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In the domain of air traffic control (ATC) systems, efforts to train a practical automatic speech 

recognition (ASR) model always faces the problem of small training samples since the collection 

and annotation of speech samples are expert- and domain-dependent task. In this work, a novel 

training approach based on pretraining and transfer learning is proposed to address this issue, and 

an improved end-to-end deep learning model is developed to address the specific challenges of 

ASR in the ATC domain. An unsupervised pretraining strategy is first proposed to learn speech 

representations from unlabeled samples for a certain dataset. Specifically, a masking strategy is 

applied to improve the diversity of the sample without losing their general patterns. Subsequently, 

transfer learning is applied to fine-tune a pretrained or other optimized baseline models to finally 

achieves the supervised ASR task. By virtue of the common terminology used in the ATC domain, 

the transfer learning task can be regarded as a sub-domain adaption task, in which the transferred 

model is optimized using a joint corpus consisting of baseline samples and new transcribed 

samples from the target dataset. This joint corpus construction strategy enriches the size and 

diversity of the training samples, which is important for addressing the issue of the small 

transcribed corpus. In addition, speed perturbation is applied to augment the new transcribed 

samples to further improve the quality of the speech corpus. Three real ATC datasets are used to 

validate the proposed ASR model and training strategies. The experimental results demonstrate 

that the ASR performance is significantly improved on all three datasets, with an absolute 

character error rate only one-third of that achieved through the supervised training. The 

applicability of the proposed strategies to other ASR approaches is also validated. 
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1. Introduction 

As is well known, an air traffic controller (ATCO) guides a 

flight by sending spoken instructions to the pilot. These 

instructions contain a wealth of situational context information, 

embodied in the control intent. In current management systems for 

air traffic control (ATC), the speech communication between an 

ATCO and a pilot is a concentrated human-in-the-loop (HITL) [1] 

procedure. In practice, however, such HITL procedure is 

considered to present a safety risk and thus to be in need of 

monitoring using advanced techniques. It is believed that 

understanding the spoken instructions is an efficient way to 

monitor the HITL risk and further formulate a closed-loop ATC 

management system [2]. To this end, automatic speech recognition 

(ASR) is a powerful interface for human-machine interaction that 

can allow a machine to automatically understand real-time ATC 

speech conversations to support further applications. The ASR 

technique is also expected to be promising for bridging humans 

(ATCOs and pilots) with the ATC system [3]. Recently, ASR 

research has attracted significant attention worldwide in many 

fields. Researchers have applied ASR technique in the ATC 

domain to address various existing issues, such as operational 

safety monitoring [4], reducing ATCO workloads [5], and 

developing simulation interfaces [6].  

As a typical supervised learning task, training a practical ASR 

system strongly depends on the quality of the training corpus 

[7][8], including the data size, the coverage and diversity of the 

speech in terms of vocabulary words. With the application of deep 

learning model in ASR research, the final performance can be 

greatly improved by updating a large number of trainable 

parameters of a neural network using data-driven mechanism. To 

advance the ASR research, various corpora have been built for 

different common applications and languages, some of which are 

summarized in Tab. 1. From this table, we can see that it is easy to 

collect a qualified ASR corpus (up to thousands of hours) to study 

near-field reading speech recognition for different languages. 

However, due to the domain-specific characteristics of the civil 

aviation industry, ATC speech samples are difficult to collect, and 

there is currently no available speech corpus that is suitable for use 

in related research. More importantly, the following influencing 

factors in the ATC domain [9][10] lead to other technical 

difficulties: 

a) Volatile background noise and inferior intelligibility: In ATC 

scenarios, communication is achieved via radio transmission in the 

very high frequency (VHF) band, which is always an obstacle to 

receiving correct and high-quality speech signals. In addition, an 

ATCO shares the same communication frequency with multiple 

pilots, resulting in a time-varying system with diverse equipment 

errors. As a result, the features of ATC speech strongly diverge 

from those of common speech. 

b) Terminology and code-switching: The International Civil 

Aviation Organization (ICAO) has published the standard 

procedures for ATC, which specify the only spoken terminology 

that is allowed to be used during real-time ATC communication. 

Furthermore, to eliminate misunderstandings caused by 

homonyms or near-homonyms, some words are given special 

pronunciations. For example, the English letter ‘a’ is switched to 

the pronunciation ‘alpha’. Consequently, the annotation of 

sufficient ATC speech for training a practical ASR system is a 

highly expert-and domain-dependent, laborious and costly task. 

c) Multilingual and accented speech: Although English is the 

universal language for international flights, in practice, ATCOs are 

accustomed to communicating with domestic flights in local 

languages, for example, Chinese is typically used for 

communicating in mainland China. Additionally, the multilingual 

speech, such as the use of the English name of the waypoint, will 



inevitably present a problem for ASR research. Moreover, since 

pilots come from all over the world, ATC speech is also spoken 

with different accents. Consequently, it is not possible to apply a 

common speech corpus to pretrain the ASR model for use in the 

ATC domain. In other words, only a dedicated corpus and ASR 

model can meet the requirements of ATC related applications. 

Although most terms used in the ATC domain are common 

among different contexts, the vocabulary also presents unique 

characteristics depending on the flight phase and the location of 

the control center. For instance, walkie-talkie communication is 

used for ground (GND) service at an airport, while VHF 

communication is used for ATC entities, such as the aerodrome 

control tower (TWR), and the area control center (ACC). Similarly, 

the vocabulary used for particular waypoints depends on the 

location, for example, ‘PIKAS’ is used only by the Chengdu ACC. 

In summary, it is difficult to build an available speech corpus for 

the ASR task in the ATC domain. Therefore, training ASR models 

on small training samples is an essential topic of research in the 

ATC domain. The small sample problem also arises in many other 

research fields, such as computer vision (CV) and natural language 

processing (NLP), in which transfer learning and pretraining are 

widely used to improve model performance [11][12]. For instance, 

an optimized classifier for cats can be transferred to train a 

classifier for dogs in the CV field. Similarly, pretraining  can be 

applied to transfer learned knowledge from one document to 

another, as done in Bidirectional Encoder Representation from 

Transformers (BERT) [13], A Lite BERT (ALBERT) [14], etc.  

In this work, an improved connectionist temporal classification 

(CTC) based deep learning ASR model is first proposed to perform 

the ASR task. The ATC speech is collected with volatile 

background noise and in multilingual, as a result, the speech 

features are distributed in a probabilistic space with low cohesion. 

It is believed that the single-scale convolutional operation may not 

be able to learn desired representations from the raw speech 

feature. To address this challenge, a multiscale convolutional 

neural network (MCNN) architecture is proposed to capture 

speech features at different scales, enabling the extraction of 

discriminative and robust speech features from diverse speech.  

Subsequently, a combination of training strategy consisting of 

pretraining and transfer learning is proposed to achieve the desired 

performance on a small transcribed corpus. Pretraining is 

performed to learn representative patterns from raw speech data 

without transcriptions in an unsupervised manner. An improved 

denoising autoencoder (DAE) with residual connections is 

developed to perform the unsupervised learning task, in which the 

neural network is designed to learn both spatial and temporal 

dependencies. Then, based on the pretrained ASR model and new 

transcribed samples, a subdomain transfer learning strategy is 

applied to optimize the ASR model by sharing the model 

parameters. Based on the fact that most terms are shared among 

the ATC speech conversations used for different flight phases and 

Table 1. Summary of popular speech corpora for common ASR research. 

No. Corpus Language Domain 
Size 

(hour) 
Access 

1 LibriSpeech [44] English reading novels  960 public 

2 TED-LIUM3 [45] English TED talks 452 public 

3 Switchboard [46] English Telephone calls 260 public 

4 THCHS30 [47] Chinese reading newspapers  30 public 

5 AISHELL-V1 [48] Chinese multidomain 500 public 

6 AISHELL-V2 [49] Chinese multidomain 1000 application 

7 ATCSpeech [50] Chinese/English real ATC 59 application 

8 ATCOSIM [51] English simulated ATC 11 public 

9 LDC94S14 [52] English  airport 70 paid 

10 Airbus [53] English pilot 40 unavailable 
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by different control centers, the considered transfer learning task 

is regarded as a subdomain adaption task. In this work, a 

subdomain can correspond to a certain flight phase (TWR, ACC, 

etc.) or a location-dependent control center (Beijing, Chengdu, 

etc.). By virtue of the domain universality, a new ASR model can 

be the fine-tuned through joint optimization on the transcribed 

samples used to train the pretrained model and new samples. In 

our proposal, the unsupervised pretraining strategy allows the 

ASR model to initially learn the distribution of the speech feature 

without requiring any labeled samples in the early stage. 

Subsequently, the ASR task can be completed by means of 

supervised fine-tuning and transfer learning.  

The scheme for training an ASR model in the ATC domain is 

shown in Fig.1. As illustrated in this figure, the raw speech signals 

are first segmented into utterances by means of voice activity 

detection (VAD) to obtain the unlabeled data that are then applied 

to pretrain the backbone network. After the speech transcriptions 

are obtained, a prediction layer is appended to the backbone 

network to achieve the ASR task. Universal ATC knowledge, such 

as special terminology and call signs, is transferred among 

different datasets in a process called ATC knowledge transfer. The 

implementation from pretraining to transfer learning is achieved 

by sharing the model parameters. Similarly, knowledge of the 

specific speech characteristics associated with flight phases and 

control centers (such as waypoints) is learned by transfer learning 

based on the backbone network in a process called subdomain 

adaption.  

In this study, three real ATC datasets are applied to validate the 

proposed approach, considering different flight phases and control 

centers (accents). The experimental results demonstrate that the 

proposed training strategies are capable of significantly enhancing 

the ASR performance achieved with small transcribed sample 

sizes on all three datasets. In summary, this work contributes to 

ASR research in the ATC domain in the following ways: 

1) A MCNN architecture is proposed to serve as the basic for 

CTC-based speech recognition model, which aims to address the 

challenges of volatile background noise and multilingual speech 

by considering the distribution in the feature space at different 

scales.  

2) To solve the small transcribed sample problem for ASR 

research, a novel pretraining strategy is proposed to learn initial 

data representations from unlabeled speech in an unsupervised 
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Fig. 1. Pipeline for training an ASR model in the ATC domain.  

 
  



manner, which allows the backbone network of the ASR model to 

extract high-level speech features to support subsequent 

supervised ASR optimization. 

3) Considering the common terminology used in the ATC 

domain, a subdomain adaption process is proposed to achieve 

transfer learning to improve the final ASR performance. The 

optimized parameters of the baseline model have a powerful 

ability to extract discriminative features, while the joint corpus 

construction strategy improves the quality of the training corpus in 

terms of the data size and diversity.  

The rest of this paper is organized as follows. Previous works 

related to this research are briefly introduced in Section 2. In 

Section 3, an overview of the deep learning-based ASR model is 

first present, and the proposed pretraining and transfer learning 

strategies are also introduced in this section. The experimental 

configurations are introduced in Section 4, where the experimental 

results are also discussed. The paper is concluded in Section 5. 

2. Related works 

In deep learning research, a long-standing idea is that the final 

performance highly depends on the data size, coverage and 

diversity of the training samples. When faced with the small 

sample problem, transferring knowledge from another domain is 

of key importance for advancing the research progress at the 

beginning of work in a new research field. Two main techniques, 

i.e., pretraining and transfer learning, have been proposed to 

address the problem of small sample sizes in many fields. Doersch 

et al. proposed a self-supervised approach for learning data 

representations from unlabeled images collected from the Internet 

using deep learning models [15]. Contrastive predictive coding 

(CPC) [16] was proposed as the basis for a data-efficient 

recognition model for CV tasks. Domain transfer learning has been 

studied to achieve representation learning for document sentiment 

analysis and image classification [17]. Heterogeneous domain 

adaptation (HDA) [18] has been studied for the adapt of 

information across domains with different input feature spaces by 

means of a learned sparse feature transformation. An online 

transfer learning framework was studied in [19], in which the cases 

of both homogeneous and heterogeneous learning were examined. 

A tensor representation approach has been proposed to achieve 

domain transfer for CV tasks by aligning the tensor representations 

from both domains into an invariant tensor subspace [20]. Other 

transfer learning works have been reviewed in [21].  

Currently, many popular and successful pretraining models 

have been proposed for performing NLP tasks [13][22], such as 

language generation [23], and language modeling [24]. Word2vec 

was proposed for extracting high-level representations from word 

sequences to solve the problem of the sparse encoding (one-hot) 

of words in NLP research [25]. XLNet [26], a BERT like 

pretrained model, was implemented based on the autoregressive 

method using contextualized information. The ALBERT model 

was proposed to improve the training efficiency [14], while also 

promoting task performance. The transfer learning technique has 

also been applied to develop a high-performance dialogue 

manager by means of domain adaptation [27][28].  

Recently, deep learning models have been widely proposed for 

the ASR task. A deep neural network (DNN) has been proposed to 

build the data distribution between speech features and text labels 

[29]. CTC-based approaches, such as the Deepspeech2 (DS2) [30], 

Jasper [31], CLDNN [32], have achieved excellent ASR 

performance. Sequence-to-sequence models, such as LAS [33], 

have also been explored to address the ASR task. In addition, the 

pretraining and transfer learning techniques have been applied in 

previous speech processing research. A transfer learning method 

has been proposed to improve the performance of emotion 

recognition [34]. Similar research on speaker adaption has been 

conducted based on mutual information [35]. A CPC-based 
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method has also been studied for learning representations from 

raw speech [36]. An unsupervised learning method has been 

proposed for learning data representations (speech features) from 

one-dimensional speech signal [37][38]. The transfer of speech 

representations between different languages was studied in [39]. 

The  transformer architecture has been proposed to improve the 

training efficiency for the ASR task [40]. A multiple self-

supervised learning strategy was improved for learning common 

speech representations [41], in which a single neural encoder is 

followed by multiple workers that jointly perform different self-

supervised tasks. Masked reconstruction has been studied to 

achieve the unsupervised pretraining of bidirectional speech 

encoders [42].  

3. Methodology 

In this section, an MCNN based end-to-end ASR model is first 

proposed to address the specific technical challenges of the ATC 

domain. In succession, an improved DAE architecture is presented 

for learning data representations from unlabeled speech via an 

unsupervised pretraining strategy, which enables the model to 

obtain a desired parameter optimization to support the final ASR 

task. Finally, the transfer learning technique is applied in a 

supervised manner to improve the final ASR performance.  

3.1. ASR model for the ATC domain 

Inspired by state-of-the-art ASR models, a CTC-based end-to-

end ASR model is proposed in this work to address the speech 

recognition issue in the ATC domain. The proposed ASR model is 

based on a DNN, which is designed on the basis of the MCNN 

architecture, the long-short term memory (LSTM) architecture, 

and a fully connected (FC) layer. The overall architecture of the 

proposed ASR model is illustrated in Fig.2.  

speech features

MCNN/BN/dropout

(multiscale)

LSTM/BN/dropout

(bidirectional)

CTC

1*1 kernel-1 kernel-n…

concat

FC

(time-distributed)

MCNN block

backbone

 

Fig. 2. Architecture of the proposed ASR model.  

As shown in Fig.2, based on the MCNN architecture, a novel 

representation learning block is designed to handle the distributed 

data space caused by the volatile background noise. Two-

dimensional convolution operations are applied in the MCNN 

block, in which convolutional kernels with different local 

receptive fields capture different data patterns in both the temporal 

and frequential dimensions at different scales. A 1*1 kernel is used 

to formulate a residual connection, which is essential for high-

efficiency CNN training. A batch normalization (BN) layer and a 

dropout layer follow each CNN and LSTM layer, with the aims of 

speeding up the training process and preventing overfitting, 

respectively. A bidirectional mechanism is implemented in the 

LSTM layers to extract high-level speech representations by 

building temporal correlations among the past and future speech 

frames. The bidirectional long short-term memory (BLSTM) 

inference rules are formulated as follows, in which h  and b

denote a hidden unit and the bias, respectively, the notations →  

and   represent the inference chains from the past and future 

directions, respectively,   denotes the rule of the LSTM cells and 

W  represents vectorized trainable weights. 

1 1( , , ), ( , , )− +=  = 

= + +

t t t t t t

t t thl hl

h f h b h f h b

l W h W h b

 (1) 



The stacked MCNN/LSTM block (with BN and dropout layers) 

in the proposed ASR model is defined as the backbone network, 

where the MCNN and LSTM components serve as the spatial and 

temporal feature extractors, respectively. Finally, a prediction 

layer (FC layer) is designed to classify the extracted features as 

belonging to different modeling units, in a framewise manner. The 

difference between the predictions and the true labels is evaluated 

using the CTC loss function, and is then backpropagated to 

previous layers to support model optimization [43]. In this work, 

a grapheme-based vocabulary is designed to achieve the 

multilingual ASR task, in which Chinese characters and English 

letters are applied to Chinese and English speech, respectively. 

As illustrated in Fig.1, the overall training procedure consists 

of two stages: unsupervised pretraining and supervised transfer 

learning. In the early stage, since the annotation of ATC speech 

samples is a laborious task, an unsupervised approach is first 

applied to pretrain the backbone network. The pretraining process 

focuses on the mining of universal data patterns from the raw 

samples, without requiring associated transcriptions. Subsequently, 

transfer learning for subdomain adaption is performed to optimize 

the ASR model through supervised learning, with the goal of 

obtaining a practical ASR system for use in the ATC domain. In 

the supervised learning task, the network is finally fine-tuned on a 

joint corpus (consisting of baseline samples and new domain-

specific transcribed samples), during which the domain-dependent 

knowledge is expected to be transferred to support the training of 

the model.  

3.2. Unsupervised pretraining with unlabeled speech 

To effectively train the backbone network, minimal changes are 

made for the unsupervised pretraining task. The backbone network 

can be randomly initialized, or a selected baseline model may be 

used. The input to the model consists of the 39-dimensional Mel 

Frequency Cepstrum Coefficient (MFCC) features extracted from 

the raw speech signals. The output of the model also consists of 

MFCC feature for the unsupervised learning task.  

A schematic illustration of the unsupervised pretraining task is 

presented in Fig.3. A DAE architecture is designed for the 

pretraining task, in which the feature extractors are expected to 

learn characteristic patterns from a certain corpus. In this work, a 

transposed convolutional network architecture is applied in the 

reconstruction block, in which residual connections are designed 

between corresponding layers to improve the trainability. To 

prevent the shallow copy directly from the input to the output, a 

masking strategy is applied to generate random noise in the model 

input, which is beneficial for the learning of robust features. The 

masking strategy is to randomly modify some parts of the speech 

features, which forces the model to learn speech representations 

by optimizing its parameters, instead of simply copying them. 

In this work, the masking strategy is dynamic, meaning that 

new masking patterns are generated each time training samples are 

fed into the network. This dynamic masking strategy enriches the 

diversity of the speech features and further enhances the model 

learning quality, giving the model strong applicability. Once the 

speech features are fed into the network, 15% of the speech frames 

……

reconstruction networkbackbone network

residual 

connections
masking strategy

 

Fig. 3 Pretraining scheme. 
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[40] are randomly selected to be subjected to the masking 

operation. The features of the selected frames are converted into 

new features as shown below: 

( ) 0.8

ˆ 0 0.8 0.9

0.9




=  
 

t

t

t

m f p

f p

f p

 (2) 

where ˆ
tf  is the newly generated speech feature based on the raw 

feature 
tf , and t  is the time index of the speech. The generated 

speech feature is inferred by means of a piecewise function, where 

the branch of this function that is ultimately determined based on 

a random probability p . If 0.9p , the generated speech feature 

is identical to the raw one, while if 0.8 0.9 p , the new speech 

feature is set to a zero vector. Otherwise, the case of 0.8p , the 

masked speech feature is generated in accordance with the 

following rule: 

( ) ( )tm f mean f f  = + +  (3) 

( ),    (4) 

where f  and f  are the speech features of the nearest left and 

right neighbors, respectively, of the target frame, and   is a 

random vector drawn from a multiple variable Gaussian 

distribution whose mean and standard deviation vectors are 

calculated from the raw inputs. Through the masking operation, 

the data diversity can be greatly enhanced, while the patterns of 

the raw data are preserved. 

As proven in [33], a down-sampling operation is also applied 

in the temporal dimension to achieve high-efficiency feature 

encoding. The mean absolute error (MAE) between the real speech 

features and the corresponding predicted features (i.e., the output 

of the reconstruction network) is evaluated to support the 

optimization of the parameters through the gradient descent 

operation of the backpropagation algorithm. In the formulas below, 



iF  and ˆ
iF  are the noisy input and reconstructed speech features, 

respectively, corresponding to the thi  sample. N is the number of 

training samples, and 
im  is the masking vector, where 

iT is the 

number of speech frames of the thi  sample. 
t

im  is set to 1 if the 

tht frame is selected for masking, and to 0 otherwise.  

1

1 ˆarg min 

 =

 
− 

 


N

i i i

i

m F F
N

 (5) 

1 2, , , =  
iT

i i i im m m m  (6) 

3.3. Transfer learning for subdomain adaption 

With the pretraining strategy and parameter sharing of the 

transferred model, the backbone network of the ASR model 

captures both data patterns learned from the corpus of the baseline 

model and speech representations from a certain unlabeled speech 

corpus. Consequently, the backbone network has the ability of 

providing high-level features to support supervised ASR 

optimization. Subsequently, transfer learning is applied to improve 

the ASR performance, as shown in Fig.4, which is helpful for 

solving the small sample problem. The main focuses of the 

speech features+ 

random noise 
backbone network reconstruction 

residual 

connections

speech feature 

speech features backbone network
prediction layer 

CTC loss
predicted text

parameter sharing

unsupervised

supervised

 

Fig. 4. Transfer learning scheme 

 
  



proposed transfer learning technique in this paper are summarized 

as follows. 

1) Supervised learning 

Transfer learning is achieved through a fully supervised 

learning process, in which the whole model is trained on a joint 

corpus constructed by combining the training corpus of the 

baseline model with the new transcribed samples from the target 

dataset. 

A time-distributed FC layer is designed to serve as the 

prediction layer, whose output quantifies the probability of each 

word based on the speech features. The softmax activation 

function is used to normalize the output probabilities to ensure that 

the sum of the probabilities of all words is 1. As shown below, 
ip  

and ˆ
ip  denote the raw neural network output and the normalized 

probability at the thi index, respectively, and V is the size of the 

vocabulary. The sum of the probabilities is 1, which indicates that 

every speech frame 
tf  will always be predicted to correspond to 

a word in the vocabulary. 

1

ˆ

=

=



i

i

p

i V
p

i

e
p

e

 (7) 

1

( | ) 1, [0, ]
=

= 
V

i t

i

p w f t T  (8) 

The difference between the predicted and the true labels is 

evaluated using the CTC loss function to further support parameter 

optimization. Let the input speech features be 1, ,= TF f f  

and 
t

ky  denote the probability that the tht frame corresponds to the 

output label k . For a certain input speech, the probability of any 

output sequence   is shown as (9). Therefore, the probability of 

the final sequence can be obtained by (10), where   is the set of 

all possible sequences. For example, if ‘_’ is used to denote a blank, 

then the outputs “a_bb_c” and “_ab_c_” both corresponds to the 

final output “abc”. 

1

( | ) , 
=

=  t

T
t

t

t

p F y  (9) 

1 ( )

( | ) ( | )



−

= 
l

p l F p F  (10) 

2) Data augmentation  

In this work, due to the special terminology used in the ATC 

domain, a joint speech corpus is constructed to enhance the 

diversity of the training samples, i.e., the mapping between the 

speech features and text labels, while enlarging the data size of the 

transcribed training corpus used to optimize the model parameters. 

A joint corpus with higher data diversity is beneficial for 

overcoming the training challenges presented by the special 

terminology used in the ATC domain.  

In a manner similar to that described above, the speech features 

of the dataset-dependent vocabulary are provided by the new 

transcribed training samples, to which a data augmentation 

strategy is further applied to improve the data diversity. In this 

work, 50% of the new annotated training samples are randomly 

selected for speed perturbation by factors of 0.95 and 1.02. To 

ensure fair comparisons, the raw transcribed samples chosen for 

augmentation are selected only once and are applied in all of the 

designed experiments. 

3) Training step 

In general, the backbone network can be regarded as a feature 

extractor, while the FC layer serves as a predictor for framewise 

classification. From the perspective of model training, the 

backbone network is well optimized by the transferred model and 

pretraining, while the FC layer is randomly initialized. For the 

transfer learning technique, the backbone network is first frozen 

(untrainable) to optimize the FC layer based on the CTC loss. By 

contrast, the proposed unsupervised pretraining technique relies on 
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reconstruction mechanism based on the DAE architecture (MAE 

loss). Considering the different loss evaluations for these two steps, 

it is necessary to unify the target function. Therefore, a new 

training procedure is proposed for supervised optimization, in 

which the backbone network is free to be optimized after the 10th 

training epoch. Thus, the whole model is expected to be fine-tuned 

to support the ASR task rather than the reconstruction task, which 

further improves the overall ASR performance. 

4. Experiments and Discussions 

4.1. Data description 

In this work, we mainly focus on the validation of Chinese 

speech. The speech corpora used in this work are introduced below: 

a) Pretraining corpus: Raw speech signals were collected from 

voice recorder system in the ATCSs, which are segmented into 

sentence-level utterances, from 2 to 10 seconds in length. This 

unlabeled corpus collected from certain controlling centers are 

applied to pretrain the ASR model.  

b) Transfer learning corpus: Based on our transcribed samples 

from the ZUUU-ACC corpus, a baseline model with the proposed 

architecture was optimized, and the final accuracy was 2.5% 

according to an evaluation of the character error rate based on the 

Chinese characters and English letters. The samples used to train 

the baseline model are applied for transfer learning in combination 

with new annotated samples (from certain target datasets). 

In this work, three real ATC datasets are applied to validate the 

proposed ASR model and training strategies, considering different 

flight phases and control centers (accents). The details of the 

speech corpora are summarized in Tab. 2, where the information 

for the base-dataset (ZUUU-ACC) is also listed. New vocabulary 

words appear in each dataset used for subdomain transfer, which 

is a key factor for transfer learning.  

Spectrum examples for each test dataset are shown in Tab.3, 

where the horizontal and vertical dimensions denote the time and 

frequency (0-4 kHz), respectively. It can be seen that the speech 

spectrums from different datasets exhibit unique patterns, which 

depend on the communication mode and the real-time conditions. 

Specifically, the speech spectrum in the ZBAA-GND corpus 

(walkie-talkie) exhibit a particular frequential distribution, whose 

energy intensity is concentrated at the low frequencies. Even 

between the VHF datasets, ZHCC-TWR and ZPLJ-ACC, different 

temporal resolutions are evident in the speech spectrum. 

Table 3. Examples of speech spectrum from test datasets 

Dataset Spectrum 

ZBAA 

 

ZHCC 

 

ZPLJ 

 
4.2. Experimental configurations 

The proposed approach is implemented using the Keras 

framework with a TensorFlow backend. The configuration of the 

training server is summarized as follows: 2*Intel Core i7-6800K 

CPUs, 2*NVIDIA GeForce GTX 2080Ti GPUs and 64 GB of 

memory, running the Ubuntu 16.04 operation system.  

The 39-dimensional MFCC features serve as the input to the 

ASR model, for both unsupervised pretraining and supervised 

Table 2. Summary of speech corpora used for validation 

Attribute ZUUU-ACC ZBAA-GND ZHCC-TWR  ZPLJ-ACC  

Control center Chengdu Beijing Zhengzhou Lijiang 

Flight phase ACC GND TWR ACC 

Accent Southwest China North China Central China Southwest China 

Unlabeled data (hour) - 145 97 289 

Training set (hour) 340 48 47 22 

Test set (hour) - 3.5 4 2 

#Vocabulary words 1244 877 1185 1052 

#New vocabulary - 83 19 54 
 



fine-tuning. Considering the feature distribution on the temporal 

and frequency dimension, two MCNN layers are applied to extract 

high-level spatial representations from these speech features. Four 

kernels are designed for each MCNN layer, whose configurations 

are summarized as follows: 1*1@16, 11*3@32, 13*3@32, and 

13*1@16. Here, the notation 1*1@16 indicates that 16 filters with 

a 1*1 kernel (on temporal and frequency dimension) are applied to 

learn the data representations. In general, except for the 1*1 kernel, 

other kernels are designed to deal with the different temporal and 

frequency resolution. The kernel on the temporal dimension (1, 11 

or 13) mainly focuses on the capturing the speech representations 

with different speech rate, specifically, smaller kernel for higher 

speech rate. The strides are set to 2 and 1 for the first and second 

MCNN layers, respectively. The padding mode is set to ‘same’ to 

support the MCNN concatenation operation. In succession, five 

BLSTM layers are designed to mine the temporal dependencies of 

the speech representations, with each layer containing 512 nodes 

[4]. The prediction layer is a time-distributed FC layer that 

classifies the high-level features into vocabulary words. 

In this work, the vocabulary contains all words from all four 

datasets. Moreover, since we mainly focus on the acoustic model, 

no language model is applied to correct the decoding results from 

the perspective of semantics in the ATC domain. The Adam 

optimizer is applied for both pretraining and transfer learning. The 

initial learning rates are set to 10-3 and 5*10-5 for the pretraining 

and transfer learning, respectively, while the batch sizes are set to 

96 and 160 on two GPUs parallel training. To reduce the training 

loss to a certain level as quickly as possible, all training samples 

(both unlabeled and labeled) are sorted by their durations in the 

first training epoch. For the ATC speech, similar durations of 

different speech samples are expected to indicate that their texts 

are associated with the same control instructions and share a high 

similarity. From the second training epoch, all training samples are 

shuffled to improve the robustness of the ASR model. Moreover, 

an early stopping strategy based on the validation loss is applied 

to check the training progress. 

In these experiments, the final performance on the ASR task is 

evaluated in terms of the character error rate (CER) based on 

Chinese characters and English letters. The CER is calculated by 

the following rule, where N  is the total length of the true label. 

The notation I , D , S  denote the number of the insertion, 

deletion and substitution operations, respectively, which are 

applied to convert the prediction label into the true label.  

100%
+ +

= 
I D S

CER
N

 (11) 

4.3. Experiments for validating the proposed ASR model 

For the experiments reported in this section, two baselines are 

designed to validate the efficiency and effectiveness of the 

proposed ASR model, namely, DS2 [30] and Jasper 10*3 [31]. In 

these experiments, all ASR models are trained using a fully 

supervised learning process, without pretraining or transfer 

learning. The experimental results in terms of the CER are reported 

in Tab. 4.  

Table 4. Results (CER%) for the ASR baselines 

No. Experiment ZBAA-GND ZHCC-TWR ZPLJ-ACC 

1 DS2 17.7 10.2 13.4 

2 Jasper 19.1 14.5 15.2 

3 Proposed 15.9 9.7 12.8 

 

From the results, we can see that the proposed ASR model 

achieves the best performance among the compared models on all 

three datasets. Compared to Jasper (a full CNN-based architecture), 

the recurrent neural network (RNN) based architecture (DS2 and 

the proposed model) achieve higher accuracy. This can be 

attributed to the fact that ATC speech is generated in strict 

compliance with a standard procedure, which allows the RNN 

block to capture the intrinsic temporal patterns among different 

words. For the RNN-based model, thanks to the ability of the 

proposed MCNN block on capturing the diverse speech features, 
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the proposed model achieves higher accuracy than that of the 

DS2, which also confirms the effectiveness of the technical 

improvements for the ATC-related corpus. As to the proposed 

approach, it yields higher performance improvement on the 

ZBAA-GND dataset than it does on the other two datasets, which 

can be attributed to the powerful ability of the MCNN architecture 

to deal with the sparse distribution of the speech features. For 

different target datasets, the ZHCC-TWR always obtains better 

accuracy due to higher speech quality and fewer new vocabulary 

words. On the contrary, the ASR model suffers the largest 

prediction error on the ZBAA-GND dataset due to inferior speech 

and more new vocabulary words. In summary, the proposed ASR 

model can be used to perform the ASR task with considerably high 

confidence. 

4.4. Experiments for validating pretraining strategy 

In this section, several experiments are conducted to validate 

the performance of the proposed ASR model with the pretraining 

strategy, as described below.  

a) -P-A: The ASR model is trained only on new transcribed 

samples from each test dataset, within no pretraining and 

augmentation. This experiment is also defined as the basic training 

(baseline) for the validation of the proposed pretraining strategy. 

For instance, the ASR model for the ZBAA-GND dataset is 

directly trained on the 48-hour transcribed corpus and evaluated 

on the 3.5-hour test dataset.  

b) -P+A: Following the experiment a), 50% of the transcribed 

samples are randomly selected for augmentation, and further 

applied to optimize the ASR model. For the ZBAA-GND dataset, 

the training corpus for this experiment is summarized as follows: 

the 48-hour raw transcribed corpus, the 24-hour augmented 

samples at a *0.95 speech rate, and the 24-hour augmented 

samples at a *1.02 speech rate. The purpose of this experiment is 

to prove the effectiveness of the data augmentation strategy. 

c) +P-A: The ASR model is pretrained on the unlabeled data 

and fine-tuned on new transcribed samples from each test dataset. 

For instance, the ASR model for the ZBAA-GND dataset is first 

pretrained on the 145-hour unlabeled corpus and then fine-tuned 

on the 48-hour labeled corpus. Finally, the optimized ASR model 

is evaluated on the 3.5-hour test dataset. This experiment is 

designed to confirm the improvement achieved as a result of the 

pretraining strategy.  

d) +P+A: Following experiment c), for each dataset, the new 

transcribed samples are augmented and used to train the ASR 

model, as described in b). This experiment is conducted to confirm 

that both the pretraining and augmentation strategies contribute to 

enhance the final accuracy. 

Table 5. Results (CER%) for the pretraining validation  

No. Experiment ZBAA-GND ZHCC-TWR ZPLJ-ACC 

1 -P-A 15.9 9.7 12.8 

2 -P+A 12.7 7.5 9.9 
3 +P-A 10.4 6.9 8.8 

4 +P+A 9.2 5.0 6.8 

 

The experimental results are listed in Tab. 5 for all 

combinations of pretraining and augmentation strategy. It can be 

seen from these results that both pretraining and augmentation 

strategies are able to greatly improve the ASR performance. In 

general, the specific speech representations for a certain dataset are 

captured by pretraining, while augmentation improves the data 

size and diversity for the supervised optimization process, in 

which both of them are to improve the modeling accuracy of the 

supervised ASR training. As seen from experiments 2 and 3, both 

pretraining and augmentation are beneficial for improving ASR 

performance. Compared to experiment 1, an absolute CER 

reduction of more than 2% is obtained in experiment 2 through 

augmentation. With the pretraining strategy, the performance 

promotion is approximately 4% in term of absolute CER reduction 

for the ZBAA-GND and ZPLJ-ACC datasets, while it is 

approximately 3% for the ZHCC-TWR dataset. Thus, compared to 



data augmentation, the pretraining enables greater performance 

promotion. By combining the two strategies, the desired 

performance is achieved on all three datasets. 

In addition, the ASR performance enhancement further 

depends on the various attributes of the speech corpus, as 

summarized below: 

a) The speech conditions, concerning the communication mode 

and the flight phase, have a great influence on the final 

performance. Since the baseline model was pre-optimized by the 

speeches of the VHF communication, the ZBAA-GND dataset 

(walkie-talkie communication) suffers from the largest CER 

among the three datasets, in which the low-frequency concentrated 

features are different with that of the VHF communication, and 

further impact the speech intelligibility. For the speech corpora 

corresponding to VHF communication, the speech conditions and 

are similar with that of the baseline model whose data patterns are 

easy to be captured for model learning. Therefore, the performance 

improvements on the ZHCC-TWR and ZPLJ-ACC dataset are 

higher than that of the ZBAA-GND dataset.  

b) In addition, the size of the labeled corpus and the vocabulary 

size also play important roles in achieving desired ASR 

performance. As demonstrated on the ZBAA-GND dataset, even 

though the data size is slightly larger than the ZHCC-TWR, the 

model also fails to achieve comparable performance since there 

are more new vocabulary. As to the ZPLJ-ACC dataset, the ASR 

model is able to obtain preferred performance even on only 22-

hours labeled corpus since less new words are in the vocabulary. 

In general, more speech samples with a smaller vocabulary allow 

the proposed approach to achieve higher performance. 

4.5. Experiments for validating transfer learning strategy 

As mentioned before, a pretrained model was initially built 

based on the ZUUU-ACC speech corpus, and served as the 

baseline for transfer learning on the three test datasets. This section 

reports several experiments conducted to validate the performance 

of the proposed ASR model with pretraining and transfer learning 

strategies, as described below: 

a) -P-A+T: For each test dataset, the transferred model is 

directly trained on a joint corpus constructed by combining the 

base dataset with new transcribed samples, with no pretraining and 

augmentation. For instance, the baseline ASR model for ZBAA-

GND is optimized on the 340-hour base data and 48-hour speech 

corpus and evaluated on the 3.5-hour test set. With this experiment, 

we mainly focus on the influence of transfer learning on the ASR 

accuracy. 

b) -P+A+T: Following experiment a), 50% of the newly 

transcribed samples are randomly selected for augmentation. 

Accordingly, a speech corpus with a total duration of 436-hour 

(340+48+48) is applied to optimize the baseline ASR model for 

the ZBAA-GND dataset. The purpose of this experiment is to joint 

validate the data augmentation and the pretraining strategies. 

c) +P-A+T: For each dataset, the ASR model is first pretrained 

on the unlabeled data and then fine-tuned on a joint corpus 

consisting of the base dataset and new transcribed samples. For 

instance, for the ZBAA-GND dataset, the backbone network of the 

baseline ASR model is pretrained on the 145-hour unlabeled 

speech dataset and fine-tuned on the 388-hour joint corpus 

(340+48), and it is finally evaluated on the 3.5-hour test dataset. 

This experiment is designed to validate the proposed pretraining 

and transfer learning strategies. 

d) +P+A+T: Following experiment c), the augmented corpus is 

also applied to fine-tune the baseline ASR model for each dataset. 

In this experiment, all three proposed strategies are applied to 
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solve the problem of small samples for ASR research in the ATC 

domain.  

Table 6. Experimental results (CER%) for transfer learning 

validation 

No. Experiments ZBAA-GND ZHCC-TWR ZPLJ-ACC 

0 -P-A-T 15.9 9.7 12.8 

1 -P-A+T 8.3 4.4 5.7 

2 -P+A+T 7.3 3.9 5.1 
3 +P-A+T 6.0 2.8 4.5 

4 +P+A+T 5.5 2.7 3.8 

 

In Tab.6, experiment 0 corresponds to the baseline model with 

the supervised training. From the results of experiments 1-4, we 

can see that the transfer learning technique (sub-domain adaption) 

significantly enhances the ASR performance, which is even higher 

than that achieved with the joint pretraining and augmentation 

strategy (experiments 0 and 1). By combining the pretraining, 

transfer learning and augmentation strategies, the desired 

performance improvement is obtained with small transcribed 

sample sizes for all three datasets, with CERs that are only 

approximately one-third of those achieved with the full supervised 

training approach. The relative CER improvements achieved with 

the different strategies on all three datasets are shown in Fig.5, 

where ‘Aug’, ‘Pre’ and ‘Tra’ denote augmentation, pretraining and 

transfer learning, respectively. As shown in the figure, all the 

proposed three techniques are beneficial to improve the final 

performance, in which their combinations are able to contributes 

more performance improvements. We attribute these 

improvements to the following two factors: 

1) The baseline model for knowledge transfer lays a solid 

foundation for supporting the supervised training of the ASR 

model on the new dataset. The parameters of the baseline model 

have already been optimized on another ATC-related speech 

corpus, enabling the extraction of discriminative features for the 

word classification. The training on the new target dataset is 

mainly to build the mappings between speech frames and new 

vocabulary words, and fine-tune the optimized mappings based on 

the target speech conditions. 

2) The size and diversity of the training corpus are highly 

enhanced by the base dataset. For the common ATC terminology, 

both the base data and the new transcribed samples provide 

information on the mapping between the speech frames and the 

text labels to support the optimization of the ASR model, thus, 

greatly improving the data diversity for the transfer of ATC 

knowledge.  

Specifically, as demonstrated by the results for the ZHCC-

TWR dataset, since the terms used by the control tower are almost 

entirely common ones for different locations (there are only 19 

new vocabulary words in this corpus), the performance 

improvement is prominent and the final CER is only 2.7%. This 

 

Fig. 5. Relative CER improvements obtained with different strategies on the three datasets. 
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represents an excellent ASR performance on only 47-hour 

transcribed samples for air traffic-related research and further 

validates the strategies proposed in this work. For the ZPLJ-ACC 

dataset, although the flight phase is the same as that of the baseline 

model (ZUUU-ACC), the improvement (3.8% CER) is not 

comparable to that achieved on the ZHCC-TWR dataset due to the 

smaller sample size and the larger number of new vocabulary 

words. In regard to the ZBAA-GND dataset, the performance 

enhancement is also affected by the domain diversity and speech 

quality, which are inferior to those in the other two datasets. In 

short, similar speech conditions with less new vocabulary words is 

able to yield the higher performance improvement by the proposed 

transfer learning strategy. Nonetheless, the subdomain adaption 

strategy is always beneficial for improving the ASR performance 

on a new corpus in the ATC domain.  

As seen from the results, the data augmentation strategy offers 

only minor contribution if transfer learning is already being 

applied to train the ASR model, corresponding to an absolute CER 

reduction of approximately 0.5% for all three datasets. This is 

because the data diversity is already enhanced by the inclusion of 

the corpus used to train the baseline model, especially for the same 

flight phase with the base corpus, resulting in only marginal 

improvement with the augmentation. As a comparison, the 

pretraining is more important augmentation for improving the 

model performance (about 1.5% CER reduction) since it focuses 

on learning the intrinsic data patterns to support the supervised 

optimization on the target corpus. In combination with transfer 

learning, the pretraining strategy leads to an absolute CER 

reduction of approximately 2% for all datasets, thus, validating the 

effectiveness of the pretraining and transfer learning strategies in 

this work. Finally, when all three strategies are combined, the ASR 

model achieves the desired performance with only a small labeled 

speech corpus, which is the ultimate goal in this work. 

4.6. Experiments for evaluating applicability 

In this section, two experiments are further designed to prove 

the applicability of the proposed approach, in which the 

pretraining and transfer learning strategies are applied to train two 

different baseline models, DS2 and Jasper 10*3. The experimental 

results are reported in Tab.7. 

Table 7. Experimental results (CER%) for applicability 

evaluation 

No. Model Training ZBAA-GND ZHCC-TWR ZPLJ-ACC 

1 
DS2 

supervised 17.7 10.2 13.4 

2 proposed 6.1 4.0 6.1 

3 
Jasper 

supervised 19.1 14.5 15.2 

4 proposed 7.3 4.8 5.5 

 

It can be seen from these results that although the proposed 

training strategies are developed for the MCNN based ASR model, 

they also work on other baseline models. Both the DS2 and Jasper 

models show the performance improvements with the application 

of the proposed pretraining and transfer learning strategy. 

Compared to results of the supervised training, the experimental 

results exhibit the same trend on different datasets, i.e., 

performance improvement from ZHCC-TWR, ZPLJ-ACC and the 

ZBAA-GND. The experimental results also prove the capacity of 

different models for ASR research in the ATC domain, including 

the data size and diversity, and the new vocabulary. 

In addition, with the same training strategies, the proposed ASR 

model achieves higher performance compared to the comparative 

approaches on all the test datasets. Considering the experimental 

configurations (the same dataset and training parameters), it can 

be concluded that the proposed ASR model with the MCNN block 

makes great contributions to improve the final performance since 

it is designed to address the certain technical difficulties for the 

ASR research in the ATC domain. 

5. Conclusions 

In this paper, a new training approach is proposed to achieve 

ASR task with small transcribed speech samples in the air traffic 

domain. The proposed approach consists of two stages: 
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unsupervised pretraining and supervised transfer learning. The 

proposed pretraining procedure is applied to learn speech 

representations from unlabeled speech samples, in this procedure, 

a masking strategy is applied to ensure efficient training. The 

transfer learning task considered in this work is regarded as a 

subdomain adaption task since the ATC speech vocabularies for 

different flight phases and control centers largely share common 

terminology. The speed perturbation is also performed to improve 

the size and diversity of the labeled training corpus. An improved 

deep learning-based end-to-end model is developed for the ASR 

task, where the model architecture is based on MCNN, LSTM, and 

CTC blocks. To handle the distributed data patterns of ATC speech, 

an MCNN block is designed to capture speech representations at 

different scales. In the transfer learning stage, the baseline ASR 

model is further fine-tuned on a joint corpus constructed by 

combining the samples used to train the baseline model with new 

transcribed samples from a target dataset. This joint corpus 

construction strategy enhances the size and diversity of the training 

samples used to transfer the learned ATC knowledge to a new 

subdomain. Three real ATC datasets are applied to validate the 

proposed training strategy, considering different flight phases and 

control centers (accents). The experimental results show that the 

proposed training approach is able to significantly improve the 

ASR performance compared with that achieved through 

supervised training. The characteristics of ATC speech are 

successfully captured by pretraining with the backbone network. 

In addition, it is believed that transfer learning based on a joint 

corpus is particularly important for training a practical ASR 

system for use in the ATC domain.  

In the future, we plan to further apply the adversarial learning 

mechanism to perform online data augmentation and formulate a 

unified framework with the ASR model.  
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