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Abstract Diabetic Retinopathy (DR) is a severe complication of chronic diabetes which 

causes significant visual deterioration and, when coupled with delayed treatment, may 

lead to blindness. Exudative diabetic maculopathy, a form of macular edema where hard 

exudates (HE) develop, is a frequent cause of visual deterioration in DR. The detection 

of HE comprises a significant role in the DR diagnosis. In this paper, an automatic 

exudates detection method based on superpixel multi-feature extraction and patch-based 

deep convolutional neural network is proposed. Firstly, candidate superpixels are 

generated on each resized image using the superpixel segmentation algorithm called 

Simple Linear Iterative Clustering (SLIC). Then, 25 features extracted from resized 

images and patches are generated on each feature. Patches are subsequently used to train 

a deep convolutional neural network, which distinguishes hard exudates from the 

background. Experiments conducted on three publicly available datasets (DiaretDB1, e-

ophtha EX and IDRiD) demonstrate that our proposed methodology achieved superior 

HE detection when compared with current state-of-art algorithms. 

 

Keywords: retinal hard exudates, superpixel, feature extraction, deep learning, automatic 

diagnosis. 
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1. Introduction 

Diabetes is regarded as one of the most ubiquitous chronic diseases in the world [1], 

[2] and the number of diabetes patients has exceeded 400 million world-wide [3]. Diabetic 

Retinopathy (DR) is a serious complication of diabetes characterized by specific fundus 

changes, including blot hemorrhages, microaneurysms and hard exudates. DR can cause 

blindness in severe cases [4], and therefore the early diagnosis and treatment of DR is of 

great significance.  

Hard exudates (HE) are one of the most important features of DR. HE appear as 

massive or dot-shaped highlights, and are caused by leakage of macromolecular 

substances (lipid and proteinaceous material) from retinal vessels into the eyeball after 

the blood vessel wall is damaged. Detection of HE, achieved via fundus image 

examination, is considered an effective method for DR diagnosis, with early detection 

contributing to improved patient outcomes and the reduction of medical costs [5]. Figure 

1 shows an example of a retinal fundus image with hard exudates. 

  
Fig. 1. An example of retinal fundus image. Hard exudates are the yellow-white spots marked by 

black arrows. 

 

In clinical diagnosis, the quality of collected fundus imagery is often limited by 

environmental constraints and physiological structures, such as lighting and equipment 

conditions, making it difficult for doctors to accurately and efficiently analyze the raw 

images directly [6][7]. Therefore, it is necessary to propose an automatic HE detection 

methodology to aid clinical diagnosis.  

Early medical image processing technologies mainly focused on reduction of 

equipment noise, detection of lesion area and contrast enhancement, thus improving the 



 4 

image quality or enhancing certain information within the image [8][9]. However, 

traditional methods often cannot fully and accurately express the features of the target 

object due to limitations of manually-extracted features [10]. 

Current HE detection methods may be categorized under four main approaches: 

morphology-based [11]-[14], threshold-based [15]-[18], cluster-based [19]-[22], and 

region-based [23]-[25]. The application of graph theory and machine learning to HE 

detection, although widely explored, is constrained due to insufficient numbers of retinal 

samples. Small sample sizes reduce the effect with such methods can achieve satisfying 

results. Deep learning method, as a widely studied technology in recent years, is able to 

learn and extract potential features of target objects effectively [26] from original images. 

Compared to traditional methods, deep learning has stronger generalization ability and 

better robustness through network feature extraction. However, current studies evaluating 

deep learning for hard exudate detection are limited by the lack of image data available 

[27][28].  

In order to solve the above problems, this paper presents an automatic HE detection 

method using patch-based deep Convolutional Neural Networks (CNN) for multi-feature 

classification, which has effectively expanded the training samples and comprehensively 

characterized the images. 

The proposed method consists of four steps: (1) after image resizing, the SLIC 

superpixel segmentation algorithm is utilized for retinal image segmentation, and 

superpixels are generated as candidates; (2) a total of 25 features (both pixel level and 

superpixel level) are extracted to characterize the candidates; (3) patches are generated 

on each extracted feature; and (4) a CNN is established and trained to distinguish exudates 

from normal background. Experiments are conducted on three public datasets to evaluate 

the effectiveness and robustness of the proposed method. 

Our main contribution may be summarized as follows: (1) superpixel is applied as 

another interpretation of the image, which treats the pixels in areas with similar 

characteristics as an entity and therefore reduces noise disturbance and improves 

stabilization; (2) a considerable number of patches are generated on each extracted feature 

and used as inputs for CNN learning, thus expanding the training samples largely and 

making deep learning methods feasible with small sample retinal databases.  
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The remainder of this paper is organized as follows. Section 2 discusses the related 

studies. Our proposed method is elaborated in Section 3. Section 4 presents experimental 

results and analysis. Conclusions and avenues for future work are offered in Section 5. 

 

2. Related Work 

In broad terms, we categorize the prior work in this field into Traditional Approaches, 

Superpixel-Based Approaches, and Deep Learning Approaches. 

 

2.1 Traditional Approaches 

Traditional HE detection methods can be divided into four main categories, specifically 

morphological-based segmentation, threshold-based segmentation, cluster-based 

detection, and region-growth detection. In addition to four main categories of approach, 

a number of novel methods have been proposed and are discussed below.   

 (1) Morphological-based segmentation. Walter et al. [11] used operations such as local 

window variance calculation combined with morphological operations to accurately 

segment the contours of the target. After image pre-processing and noise reduction, Imani 

et al. [12] used morphological component analysis to match and divide normal 

physiological structures of a fundus image from the lesion area, and subsequently 

segmented HE using Kirsch edge detection. Sreng et al. [13] applied maximum entropy 

thresholding combined with morphological reconstruction, to segment foreground and 

background regions (on the green channel) and to obtain the hard exudate segmentation 

results. Welfer [14] adopted a morphological-based method utilizing a stepwise 

refinement strategy. While morphological methods have the advantage of high 

computational efficiency and fast execution, they only consider brightness / grayscale 

information and ignore other exudate characteristics. Such approaches are therefore very 

sensitive to noise. Despite achieving good performance, when using morphological 

methods the key issue of choosing structural elements of appropriate size still exists. 

(2) Threshold-based segmentation. Threshold-based segmentation is a simple but 

widely used method. In order to segment the hard exudate from the background, Sánchez 

et al. [15] adopted a dynamic threshold technique. To avoid the influence of contour 

pixels, the final threshold is determined according to the Gaussian components of two 

higher mixing weights. Phillips et al. [16] utilize image sharpening and shadow correction 
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technology, combined with local thresholding and global thresholding technology to 

achieve automatic HE detection. García et al. [17] used a combination of global threshold 

and adaptive threshold to segment candidate HE regions, and then determined the true 

exudation region through a series of features and radial basis functions (RBF). Sharib Ali 

et al. [18] proposed a method based on the statistical atlas to segment the exudate, 

obtained the distance map through the average atlas image, and then introduced the post-

processing scheme to segment the exudate. However, it is not easy to choose a suitable 

and robust threshold due to the inconsistency of image brightness and contrast caused by 

the imbalance of illumination in the fundus image. 

(3) Cluster-based detection. Within the literature, clustering methods have been applied 

to classify and quantify image collections, for example to calculate the area of target 

regions of interest, and to identify regions with specific characteristics.. Kumari et al. [19] 

used a text clustering algorithm to divide the fundus image into background class and 

bright target class for HE segmentation. Osareh et al. [20] used fuzzy C-means clustering 

to segment the HE after color normalization and local contrast enhancement on the color 

fundus image. Zhang et al. [21] utilized a combination of local contrast enhancement and 

fuzzy C-means to cluster images in LUV color space. Xie et al. [22] proposed a genetic 

algorithm and clustering combined retinal vascular network segmentation method. 

Despite their common application, clustering algorithms are usually sensitive to noise, 

and the location and characteristics of the center of the class are unknown, so a priori 

assumptions are required. If the initial center selection is not appropriate, both algorithm 

convergence and segmentation performance will be poor. 

(4) Region-growth detection. This method first sets the appropriate seed point, and then 

expands the seed point according to the brightness and edge characteristics of the visual 

cup to obtain the visual cup outline. Sinthanayothin et al. [23] used a recursive region 

growing and segmentation algorithm, combined with a "moat operator", to automatically 

detect the characteristics of DR. Li et al. [24] compared detection across four color spaces, 

namely RGB, Lab, Luv, and HVC.  Luv color space was used for final HE detection. 

Lowell et al. [25] used template matching and a deformable contour model to locate and 

segment the optic nerve head boundary. The disadvantage of the area growth methods is 

that it often causes over-segmentation, and the common noise and grayscale unevenness 

in the fundus image will exacerbate this tendency. Moreover, the space and time costs of 
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the algorithm are relatively large, and the shadow part in the image often interferes greatly 

with the detection accuracy. 

(5) Additional methods. Giancardo et al. [29] proposed a 3-level detection technique, 

which applied: image histogram equalization for candidate region extraction; multiscale 

local binary pattern feature extraction; and classifier based training using diseased regions 

for DR diagnosis. Vimala et al. [30] extracted the four features of energy, difference, 

homogeneity, and standard deviation based on the gray level co-occurrence matrix, and 

used support vector machines to classify HE. Ege et al. [31] used Bayesian methods, 

Mahalanobis distance, and KNN classifiers to detect exudates. Niemeijer et al. [32] 

applied lesion probability maps to distinguish HE from other bright structures. 

 

2.2 Retinal fundus detection using superpixels 

The above-mentioned HE detection methods analyze image pixels discretely. This may 

be regarded as counterproductive. Combinations of pixels within images may be viewed 

as natural entities, at least regionally. Moreover, shape variegation and sharp edges are 

specific features of hard exudates. It is therefore desirable to consider the boundaries of 

exudates when developing robust and accurate detection methodologies.  

The concept of a superpixel, proposed by Ren et al. [33], provides an alternative 

representation of images whereby individual pixels are aggregated. Superpixels may be 

viewed as local image subregions that are consistent and capable of maintaining certain 

local structural features. Superpixel representation can effectively reduce pixel level noise 

disturbances and provide a basis for the rapid and accurate diagnoses of hard exudates.  

A novel superpixel segmentation algorithm called Simple Linear Iterative Clustering 

(SLIC) is proposed by Achanta et al. [34]. SLIC algorithm can efficiently generate 

compact and uniform superpixels with customized region size and regularity, achieving 

good boundary compliance and recall. 

Borsos et al. [35] used an improved SLIC algorithm to generate uniform superpixels to 

segment retinal white lesions. Sheng et al. [36] used superpixels as the basic unit of the 

vessel segmentation scheme to detect low-contrast narrow blood vessels. Yan et al. [37] 

used superpixels to preprocess the fundus image and designed a method for detecting 

different anomalies at the pixel level from different retinal image modes without adjusting 
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parameters. Zhou W et al. [38], segmented the image into superpixels and extracted multi-

channel features for further classification. 

 

2.3 Detection method based on deep learning 

Deep learning for HE recognition has been applied in both supervised and unsupervised 

contexts.  In many practical implementations, a mixed network structure is often utilized. 

Advantages of such methods include: the effective use of data for distributed training; 

easier learning of latent feature expressions than traditional methods; and enhanced 

segmentation accuracy when differentiating between blood vessels and a variety of 

lesions and potential regions of interest. .  

Prentašić et al. [39] partition the fundus image into 65x65 blocks (the center pixel of 

the block is the pixel to be detected), to construct the input sample of the depth network, 

and employ a 10 layer convolutional network to for pixel level HE detection. Maji et al. 

[40] use convolutional neural networks for block-level blood vessel extraction. Niemeijer 

et al. [41] propose an automated detection system based on deep learning, which can 

distinguish between fundus exudate and cotton plaque and has a performance level close 

to that of a retina expert. Yu [42] identify candidate regions using morphological methods, 

followed convolutional neural network detection.  The identification of candidate regions 

prior to learning reduces the required number of network calculations, but introduces the 

potential for error propagation.  

Although many algorithms for the detection of hard exudates have been proposed, one 

problem remains to be solved. The majority of existing deep methods focus on image 

enhancement or extract features manually, thus lacking of deep feature extraction of 

pertinent information content  within fundus photos. Due to the lack of availability of 

large image datasets, deep learning methods have not been fully utilized for HE detection. 

Therefore, the deep level features and other complex content are scarcely extracted by the 

previous works. 

 

3.  Method 

Our proposed HE detection methodology encompasses the following steps: (1) 

superpixel generation, (2) multi-feature extraction, (3) patch generation, and (4) CNN 

classification. After resizing all images to 512×512 resolution, SLIC is utilized for retinal 
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image segmentation and superpixels are generated on each resized image. Subsequently, 

a total of 25 features (both pixel level and superpixel level) are extracted to characterize 

the candidates and sample training patches are generated from every feature. Finally, a 

convolutional neural network is established and trained to predict whether the central 

pixel of the patch belongs to either the background or hard exudates. The process of our 

method is illustrated in Figure 2. 

 

 
Fig. 2. Proposed methodology 

 

3.1 Superpixel generation 

Given its previously reported efficiency and high boundary recall, we adopt the SLIC 

[34] algorithm for superpixel generation. To acquire superpixels with regular size and 

compact structure, the following distance measure is adopted. For a given image I, 

represented in CIE Lab color space with number of pixels N, we initialize 𝑀 cluster 

centers and define the grid interval G, where  𝐺 = $𝑀/𝑁. Given pixel 𝑚 and 𝑛-th cluster 

center, the color distance	𝑑!"# and the coordinate distance 𝑑$%  are calculated as 

 

𝑑!"# = $(𝑙& − 𝑙')( + (𝑎& − 𝑎')( + (𝑏& − 𝑏')(                          (1) 

𝑑$% = $(𝑥& − 𝑥')( + (𝑦& − 𝑦')(                                 (2) 

 

Predicted result

Original imagePart of the superpixel segmented imageSome of the extracted features

Architecture of the convolutional neural network

32×32×32

16×16×64

8×8×128

4×4×256

1×1×1000

   convolution+ReLU

   max pooling

 fully connnected+ReLU

1×1×100 1×1×2

32×32×1

Hard 
exudate

Background
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where (𝑙&, 𝑎&, 𝑏&) is the color value vector of pixel 𝑚, and (𝑥&, 𝑦&), (𝑥', 𝑦') are 

respectively the corresponding position of the pixel m and the cluster center in the 

original image. Thus, at the 𝑥𝑦 coordinate system, the distance between the 𝑛-th cluster 

center and the nearest pixel 𝑚 which is denoted as 𝐷&', could be calculated within a 

vicinal area of 2𝐺 × 2𝐺: 

𝐷&' = 9𝑑!"#( + ()
*
)(𝑑$%(                                               (3) 

where 𝜔 is weight factor introduced to control the compactness of a superpixel. 

Next, the new generation of the cluster centers is determined by the distinguished 

centroid of the pixels, which is iteratively repeated until the distance between the 

neighboring cluster centers becomes constant.  

In addition, there are two parameters to be set in the generation process: the regularizer 

and the region size. The former represents the spatial proximity and the latter is related to 

the size of superpixel segmentation. A larger regularizer results in more compact 

superpixels, while a smaller regularizer means less regular shape and size, which can 

influence both computational complexity and classification performance. Considering 

both the time consumption and accuracy [38], we select the region size of 30 and the 

regularizer of 0.001. Figure 3 shows the segmentation results under this condition. 

   
(a) original image                (b) cropped image 
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(c) segmentation result with region size of 30 

 and regularizer of 0.001 

Fig. 3. SLIC process 

 

3.2 Multi-feature extraction 

Due to uneven illumination and contrast of the fundus images collected, it is difficult 

to obtain satisfying results directly using the original image through deep learning 

methods. Therefore, in addition to extracting different color channels from the original 

image, which is denoted as pixel level features, we also use superpixel as another 

representation of images. The features extracted at the levels of both pixel and 

superpixel can fully describe the characteristics of sharp edges and high contrast of hard 

exudates. 

3.2.1 pixel level features 

As Figure 4 shows, the background contrast of exudates varies with different channels. 

Hence, it is beneficial to extract a set of features for each pixel in different color channels 

to better characterize the image.  

  
(a)                         (b)   
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(c)                       (d) 

  
        (e)                        (f) 
Fig. 4. Different color channels of the original image.  

(a) original image, (b-d) red, green, blue channel image 

 (e) grayscale image, (f) saturation channels image. 

 

Optical artifacts are inevitably introduced by the fundus cameras and may largely 

interfere with the classification process. Such artefact may not appear in RGB color space, 

but can be detected in the saturation channel [43] of HSV color space. Futhermore, while 

saturation values usually follow the change of imaging sources, other structures in the 

saturation channel are brighter than the reflections for the same type of image, which 

suggests the normalization of the saturation channels becomes feasible. Hence, by 

separating the saturation channel with its global mean value, the normalized saturation 

feature is obtained and coded as 𝑠𝑎𝑡.    

  Grayscale image and red, green, blue channel images are selected as additional pixel 

level features to compensate the lost information in saturation channel. 

 

3.2.2 Superpixel level features 

It is critical to take exudate boundaries into consideration in the process of detection, 

because boundary shape and acute edge are specific HE features which cannot be detected 

through discrete pixel analysis alone. Therefore, superpixel level features are extracted in 

addition to pixel level features, to reflect the local structural features in small regions.  
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While the blue channel is darker and the red channel is more saturated, green channel 

[44] is usually adopted in retinal image. Green channel is helpful to extract feature[45] 

and reduce the interference of blood vessels in the classification process [46], due to the 

highest contrast it has between the background and the blood vessels. Simultaneously, the 

intensity of the green channel image may vary largely between different images due to 

the Photographing environment. Hence, characterizing the retinal image from different 

perspectives in green channels is necessary. For each green channel image, the standard 

deviation and normalized mean value in each candidate (coded as STD and 𝜇 ) are 

obtained for extracted features. 

In order to differentiate the exudate candidates and the non-exudate candidates and 

better characterize the candidates, the contextual feature is proposed. The contextual 

feature [38], calculated in green channel after superpixel generation, is adopted. Assume 

that the quantity of the spatial compact candidate regions with the similar size is 𝑄 and 

are coded as 𝑅𝑒𝑔+(𝑖 = 1,2,3, … , 𝑄) . 𝑑,  is defined as the intensity distance, which is 

calculated by: 

𝑑, = 𝑎𝑣𝑔_𝑅𝑒𝑔+ − 𝑎𝑣𝑔_𝑅𝑒𝑔,                                            (4) 

where 𝑎𝑣𝑔_𝑅𝑒𝑔+ denote the average gray value of the 𝑖-th superpixel region. 

 

We also calculate 𝑠, , the spatial distance between 𝑅𝑒𝑔+ and its neighbor region 𝑅𝑒𝑔,, 

corresponding to 𝑑,: 

𝑠, = 𝑠𝑞𝑟𝑡(||𝑏+ − 𝑏,||(()	𝑗𝜖𝑃(𝑖)                                           (5) 

where || ∙ ||((  denotes a quadratic term of the 𝑙( -norm and 𝑏+  denotes the barycenter 

position of the 𝑖 -th superpixel region. 

Based on the equations above, the contextual feature 𝐶+ can be calculated by: 

𝐶+ =
-
.!
× /01_341!

/01
×∑ 5"

6",7.(!)                                             (6) 

where 𝑃+  denotes the total number of pixels in 𝑅𝑒𝑔+  and 𝑎𝑣𝑔 denotes the global mean 

value of green channel image. The neighbor of 𝑅𝑒𝑔+ is defined as the superpixels whose 

barycenters locate in a round area, which is 7 times of the region size. Thus, the set of 

neighbors of 𝑅𝑒𝑔+ is coded as 𝑃(𝑖). Figure 5 shows a concept picture of the contextual 

feature, where the current candidate region 𝑅𝑒𝑔+ is enclosed by the blue dotted line, and 

the yellow triangle demonstrates the position of the barycenter of 𝑅𝑒𝑔+ . The 
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corresponding neighbor region is enclosed by the blue circle, where red dots indicates the 

barycenter position of the neighbor region.  

 
Fig. 5. Illustration of the contextual feature. 

To remove the effect of varying retinal pigmentations and different image acquisition 

processes, the global mean parameter is adopted. To our knowledge, the 𝑎𝑣𝑔_𝑅𝑒𝑔+/𝑎𝑣𝑔 

and the gray distance will be larger when 𝑅𝑒𝑔+ belongs to bright structures and vice versa. 

Thus, the total weighted gray distance will be larger if the bright structure turns out to be 

an exudate. Equal (5) demonstrates that the larger the contextual feature 𝐶+  is, the 

candidate region is more probably to be an exudate.  

Figure 6 illustrates the original image segmentated by SLIC algorithm, and maximum, 

minimum, median and mean value of the candidate in grayscale image. 
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Fig. 6. Segmentation results of SLIC 

Given that the background contrast of exudates vary across different channels, we 

extract features across multiple color spaces and channels. Specifically, a total of 25 

features (grayscale, RGB and saturation) are extracted from the original images for each 

candidate superpixel. A full list of calculated features is presented in Table 1. Each feature 

calculated has the same resolution as the original image. 

 

Feature Description Feature Level 

gray gray scale image Superpixel level 

R red channel of the original 

image 
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G green channel of the 

original image 

 

B blue channel of the 

original image 

 

Sat normalized saturation 

channel of the original 

image 

 

max_gray maximum value of the 

candidate in gray, R, G, B 

images, respectively. 

Pixel level 

max_R 

max_G 

max_B 

min_gray minimum value of the 

candidate in gray, R, G, B 

images, respectively. 

Pixel level 

min_R 

min_G 

min_B 

𝜇_𝑔𝑟𝑎𝑦 mean value of the 

candidate in gray, R, G, B 

images, respectively. 

𝜇_𝑅 

𝜇_𝐺 

𝜇_𝐵 

M_gray median value of the 

candidate in gray, R, G, B 

images, respectively. 

M_R 

M_G 

M_B 

𝜇_𝑆 mean value of the 

candidate in saturation 

image 
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𝜇 normalized mean value of 

the candidate in G 

STD standard deviation of the 

candidate in G 

C contextual feature 

Table 1. Summary of extracted features 

 

3.3 Patch generation 

Due to the limited number of the retinal images, it is ineffective to apply deep learning 

method directly on the extracted features. Therefore, we proposed a patch-based approach 

for network training.  

After multi-feature extraction, training sample patches of 	 resolution 32 × 32  are 

generated on each extracted feature. A resolution of 32 × 32  is chosen empirically 

because it includes the necessary adjacent information around the hard exudates whilst 

excluding interference. By comparing with ground truth, the patches are labeled and 

divided into two groups: background and hard exudates. If the central pixel of a patch 

(coordinated as (17,17)) belongs to the exudates, the image is labeled as 1; otherwise, 

the image will be labeled as 0. On each feature, 2500 patches of background and 2500 

patches of hard exudates are generated.  Figure 7 shows some of the generated patches in 

gray, red, green, blue and saturation channel, which belong to either background or hard 

exudate. 

        
(a) background patches 

       
(b) hard exudates patches 

Fig. 7. Generated patches 
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To circumvent issues associated with patch-region definition around fundus image 

edges, zero padding is applied as illustrated in Figure 8. Within Figure 8, the blue border 

represents the pixel of zero padding, and the white box and black box respectively 

represent the patches of background and hard exudate generated from grayscale image. 

In this way, every pixel of the images can be predicted. 

 Fig. 8. Zero padding and patch generation 

 

3.4 CNN classification 

After patch generation, an 8-layer CNN network, as presented in Figure 9, is developed 

and trained on the patches. The first layer is the input patch. Then, there are two 

convolutional layers with ReLU, followed by a maxpooling layer. By applying 

maxpooling methods, the size of feature map is reduced to half after every two layers but 

kept constant on the last layer. After that, fully connected layers with ReLU are applied. 

As Figure 9 illustrates, max pooling layers are introduced after every second 

convolutional layer (with the exception of the last), to reduce the feature map size. The 

CNN is trained so that prediction results indicate whether the central pixel of the input 

patch is hard exudate or background. In this way, we convert a whole image detection 

task to a local binary classification task, which is more operable and practical. 
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Fig. 9. architecture of the convolutional neural network 

 

Drop out , with a rate of 0.5, is adopted to reduce the complexity of neural networks and 

to avoid overfitting [47], and our network is trained using the Adam optimizer 

(learning	rate = 0.0001) and with Cross Entropy loss function. To improve training 

efficiency, mini-batch normalization is used, where batch size = 50. The training images 

are grouped into 5 sets, each of which is trained for 200 epochs, and training accuracy of 

99.74% is achieved by the network.  

The network predicts whether the central pixel of each patch belongs to the background 

or hard exudates. Then these predictions are reconstructed to an image of 512 × 512. In 

this way, prediction results can be obtained and compared to the ground truths, which are 

also resized to the resolution of 512 × 512. 

 

4. Experimental results and discussions 

We evaluate our HE detection pipeline using three diabetic retinopathy image 

databases, as described in Section 4.1, and present a discussion and comparison of results 

(Section 4.2) to demonstrate the superiority of our approach.  

 

4.1 DATABASES 

The DiaretDB1[48] database is a publicly available database, which gathers high-

quality retinal fundus images of diabetic retinopathy. In this dataset, the fixed resolution 

of the database is 1500 × 1152 with the field of view of 50°. A total of 89 fundus images 

are divided into 47 images of the training set and 42 of the testing set.  
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The e-ophtha EX [49] database is an open-source database proposed by Zhang et al, 

which contains color eye fundus with four different resolution varying from 2544×1696 

to 1440×960 in a 45° field of view. This database involves a total of 82 color fundus 

images with 47 images with exudates and 35 images without exudates, and experts’ 

annotations are given on the 47 images. Randomly, 40 images are selected to comprise 

the training set and 42 images are selected for testing set.  

IDRiD (Indian Diabetic Retinopathy Image Dataset) [50] is a public database that 

consists of typical diabetic retinopathy lesion images and retinal fundus structures at a 

pixel level. A total of 81 images from IDRiD are divided into 54 images of the training 

set and 27 of the testing set. The images have a resolution of 4288 × 2848 pixels, with 

50° field of view.  

Among these datasets, DiaretDB1 is annotated in lesion-level, while IDRiD and e-

ophtha are annotated in pixel-level. 

 

 

4.2 RESULTS AND ANALYSIS 

A. Metrics  

Within existing literature, evaluation metrics relating to HE detection in DR images 

may examine image-based criterion or pixel-based criterion. The former regards HE 

detection an image classification problem, with accuracy calculated at image level. The 

latter focuses on image segmentation, whose accuracy should be considered at pixel-

level. In the image-based situation, an image without hard exudate is regarded as 

healthy, and regarded as diseased if there is any hard exudate detected. Three common 

criteria are adopted to evaluate the performance of the method: 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 9.:9;
.:;

                                                      (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 9;
9;:<.

                                                  (8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 9.
9.:<;

                                                  (9) 

 

where 𝑇𝑃	(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)  denotes the diseased images that are correctly 

found;	𝐹𝑃	(𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)	denotes the diseased images that are wrongly found; 𝑇𝑁 
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( 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ) denotes the healthy images that are correctly found, and 𝐹𝑁 

(𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) denotes the images that are wrongly found as healthy ones.  In pixel-

based scenarios, 𝑇𝑃  denotes the correctly detected hard exudates, 𝐹𝑃  denotes the 

background that are correctly detected, 𝑇𝑁 denotes the non-exudates that are wrongly 

detected as exudates and 𝐹𝑁 denotes the exudates that are wrongly detected as non-

exudates.  

Furthermore, the Receiver Operating Characteristics (ROC) curve is introduced to 

validate the effectiveness of the proposed method. In the ROC graph, the horizontal axis 

consists of 1-specificity and the vertical axis consists of sensitivity. The AUC is the value 

of the area under the ROC curve. 

 

B. Pixel-based experiments 

For each database, the training set is divided into 5 groups, each of which is trained for 

200 epochs with early stop. 25 features of each testing image are predicted by the network 

and therefore 25 prediction results are acquired for each pixel. The final prediction result 

of each pixel is determined through considering all of the 25 prediction results and 

choosing the value with a larger proportion. The pixel-based experiments are carried out 

on the e-ophtha EX and IDRiD databases. On the e-ophtha EX database, an example of 

the prediction results is shown in Figure 10, where the first column (a) are the resized 

original images, the second column (b) illustrate corresponding ground truths and the last 

column (c) represents the predicted images. 

   



 22 

   

   

   
 
(a) resized original images          (b) corresponding groundtruths      (c) predicted images 

Fig. 10. Example of the prediction result 

 

System accuracy, specificity, sensitivity and AUC are displayed in Table 2. As the 

results indicate, while Zhou’s method obtains slightly higher AUC when 𝑟𝑒𝑔𝑖𝑜𝑛	𝑠𝑖𝑧𝑒	 =

	10  and 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 0.001 , ours performs better when 𝑟𝑒𝑔𝑖𝑜𝑛	𝑠𝑖𝑧𝑒	 = 	30  and 

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 = 0.001. As discussed above, a larger region size means less computation 

time consumption. According to Zhou et al., the computation time when 𝑟𝑒𝑔𝑖𝑜𝑛	𝑠𝑖𝑧𝑒	 =

	10 is longer than the case when 𝑟𝑒𝑔𝑖𝑜𝑛	𝑠𝑖𝑧𝑒	 = 	30 by approximately 90 times. Thus, 

our method achieves higher AUC more efficiently.  
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Approach 

(Regisonsize, 

regularizer) 

Sensitivity Specificity Accuracy AUC 

Zhou et al [30].  

(10, 0.001) 

- - - 0.9684 

Zhou et al. [30]. 

(30, 0.001) 

- - - 0.9670 

Ours (10, 0.001) 98.33%     91.17% 97.65% 0.9703 

Ours (30, 0.001) 97.96% 90.84% 97.58% 0.9682 

Table 2. Results comparisons of pixel-based criterion on e-ophtha EX 

 

 
Fig. 11. result of pixel-based validation. 

 

On the IDRiD database, the exudate detection result of IDRiD_76_EX from IDRiD 

database the using pixel-based criteria is shown in Figure 11, where TP is marked as 

red, FP as green and FN as yellow. As Figure 9 indicates, most of the exudate lesions 

are correctly detected as TP (in red), and a small part of pixels are predicted as FP (in 

green) and FN (in yellow). The comparisons of the results of pixel-based experiments 

on the IDRiD are displayed in Table 3. As it indicates, our approach achieves high 

diagnostic accuracy than 35], [47], [51] and [52], but with a smaller proportion of false 
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positive predictions than [47]. Therefore, the comprehensive performance of our method 

in sensitivity and specificity is superior. For realistic applications, higher sensitivity 

means a larger percentage of successfully detected lesions, and higher specificity means 

a greater proportion of healthy parts successfully judged as healthy parts. The satisfying 

results in these two parameters demonstrate the strong practicality in clinical diagnosis.  

 

Approach Sensitivity Specificity Accuracy AUC 

Borsos [35] 62.42% 98.99% - - 

Benzamin [47] 98.29% 41.35%. 98.6% - 

Derksen [51] - - 89.13% - 

Farooq [52] - - 96.35% - 

Ours 98.40% 90.67% 98.19% 0.9674 

Table 3. The comparison of pixel-based experiments on IDRiD database. 

 

C. Image-based experiments 

The image-based experiments are conducted on DiaretDB1 and IDRiD database. The 

comparisons between Zhou’s method and ours on DiaretDB1 are listed in Table 4. As 

demonstrated in Table 4, the % sensitivity achieved by our approach is 98.01%, which 

constitutes an increase of 10.21% in comparison to Zhou et al., [38] and an increase of 

almost 28% in comparison to Welfer et al. [14].  In the experiments on the IDRiD 

database, we have also achieved approving results in AUC of 0.9650 and accuracy of 

98.93%. 

 

Authors Sensitivity Specificity Accuracy 

Welfer et al.[14] 70.48% 98.84%  

Zhou et al.[38]  88% 95%, - 

Ours 98.21% 91.38% 98.01% 

Table 4. Comparison of the results of image-based criterion. 

 

D. Patch size 
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We determined the approximate range of patch size empirically at first, then compared 

patch sizes of 24 × 24, 32 × 32, and 48 × 48, respectively. Our comparative analysis is 

shown in table 5. For pixel-based experiments, we selected the highest performing patch 

size of 32 × 32. 

 

Patch size Sensitivity Specificity Accuracy 

24 × 24 97.13% 88.79% 96.64% 

										32 × 32  98.40% 90.67% 98.19% 

48 × 48 96.42% 89.35% 97.08% 

Table 5. Comparison of the results of image-based criterion. 

 

As shown in table 5, the patch size of 32 × 32 is superior, because size of 24 × 24 is too 

small to include all necessary area to predict the central pixel, and size of 48 × 48 is 

relatively too large that it contains irrelevant areas that may interfere the prediction. 

 

E. Zero-padding 

In order to verify the necessity of zero-padding, we have also conducted the pixel-based 

and image-based experiments on IDRiD database without zero-padding. The results are 

shown in table 6 and 7. 

Method Sensitivity Specificity Accuracy 

without zero-

padding 

97.36% 90.48% 97.62% 

with zero-

padding 

98.40% 90.67% 98.19% 

Table 6. Comparison of the results of pixel-based criterion. 

 

Method Sensitivity Specificity Accuracy 

with zero-

padding 

98.21% 91.38% 98.01% 



 26 

without zero-

padding 

98.21% 91.38% 98.01% 

Table 7. Comparison of the results of image-based criterion. 

 

For pixel-based experiments, the experimental result of sensitivity after zero-padding is 

1.04% higher than that without zero-padding. That is because the process of zero-padding 

enables the prediction of hard exudates near the border, which increases the TP and 

decrease the FP. However, the results remain the same in image-based experiments, since 

the hard exudates never only appear in the area near the border in the database.  
 

F. Analysis 

The advantages of the proposed method can be attributed mainly to the following 

aspects. First, the number and characteristics of our extracted features is broad and covers 

multiple aspects of the image features. This in turn contributes to more accurate detection 

results. Furthermore, the hard exudate boundary recall method is applied in superpixel 

segmentation, where the proportion of the boundaries of ground truth images that fall in 

a superpixel boundary is calculated. Therefore, the performance of detection on the edges 

is significantly improved, thus leading to better accuracy. Finally, our Multi-feature 

extraction and patch generation methodologies sufficiently expand the training set, thus 

overcoming the difficulties associated with a lack of training images. When coupled with 

drop out, we are able to further circumvent problems such as overfitting. 
 

5. Conclusion 

This paper presents a novel hard exudate detection method of DR diagnosis based on 

multi-feature extraction and patch-based CNN. SLIC segmentation is adopted to acquire 

compact and regular-shaped superpixels, and 25 well-designed features are extracted to 

comprehensively describe the unique characteristics of retinal fundus images. After 

feature extraction, training patches are generated and used as inputs for CNN learning. 

The experiments, conducted on three public databases (e-ophtha EX, DiaretDB1 and 

IDRiD) demonstrate the stability and superiority of our proposed method, both for 

image-based and pixel-based classification. Future studies can be extended to two main 

aspects. First, different patch sizes can be tested to evaluate its impact on training. 
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Second, the features extracted from the same image can be assembled into an n-

dimensional image as the input, and apply feature selection for the training. 
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