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Abstract

To interact with humans in collaborative environments, machines need to be able to predict (i.e., antici-
pate) future events, and execute actions in a timely manner. However, the observation of the human limb
movements may not be sufficient to anticipate their actions unambiguously. In this work, we consider two
additional sources of information (i.e., context) over time, gaze, movement and object information, and study
how these additional contextual cues improve the action anticipation performance. We address action antic-
ipation as a classification task, where the model takes the available information as the input and predicts the
most likely action. We propose to use the uncertainty about each prediction as an online decision-making
criterion for action anticipation. Uncertainty is modeled as a stochastic process applied to a time-based
neural network architecture, which improves the conventional class-likelihood (i.e., deterministic) criterion.
The main contributions of this paper are four-fold: (i) We propose a novel and effective decision-making
criterion that can be used to anticipate actions even in situations of high ambiguity; (i) we propose a deep
architecture that outperforms previous results in the action anticipation task when using the Acticipate
collaborative dataset; (74) we show that contextual information is important to disambiguate the interpre-
tation of similar actions; and (iv) we also provide a formal description of three existing performance metrics
that can be easily used to evaluate action anticipation models. Our results on the Acticipate dataset showed
the importance of contextual information and the uncertainty criterion for action anticipation. We achieve
an average accuracy of 98.75% in the anticipation task using only an average of 25% of observations. Also,
considering that a good anticipation model should perform well in the action recognition task, we achieve
an average accuracy of 100% in action recognition on the Acticipate dataset, when the entire observation
set is used.

Keywords: Action Anticipation, Early Action Prediction, Context Information, Bayesian Deep Learning,
Uncertainty.
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decisions. Similarly, artificial machines need this ca-
pacity of anticipating actions, to act accordingly and
achieve an effective interaction with humans [1].

Action anticipation and action recognition are two
different tasks. The “action recognition” task is
based on a model that uses an entire sequence of in-
formation, which represents one performed action, to
associate the observed action to one possible action
class [2]. If the decision-making depends on the entire
action, it can only be performed after the action is
completely executed. However, this approach is not
suitable for systems that manage risks or perform
joint tasks with humans. For instance, in a situation
where a self-driving car approaches a pedestrian, it
must perceive whether the pedestrian will cross the
road in time, in order to safely stop or deviate the
car if necessary. In this scenario, the model must not
only recognize actions but, more importantly, must
anticipate them [3].

Action anticipation consists of classifying an action
even before it occurs, by using the partial information
provided up to a certain moment in time. Usually, an
anticipation model is more complex than a recogni-
tion one. This comes from its capacity to classify ac-
tions based on an incomplete sequence of data, which
makes the choice of the correct class more uncertain.
Ideally, every anticipation model should be capable
of recognizing actions; on the other hand, not every
recognition model would be able to anticipate them.

In the last few years, deep learning has achieved
the state-of-the-art results in many tasks, such as
image recognition [4, 5, 6], natural language process-
ing [7, 8] and action/activity recognition [9, 10, 11].
Some works, like [12, 13, 14], represent an action by
estimating the movement of the involved actors (i.e.,
users). In the case of simple and unambiguous ac-
tions, the movement can be sufficient for a successful
recognition/anticipation task. However, in the case of
more complex and ambiguous actions, it would not be
enough to recognize/anticipate successfully, mainly
when the information about objects, persons, envi-
ronment configuration, movements performed previ-
ously, are important for recognizing or anticipating
actions. Furthermore, some details during action an-
ticipation, such as objects’ position, the relation be-
tween hands and object /person and the type of object

manipulated, can offer as much or even more infor-
mation than only movement. As such, using only
movement, the model rules out the context, a critical
information that can help characterize the actions.

Regarding the action recognition task, the two-
stream approaches [10, 11, 15] are the most success-
ful, because they use movement as the main source
of information to describe each action, and they use
the context as additional information that can help
characterize each class individually. In these solu-
tions, the movement is the optical flow calculated
between sequential images, and the contextual infor-
mation [16] is extracted implicitly by CNNs (Con-
volutional Neural Networks)[17]. However, to obtain
the implicit contextual information from images in
a self-supervised manner, the training procedure of
the CNN models requires large datasets to achieve
good results. As a consequence, the two-stream ap-
proaches are not effective when solving problems pro-
vided by small datasets, such as those commonly used
for human-human or human-robot collaboration.

Analyzing from another perspective, even achiev-
ing satisfactory results in their experiments, the
aforementioned works are not crystal clear about how
one could use their solutions in a real-time situation,
once they measure the model performance using ac-
curacy or observation ratio. They do not discuss how
to handle action anticipation or what kind of function
must be used as the decision-making criterion. Due
to the absence of such discussion, it is unclear how
to use this approach in a real application, where the
data is continuously generated, as in a video stream-
ing.

Another problem of most deep learning solutions
is their overconfidence in their predictions. A de-
terministic model will always provide a prediction,
even when there is a high uncertainty about the cor-
rect class, and the final decision becomes unclear.
A trustworthy model should assess its uncertainty
about each prediction and provide the system with
the possibility of making more reliable decisions.

In this work, we focus on context-based action an-
ticipation, but with small datasets. Thus, instead
of implicitly learning the visual context, we define
the contextual information in an action anticipation
problem. With this in mind, we used the Acticipate



dataset [1], where one person hands an object over to
another one, and receives it back. For this dataset,
the dyadic interaction task requires the future predic-
tion (i.e., anticipation) of the arm and head motion,
gaze and object position. A previous work [18] has
shown that, using the eye gaze and the 3D pose of
the main character in the Acticipate dataset, a time-
based deep learning architecture is able to anticipate
his actions. As defined in [19], context is any infor-
mation that can be used to characterize an entity.
Therefore, when considering the 3D pose/movement
as the entity that represents an action, the eye gaze
in [18] can be seen as context information.

Now, to further investigate the importance of con-
text in the task of anticipating actions, we have in-
creased the complexity in the Acticipate dataset, ex-
tending its number of actions. To do that, we di-
vided previous actions to create the new actions re-
cewe and pick, which add ambiguity into the actions
give and place, correspondingly. We also consider an
additional element of context information, the posi-
tion of the handled object. Finally, instead of using
3D pose and gaze as in [18], we use only information
taken from RGB images. Such restriction makes our
proposal more general and less dependent on intru-
sive and/or expensive sensors.

Also, to investigate the possibility of using the un-
certainty to provide a more reliable decision, we pro-
pose a context-aware model based on a recurrent neu-
ral network with an adaptive threshold. This thresh-
old is calculated via an uncertainty metric and repre-
sents a decision-making criterion for action anticipa-
tion. The use of uncertainty significantly contributes
to attenuate the overconfidence problem often faced
by models trained with small datasets.

In summary, the main contributions of this paper
are the following:

e We propose a novel and effective decision-
making criterion that can be used to antici-
pate actions even in situations of high ambigu-
ity. The proposed approach aims to minimize
the model’s uncertainty instead of maximizing
its class probabilities. Therefore, by applying a
proper threshold over the uncertainty, the deci-
sion about whether an action should be antici-

pated or not can be done.

e We show the importance of context information
to disambiguate similar actions.

e We propose a deep architecture that uses less
information than [18], and outperforms the re-
sults in action anticipation task using Acticipate
dataset. This result holds even in the case of
its extended number of actions, which are more
ambiguous than the original ones [1].

e We also provide a formal description of three
existing performance metrics that can be easily
used to evaluate action anticipation models.

To build a better understanding about our pro-
posal, the next sections will cover, respectively: the
related works (Sec. 2); action anticipation back-
ground and related problems (Sec. 3); the method-
ology of this work, including the hypotheses raised
and its main contributions (Sec. 4); Bayesian neural
networks and uncertainty (Sec. 5); our proposed ap-
proach (Sec. 6); experiments (Sec. 7 and 8, for results
and discussions); and finally, conclusions and future
works (Sec. 9).

2. Related Works

In the last few years, action anticipation has been
addressed by many researchers [20, 21, 22, 23, 24, 25]
due to its importance to perform an effective interac-
tion.

In [23], the authors proposed to decrease the di-
mensionality on RNNs by allowing the sharing of
weights, and improve the temporal representation of
an action by using an RBF kernel (Radial Base Func-
tion) over the hidden-state of an LSTM network.
They proposed to feed an LSTM with features ex-
tracted by a CNN. Next, they applied an RBF over
the LSTM hidden states, and lastly, the RBF out-
come is given as input to a Multilayer Perceptron
(MLP). The authors use between 20% and 50% of a
video to predict the next features and then perform
the anticipation.

In [13], the authors use a convolutional auto-
encoder network to predict the next movement of a



video. Such movement is generated by a ranking loss
function, applied over the difference between consecu-
tive images in a sequence, and is stored in a still RGB
image called Dynamic Image [26]. With a Markov as-
sumption, after generating a sequence of dynamic im-
ages using S frames for each one, the model generates
the next k dynamic images, where £ > 1. Further,
those images feed a model that outputs the proba-
bility distribution over action classes. A drawback of
the two previous works is to use movement as the only
source of information to represent an action, which
can harm the prediction of actions that are related
not only to movement but also to context informa-
tion.

In [27] is proposed a model to anticipate actions
based only on RGB images. The authors use as fea-
ture extractor the pre-trained CNN VGGI16 and, as
the classifier, two LSTMs that predict the classes cor-
responding to each input frame of a video. A similar
approach is also presented in [28].

LSTM is also used to anticipate actions of car
drivers by using only RGB images [29] or in combina-
tion with GPS information [30]. Other approaches,
as [31], use Generative Adversarial Networks (GAN)
to predict future images and then anticipate the ac-
tion, or more sophisticated architectures, as in [3],
that uses Convolutional Graphical Models (CGM) to
predict when a pedestrian will cross the road.

Despite these works present good results in terms
of accuracy at each observation time, none of them
explains how action anticipation should be performed
in a real scenario, when it is not possible to know the
size of the input sequence. They did not discuss what
kind of decision-making criteria could be used in such
a situation.

Even in works as [32], which aim to anticipate ac-
tion in online videos, the authors only reported the
accuracy at each observation, but nothing about how
to make decisions. Only a couple of works address
this question. For instance, in [33, 34], the authors
use a threshold over the probability distribution pro-
vided by an HMM (Hidden Markov Model) to antic-
ipate maneuvers of drivers. However, as discussed in
[33], this approach faces problems in ambiguous sit-
uations, where it is not possible to be sure about the
action to be anticipated, even when the probability

exceeds the specified threshold.

Many of the approaches mentioned above are not
suitable for small datasets, since the high capacity of
their models can lead to overfitting. Therefore, [18]
proposes a different method to anticipate action in
the Acticipate dataset - a small collaborative dataset
used to understand the role of gaze on action an-
ticipation [1], as discussed in Sec. 4. Their approach
consists of feeding an LSTM cell with a 3D pose (Mo-
tion Capture-MoCap information) and gaze (fixation
points), and then pass the LSTM output through a
softmax classifier. They trained two models with dif-
ferent observations: one with only 3D pose and an-
other with 3D pose plus eye gaze. When the model
uses the pose and gaze information, the authors con-
cluded that the actions in the dataset could be an-
ticipated 92ms before. This result showed the impor-
tance of using not only movement information (here,
the evolution of the pose in time) to anticipate ac-
tions. However, the authors did not notice that their
model did not recognize all the actions (100% of ac-
tion recognition accuracy) even after seeing the whole
sequence. Their results for action anticipation were
shown based only on one action sample. More conclu-
sive results should present statistics for all classes in
the entire dataset. In complement, they also did not
provide an answer to when a model must anticipate
an action. From their comments, we presume that
it may be done using a threshold on the probability
value, as mentioned in [33, 34].

After these explanations, our main objectives in
this work are:

e propose a model that improves results in [18]
even when using only RGB images;

e present how context can be used in a neural net-
work architecture to improve action anticipation;

e present in detail how to anticipate an action us-
ing a threshold value as a decision-making crite-
rion; and

e propose the use of uncertainty as an effective
threshold value that improves action anticipa-
tion.



3. Action Anticipation Background

In this section, we describe the definition adopted
here for action anticipation, its main properties, and
how we address the problem. We can divide the
works that try to solve the anticipation task into
two main groups: (i) early action prediction, where
an action must be predicted before it is fully exe-
cuted [35, 24, 36, 37, 38]; and (4) event anticipation,
where an event must be predicted before it starts
[39, 40, 40]. In this work, “action anticipation” is
understood as in the first set of works: early action
prediction by using sequential features.

3.1. Problem Definition

First of all, it is essential to formally define the
action anticipation task. Let X = {x1,x2, "+ ,Xn |
x; € R¥1} be a sequence with N observations that
represents the execution of a specific action y € ),
where ) is a set with d action classes. Here, x; rep-
resents an observation taken at time ¢. Now, con-
sidering that X} ., represents an indexed sequence
composed by the observations taken between time
t1 and to, we define a model M for action classifi-
cation problem as a mapping function parametrized
by 6 that receives as input Xj..(¢ observations from
X) and return as output the vector of probability
scores s € [0,1]7%!, representing the probability that
sequence X belongs to each action class.

s = M(Xy..,0). (1)

In action recognition tasks, the model M has all
the observations of the sequence X' (¢ = N) available
to generate the probability score §. On the other
hand, for an action anticipation task, the action is
not completely executed, thus only an initial part of
X is available (t < N) so that M can infer §.

In Eq. (1) the parameter 6 can be found by solving
the following optimization problem:

0 = argénin {L£(6,D)} (2)

where D = {(XW, 4y (AP 4@ ... (xk) 4K}
is the training set, with each pair (X, y®) repre-
senting an action sequence and its respective label,

K is the number of sequences in the training set,
and L is a loss function.

During the prediction time, we do not know the
value of N, and thus we do not know when the action
will end. Therefore, at each time ¢, M only uses the
observed current sequence, Xj.;, and a function g is
in charge of predicting the action class at instant .

§ = M(X.,0)

g = g(8).

(3)

For action recognition tasks, the discriminant func-
tion g can be defined as:

9(8) = argmax (),

(4)

because the model M is more confident about the
probability score assigned to §. On the other hand,
for action anticipation tasks, since M uses only part
of the observations, when the distribution § is close to
a uniform distribution, one can not be certain about
the correct class. Hence, Eq. (4) is not an adequate
discriminant function to anticipate actions.

In this way, a better option is to use a discriminant
function with a threshold parameter p, as presented
in Eq. (5).

h(s) > p
otherwise -

(5)

. {argmax(é),
-1,

Once p is specified as a probability value, h can be

defined as:
h(8) = max(8) (6)

In Eq. (5), a value of p > 0.9 means that the model
is highly certain about its prediction, and the action
can be anticipated, which favors the use of such a
model in real-time. On the other hand, when it re-
turns —1 means that it is not certain about the cor-
rect class and needs more observation to improve its
certainty.

3.2. Evaluation metrics

After determining how to anticipate an action, it is
essential to decide how to ascertain the quality of the
model M. Therefore, we formally describe three ex-
isting metrics that can be used in anticipation bench-
mark experiments: (i) accuracy at each observation



ratio, (#4) anticipation accuracy and (i) expected
observation ratio.

Accuracy at each observation ratio. Considering
that each sequence X can have a different length N,
this metric helps evaluate all sequences in a normal-
ized time scale. Thereby, the success ratio when an-
ticipating an action after a observation ratio r, with
an anticipation threshold p, can be calculated as fol-
lows:

ACC(r (@)

Zpred 2. (1)

|'r><N] Y

where,

17 g(M(Xlt)7p) =Yy
0, otherwise ’

pred(Xi.e,y,p) = { (8)

In Eq. (7), in terms of r, t = [r x N| V r € (0,1],

where N is the number of observations in a sequence
X® . However, in terms of t, r = t/N V t €
{1,2,...,N}.
Anticipation accuracy. In a real-time situation,
the model can not access the label of each observa-
tion. So, the evaluation of the anticipation model
during training must be performed when the model
makes its first prediction for each sequence. In this
sense, this classification metric measures the success
ratio of the model M when anticipating actions by the
first time. It is calculated as the average accuracy of
each classification. Therefore, when using this met-
ric, we do not regard in which observation the action
was predicted but whether it was predicted correctly.
Eq. 9 presents how it is calculated,

N-1

1 )
ACCact = ? ; vt I pred ) (Z):p)v (9)
where,
0, ((t=1)A(g(M(X1.t),p) =-1))
I(t) = VI(t—1)=1) (10)

1, otherwise

S ----*@—11212]
—(0 0100 ]}X~+~1
y=2—(pred)——{0 010 1) Anticipation
Accyracy
5. SRR - (5} 41 >
Ve T a0 et — k23066

(g
5. OISR+

Y b {pred}——

]}x«-+~0

S = action sequence O = observation y = action label g = discriminant function
pred = prediction function I = indicator function p = threshold x = multiplication operator

Figure 1: Graphical example of how to calculate the anticipa-
tion accuracy using Eq. (9).

where [ is an indicator function that disable predic-
tions based on whether the anticipation has already
occurred or not.

A detailed example of how to apply this metric is
given in Fig. 1.
Expected observation ratio. This measurement
focuses on the expected amount of observations nec-
essary to anticipate an action correctly. It can be
implemented according to Eq. (11). Note that when
the model is correct, it receives the value ¢, which cor-
responds to the observation where the prediction is
executed. However, when it misses the anticipation,
it is penalized by receiving the sequence size N.

K
1 ) )
Ba =S obs(¥0, 50 ), (1)
1=1
where,
1
Obs(x7yav) = len({fpred(Xl:tay7p7taN)}i\il)

pred(Xlztv Y, p) = ]-

fpred(XlzhyapataN) .
otherwise

p— t’
= N,

This work aims to show the influence of context
in the anticipation task and to use uncertainty as a
decision-making criterion in a collaborative environ-
ment. To do this, we use a controlled dataset that
contains, by each frame, the action performed and the

4. Methodology



corresponding context information. Therefore, to un-
derstand how our intuitions have arisen and resulted
in our proposal, it is necessary to analyze the used
dataset and thus realize how the questions came up.

4.1. Acticipate dataset

The chosen dataset is the Acticipate!, which was
acquired to study the influence of gaze in action
and/or intention anticipation [1, 18] in a collabora-
tive environment. It comprises 120 trials, distributed
into 6 classes. During the acquisition, the actor was
wearing an eye gaze tracker binocular glasses (Pupil
Labs eye-tracker [41]) and a suit with 25 markers.
He should perform 6 different actions: give an object
(left, middle, or right) and place an object (right,
middle, or left). In the give actions, he should give
an object (in this case, a small red ball) to one of
the three volunteers located on: his right side, left
side, or in front of him (middle). In the place ac-
tions, he should place the same object in one of the
three points on the table located at his right, middle
(in front of him), or his left. Each action starts with
the object placed in a point near to the actor and
finishes when the object returns to the same point.
As showed by [1] the gaze is an essential source of in-
formation when one wants to anticipate actions. Be-
sides, as we will see in the next section, the object
plays a fundamental role when the action becomes
more ambiguous. So it is possible to know what kind
of context information must be taken into account
for each action class during the anticipation process.
Fig. 2 presents a sample of each action and the object
starting point.

Each trial consists of 3-dimensional data corre-
sponding to the positions of the markers on the ac-
tor’s suit, captured by an OptiTrack? MoCap system,
at 120Hz; 2D gaze fixation point captured by the eye
tracker glasses at 60Hz; and an RGB video captured
by a camera facing the actor, at 30Hz. The dataset is
unbalanced, because every class has a different num-
ber of samples: 17 (place right), 23 (place middle),

Download: http://vislab.isr.ist.utl.pt/datasets/
2https://optitrack.com/

(a) place right

(d) give right (e) give middle (f) give left

(g) object starting
point

Figure 2: Sample of each action in Acticipate Dataset and the
object starting point

20 (place left), 24 (give right), 19 (give middle) and
17 (give left).

In this work, when referring to the Acticipate
dataset, we call movement the change of position of
both arms.

4.2. Dataset analyzis

By analyzing the dataset, it is possible to notice
that, in many cases, the movement does not have
enough information about action to provide good an-
ticipation. For instance, each action of place and
give has similar movements depending on its direc-
tion (left, middle or right). However, after taking into
account gaze information, one can notice that the ac-
tion can be anticipated long before. Gaze indicates
whether the user will place the object on the table
or give it to a volunteer. As discussed before, if we
take the movement as the principal entity of each ac-
tion, we can consider gaze as a context information
(additional information that helps characterize the
entity). Now, gaze and movement provide enough
data to anticipate actions in this dataset. However,


http://vislab.isr.ist.utl.pt/datasets/

if the dataset was divided into more actions, would
the gaze be a sufficient source of information to an-
ticipate them?

An interesting but not considered characteristic of
this dataset is that, once the interaction involves only
one object, the actor must place it at its starting
point after performing each action. Thus, when he
places the object somewhere on the table, he must
pick it up, and when he gives the object to someone,
he must receive it back. A simple example of this
behavior can be seen in Fig. 3. In that way, we can
extend the dataset from 6 actions to 12 actions: give,
place, pick and receive (each one with the directions
left, right and middle).

(a) Place middle

(b) Give right

Figure 3: Sample of two actions (place middle and give right)
from Acticipate Dataset

Considering now the extended dataset, if we con-
strain the analyzes to the movement and gaze (Fig. 4
(a-d)), we notice that, even with gaze, it is not pos-
sible to perform right anticipation between actions
give/receive or place/pick when they are toward the
same direction. In this case, it is necessary to wait
for more observations.

On the other hand, when applying no constraint on
what we can analyze in each image (Fig. 4 (e-h)), we
can anticipate actions of the extended dataset as fast
as in its original configuration. In some cases, as in
Fig. 4 (f), the action can be anticipated after observ-
ing the first frame. This is possible because we take

object information into account as another essential
context information. For instance, the starting po-
sition of the object makes it possible to anticipate a
pick action after observing only one image.

Something similar occurs with receive actions,
where the object is usually out of the scene, being
held by a volunteer. For such actions, after seeing the
first frame, it is not possible to assure which is the
action, once it depends on the direction. However,
we can tell that it will be a receive action. There-
fore, the correct anticipation comes after perceiving
the gaze or the movement direction. This helps us
to eliminate less likely actions and allows us to focus
on information that helps to find the right action.
Fig. 4 illustrates four situations where there are sig-
nificant ambiguities between actions, and the object
information is critical to reduce it.

4.8. Anticipation

Although we are able to anticipate actions in the
extended dataset, in some cases, there are issues
about the anticipation that must be taken into ac-
count. Even people can have their prediction capac-
ity compromised by overconfidence. In a particular
case, as presented in Fig. 5, the volunteer wrongly an-
ticipated an action after observing a movement sim-
ilar to another one. Her confidence in her prediction
deceived her. Thus, even people, in some situations,
need to be more sure about the action before making
a decision. If a person can be fooled by his/her over-
confidence, this problem is possibly more significant
in a computational model.

The overconfidence about a prediction could lead
the model to make a wrong decision in a real-time
situation. This problem can be mitigated by provid-
ing the model with the ability to estimate the uncer-
tainty about its prediction. A deterministic model,
even with a high value of probability threshold (e.g.,
p > 0.9), could wrongly anticipate an action when it
is overconfident about its prediction. This overconfi-
dence in prediction can be provoked by a lack of data
to prevent the model from ambiguous classes.

Thus, as mentioned in [33], a possible solution to
increase the model certainty is to lead it to make
more z predictions before deciding on the correct ac-
tion class. In this way, if the predicted class remains



(a) any ac- (b) any ac- (c) place or (d) place or
tion is possi-

ble

tion is possi- pick left pick left

ble

(e) give or (f) pick mid- (g) place left (h) pick left
place (any di- dle
rection)

Figure 4: Situations in the extended dataset with great am-
biguities when it is analyzed only gaze and movement. Any
action is possible in (a) and (b). It is necessary to wait for the
movement to infer the direction but, even after knowing the
direction, it is necessary to observe almost the complete action
to distinguish between the actions give/receive and place/pick.
In (c) and (d), the movement starts toward the left side, si-
multaneously, the gaze is directed to the table. Therefore, the
possible action is a place or pick toward the left direction. For
the actions shown in (e)-(h), because the object position is
taken into account, the ambiguities can be reduced or even
eliminated. In (e) and (f), the number of possible actions is
reduced after knowing the object position. In (e), pick and re-
ceive actions are not possible. On the other hand, in (f), only
the action pick middle is possible. The same occurs in (g) and
(h). In (g), the most likely action is place left. Finally, in (h),
the only possibility is pick left. Notice that in (f) and (h), the
action is anticipated after observing only one image.

for the next z observations, the model can be more
confident about the correct class and can anticipate
the action. However, even though it looks like a good
solution, what is the best size for 27 An inaccurate
choice of this new parameter can postpone the antic-
ipation of actions that have no ambiguity problem in
z observations. Additionally, z may not be enough
for actions with more ambiguities.

A better solution is to use as threshold an uncer-
tainty value rather than a probability value. Thus,
the model can anticipate an action when it is more
certain about its prediction. Therefore, ambiguous
actions, which likely provide more uncertainty to the

(a) Place left

(b) Give left

Figure 5: Two action samples from the Acticipate dataset. In
(a), the volunteer wrongly anticipated the action, thinking it
would be a give left action (shown in (b)) instead of a place
left.

model, would need more observations to be antici-
pated properly. On the other hand, those with less
ambiguities could be anticipated previously. This so-
lution can be taken as a tailored z value for each
action chosen by the model during training.

4.4. Hypotheses and contributions

These observations led us to raise three main hy-
potheses regarding the Acticipate dataset:

1. more actions are likely to cause more ambigui-
ties;

2. context information can help to distinguish dif-
ferent actions represented by similar movements;

3. uncertainty is a more reliable and effective
threshold to anticipate actions than probability
values.

In this work, the gaze and the object’s position
represent the context of each action. So, we propose
a model based on Artificial Neural Networks (ANNs)
that anticipates actions represented by sequences of
data with varying lengths. The proposed model has
two versions: a deterministic and a stochastic one.

5. Bayesian Neural Networks and Uncertainty

Deep neural networks are usually trained by op-
timization algorithms based on Stochastic Gradient
Descent (SGD). As SGD uses the gradient of the
weights, it needs the loss function to be differentiable
for all weights, which implies the weights must be



deterministic variables. In consequence, most deep
neural network models are deterministic, so they are
unable to provide their uncertainty about their pre-
dictions. Thus, to measure uncertainty in this type
of model, we can create a Bayesian Neural Network
(BNN).

In a Bayesian model a posterior distribution must
be inferred by applying the Bayes rule:

p(D|6)p(6)

POD) = T DI6)p(0)d8

(12)

where p(0|D) is the posterior distribution over 0 after
observing data D; p(D|0) is the likelihood of D; p(0)
is the prior belief about the distribution of 8; and
J p(D|0)p(0)de is the the normalization term (a.k.a
evidence or marginal likelihood).

In many cases, the evidence term in Eq. (12) turns
the posterior inference intractable. However, some
works attempted to solve this problem via Varia-
tional Inference (VI) [42]. In 2011, [43] proposed in
detail how to use VI in Bayesian Neural Networks
so that a Gaussian distribution with known parame-
ters could approximate its posterior distribution. Al-
though effective, VI was not yet an easy task to ac-
complish. Therefore, in 2013, [44] proposed a way
to train a BNN with VI thought a technique called
reparametrization trick, which consists of drawing
the activation Z of a layer | from a standard fac-
torized Gaussian distribution.

In this sense, the layer [ outputs two values, p and
o, which represents the mean and variance of a fac-
torized Gaussian distribution N(u, o), respectively.
Next, the activation of [ is drawn from Z ~ N(u,0).
Aiming to approximate Z by a standard factorized
Gaussian distribution (N (0, 1)), the authors use vari-
ational inference. However, as Z is now stochastic,
SGD algorithms can not be used to train the param-
eters of [. To solve this problem, they proposed to
parametrize Z so that p and o being deterministic
with respect to Z, and, by consequence, differen-
tiable with respect to a cost function. In that way, an
SGD algorithm can be used to train the parameters
of layer . Eq. (13) presents this approach, so-called
reparametrization trick.
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~

N(p,0)

Z
Z u+eo.

(13)

Here, the noise € ~ N(0, 1) is responsible for the
stochasticity in Z.

Even with a significant contribution, the authors
in [44] used Z as the last layer of an encoder, not in
all network activations or weights. Hence, in 2015,
[45] proposed to use this approach to create a BNN
considering each weight as a distribution instead of
a deterministic variable. The reparametrization trick
allowed them to use the SGD algorithm to train the
model, and to use VI to approximate the factorized
weight posterior distribution to a distribution with
known parameters. This approach is called Bayes By
BackProp (BBB).

Other approaches, as MC dropout[46] and Varia-
tional dropout[47], use dropout to obtain an approx-
imation of a Bayesian model.

In MC dropout, the model must have a dropout
function before each weight layer. Thus, the Bayesian
approximation is achieved by randomly deactivating
weights based on a Bernoulli distribution with the
probability of 1—p, where p is a hyperparameter. The
name MC dropout is given once the model prediction
is calculated by the average of S Monte Carlo (MC)
samples on the model with the dropout enabled.

Variational Dropout uses the local reparametriza-
tion and VI to train and to approximate the neu-
ral network model of a Bayesian model. With the
reparametrization trick in BBB ( Eq. (13)), after
a layer i receives x; as input, it first samples the
weights @ from a Gaussian distribution N(u, o) and
then computes the activation § = 87 x as the inner
product between x and 6. On the other hand, in
local reparametrization, the activations are sampled
directly from a factorized Gaussian distribution, as
shown in Eq. (14):

p = 07x
o CRE'S (14)
g ~ N(p,o).



where, b2 = b o b, where o represents the pointwise
multiplication operator.

This local reparametrization technique can be used
in conjunction with a noise & ~ N(1,«) in order to
get the posterior p(w|D) = N (6, %), where w is the
variational parameter, @ is the model weight and @ =
p/(1 — p). Eq. (15) presents the variational dropout
approach.

§=67(xo¢), (15)

As ¢ is drawn from a Gaussian distribution, the
marginal distribution § = p(g|x) is also a Gaussian
distribution. Thus, one can sample ¢ directly from its
marginal distribution p(§|x), as presented in Eq. (16).

pw = 0'x
o = a@)Tx? (16)
g ~ N(po).

Even though p in MC dropout is a hyperparameter,
« in variational dropout can be taken as a trained pa-
rameter, giving different importance for each element
in (6%)Tx2.

In a Bayesian model, regardless of the particular
approach employed to infer the posterior distribution,
the prediction of an observation x* is calculated by
integrating the likelihood of x* over the entire poste-
rior distribution (Eq. (17)). As this process involves
an intractable integration, an unbiased approxima-
tion can be obtained by a Monte Carlo simulation,
as presented in Eq. (18).

p(ylx*) = / p(DIO)p(OID)0  (17)
1 S
~ S ke) (8)

Here, S is the number of samples, y* is the probabil-
ity distribution of classes given x*, and 65 ~ p(6|D) is
the s'" parameter  drawn from the posterior p(6|D).
For the variational dropout model, this posterior is
p(w|D). However, for MC dropout, this posterior dis-
tribution is represented by the dropout function in-
side each network layer.

5.0.1. Uncertainty

There are two main types of uncertainty
in Bayesian modeling: aleatoric and epistemic.
Aleatoric is the uncertainty of an event (a.k.a irre-
ducible uncertainty). In a classification problem, this
uncertainty is related to the event that generates the
data. Therefore, even though some works propose
ways to assess the aleatoric uncertainty of a model
[48, 49], it is not an easy task to perform, as in most
cases, one can not know how the data was sampled
or which event generated them.

Epistemic uncertainty assesses the model uncer-
tainty about the data and can be easily calculated
when the model is stochastic. This type of uncer-
tainty can be decreased by observing more data.
Thus, it is important when one wants to know which
class needs more data to improve model prediction. A
detailed explanation about uncertainties for Bayesian
Deep Neural Networks can be find in [50].

In this work, we are interested in determining the
uncertainty of the model’s prediction, which corre-
sponds to its epistemic uncertainty. In this sense,
the more data it receives during training, the more
confident it would be about its predictions. Thereby,
actions with fewer samples data would lead the model
to uncertain predictions. In this case, it is possible to
use epistemic uncertainty to realize when the model
should wait for more observations to increase its cer-
tainty about prediction, and then anticipate the ac-
tion correctly.

The epistemic uncertainty of a Bayesian Neural
Network model can be estimated by the entropy or
the mutual information metrics [50]. In the case of an
MC simulation with S samples, a model with C ac-
tions can calculate the entropy of theses predictions
(samples) by using Eq. (20) and the mutual informa-
tion by Eq. (21).

1 S
Epred(l'7c) = g Zp(y = C|£L'; 05)) (19)
C
H(x) = - Z Epred(xv c) IOg(Epred(xa c)), (20)

c=1



I(z) = H(x)—l—%

c=1t=1

(21)

6. Proposal

In this section, we present our proposed architec-
ture, which is divided into four main steps: (i) fea-
ture extraction and selection, (i) feature embedding,
(i) classification model, and (iv) a novel decision-
making criterion. The next topics will cover each step
in detail.

6.1. Feature extraction and selection

This work proposes to use gaze and object position
as the context information, and the evolution of the
2D body joints features as the movement information
to perform action anticipation. Our approach aims to
use only RGB images, where gaze and skeleton joints
information are not straight available.

Therefore, to obtain the gaze and skeleton joints
of the people present in the images, we consider to
use the Openpose model[51] over each RGB image
to extract such information. We used the Openpose
version trained for COCO dataset that provides 19
2D joints for the body and 25 2D points for each
hand.

It is important to mention that in [18], the au-
thors used gaze and 3D body joints since they had
glasses and a MoCap system, while, in our approach,
we have only 2D joints to use as data, because we are
considering just RGB images. Also, because the ac-
tor wore glasses during data acquisition, algorithms
for 2D gaze estimation did not work. For this rea-
son, we decided to use the head joints as information
that likely may represent head direction or even gaze.
However, this representation is a task to be assumed
by the model. Aiming to reduce dimensionality, we
calculated the central point of each hand instead of
using their 25 2D points directly.

For the object information, we extracted the cen-
tral point of the red ball for each frame using a seg-
mentation method. This pre-processing procedure is
summarized in Fig. 6 and described as follows:

DO ply = clw; 6) log ply = cla; 6).
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. Openpose model receives an RGB image repre-

senting an observation. This operation results

in 19 joints and 25 hand points from each user

present in the image.

A filter to remove false-positive users is applied.

. Select the most important joints (arms, shoul-

ders, and head)

Use hand points to calculate the central point of

each hand

. Give the same RGB image as input to segmenta-
tion function to extract the central point of the
object.

Feature Extraction and Selection

s

OpenPose

Segment
Object

Figure 6: Summary of the feature extraction and selection
step.

6.2. Feature Embedding

After the pre-processing step, head information is
represented by: (i) five 2D points (v, € R19%1); (i4)
object information by one 2D point (v, € RZX!);
and (#ii) user pose (movement) by nine 2D points
(Vi € RY¥X1)where the first seven points represent
arms and shoulders, and the last two points repre-
sent the hands. Notice that, movement, head, and
object have different quantity of points, which gen-
erate an unbalanced feature vector. Because of that,
the model may consider the movement more impor-
tant than the other features. Therefore, we propose
to balance the input source by using an embedding
structure, in such a way that movement and context
features have the same dimension. Besides that, to
represent the context, head and object features were
also defined with the same dimension, so they had
the same importance. The embedding process is ex-
plained below.

1. Embed head information: e;, = f(vah +by),

where e, € RI$X1 W, ¢ R0x16 and b, €
R16X1.



2. Embed object information: e, = f(WXv,+b,),
where e, € R16*1 W, € R?2*16 and b, € R16x!,

3. Embed movement information: e, =
fOWrv,, + b,), where e, € Rx1
W,, € R1¥®¥16 and b,, € R16%1,

4. Embed context information: e, =
f(Wlle,les] + b.), where e. € RI6x1,
W, € R32X16 and b, € R%*! and | is a
vector concatenation operator.

5. Create the embedded input vector: e, =
[ec|em], where e, € R32*1.

Feature Embedding () sramabes,
e T 7 )
e
_

\

Pose (Movement)
(18 values)

/

Head
(10 values)

b ect
[ values)

Figure 7: Feature embedding process for each observation.
The connections between joints as well as the object shape
are showed just for the sake of visualization. However, only
their points are used.

Each W, and b, represents weights that are
trained by the model, whereas f(e) represents the
ReLU activation function. Thus, during the training
phase, the model simultaneously learns to incorpo-
rate observations and classify actions.

6.3. Classification model

Since the problem addressed here has a sequential
nature, and we assume that there exist dependencies
between observations of different timesteps, we can
treat the problem in two ways: considering that all
sequences are limited to a fixed size of M observations
or assuming the original size of sequences.

The problem with the first approach is to disre-
gard the variance in the size of all sequences, besides
introducing a new hyperparameter M. Thus, a se-
quence with T' observations (T' > M) must be trun-
cated at observation T'— M, meanwhile a sequence
with L observations (L < M) must be padded with
M — L values (an illustration of this process can be
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seen in Fig. 8). Therefore, aiming to acquire a score
that corresponds to the chance of a sequence up to
time ¢ (¢ < M) belongs to one action class, we can
feed the model with a sequence of size M, where the
first ¢ observations came from the real sequence, and
the last M — t are padding values. An advantage of
this approach is to enable the use of non-sequential
models, like Naive Bayes or Multilayer Perceptron, to
classify the sequence, since the dependence between
observations can be treated as dependence between
features. The main problem with this approach is the
waste of processing power when the sequence is start-
ing (since the majority of the input data is padded
with default values), besides the possible poor perfor-
mance when the dependence between long sequences
must be considered.

sequence 1 (L-1 observations) sequence 2 (L+1 observations)

-~ 7 0 K R o )
G e Jeco[r]r] Bl r]r]eco[r]r]
g|sEEEAr Joco[r]r] o B r Joco[r ] r ]
§ ty !!!o:o E’C\i’ ty !!! o:o E’lz’
| e 7] S e
t, [ oee [ | . (ORI -~ [EHE

v
L (model sequence size)

~
L (model sequence size)

[tL= time L O, = observation at time L P = padding values ]

Figure 8: Representation of two sequences with different sizes
for a model that receives a fixed input sequence of size M. At
each time ¢, the t*" observation from the sequence is added to
the fixed model sequence. Therefore, the model can predict
the action represented by the ¢ observations.

For the second case, only a sequential model can be
used, as the size of the sequence is not available. In
this case, models as HMM (Hidden Markov Model)
and CRF (Conditional Random Fields) are possi-
ble candidates. However, these models assume the
Markovian condition: a given observation depends
only on the previous one. This assumption might
not, capture long dependencies on a sequence, which
occurs during action execution. Therefore, we de-
cided to use LSTM (Long-Short Term Memory)[52],
a variant of RNN that can capture long dependencies
in a sequence of observations.

An LSTM contains four trainable gates. These
gates are responsible for capturing long and short
dependencies in a sequence. An LSTM cell receives



as input an observation vector, a hidden state, and
an echo cell. The input vector represents the actual
observation; the hidden state represents the short-
term memory and chooses what information should
be paid attention in the next observation. The echo
cell represents the long-term memory. At each new
observation, the echo cell stores important pieces of
information about the actual observation and forget
part of its past when it considers less significant.

LSTM has been used mainly for NLP [8, 7] but in
the last few years recognition tasks in videos are com-
monly using it as well. The Eq. (22)-(27) represent
all LSTM gates and activations, respectively:

e Forget gate, f;, forget part of the memory stored
in the echo cell.

ft:CTg(Wth+Ufht_1 +bf) (22)
e Input gate, i, select part of the observation to
be stored into the next echo cell.
it = Ug(WiXt + Uiht,1 + bl) (23)
e Output cell, o, select what part of the input
will be propagated to the next observation by
the hidden state.
0O = O'g(WOXt + Uoht—l + bo). (24)
e Update gate, g;, normalize the observation in
order to store it into the next echo cell. Part of
this information will be forgot by using the input
gate.
g: = tanh(W,x; + U,h; 1 + b,). (25)
e Next echo cell, ¢;, forget part of the past obser-
vations and store part of the new one.
c; = froci_1 +irog;. (26)
e next hidden state, hy, select a part of the nor-
malized echo cell by using the output gate.

h; = o; o tanh(cy). (27)

where o,(e) and tanh(e) are, respectively, sigmoid
and hyperbolic-tangent activation functions.

Fig. 9 presents the proposed model. It comprises
two LSTM layers followed by a softmax classifier.
The first LSTM cell receives as input at timestep
t the embedded input vector e&f%, the hidden state
hgt) € R%*1 and the echo cell cgt) € RO*1 The
second LSTM cell receives as input the hidden state
hgt) resulted from the first layer, the hidden state
hg') € R%*1 and the echo cell cg’) € R64%1, Next, a

fully connected layer receives as input hg), applies a
transformation using a matrix W . € R¥% (d is the
number of actions) and normalize it using a softmax
function. So,

é(t) = SOftmaX(chhét) ) ’

where §) € R¥1, and each element of §) can be
interpreted as the probability of an action given the
embedded input vector in the timestep . Now, With
this result and choosing a probability threshold value
p, by using Eq. (5), the anticipation can be accom-
plished.

6.4. Decision-making criterion

As mentioned before, this work proposes a novel
decision-making criterion based on the model uncer-
tainty. In this sense, because the proposed model is
deterministic, we propose to use three new stochas-
tic versions of it: A Bayesian LSTM using Bayes By
BackProp (BLSTMpggg), an MC dropout Bayesian
LSTM based on [53] (BLSTM ;¢ ), and a Variational
Dropout Bayesian LSTM (BLSTMy p).

With these stochastic models, the uncertainty is
obtained by running the architecture of Fig. 9 S times
(MC sampling) using the same input sequence. As
the models are stochastics, they must give a different
value for each prediction. Thus, the Mutual Infor-
mation (MI) over the S predictions give us the epis-
temic model uncertainty about the class prediction
for the respective observation. MI is calculated us-
ing Eq. (21). Therefore, we propose to use a thresh-
old over the mutual information (our new decision-
making criterion) to anticipate actions. For this,
Eq. (5) must be redefined as:
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Figure 9: Propose

argmax(m(s")), hEY) <u

v (28)

g(é(t)v u) = {

where v is an uncertainty value, h is the mutual in-
formation function (Eq. (21)), and m is the average
of the S predictions.

Even though one can use the entropy (Eq. (20)) to
measure the uncertainty, we chose to use MI because
it takes into account not only entropy between classes
(averaged over the S predictions) but also the mean
entropy between them all.

otherwise

7. Experiments

As discussed in Sec. 4, all experiments in this work
used the Acticipate dataset. From the dataset, we ex-
tracted four different kinds of data by using the pro-
cedure described in Sec. 6: head points, object posi-
tion, arm joints, and hand position. The head points
and object position forms the context; arm joints and
hand positions form a pose, which evolution in time
represents the movement (also called here main en-
tity). To better compare results and reach more re-
liable conclusions about how each source of informa-
tion influences the action anticipation, we decided to
carry out experiments using different combinations
of the context (head and object) and movement, for
the original version of the dataset (6 actions) and its
extended version (12 actions).

9 (Openpose)(eamer]

d model architecture

The most common approaches, presented in Sec. 2,
need a large dataset to be trained. Hence, they are
not suitable to be used here, with the Acticipate
dataset. However, to better compare and discuss
our results, we used as baselines the proposal in [18],
that uses Acticipate dataset, in addition to five classi-
cal models: Naive Bayes (NB), Multilayer Perceptron
(MLP), 1D Convolutional Neural Network (CONV-
1D), Support Vector Machine (SVM) and HMM. For
the first four models, as mentioned before (Sec. 6),
we used a fixed sequence size (as illustrated in Fig. 8),
while for HMM we used the sequences with their orig-
inal sizes.

Considering the architecture of the baseline mod-
els:

e NB uses a Gaussian Model to predict its condi-

tional probability;
MLP is composed of only one hidden layer;

CONV-1D has three stacked 1D Convolutional
layers followed by an MLP as classifier;

SVM implements its non-linear version by using
an RBF kernel; and

HMM has its emissivity probability drown from
a Gaussian Distribution, which enables continu-
ous observations.

The five models were trained with the original
dataset (6 actions) and its extended version (12 ac-
tions). For the experiments with these five models,
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we did not apply the proposed embedding technique.
So each observation is represented by a vector with 18
values corresponding to the arms, two values for the
object, and 10 for head points (see Sec. 6.2). By com-
bining these features (movement, object, and head),
we carried out a total of 45 different baseline experi-
ments. However, for the sake of explanations, we will
present only the most conclusive ones. We also car-
ried out more 11 experiments with different versions
of the proposed model, which will be explained next.
Table 1 summarizes the main 16 experiments.

The experiments 6 and 7 (original dataset) in Ta-
ble 1 provide results that can be compared with [18]
and the baseline experiments (5 first experiments),
which will validate our proposal against the other
models. The experiments from 8 to 13 provide re-
sults to show the ambiguities between actions and
the importance of context to anticipate them. The
last three experiments show the importance of un-
certainty in an anticipation model, and the con-
tribution of the proposed decision-making criterion
based on the uncertainty. For this reason, three
Bayesian models were implemented: MC dropout,
Variational Dropout, and Bayes by Backprop. For
variational dropout, as mentioned before, we opt to
use a (Eq. (16)) as a trainable parameter. With these
three models, we can identify which model is best for
this kind of application.

7.1. Ezperiment setups

For each RGB image in the video, the pre-
processing procedure described in Sec. 6 was ap-
plied. Every missing data related to joints, hands
and the object position were set to -1. Additionally
the padding value used in the fixed sequence size for
the four first experiments was also considered -1. To
evaluate the model’s quality, the dataset was divided
into 80% for training and 20% for testing. In each ex-
periment, a 10-fold cross-validation over the training
set was performed, where nine folds were used to train
and one fold to validate. For each fold (round), the
training process was finished when the recognition
accuracy (the accuracy achieved at the last observa-
tion of the sequence) over the nine training folders in
the previous five epochs was higher than 98% (early
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stop) or when the iterations exceeded the maximum
number of epochs.

The 16 experiments in Table 1 can be divided into
four main categories: baselines with 6 actions (from
1 to 5), deterministic with 6 actions (6 and 7), deter-
ministic with 12 actions (from 8 to 13) and stochastic
with 12 actions (14,15 and 16). In both determin-
istic experiments, different configurations of the in-
put data (movement, head and object) were achieved
by assigning —1 to v,,, v,, and/or vj in the en-
tire dataset. For instance, by assigning —1 to v,
the model considers only movement (v,,) and head
(vy,) information. For each one of the 16 experi-
ments, proper hyperparameters were chosen by using
a Bayesian Optimization process. The hyperparame-
ters used in the tests are presented in Table 2 and 3.

7.2. Software and hardware environments

The models, including Openpose (a deep neural
network), were implemented in Pytorch v1.0 and
scikit-learn v0.22. The Bayesian Optimization was
implemented using the library Hyperopt®. Addi-
tional parts, as object segmentation, filters, and chart
plot scripts, were implemented using OpenCV v4.1,
Python v3.7, Numpy v1.16.4, and Matplotlib v2.2.3.
The computer used in the experiments had the fol-
lowing configuration:

e Linux Operating System, distribution Ubuntu
Server 16.04;

Intel Core i7-7700 processor, 3.60 GHz with four
physical cores;

32 GB of RAM:;

1 TB of storage unit (hard drive);

Nvidia Titan V graphic card.

8. Results and Discussions

For each one of the 16 experiments, after running
the Bayesian Optimization over the 10-fold cross-
validation, the best hyperparameter configuration

Shttps://github.com/hyperopt /hyperopt



Table 1: List of all experiments

Context Dataset Version

ld Model Type Movement Head Object 6 actions 12 actions
1 NB baseline v v v

2 CONV-1D baseline v v v

3 MLP baseline v v v

4 SV M baseline v v v

5 HMM baseline v v v

6 DLST Mg, Deterministic v v

7 DLST Mgmn Deterministic v v v

8 DLST Mom Deterministic v v
9 DLST Msp, Deterministic v v
10 DLSTM;2, Deterministic v Ve
11 DLSTMiomn Deterministic v v v
12 DLSTMiomo Deterministic v v v
13 DLSTMiomno Deterministic v v v v
14 BLSTMyc MC Dropout v v v v
15 BLSTMyvp Variational Dropout Ve Ve Ve Ve
16 BLSTMpgps Bayes By BackProp v v v v

Table 2: List of hyperparameters used in each experiment with the proposed models

Model Configurations

Hyperparameters DLSTM. BLSTMyc BLSTMyp BLSTMgpgps
Batch size 216 216 216 32
Truncate sequence 100 100 100 128
Sequence size 100 100 100 64
Max epochs 100 100 100 200

LR le-2 le-2 le-2 le-2

LR decay (per epoch) 1% 1% 1% 1%
Weight decay le-5 le-5 - -
Dropout (keep prob) 0.7 0.2 - -
Optimizer Adam Adam Adam Adam

Table 3: List of hyperparameters used in each baseline experiment

Hyperparameters NB MLP SVM CONV-1D HMM
Conv Layers

. hidden layer Kernel (1x7x32, 1x5x32, 1x5x32) States

Architecture Gaussian (48) (RBF) Hiddens layer )
(64)

Sequence Size 72 64 64 96 64
Max Epoch - 50 - 50 -
Batch Size - 32 32 -
Learning Rate - le-3 - le-3 -
Optimizer - Adam - Adam -
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found was used to train the model with the complete
training set. Then, each model was tested with the
test set, which was never seen by the model during
training. The results over the test set were plotted in
many charts and carefully analyzed. Some of these
charts are presented and discussed in this section.

8.1. Baseline models in the original dataset

As can be seen in Table 4, the classical models,
used as baselines, offer a satisfactory result when
one analyzes only the accuracy obtained at each ob-
servation ratio. However, as mentioned before, this
type of analyzis brings poor conclusions about the
model’s capacity to anticipate the actions. A good
anticipation model should increase the differentiation
between classes, while the number of observations
also increases. Therefore, let’s look at the graphs
in Fig. 10, where we have the distribution of proba-
bilities between classes for each observation ratio of
an action give middle. Note that the baseline mod-
els fail to accumulate knowledge about the perform-
ing actions (NB, HMM, MLP, CONV-1D, and SVM)
or even respond over-confidently (NB) about predic-
tion. In HMM the distribution is almost uniform,
making it difficult to determine a proper probabil-
ity to be used as a decision-making threshold. Naive
Bayes responds with high confidence even at the be-
ginning of the action. So it is not a reliable model to
be used in anticipation tasks. The other three mod-
els, MLP, SVM, and CONV-1D are quite noisy and
do not give confidence about the correct action. In
contrast, the proposed DLSTM was capable of rep-
resenting the evolution of the action, in such a way
that clearly differentiates one action from the others
while more observations are provided.

For a more complete analyzis, Table 5 brings the
anticipation accuracy of each model calculated by
Eq. (9). As we can see, the baseline models, even
been quite effective in the recognition task, fail when
applied to anticipation task. The max accuracy
achieved by the HMM was 76.19% when using a
threshold of 0.38. With such a small threshold, it is
difficult to trust in this model, once at least one of the
remaining classes can reach close values (e.g., 0.37).
The best among the other baseline models (MLP)
achieved only 61.90% with a threshold of 0.94. While
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Naive Bayes could not even anticipate an action due
to its over-confidence. On the other hand, DLSTM
was capable of anticipating 95.25% of actions when
applying a threshold of 0.90. All these pieces of evi-
dence show us the superiority of the proposed model
compared with the baselines.

Another import result is that our proposal, even
using 2D skeleton joints extracted from images, out-
performs [18], that used eye gaze and 3D pose
(Tab. 4). With movement + head information we
achieved 90% of accuracy with less than 40% of ob-
servations. On the other hand, the authors’ model, in
[18], achieves 90% of accuracy after more than 50%
of observations. As discussed before, an effective an-
ticipation model must also be an effective recognizer.
Our model DLST Mg, recognized all actions at the
last observation (100% of average accuracy); mean-
while, their model achieved a maximum of 97.5% with
an observation ratio 0.60 and decreased to 87% with
an observation ratio 1.0. Therefore, their model did
not recognize all actions in the dataset.

In addition to the results above, DLST Mg,
can anticipate an action three frames before than
DLST Mg,,, on average. As the video has a sample
rate of 30Hz, this anticipation corresponds to 100ms,
which is greater than the 92ms presented in [18] when
comparing pose with pose+gaze. As such, besides
outperforming [18], our proposal was able to solve the
action recognition problem in the Acticipate dataset
and improve the action anticipation results.

8.2. Deterministic models in the extended dataset

Fig. 11 shows the results for the 6 experiments
(from 8 to 13) using the extended version of
the dataset. We can observe that DLST Mo,
DLST M;sp, and DLST M;2,,;, did not achieve 100%
accuracy at the last observation. This result shows
that they were unable to separate actions properly,
even when using head information. The 6 new ac-
tions are the only difference between DLST Mg,p
and these three models. As such, when the dataset
was divided into more actions, more ambiguities were
generated among them. Therefore, these results sup-
port our first hypothesis: more actions are likely to
cause more ambiguities.



Table 4: Comparing the results obtained by the models (baselines and DLSTM) at different observation ratios. The results for
[18] were provided by the authors. The subscription 6mh indicates that the correspondent model was trained with the original
dataset (6 actions) using movement (m) and head (h) as source of information.

Percentage of observation

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HMMGmh 19.05% 19.05% 38.10% 57.14% 90.48% 95.24% 100.00% 100.00% 100.00% 100.00%
NBgmh 19.05%  9.52% 9.52% 9.52% 19.05% 33.33% 71.43% 95.24% 95.24% 95.24%
CONVgmn 9.52% 14.29% 19.05% 19.05% 33.33% 47.62% 42.86% 61.90% 61.90% 80.95%
MLPgu 1 19.05%  19.05% 28.57% 28.57% 33.33% 47.62% 71.43% 90.48% 85.71% 95.24%
SVMGmh, 19.05% 19.05% 19.05% 19.05% 28.57% 71.43% 95.24% 95.24% 95.24% 95.24%
DLSTMGm 14.29% 28.57% 38.10% 71.43% 85.71% 95.24% 95.24% 95.24% 95.24% 95.24%
DLSTM, mh 14.29% 38.10% 47.62% 90.48% 95.24% 100.00% 100.00% 100.00% 100.00% 100.00%
[18] (Pose 3D ) 16.25% 21.25% 28.75% 51.25% 76.25% 85.00% 86.25% 86.25% 86.25% 85.00%
[18] (Pose 3D + Gaze) 15.00% 16.25% 40.00% 73.75% 86.25% 97.50% 96.25% 92.50% 91.25% 87.50%
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Figure 10: Evolution of an action give middle with its respective prediction for each baseline model and the proposed DLSTM.
All models are trained on the original dataset (6 actions) with movement and head information.

The models that use object information
DLSTM DLST M- DLST M- T
Table 5: Maximum anticipation accuracy (second column) ob- ( S 1200 - S 12mo> S 12mho) were
tained by each model (first column) when applying the prob- able to ?ecogmze all actions (ac.curacy at 100% of
ability threshold (last column). To achieve the corresponding Observations). Further, they achieved better results
accuracy the model needed on average an observation ratio ip the anticipation task. They start with more
such that specified in third column. As the NB model is ex- th .
- L . . an 40% of accuracy at the first observation, and
tremely over-confident in its predictions, it is not suitable to A
the model with complete context (DLSTMi2mho)

anticipate actions.
achieves 98% of accuracy at the observation ratio of

Model Ao O o 0.42. Therefore, actions with similar movements can
HMM 76.19% 0.45 038 be distinguished better when using context informa-
NB It is not possible to anticipate . i R
CONV-1D 47.62% 0.69 0.91 tion. So, this result supports our second hypothesis:
MLP 61.90% 0.60 0.94 context information can help to distinguish different
DLSTM 95.25% 0.40 0.90

actions represented by similar movements. We can
also see how this last model was able to extract
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Extended dataset - 12 actions

DLSTM12m (Movement)

DLSTM;, (Head)

DLSTM; 3, (Object)

DLSTM15mc (Movement + Head)
DLSTM12m0 (Movement + Object)
DLSTM12mco (Movement + Head + Object)
——- 80% of accuracy

---- 90% of accuracy

Accuracy

00 01 02 03 04 05 06 07 08 09 10
Observation Ratio

Figure 11: Results for deterministic models in the extended
dataset (12 actions). Each experiment is the same model
trained with different input data.

relevant information from the object position and
head points. Even though the object is represented
by only two values (a 2-dimensional point), as we
suppose, it provided an important information about
the actions to the model. This result shows the
efficacy of our feature embedding process.

As mentioned above, after using the object infor-
mation, the model might be able to anticipate some
actions after a few observations. For better visual-
ization, Fig. 12 illustrates the accuracy of the same 6
models for the 6 new added actions (receive and pick
(left, middle, right)). The models that use object
context start with a classification accuracy greater
than 65% and achieve 90% of accuracy after less than
10% of observations. The best model reaches 95% of
accuracy with less than 5% of observations, on aver-
age. In terms of frames, for the Acticipate dataset,
that corresponds to an average of 4 frames. These
results support our statement about the importance
of object information for these 6 new actions.

To measure the anticipation accuracy, we use the
Eq. 9 with a threshold p = 0.9 for the 6 models.
Fig. 13 presents the evolution of an action pick right
after passing throughout the 6 models. The charts
illustrate how the model that uses only movement
(DLST Mj3,,) made a mistake in its anticipation.
This mistake can be caused by the overconfidence
of the model when anticipating ambiguous actions.

Extended dataset (considering only the 6 new actions)

—— DLSTMi2m, (Movement)

—— DLSTM;5. (Head)

—— DLSTM;j3, (Object)

~—— DLSTM;3mc (Movement + Head)
DLSTM12m0 (Movement + Object)
DLSTM12mco (Movement + Head + Object)

——- 80% of accuracy

---- 90% of accuracy

Accuracy

00 01 02 03 04 05 06 07 08 09 10
Observation Ratio

Figure 12: Results for deterministic models in the extended
dataset but cosidering only the 6 new actions.

Other models, which use part/complete context in-
formation, anticipated the action correctly. Notice
that the model with full context (head + object),
anticipated the action after observing only 2% of
the data sequence (two frames in its corresponding
video). Another interesting result is that the models
confused those classes we supposed they would. Af-
ter analyzing the videos, one can notice that action
pick right has similar movement to place right, give
right and receive right, and similar gaze to place right.
Thus, DLS Mia,, pick right mistook for receive right
and DLS Mo, was not certain about pick right and
place right. These characteristics appear in almost
all predictions.

To highlight the trade-off between the threshold
and the anticipation accuracy, the chart in Fig. 14
presents the variation of anticipation accuracy and
the percentage of observations w.r.t threshold (p). In
the chart, we see that when p = 0.9, DLST M12m10
can anticipate correctly 95.42% of actions by using,
on average, 19% of the video sequence. Each action
in Acticipate dataset has an everage of 79 images.
Thus, this 19% in observation ratio corresponds to an
average of 15 frames of a video. On the other hand,
by aiming the minimum number of observations, with
p = 0.8, the model would anticipate correctly 92.50%
of actions by using, on average, 18% of observation
(14 frames).

With p = 0.9, function ¢ in Eq. (5) is not able
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Figure 13: Evolution of sample of a pick right action for the 6 deterministic models.
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Figure 14: Variation of anticipation accuracy and average ob-
servation ratio w.r.t probability threshold.

to consider overconfidence in the model prediction,
which may generate many false-positives. As dis-
cussed in Sec. 4, a possible solution to reduce the
number of false-positives is to force the model to wait
for more z observations to reaffirm its prediction. The
problem with this approach is that z is a new pa-
rameter that can harm the anticipation, and must
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pate any action is now 18%, even for less ambiguous
actions, such as those presented previously in Fig. 4
and Fig. 13. As conclusion, besides the fact that the
choice of z inserts a new trade-off in the project (ac-
curacy vs observation ratio), it does not provide an
effective way to improve the action anticipation task.

8.3. Stochastic models

The results of the Bayesian models LST My;c,
BLSTMyp and BLSTMpggp will be compared to
DLSTM;9,10, our best deterministic model for the
extended dataset. During prediction time, we fed
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Figure 15: Variation of anticipation accuracy and average ob-
servation ratio w.r.t additional observation ratio after antici-
pation. If in time ¢t the max probability exceeds the 0.9, the
model must wait for more z observations in order to conforms
its prediction.

each Bayesian model 20 times with the same obser-
vation x;, which corresponds to an MC sampling with
S = 20. Next, by applying Eq. (21) over the S pre-
dictions, we measured the epistemic uncertainty of
each model prediction, concerning the observation x;.
Then, we could use Eq. (28) to anticipate the action
or not.

The Bayesian models also recognized all ac-
tions in the extended dataset. Furthermore, they
achieved better results in anticipation accuracy than
DLSTMi9mn0, even if it waits for an observation ra-
tio of z = 0.18. By applying the same procedure
in Fig. 14, we could choose a threshold value to be
used in each model. Therefore, for each model, the
anticipation threshold was chosen by analyzing the
variation of anticipation accuracy and the average
observation time w.r.t the uncertainty value. Fig. 16
shows this comparison for BLST M ;¢.

Table 6 compares the results of the Bayesian
models with our best deterministic model
(DLSTMi2mpo). Note that BLSTMyc achieves
the best anticipation accuracy (98.75%) using the
uncertainty threshold v = 0.5. However, BLST My p
and BLSTMpgpp also achieves satisfactory results:
with w = 0.5, BLST My p achieved 98.33% of an-
ticipation accuracy, and with v = 0.3 BLSTMpggpp
achieves 97.08%.

Considering the minimum number of observa-

22

Anticipation vs Uncertainty (BLSTMyc)

98.75%
94.58%

-
=)

o
@
—\

e
o

—— Anticipation Accuracy

Average OR Anticipation
---- Maximum Anticipation Accuracy
—-—- Minimum Average OR Anticipation

o
»

25% of Frames

e
)

22% of Frames

Anticipation Accuracy / Observation Ratio(OR)

e
=)

0 1 2 3 4 5
Uncertainty (Mutual Information)

Figure 16: Variation of anticipation accuracy and average ob-
servation ratio w.r.t uncertainty threshold for MC dropout
model

tions necessary for a good anticipation accuracy,
DLSTMyompo gives the best result. On average,
with p = 0.79, it needs to receive 18% of observa-
tions to achieve an anticipation accuracy of 92.50%.
However, even needing less observations (18%) with
p = 0.79, it presents less accuracy (92.50%) than con-
sidering more observations at a threshold of p = 0.9,
which achieves an accuracy of 95.42%. Therefore, we
can see that there is a tradeoff of accuracy for a less
number of observations. In summary, the best model
achieved 98.75% after observing, on average, 25% of
the action (BLST Mjs¢). An increase of 6.67% in the
accuracy with a cost of only 7% in extra observations.
Much better than using z in the deterministic model,
where an increase of less than 2% costs 24% on ex-
tra observations. Besides, we do not need to choose
more than one hyperparameter, only the uncertainty
threshold w.

8.4. Discussions

As we mentioned in the previous sections, the
model must have a short anticipation time for human-
machine interaction and be accurate in its predic-
tion. For BLST M ¢, it needs 25% of observations
to achieve its best prediction value, which indeed is
not a high value. For instance, in a system based
on images sampled at 30Hz (ordinary cameras), an
action that lasts 2 seconds would be anticipated by
such a model after elapsed on average 0.5s from its



Table 6: Results of stochastic models and the best deterministic model.

Anticipation Average
Model Parameter Accuracy Observation Ratio
DLSTMi2mnho p=0.9/2=0.0 95.42% 19%
DLSTMiomho p=0.79 / 2=10.0 92.50% 18%
DLSTMiomhe p=0.9/2=0.18 97.08% 43%
BLSTMyc u=0.5 98.75% 25%
BLSTMuyce u=15 94.58% 22%
BLSTMvp u=0.5 98.33% 26%
BLSTMyvp u =15 85.42% 20%
BLSTMggg u=0.3 97.08% 25%
BLSTMBBB u=1.3 93.33% 20%

first frame. In other words, it might anticipate an ac-
tion after the system observes, on average, 15 frames.
Therefore, once the model can be considered accurate
in its prediction, the system has about 1.5s to make
a right decision.

As expected, our Bayesian models provided better
results than deterministic ones with a small cost in
additional observations. The overconfidence in model
prediction decreases when waiting for more observa-
tions. However, as we could see, for deterministic
models, this is a new parameter to be chosen (z) and
did not provide satisfactory results. On the other
hand, by using uncertainty as a threshold, we have
only one parameter to be chosen, and the model can
achieve better results of accuracy with a small cost in
the observation ratio. These results support our last
hypothesis that: uncertainty is a more reliable and
effective threshold to anticipate actions than proba-
bility values.

In our opinion, the MC dropout [46, 53] and varia-
tional dropout [47] were the best models implemented
in this work. Once dropout and local reparametriza-
tion can provide a different sample for each obser-
vation, a mini-batch with S observations correspond
to an MC sampling of size S, which helps the model
posterior distribution inference. Besides, for predic-
tion, we only need to create a mini-batch of size
S, repeating the same observation, that favors par-
allel prediction in GPUs. On the other hand, the
reparametrization trick does not take advantage of
the mini-batch to make samples. Every observation
in the mini-batch uses the same sampled weight.

As a consequence, in our experience, BBB models
train slower than Bayesian dropout approaches, and,
during prediction, it needs to run the model S times
with the same observation, which makes impracti-
cal to parallelize the prediction in GPUs. However,
it seems that a significant advantage of BBB is the
possibility of pruning the model by analyzing each
parameter. As they are Gaussian distributions, the
relation mean-variance can indicate if a parameter is
required or maybe discarded [43, 45].

Finally, we could see that the proposed model out-
performed the baselines, including [18], even using
less accurate information (2D vs. 3D pose and head
joints vs. eye gaze). The results supported the raised
hypotheses and showed how the uncertainty provided
by Bayesian models is vital for action anticipation.
Our proposal can be used in other datasets even
though the presented results were acquired in a small
collaborative dataset. In this sense, it is necessary to
analyze the possible sources of context for each class
and adapt our embedding layer to represent all the
context data.

9. Conclusions and Future Works

Machines need the capacity of anticipating actions
to achieve effective interaction with humans. As such,
the problem of action anticipation is drawing sub-
stantial research attention in recent years. Although
many works have explored the issue, they do not pro-
vide a concise explanation about the importance of
context in anticipating actions. They do not discuss
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how to handle the problem of the uncertainty inher-
ent in this kind of task and how to make decisions in
a real-time situation.

We propose a decision-making criterion based on
the uncertainty provided by a stochastic (Bayesian)
LSTM model that can practically be used for action
anticipation tasks. By selecting the action that mini-
mizes the uncertainty, our model improves the action
anticipation performance compared with the conven-
tional class-likelihood maximization (i.e., determinis-
tic model).

Considering arm motion as the primary source of
information for action anticipation, we evaluate the
influence of two additional (contextual) sources of in-
formation in the Acticipate dataset: gaze and object
attributes. When considering all information sources
in our stochastic LSTM, we achieved 100% of average
accuracy in the action recognition task and 98.78% of
average accuracy in the action anticipation task, out-
performing previous results. Thus, our model serves
both action recognition and anticipation purposes,
while needing only 25% of the observations, on aver-
age, to anticipate each action. The results also show
the evident importance of context for the anticipation
task, since the actions that depend on the eye gaze
information or the object position had impressive im-
provement in their anticipation time contrasted with
[18]. For instance, actions that depend exclusively on
the object information are anticipated precociously,
some of them with only two observations.

Our work extends the current state-of-the-art and
results in action anticipation, for small collaborative
datasets. Also, our proposal uses context informa-
tion to improve the classification probability, and the
uncertainty as the decision-making criterion that can
be used with any other probabilistic model.

As future work, we aim to increase the collabora-
tive setup complexity by adding more objects to each
action and designing a collaborative scenario where
the performed actions depend on more than one ob-
ject. Another important issue to be addressed is how
to extract proper context from general datasets. In
such a way, we could use this proposal to solve more
complex anticipation tasks.

24

Acknowledgments

This study was financed in part by the Coor-
denacao de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES), PDSE/Process n
88881.188840/2018-01, Finance Code 001. The au-
thors also would like to acknowledge the support from
NVIDIA Corporation through the donation of the Ti-
tan V GPU used in this research.

Bibliography
References

[1] N. F. Duarte, M. Rakovié, J. Tasevski, M. L.
Coco, A. Billard, J. Santos-Victor, Action antic-
ipation: reading the intentions of humans and
robots, IEEE Robotics and Automation Let-
ters 3 (4) (2018) 4132-4139. doi:10.1109/LRA.
2018.2861569.

[2] Y. Kong, Y. Fu, Human action recognition
and prediction: A survey, arXiv preprint
arXiv:1806.11230.

[3] B. Liu, E. Adeli, Z. Cao, K.-H. Lee, A. Shenoi,
A. Gaidon, J. C. Niebles, Spatiotemporal re-
lationship reasoning for pedestrian intent pre-
diction, IEEE Robotics and Automation Let-
ters 5 (2) (2020) 3485-3492. doi:10.1109/LRA.
2020.2976305.

[4] K. He, X. Zhang, S. Ren, J. Sun, Deep residual
learning for image recognition, in: Proceedings
of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770-778. doi:
10.1109/CVPR.2016.90.

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, Ima-
genet classification with deep convolutional neu-
ral networks, in: Advances in neural informa-
tion processing systems, 2012, pp. 1097-1105.
doi:10.1145/3065386.

[6] K. Simonyan, A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition,
arXiv preprint arXiv:1409.1556.


http://dx.doi.org/10.1109/LRA.2018.2861569
http://dx.doi.org/10.1109/LRA.2018.2861569
http://dx.doi.org/10.1109/LRA.2020.2976305
http://dx.doi.org/10.1109/LRA.2020.2976305
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/3065386

[7]

[10]

[14]

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
Bert: Pre-training of deep bidirectional trans-
formers for language understanding, in: Pro-
ceedings of the 2019 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Pa-
pers), 2019, pp. 4171-4186. doi:10.18653/v1/
N19-1423.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkor-
eit, L. Jones, A. N. Gomez, L. Kaiser, 1. Polo-
sukhin, Attention is all you need, in: Advances
in neural information processing systems, 2017,
pp. 5998-6008.

A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, L. Fei-Fei, Large-scale video clas-
sification with convolutional neural networks, in:
Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, 2014, pp.
1725-1732. doi:10.1109/cvpr.2014.223.

K. Simonyan, A. Zisserman, Two-stream con-
volutional networks for action recognition in
videos, in: Advances in neural information pro-
cessing systems, 2014, pp. 568-576.

J. Carreira, A. Zisserman, Quo vadis, action
recognition? a new model and the kinetics
dataset, in: proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,
2017, pp. 6299-6308. doi:10.1109/cvpr.2017.
502.

H. Bilen, B. Fernando, E. Gavves, A. Vedaldi,
Action recognition with dynamic image net-
works, TEEE transactions on pattern analysis
and machine intelligence 40 (12) (2017) 2799-
2813. doi:10.1109/tpami.2017.2769085.

C. Rodriguez, B. Fernando, H. Li, Action an-
ticipation by predicting future dynamic images,
in: Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 0-0.
doi:10.1007/978-3-030-11015-4_10.

V. Choutas, P. Weinzaepfel, J. Revaud,
C. Schmid, Potion: Pose motion representation

25

[17]

[19]

for action recognition, in: Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, 2018, pp. 7024-7033. doi:
10.1109/cvpr.2018.00734.

H. Kwon, Y. Kim, J. S. Lee, M. Cho, First per-
son action recognition via two-stream convnet
with long-term fusion pooling, Pattern Recogni-
tion Letters 112 (2018) 161-167. doi:10.1016/
j.patrec.2018.07.011.

F. Baradel, N. Neverova, C. Wolf, J. Mille,
G. Mori, Object level visual reasoning in videos,
in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 105-121.

Y. LeCun, Y. Bengio, et al., Convolutional net-
works for images, speech, and time series, The
handbook of brain theory and neural networks
3361 (10) (1995) 1995.

P. Schydlo, M. Rakovic, L. Jamone, J. Santos-
Victor, Anticipation in human-robot coopera-
tion: A recurrent neural network approach for
multiple action sequences prediction, in: 2018
IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 1-6. doi:
10.1109/ICRA.2018.8460924.

A. K. Dey, G. D. Abowd, Towards a Better Un-
derstanding of Context and Context-Awareness,
Computing Systems 40 (3) (1999) 304-307. doi:
10.1007/3-540-48157-5_29.

H. Wang, J. Feng, Delving into 3d action an-
ticipation from streaming videos, arXiv preprint

arXiv:1906.06521.

F. Pirri, L. Mauro, E. Alati, V. Ntouskos,
M. Izadpanahkakhk, E. Omrani, Anticipation
and next action forecasting in video: an end-
to-end model with memory, arXiv preprint
arXiv:1901.03728.

S. Agethen, H.-C. Lee, W. H. Hsu, Anticipation
of human actions with pose-based fine-grained
representations, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 0-0.


http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/cvpr.2014.223
http://dx.doi.org/10.1109/cvpr.2017.502
http://dx.doi.org/10.1109/cvpr.2017.502
http://dx.doi.org/10.1109/tpami.2017.2769085
http://dx.doi.org/10.1007/978-3-030-11015-4_10
http://dx.doi.org/10.1109/cvpr.2018.00734
http://dx.doi.org/10.1109/cvpr.2018.00734
http://dx.doi.org/10.1016/j.patrec.2018.07.011
http://dx.doi.org/10.1016/j.patrec.2018.07.011
http://dx.doi.org/10.1109/ICRA.2018.8460924
http://dx.doi.org/10.1109/ICRA.2018.8460924
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/3-540-48157-5_29

[23]

[24]

[28]

[29]

[30]

Y. Shi, B. Fernando, R. Hartley, Action antici-
pation with rbf kernelized feature mapping rnn,
in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 301-317.
doi:10.1007/978-3-030-01249-6_19.

J.-F. Hu, W.-S. Zheng, L. Ma, G. Wang, J.-
H. Lai, J. Zhang, Early action prediction by
soft regression, IEEE transactions on pattern
analysis and machine intelligencedoi:10.1109/
TPAMI.2018.2863279.

M. Sadegh Aliakbarian, F. Sadat Saleh, M. Salz-
mann, B. Fernando, L. Petersson, L. Ander-
sson, Encouraging lstms to anticipate actions
very early, in: Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2017,
pp- 280-289. doi:10.1109/iccv.2017.39.

H. Bilen, B. Fernando, E. Gavves, A. Vedaldi,
S. Gould, Dynamic image networks for action
recognition, in: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, 2016, pp. 3034-3042. doi:10.1109/cvpr.
2016.331.

M. Sadegh Aliakbarian, F. Sadat Saleh, M. Salz-
mann, B. Fernando, L. Petersson, L. Ander-
sson, Encouraging lstms to anticipate actions
very early, in: Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2017,
pp- 280-289. doi:10.1109/ICCV.2017.39.

M. S. Aliakbarian, F. Saleh, B. Fernando,
M. Salzmann, L. Petersson, L. Andersson, Deep
action-and context-aware sequence learning for
activity recognition and anticipation, arXiv
preprint arXiv:1611.05520.

S. Gite, H. Agrawal, K. Kotecha, Early antici-
pation of drivers maneuver in semiautonomous
vehicles using deep learning, Progress in Arti-
ficial Intelligence 8 (3) (2019) 293-305. doi:
10.1007/s13748-019-00177-z.

S. Gite, H. Agrawal, Early prediction of driver’s
action using deep neural networks, Interna-
tional Journal of Information Retrieval Research

26

[31]

[32]

[37]

[38]

(IJIRR) 9 (2) (2019) 11-27. doi:10.4018/

IJIRR.2019040102.

D. Wang, Y. Yuan, Q. Wang, Early action
prediction with generative adversarial networks,
IEEE Access 7 (2019) 35795-35804. doi:10.
1109/ACCESS.2019.2904857.

J. Liu, A. Shahroudy, G. Wang, L.-Y. Duan,
A. K. Chichung, Skeleton-based online action
prediction using scale selection network, IEEE
transactions on pattern analysis and machine in-
telligencedoi:10.1109/TPAMI.2019.2898954.

A. Jain, H. S. Koppula, B. Raghavan, S. Soh,
A. Saxena, Car that knows before you do: An-
ticipating maneuvers via learning temporal driv-
ing models, in: Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2015,
pp. 3182-3190. doi:10.1109/ICCV.2015.364.

A. Jain, A. Singh, H. S. Koppula, S. Soh, A. Sax-
ena, Recurrent neural networks for driver ac-
tivity anticipation via sensory-fusion architec-
ture, in: 2016 IEEE International Conference
on Robotics and Automation (ICRA), IEEE,
2016, pp. 3118-3125. doi:10.1109/ICRA.2016.
7487478.

V. Bloom, V. Argyriou, D. Makris, Linear latent
low dimensional space for online early action
recognition and prediction, Pattern Recognition
72 (2017) 532-547. doi:10.1016/j.patcog.
2017.07.003.

D. Wang, Y. Yuan, Q. Wang, Early action
prediction with generative adversarial networks,
IEEE Access 7 (2019) 35795-35804. doi:10.
1109/ACCESS.2019.2904857.

X. Wang, J.-F. Hu, J.-H. Lai, J. Zhang, W.-S.
Zheng, Progressive teacher-student learning for
early action prediction, in: Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, 2019, pp. 3556-3565.

Y. Ji, Y. Yang, X. Xu, H. T. Shen, One-shot
learning based pattern transition map for ac-
tion early recognition, Signal Processing 143


http://dx.doi.org/10.1007/978-3-030-01249-6_19
http://dx.doi.org/10.1109/TPAMI.2018.2863279
http://dx.doi.org/10.1109/TPAMI.2018.2863279
http://dx.doi.org/10.1109/iccv.2017.39
http://dx.doi.org/10.1109/cvpr.2016.331
http://dx.doi.org/10.1109/cvpr.2016.331
http://dx.doi.org/10.1109/ICCV.2017.39
http://dx.doi.org/10.1007/s13748-019-00177-z
http://dx.doi.org/10.1007/s13748-019-00177-z
http://dx.doi.org/10.4018/IJIRR.2019040102
http://dx.doi.org/10.4018/IJIRR.2019040102
http://dx.doi.org/10.1109/ACCESS.2019.2904857
http://dx.doi.org/10.1109/ACCESS.2019.2904857
http://dx.doi.org/10.1109/TPAMI.2019.2898954
http://dx.doi.org/10.1109/ICCV.2015.364
http://dx.doi.org/10.1109/ICRA.2016.7487478
http://dx.doi.org/10.1109/ICRA.2016.7487478
http://dx.doi.org/10.1016/j.patcog.2017.07.003
http://dx.doi.org/10.1016/j.patcog.2017.07.003
http://dx.doi.org/10.1109/ACCESS.2019.2904857
http://dx.doi.org/10.1109/ACCESS.2019.2904857

[40]

[46]

[47]

(2018) 364-370. doi:10.1016/j.sigpro.2017.
06.001.

P. Felsen, P. Agrawal, J. Malik, What will hap-
pen next? forecasting player moves in sports
videos, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp.
3342-3351. d0i:10.1109/iccv.2017.362.

L. Neumann, A. Zisserman, A. Vedaldi, Future
event prediction: If and when, in: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019, pp. 0-0.

M. Kassner, W. Patera, A. Bulling, Pupil: an
open source platform for pervasive eye track-
ing and mobile gaze-based interaction, in: Pro-
ceedings of the 2014 ACM international joint
conference on pervasive and ubiquitous comput-
ing: Adjunct publication, ACM, 2014, pp. 1151—
1160.

D. M. Blei, A. Kucukelbir, J. D. McAuliffe,
Variational inference: A review for statisticians,
Journal of the American Statistical Associa-
tion 112 (518) (2017) 859-877. doi:10.1080/
01621459.2017.1285773.

A. Graves, Practical variational inference for
neural networks, in: Advances in neural infor-
mation processing systems, 2011, pp. 2348-2356.

D. P. Kingma, M. Welling, Auto-encoding vari-
ational bayes, arXiv preprint arXiv:1312.6114.

C. Blundell, J. Cornebise, K. Kavukcuoglu,
D. Wierstra, Weight uncertainty in neural net-
work, in: International Conference on Machine
Learning, 2015, pp. 1613-1622.

Y. Gal, Z. Ghahramani, Dropout as a bayesian
approximation, in: 33rd International Confer-
ence on Machine Learning, ICML 2016, Vol. 3,
2016, pp. 1661-1680.

D. P. Kingma, T. Salimans, M. Welling, Varia-
tional dropout and the local reparameterization
trick, in: Advances in Neural Information Pro-
cessing Systems, 2015, pp. 2575-2583.

27

[48]

[49]

[50]

[51]

A. Kendall, Y. Gal, What uncertainties do we
need in bayesian deep learning for computer vi-
sion?, in: Advances in neural information pro-
cessing systems, 2017, pp. 5574-5584.

D. Hafner, D. Tran, A. Irpan, T. Lillicrap,
J. Davidson, Reliable uncertainty estimates in
deep neural networks using noise contrastive pri-
ors, arXiv preprint arXiv:1807.09289.

Y. Gal, Uncertainty in deep learning, Ph.D. the-
sis, PhD thesis, University of Cambridge (2016).

7. Cao, G. Hidalgo Martinez, T. Simon, S. Wei,
Y. A. Sheikh, Openpose: Realtime multi-person
2d pose estimation using part affinity fields,
IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019) 1-1doi:10.1109/
TPAMI.2019.2929257.

S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural computation 9 (8) (1997) 1735-
1780. doi:10.1162/neco.1997.9.8.1735.

Y. Gal, Z. Ghahramani, A theoretically
grounded application of dropout in recurrent
neural networks, in: Advances in neural infor-
mation processing systems, 2016, pp. 1019-1027.


http://dx.doi.org/10.1016/j.sigpro.2017.06.001
http://dx.doi.org/10.1016/j.sigpro.2017.06.001
http://dx.doi.org/10.1109/iccv.2017.362
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	1 Introduction
	2 Related Works
	3 Action Anticipation Background
	3.1 Problem Definition
	3.2 Evaluation metrics

	4 Methodology
	4.1 Acticipate dataset
	4.2 Dataset analyzis
	4.3 Anticipation
	4.4 Hypotheses and contributions

	5 Bayesian Neural Networks and Uncertainty
	5.0.1 Uncertainty

	6 Proposal
	6.1 Feature extraction and selection
	6.2  Feature Embedding
	6.3 Classification model
	6.4 Decision-making criterion

	7 Experiments
	7.1 Experiment setups
	7.2 Software and hardware environments

	8 Results and Discussions
	8.1 Baseline models in the original dataset
	8.2 Deterministic models in the extended dataset
	8.3 Stochastic models
	8.4 Discussions

	9 Conclusions and Future Works

