of capturing rougher temporal

structures. Right now the fault bucket algorithm reports much less false anomaly

detections, while it has miss-detections. Further, by comparing the bottom

panel of Figure 5 with Figure 6, one can see that INTEL is still better than

the fault bucket algorithm in terms of prediction performance since the former

yields lower-valued variances and thus more certain predictions.

5.2.2. An ECG dataset

This dataset is obtained by injecting an artificial outlier into a piece of

real electrocardiogram (ECG) time-series. It comprises 235 observations. The

outlier appears at the 62nd time step followed by a saccade that happens from

about the 130th time step to about the 145th time step. The one-step-ahead

prediction result is shown in Figure 7. One can see that all algorithms considered

23



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-6

-5

-4

-3

-2

-1

0

1

2

3

y

observations
mean

 2 SD
outliers / changepoints

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-6

-5

-4

-3

-2

-1

0

1

2

3

y

observations
outliers / changepoints

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-8

-6

-4

-2

0

2

4

y

observations
mean

 2 SD
outliers / changepoints

Figure 5: Sequential real-time change point detection for the well-log dataset. The
upper, the middle and the bottom panels present results corresponding to the fault
bucket algorithm [22], the BOCPD algorithm [12], and our proposed INTEL algorithm,
respectively. Data points between t = 100 and t = 300 are used for hyper-parameter
initialization. The algorithm begins to work at t = 301.

24



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-6

-5

-4

-3

-2

-1

0

1

2

3

y

observations
mean

 2 SD
outliers / changepoints

Figure 6: Sequential real-time change point detection for the well-log dataset with the
fault bucket algorithm [22]. Different from Figure 5, here the first 150 data points are
used for hyper-parameter initialization.

have successfully detected the true outlier. Our INTEL algorithm is shown to

be robust to both the outlier and the saccade, while the fault bucket algorithm

fails to yield accurate predictions during the saccade period.

5.2.3. A Numenta benchmark data

This dataset is included in the Numenta Anomaly Benchmark [53]. It is

characterized by a pattern of repeated amplitude changes, see Figure 8, hence

is suitable for testing change points detection algorithms. We run fault bucket,

BOCPD, and our INTEL algorithms, respectively, to process this dataset. The

result is visually plotted in Figure 8. As is shown, all algorithms considered here

have successfully detected the true change points, while both fault bucket and

BOCPD give some false anomaly detections. In contrast, INTEL gives no false

detection for this dataset. Besides, compared with the fault bucket algorithm,

INTEL gives tighter ±2SD bounds in its predictions.

5.2.4. Fish killer data

This dataset is a smooth time-series with some rapid changes near the fish

kills. We selected the first 10,000 data points for use in comparing the fault

bucket algorithm, BOCPD, and INTEL. The result is depicted in Figure 9. It

is shown that, for this dataset, fault bucket and INTEL give comparable one-

step-ahead predictions. BOCPD performs unsatisfactorily since it reports many

false anomaly detections.

25



0 50 100 150 200 250
t

-2

-1

0

1

2

3

4

5

6

7

y

observations
mean

 2 SD
outliers / changepoints

0 50 100 150 200 250
t

-2

-1

0

1

2

3

4

5

6

7

y

observations
outliers / changepoints

0 50 100 150 200 250
t

-2

-1

0

1

2

3

4

5

6

7

y

observations
mean

 2 SD
outlier / changepoint

Figure 7: Sequential real-time outlier detection for an ECG dataset. The upper, the
middle and the bottom panels give results corresponding to the fault bucket algorithm
[22], the BOCPD algorithm [12], and our proposed INTEL algorithm, respectively.
The first 50 data points are used for hyper-parameter initialization.

26



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y

observations
mean

 2 SD
outliers / changepoints

0 500 1000 1500 2000 2500 3000 3500 4000 4500
y

-1

-0.5

0

0.5

1

1.5

2

y

observations
outliers / changepoints

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

observations
mean

 2 SD
outliers / changepoints

Figure 8: Sequential real-time change point detection for a Numenta benchmark
dataset [53]. The upper, the middle and the bottom panel presents results correspond-
ing to the fault bucket algorithm [22], the BOCPD algorithm [12], and our proposed
INTEL algorithm, respectively. The first 50 data points are used for hyper-parameter
initialization.

27



Figure 9: Sequential real-time change point detection for the fish killer dataset. The
upper, the middle and the bottom panels give results corresponding to the fault bucket
algorithm [22], the BOCPD algorithm [12], and our proposed INTEL algorithm, re-
spectively. The first 500 data points are used for hyper-parameter initialization.

28



5.2.5. An industry portfolio data

We also considered the “30 industry portfolios” dataset [9]. We selected

a portion of the first time-series included in that dataset, which records daily

returns of an industry-specific portfolio beginning at the year of 1963. The

experimental result is plotted in Figure 10, from which one can see that our IN-

TEL algorithm detects all change points accurately without any false detection.

The fault bucket algorithm fails to yield accurate change point detections and

observation predictions after the first regime shift. BOCPD successfully detects

all change points, while it also declares many false detections.

5.3. Experiments for prediction performance evaluation

We tested the one-step-ahead prediction performance of our INTEL algo-

rithm. Except for the fault bucket algorithm [22], we also included a simplified

version of the INTEL algorithm, termed S-INTEL here. In S-INTEL, only the

template modelM0 is used, while the operations for anomaly detection, train-

ing set formation and hyper-parameter value adaptation maintain the same as

that in INTEL. The BOCPD algorithm used in subsection 5.2 is not involved

here since it is only capable of detecting change points but incapable of making

real-time predictions. Except those used in subsection 5.2, additional time-series

datasets are considered here, including:

• the Nile dataset, which has been widely used in the time-series literature;

• the Intel lab data, which was collected from 54 sensors deployed in the

Intel Berkeley Research lab between Feb. 28th and April 5th, 2004. We

only used a small while representative fragment of this dataset.

• the NYC taxi data, which records the number of NYC taxi passengers.

Each observation in this dataset denotes the total number of taxi pas-

sengers during 30 minutes. Five regime shifts happen during the NYC

marathon, Thanksgiving, Christmas, New Years day, and a snow storm,

respectively.

29



0 100 200 300 400 500 600 700 800 900 1000
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

observations
mean

 2 SD
outliers / changepoints

0 100 200 300 400 500 600 700 800 900 1000
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

observations
outliers / changepoints

0 100 200 300 400 500 600 700 800 900 1000
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

observations
mean

 2 SD
outliers / changepoints

Figure 10: Sequential real-time change point detection for an industry portfolio
dataset. The upper, the middle and the bottom panels give results corresponding
to the fault bucket algorithm [22], the BOCPD algorithm [12], and our proposed IN-
TEL algorithm, respectively. The first 50 data points are used for hyper-parameter
initialization.

30



• the temperature (temp.) sensor data of an internal component of a large,

industrial machine. This dataset has at least two outlier observations.

One originates from a planned shutdown of the machine, and the other

one is a catastrophic failure of the machine.

• A real time traffic data from the twin cities metro area in Minnesota of

the U.S.. Included metrics include occupancy, speed, and travel time from

specific sensors, while we only present the result associated with the metric

speed, due to the limitation in space.

The performance metrics in use are the negative log likelihood (NLL), the

mean absolute error (MAE), and the mean square error (MSE). For every metric,

the smaller is its value, the better the prediction performance it stands for. We

list the one-step-ahead prediction result measured with these metrics in Tables

1-3.

As is shown in Tables 1-3, for the first 8 of these 11 datasets, INTEL outper-

forms the fault bucket algorithm [22] in terms of all metrics considered. For the

last dataset, INTEL performs slightly better than the fault bucket algorithm

in terms of MAE and MSE, while the fault bucket algorithm beats INTEL

slightly in terms of NLL. It is only for the NYC taxi dataset and the temp. sen-

sor dataset that the fault bucket algorithm gives significantly better prediction

than INTEL. We plot these two datasets in Figure 11. As is shown, there is

no clear regime shift in them. It indicates that the advantage of INTEL over

the fault bucket algorithm mainly comes from its capability to handle change

points.

By comparing S-INTEL and INTEL according to results as shown in Tables

1-3, one can see that INTEL outperforms S-INTEL markedly in most cases.

S-INTEL only provides slightly better prediction than INTEL in terms of MAE

for the first two datasets, and in terms of MSE for the first dataset. The above

result demonstrates the advantage of using multiple models compared with using

only one model.

31



Table 1: NLL based prediction performance comparison

Fault bucket S-INTEL INTEL

CPU usage 3.5181 0.7785 0.0972

well-log 46.3338 0.0950 0.0947

ECG 24.6629 42.2999 -0.1459

Numenta -1.0409 -0.4663 -1.4887

fish killer -1.0336 6.2875 -1.6867

portfolio 60,200 8.8275 -3.7451

Nile data 129.4349 22.8654 2.2453

Intel lab -0.8593 -0.6276 -1.2252

NYC taxi -0.4434 5.6331 0.0129

temp. sensor -0.7499 41.3108 -0.2588

traffic 1.3471 1.3525 1.3749

Table 2: MAE based prediction performance comparison

Fault bucket S-INTEL INTEL

CPU usage 1.9540 0.1859 0.1867

well-log 2.4985 0.2078 0.2129

ECG 0.4650 0.3786 0.1387

Numenta 0.0375 0.0527 0.0525

fish killer 0.0496 0.0478 0.0220

portfolio 2.3378 0.0034 0.0012

Nile 1.8076 0.6611 0.6111

Intel lab 0.0833 0.0628 0.0485

NYC taxi 0.1102 0.3761 0.1943

temp. sensor 0.0894 0.4028 0.1481

traffic 0.6716 0.6725 0.6500

Table 3: MSE based prediction performance comparison

Fault bucket S-INTEL INTEL

CPU usage 3.8726 0.0562 0.0564

well-log 6.3093 0.0707 0.0706

ECG 1.5398 1.0580 0.0404

Numenta 0.0044 0.0057 0.0057

fish killer 0.0129 0.0208 0.0182

portfolio 5.4651 4.4059 × 10−5 4.8654 × 10−6

Nile 3.5819 0.6604 0.5535

Intel lab 0.0073 0.0059 0.0038

NYC taxi 0.0184 0.2045 0.0635

temp. sensor 0.0101 0.3342 0.0313

traffic 0.7103 0.7263 0.6903

32



0 0.5 1 1.5 2 2.5
t / 10000

0

20

40

60

80

100

120

y

0 500 1000 1500 2000 2500
t

20

30

40

50

60

70

80

90

100

110

y

Figure 11: The temp. sensor dataset (the top panel) and the traffic dataset (the
bottom panel) used in Tables 1-3

5.4. Robustness test

We tested the robustness of our INTEL algorithm in three cases as below:

1. The prior knowledge used for initializingMi, i > 0 is inaccurate;

2. The historical dataset used for initializingM0 is not clean, namely, there

is at least one outlier or change point included in it.

3. False detections of anomalies exist during the sequential prediction pro-

cess.

For case 1 listed above, we modified the initialization setting used in subsection

5.1 for processing the CPU usage dataset. Specifically,M1 is removed from the

model set, whileM0,M2 andM3 remain. Recall that inM2 andM3, we have

σf,2 = 15σf,0 and σf,3 = 10σf,0, respectively. We now adopt an inaccurate prior

knowledge that the observation amplitude will increase during some period but

never decrease, while the fact is that it will decrease significantly after t = 2, 971.

The performance of INTEL under this setting is plotted in Figure 12. We

see that the INTEL algorithm fails to capture one important aspect of the

33



temporal structure, namely a significantly lowered amplitude, in the data after

the regime shift at t = 2, 791. However, it still gives accurate mean predictions

for observations after t = 2, 791.

Table 4: Prediction performance of the proposed INTEL algorithm for case 2 in sub-
section 5.4

NLL MAE MSE

0.5545 0.2126 0.0708

Table 5: Prediction performance of the proposed INTEL algorithm for case 3 in sub-
section 5.4

NLL MAE MSE

0.5008 0.2150 0.0756

For case 2, we re-studied the well-log dataset. In the result plotted in Figure

5, data points between t = 100 and t = 300 are used for hyper-parameter

initialization for M0, since there is no anomaly observation within them. We

now use the first 200 data points for hyper-parameter initialization for M0.

All the other experimental settings are kept the same as that used for plotting

Figure 5. Now anomalies exist in the training dataset (there are at least three

anomalies in the first 50 data points as reported by [31]). Now the performance

of the proposed INTEL algorithm is plotted in Figure 13. Comparing Figure

13 with the bottom panel of Figure 5, we see that INTEL fails to detect some

change points now, and gives a broader ±2SD bounds, while it still provides

accurate mean predictions. The result presented in Table 4 reconfirms the above

observation. Comparing the result listed in Table 4 with that shown in Tables

1-3, we see that the performance of INTEL is almost unchanged in terms of

MAE and MSE. Its performance is degraded based only on the metric NLL.

This is because the metrics MAE and MSE only describe the accuracy of the

mean prediction, while NLL covers information on the uncertainty measure.

Finally, for case 3, we tested the performance of INTEL when false anomaly

detections are present for the well-log data. As is shown in Figure 14, even in

case of false anomaly detections being present, the INTEL algorithm can still

34



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
od

el
 w

ei
gh

t

M
0

M
2

M
3

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

()

Figure 12: Experimental result of the INTEL algorithm when adopting an inaccurate
prior knowledge for initializing Mi, i > 0. The experimental setting is the same as
that used for plotting Figure 4, except that M1 is now removed from the model set.
The same as in Figure 4, the middle panel shows that the INTEL algorithm assigns for
M2 and M3 tiny weight values almost all the time, except at t = 1272, 2971, where a
regime shift happens.

35



0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-8

-6

-4

-2

0

2

4

y

observations
mean

 2 SD
declared outliers / changepoints

Figure 13: Sequential prediction result of the proposed INTEL algorithm for the well-
log dataset. The first 200 data points, in which anomaly observations are present, are
used for hyper-parameter initialization. The other experimental settings are the same
as that used for plotting Figure 5.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

-8

-6

-4

-2

0

2

4

y

observations
mean

 2 SD
declared outliers / changepoints

Figure 14: Sequential prediction result of the proposed INTEL algorithm for the well-
log dataset, in case of false anomaly detections being present.

36



give accurate predictions for most of the observations. A quantitative evalua-

tion of the prediction performance associated with Figure 14 is shown in Table

5. Comparing Table 5 with that shown in Tables 1-3, again, we see that the

performance of INTEL is degraded based only on the metric NLL.

6. Concluding remarks and future works

In this paper, we addressed the problem of SOP by unleashing the flexibility

and interpretability of the GPTS model together with harnessing prior knowl-

edge. Specifically, we proposed a novel algorithm design termed INTEL and

demonstrated its performance using extensive real dataset experiments. Ex-

perimental results show that the INTEL algorithm is a highly efficient solution

to the problem of SOP in the presence of outliers and change points. As an

online prediction algorithm, INTEL is also demonstrated to be a qualified on-

line anomaly detection method. The biggest feature of INTEL is that it can

instantly capture the pattern of the new regime, without the need to do model

training, upon a change point is declared. Further, the INTEL algorithm al-

lows closed-form inference and prediction. All operations to implement this

algorithm are deterministic and analytically tractable.

We did robustness tests to the INTEL algorithm, investigating its perfor-

mance under three undesirable cases, namely, when the prior knowledge it

adopts is inaccurate, when the historical data used for template model hyper-

parameter initialization is not clean and when false anomaly detections exist

during the sequential prediction process. An interesting finding is that, un-

der these cases, although the INTEL’s prediction performance is degraded in

terms of the metric NLL, its prediction performance in terms of MAE and MSE

maintains. That says our INTEL algorithm can still provide accurate point

predictions in our test cases.

Currently, the INTEL algorithm can only do one-step-ahead prediction,

while, in principle, it can be extended naturally to do multiple-step-ahead pre-

diction, which deserves future investigation. It is also important to extend the

37



INTEL algorithm to handle multi-variate time-series data. In the current ver-

sion of the INTEL algorithm, each candidate GPTS model uses a Matern 5/2

kernel function. It is possible to let these candidate models employ different

types of kernel functions and then check its performance.

References

[1] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure,

H. Koutsopoulos, and C. Moran, “IBM infosphere streams for scalable,

real-time, intelligent transportation services,” in Proc. of the 2010 ACM

SIGMOD. ACM, 2010, pp. 1093–1104.

[2] A. C. Harvey, Forecasting, structural time series models and the Kalman

filter, Cambridge university press, 1990.

[3] E. Condon, A. He, and M. Cukier, “Analysis of computer security inci-

dent data using time series models,” in 2008 19th Int’l Symp. on Software

Reliability Engineering (ISSRE). IEEE, 2008, pp. 77–86.

[4] H. Eerens, D. Haesen, F. Rembold, F. Urbano, C. Tote, and L. Bydekerke,

“Image time series processing for agriculture monitoring,” Environmental

Modelling & Software, vol. 53, pp. 154–162, 2014.

[5] D. A. Rasmussen, O. Ratmann, and K. Koelle, “Inference for nonlinear

epidemiological models using genealogies and time series,” PLoS computa-

tional biology, vol. 7, no. 8, pp. 1–11, 2011.

[6] B. Liu, Z. Xu, J. Chen, and G. Yang, “Toward reliable data analysis for

internet of things by bayesian dynamic modeling and computation,” in

IEEE China Summit and International Conference on Signal and Infor-

mation Processing (ChinaSIP). IEEE, 2015, pp. 1027–1031.

[7] B. Liu and S. Cheng, “State space model-based trust evaluation over wire-

less sensor networks: an iterative particle filter approach,” The Journal of

Engineering, vol. 2017, no. 4, pp. 101–109, 2017.

38



[8] J. Wang and B. Liu, “Online fault-tolerant dynamic event region detection

in sensor networks via trust model,” in IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, 2017, pp. 1–6.

[9] X. Xuan and K. Murphy, “Modeling changing dependency structure in

multivariate time series,” in Proc. of the 24th Int’l Conf. on Machine

Learning (ICML). ACM, 2007, pp. 1055–1062.

[10] D. Barry and J. A. Hartigan, “A Bayesian analysis for change point prob-

lems,” Journal of the American Statistical Association, vol. 88, no. 421,

pp. 309–319, 1993.

[11] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,”

arXiv preprint arXiv:0710.3742, 2007.

[12] R. Turner, Y. Saatci, and C. E. Rasmussen, “Adaptive sequential Bayesian

change point detection,” in Temporal Segmentation Workshop at NIPS,

2009.

[13] P. Fearnhead and Z. Liu, “On-line inference for multiple changepoint

problems,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 69, no. 4, pp. 589–605, 2007.

[14] B. K. Ray and R. S. Tsay, “Bayesian methods for change-point detection

in long-range dependent processes,” Journal of Time Series Analysis, vol.

23, no. 6, pp. 687–705, 2002.

[15] V. Chandola and R. R. Vatsavai, “A Gaussian process based online change

detection algorithm for monitoring periodic time series,” in Proc. of the

2011 SIAM Int’l Conf. on Data Mining (ICDM). SIAM, 2011, pp. 95–106.

[16] Y. Saatçi, R. D. Turner, and C. E. Rasmussen, “Gaussian process change

point models,” in ICML, 2010, pp. 927–934.

[17] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting outliers

and change points from non-stationary time series data,” in Proc. of the

8th ACM SIGKDD. ACM, 2002, pp. 676–681.

39



[18] R. M. Neal, Bayesian learning for neural networks, vol. 118, Springer

Science & Business Media, 2012.

[19] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain,

“Gaussian processes for time-series modelling,” Philosophical Trans. of the

Royal Society A: Mathematical, Physical and Engineering Sciences, vol.

371, no. 1984, pp. 1–25, 2013.

[20] M. A. Osborne, Stephen J. Roberts, A. Rogers, and N. R. Jennings, “Real-

time information processing of environmental sensor network data using

Bayesian gaussian processes,” ACM Trans. on Sensor Networks (TOSN),

vol. 9, no. 1, pp. 1, 2012.

[21] J. Vanhatalo, P. Jylänki, and A. Vehtari, “Gaussian process regression

with student-t likelihood,” in Advances in neural information processing

systems, 2009, pp. 1910–1918.

[22] M. Osborne, R. Garnett, K. Swersky, and N. De Freitas, “A machine learn-

ing approach to pattern detection and prediction for environmental moni-

toring and water sustainability,” in ICML Workshop on Machine Learning

for Global Challenges, 2011.

[23] R. Garnett, M. A. Osborne, S. Reece, A. Rogers, and S. J. Roberts, “Se-

quential Bayesian prediction in the presence of changepoints and faults,”

The Computer Journal, vol. 53, no. 9, pp. 1430–1446, 2010.

[24] J. Geweke, “Bayesian treatment of the independent student-t linear

model,” Journal of applied econometrics, vol. 8, no. S1, pp. S19–S40, 1993.

[25] M. E. Tipping and N. D. Lawrence, “Variational inference for student-t

models: Robust bayesian interpolation and generalised component analy-

sis,” Neurocomputing, vol. 69, no. 1-3, pp. 123–141, 2005.

[26] G. E. Hinton, “Training products of experts by minimizing contrastive

divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

40



[27] C. Williams and C. E. Rasmussen, Gaussian processes for machine learn-

ing, MIT Press Cambridge, MA, 2006.

[28] M. L. Stein, Interpolation of spatial data: some theory for Kriging, Springer

Science & Business Media, 2012.

[29] C. E. Rasmussen and H. Nickisch, “Gaussian processes for machine learning

(GPML) toolbox,” Journal of machine learning research, vol. 11, pp. 3011–

3015, 2010.

[30] R. Murray-Smith and A. Girard, “Gaussian process priors with arma noise

models,” in Irish Signals and Systems Conference, Maynooth. Citeseer,

2001, pp. 147–152.

[31] R. D. Turner, Gaussian processes for state space models and change point

detection, Ph.D. thesis, University of Cambridge, 2012.

[32] Y. Dai and B. Liu, “Robust video object tracking via Bayesian model

averaging-based feature fusion,” Optical Engineering, vol. 55, no. 8, pp.

1–11, 2016.

[33] B. Liu, “Instantaneous frequency tracking under model uncertainty via

dynamic model averaging and particle filtering,” IEEE Trans. on Wireless

Communications, vol. 10, no. 6, pp. 1810–1819, 2011.

[34] B. Liu, “Robust particle filter by dynamic averaging of multiple noise

models,” in Proc. of the 42nd IEEE Int’l Conf. on Acoustics, Speech, and

Signal Processing (ICASSP). IEEE, 2017, pp. 4034–4038.

[35] Y. Cao and D. J. Fleet, “Generalized product of experts for automatic

and principled fusion of gaussian process predictions,” in Automating the

Learning Pipeline workshop at NIPS, 2014.

[36] H. J. Escalante, “A comparison of outlier detection algorithms for machine

learning,” in Proc. of the International Conference on Communications in

Computing, 2005, pp. 228–237.

41



[37] K. Vasas, P. Elek, and M., “A two-state regime switching autoregressive

model with an application to river flow analysis,” Journal of Statistical

Planning and Inference, vol. 137, no. 10, pp. 3113–3126, 2007.

[38] R. J. Boys, D. A. Henderson, and D. J. Wilkinson, “Detecting homogeneous

segments in DNA sequences by using hidden Markov models,” Journal of

the Royal Statistical Society: Series C (Applied Statistics), vol. 49, no. 2,

pp. 269–285, 2000.

[39] J. Takeuchi and K. Yamanishi, “A unifying framework for detecting outliers

and change points from time series,” IEEE Trans. on Knowledge and Data

Engineering, vol. 18, no. 4, pp. 482–492, 2006.

[40] G. Zhong, Y. Zheng, S. Li, and Y. Fu, “SLMOML: online metric learning

with global convergence,” IEEE Trans. on Circuits and Systems for Video

Technology, vol. 28, no. 10, pp. 2460–2472, 2017.

[41] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays, and J. Schalk-

wyk, “Learning acoustic frame labeling for speech recognition with recur-

rent neural networks,” in IEEE Int’l Conf. on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2015, pp. 4280–4284.

[42] V. I. Jurtz, A. R. Johansen, M. Nielsen, Jose J. Almagro A., H. Nielsen,

C. K. Sønderby, O. Winther, and S. K. Sønderby, “An introduction to deep

learning on biological sequence data: examples and solutions,” Bioinfor-

matics, vol. 33, no. 22, pp. 3685–3690, 2017.

[43] X. Jia, S. Li, H. Zhao, S. Kim, and V. Kumar, “Towards robust and dis-

criminative sequential data learning: When and how to perform adversarial

training?,” in Proc. of the 25th ACM Int’l Conf. on Knowledge Discovery

& Data Mining (SIGKDD), 2019, pp. 1665–1673.

[44] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional

LSTM-CNNs-CRF,” in Proc. of the 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL), 2016, pp. 1064–1074.

42



[45] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. Shen, “Video captioning with

attention-based LSTM and semantic consistency,” IEEE Trans. on Multi-

media, vol. 19, no. 9, pp. 2045–2055, 2017.

[46] A. Solin and S. Särkkä, “Explicit link between periodic covariance functions

and state space models,” in Artificial Intelligence and Statistics, 2014, pp.

904–912.

[47] J. Hartikainen and S. Särkkä, “Kalman filtering and smoothing solutions

to temporal Gaussian process regression models,” in IEEE Int’l Workshop

on Machine Learning for Signal Processing. IEEE, 2010, pp. 379–384.

[48] S. Sarkka, A. Solin, and J. Hartikainen, “Spatiotemporal learning via

infinite-dimensional Bayesian filtering and smoothing: A look at Gaus-

sian process regression through Kalman filtering,” IEEE Signal Processing

Magazine, vol. 30, no. 4, pp. 51–61, 2013.

[49] Steven Reece and Stephen Roberts, “An introduction to Gaussian processes

for the Kalman filter expert,” in 13th Int’l Conf. on Information Fusion.

IEEE, 2010, pp. 1–9.

[50] Radford M Neal, “Priors for infinite networks,” in Bayesian Learning for

Neural Networks, pp. 29–53. Springer, 1996.

[51] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-

Dickstein, “Deep neural networks as Gaussian processes,” in Proc. of Int’l

Conf. on Learning Representations (ICLR), 2018, pp. 1–17.

[52] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time

anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.

134–147, 2017.

[53] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection

algorithms–the numenta anomaly benchmark,” in 2015 IEEE 14th Int’l

Conf. on Machine Learning and Applications (ICMLA). IEEE, 2015, pp.

38–44.

43


	1 Introduction
	2 Sequential online prediction with GP
	2.1 GP
	2.2 The GPTS model

	3 The proposed INTEL algorithm
	3.1 GPTS Mixture for capturing complex temporal structure
	3.2 Fusion of GPTS predictions
	3.3 Online outlier detection
	3.4 Change point detection and instant temporal structure capturing
	3.5 Implementation of the INTEL algorithm
	3.6 Algorithm initialization
	3.7 A formal analysis of the computational complexity of the INTEL algorithm

	4 Connections to relevant works in the literature
	5 Experiments
	5.1 An experiment for testing the model initialization procedure
	5.2 Experiments for online outliers / change points detection
	5.2.1 Well-log dataset
	5.2.2 An ECG dataset
	5.2.3 A Numenta benchmark data
	5.2.4 Fish killer data
	5.2.5 An industry portfolio data

	5.3 Experiments for prediction performance evaluation
	5.4 Robustness test

	6 Concluding remarks and future works

