
MonuMAI: Dataset, deep learning pipeline and
citizen science based app for monumental

heritage taxonomy and classification

Alberto Lamas1, Siham Tabik1, Policarpo Cruz2, Rosana Montes1,
Álvaro Martı́nez-Sevilla1, Teresa Cruz3, and Francisco Herrera1

1Andalusian Research Institute in Data Science and Computational
Intelligence, University of Granada, 18071 Granada, Spain

2Art History Department, University of Granada, 18071 Granada, Spain
3Descubre Foundation, 18016 Granada, Spain.

email: albertocl@decsai.ugr.es, siham@ugr.es, jcruz@ugr.es,
asevilla@ugr.es, rosana@ugr.es, teresa.cruz@fundaciondescubre.es,

herrera@decsai.ugr.es

September 1, 2020

Abstract
An important part of art history can be discovered through the visual infor-

mation in monument facades. However, the analysis of this visual information,
i.e, morphology and architectural elements, requires high expert knowledge. An
automatic system for identifying the architectural style or detecting the architec-
tural elements of a monument based on one image will certainly help improving
our knowledge in art and history. Building such tool is challenging as some styles
share architectural elements, the bad conservation state of some monuments and
the noise included in the image itself. The aim of this paper is to introduce Mon-
uMAI (Monument with Mathematics and Artificial Intelligence) framework. In
particular, (i) we designed MonuMAI dataset rich with expert knowledge consid-
ering the proposed architectural styles taxonomy and key elements relationship,
which allows addressing several tasks, e.g., monument style classification and ar-
chitectural elements detection, (ii) we developed MonuMAI deep learning pipeline
based on lightweight MonuNet architecture for monument style classification and
MonuMAI Key Elements Detection (MonuMAI-KED) model, and (iii) we built
citizen science based MonuMAI mobile app that uses the proposed MonuMAI
deep learning pipeline trained on MonuMAI dataset for performing in real life
conditions. Our experiments show that both MonuNet architecture and the detec-
tion model achieve very good results under real life conditions.

Index terms— Convolutional Neural Networks, Architectural information extrac-
tion, architectural style classification, MonuMAI, monumental heritage.

1



1 Introduction
The knowledge of the architectural style and elements of monumental heritage is of
paramount importance in several fields, in art, art history, tourism 1, architecture, ge-
ometry, academia and culture 2. However, recognizing the style or facade elements of
historical monuments is reachable only to very few experts.

Machine learning based automatic systems [18, 24] have been barely used to ad-
dress such task due to the difficulty in obtaining expert knowledge. Indeed, there is
neither an established monumental heritage taxonomy for architectural styles and ele-
ments, nor automatic tools to help identifying the style or architectural elements of a
monument based on the image of its facade.

Most previous works on architectural style identification combine traditional ma-
chine learning with computer vision techniques [19, 28, 3], which implies a high level
of human supervision and produces models with a reduced generalization capacity
[18, 24, 27]. For example, the authors in [24, 27] first use Deformable Part-based
Model (DPM) with histogram of oriented gradients (HOG) for features extraction then
apply support vector machine (SVM) for classification. Similarly, the authors in [18]
addressed the architectural style classification of three styles, Romanesque, Gothic and
Baroque by first extracting features with Scale-Invariant Feature Transform (SIFT) then
using SVM for classification.

The authors in [14] used state-of-the-art deep learning (DL) models for the clas-
sification of architectural elements such as columns, bell tower, apse, or altar among
others. The proposed approach does not identify the architectural style in the input
image and can not be used under real life conditions as it requires manual intervention.

The above approaches provide good accuracy but suffer from strong constraints: i)
unstructured approaches that are difficult to scale to more styles or elements [3, 27],
ii) lack of robustness to different perspectives in pictures [19], and/or iii) unable to
perform in real-life conditions [14, 28, 24], i.e., presence of other elements such as
trees, people, traffic signals in the input image..

The recent progress in DL networks [8, 15] in general and Convolutional Neural
Networks (CNNs) [7] in particular has made several breakthrough in many computer
vision tasks, in image classification [22], object detection in images [2, 11, 12] and
semantic segmentation [9, 13, 26]. CNNs present a high potential for architectural fea-
ture extraction in images [25]. Their ability to learn textures, patterns and colors make
them suitable for analytical vision tasks, such as the architectural style classification
and the detection of architectural elements in a monument facade image.

Nevertheless, identifying the style or detecting architectural elements of a given
monumental heritage facade based on an image of its facade is challenging due to the
next reasons:

• Some styles may share the same key characteristic architectural elements.

• The facade may contain external elements to the main style because they were

1UNESCO heritage tourism program: whc.unesco.org/uploads/activities/documents/activity-669-7
2UNESCO heritage education program: whc.unesco.org/en/wheducation

https://whc.unesco.org/uploads/activities/documents/activity-669-7.pdf
https:/whc.unesco.org/en/wheducation/


appended during restoration process or during their very long construction pro-
cess.

• The conservation state of some monuments can make the identification process
more difficult.

• Noise, darkness and shadow in the image itself may hide some of the character-
istic elements of the style.

• The image perspective can deform some similar geometric shapes, e.g. arches.

To build an automatic architectural style classification model and a key architec-
tural element detection model, it is essential to create a dataset that takes into account
all the aforementioned challenges. Accordingly, this work addresses the problem by
means of MonuMAI (Monument with Mathematics and Artificial Intelligence) frame-
work considering three main axis. Firstly, to design MonuMAI dataset, an annotated
monument image dataset based on a new monumental heritage taxonomy of architec-
tural key elements and styles. Secondly, to develop MonuMAI deep learning pipeline
for identifying architectural styles or detecting architectural elements in monument im-
ages. Thirdly, to provide citizen science based MonuMAI app which integrates both
models for performing in real life conditions.

In particular, the contributions of this work can be summarized as follows:

• To design an monumental heritage image dataset taking into account that:

– We define the first tree taxonomy that captures the relationship between
four of the most distinguishable architectural styles in Europe, Hispanic-
Muslim, Gothic, Renaissance, and Baroque, and the key elements that char-
acterize each style. The monumental heritage taxonomy is defined under a
close collaboration with three art experts.

– We design a multi-task MonuMAI dataset, a quality multi-task monument
dataset with two types of annotation which make it suitable not only for
classification and detection tasks but also for analyzing explanation meth-
ods.

• To develop MonuMAI deep learning pipeline considering that:

– We develop a lightweight deep CNN called MonuNet architecture, for mon-
ument style classification. MonuNet architecture achieves a good balance
between the number of layers and trainable parameters along with a low
computational cost that is fundamental on low performance devices such
as smartphones.

– We propose a key architectural element detection model, called MonuMAI-
KED model, based on Faster R-CNN [17] object detection mode and ResNet-
101 [5] CNN-based model. The detected elements are horseshoe arch,
lobed arch, flat arch, pointed arch, ogee arch, trefoil arch, gothic pinnacle,
porthole, lintelled doorway, rounded arch, triangular pediment (or pointed
pediment), segmental pediment, serliana, broken pediment, and solomonic
column.



• To provide MonuMAI app 3, a free tool for the automatic extraction of architec-
tural information through the architectural style classification and key elements
detection. This app is available for smartphone and via web, as a citizen science
based MonuMAI app it helps spreading art knowledge and collecting images to
further increase MonuMAI dataset.

Our experiments show that both MonuNet architecture and the key architectural
element detection models achieve very good results including in real-life conditions.

This paper is organized as follows. Section 2 provides the new taxonomy based
on architectural styles and elements. Section 3 describes MonuMAI image dataset, a
new two-fold dataset for classification and detection. Section 4 shows the process for
finding the optimal lightweight model for architectural style classification. Section 5
presents MonuMAI app, a mobile application for the general public. Section 6 gives
the experimental setup and results that show the suitability of DL models on the new
MonuMAI dataset. Lastly, Section 7 gives the final conclusions and future works.

2 Monumental heritage taxonomy
In each period of history, man has adopted a different way of understanding architecture
depending on socio-cultural and technical considerations. Each architectural style uses
a series of recognizable elements from the appearance and variations of basic elements,
either of structural nature (supports, covering system) or ornamental nature (decorative
types).

In general, humans determine the class of an object by first identifying the key
elements in that object. Based on this intuition, our approach is based on the way
an expert identifies the style of a monument. We propose a new tree taxonomy that
defines the relationships of monumental heritage between the different styles and their
characteristic elements.

Figure 1: The evolution of the four considered styles over the last eleven centuries

We consider four of the most distinctive architectural styles in Europe, Hispanic-
Muslim, Gothic, Renaissance, and Baroque, from the period between VIII and XVIII
centuries (Figure 1). These styles cover most of the middle Ages (V-XV century) and
Modern Ages (XV-XVIII century).

The architectural elements of monuments cover three types: brackets, ornaments
and archs. Hispanic-Muslim style is characterized by horseshoe, lobed arches and flat
arch ornament. Gothic style is characterized by pointed, ogee, trefoil arches and Gothic
pinnacle. Renaissance style is characterized by porthole, lintelled doorway, rounded
arches, triangular pediment, segmental pediment ornaments, and serliana bracket. Baroque

3monumai.ugr.es

https://monumai.ugr.es/


style is characterized by broken pediment ornament, solomonic column bracket, port-
hole, lintelled doorway, and rounded arches. Figure 2 illustrates the characteristic ele-
ments of each style.

Horseshoe arch Lobed arch Flat arch Pointed arch Ogee arch

Trefoil arch Serliana Triangular/pointed
pediment

Segment pediment Gothic
pinnacle

Rounded arch Lintelled
doorway

Porthole Solomonic
column

Broken pediment

Figure 2: Fifteen architectural key elements considered in this work to identify the
Hispanic-Muslim, Gothic, Renaissance, and Baroque styles.

Based on this information, we built a tree-structured taxonomy, as shown in Fig-
ure 3, in which the first level nodes are the styles and the second level nodes are the
characteristic elements of each style. Lower levels (tree leaves) represent variations of
some key element.

The main elements of each style have been selected, but there are inevitable limita-
tions and overlaps. On the one hand, architectural styles are not independent, they have
a beginning, an evolution and end, interacting with the preceding and following style
periods. On the other hand, some elements are used in more than one style and hence
for more accurate recognition it is necessary to detect and display them together.

3 MonuMAI: a multi-task monument image dataset

We built MonuMAI dataset, a new public dataset 4, rich in expert knowledge. It was
annotated by three experts using two types of annotations which makes it useful for
several tasks, for monument style classification (Section 3.1), for key elements detec-
tion (Section 3.2), and other potential applications.

4dasci.es/transferencia/dascii-hub/open-data/monumai-open-data

https://dasci.es/transferencia/dascii-hub/open-data/monumai-open-data/


Architectural
style

Hispanic-
muslim

Flat arch

Horseshoe
arch

Caliph

Concentric

Swollen
Straight-
toothed

key-
stone

Fringed

Intrados
scal-
loped

Extrados
scal-
loped

Twinned

Lobed
arch

Curtain

Mocarabe

Three-
lobed
horse-
shoe

Multifoil

Spiky
orna-

mented

Gothic Trefoil
arch

Gothic
pinnacleOgee

archDiminished

Flaming

Semi-
circular

Pointed
arch

Equilateral

Diminished

Lancet

Renaissance

Triangular
pediment

Segmental
pediment

Serliana

Rounded
arch

Semi-
circular

Flared

Lintelled
doorway

Open

Crimped
flat

arch

Porthole

Baroque

Broken
pediment

Triangular

Segmental
Swan
neck

Open

Recessed
pedi-
ment

Triangular
re-

cessed

Curved
re-

cessed

Solomonic
column

Figure 3: A tree-structured taxonomy of the four considered styles (second level
nodes), their characteristic elements (third level nodes), and subtypes of every element
(tree leaves).

3.1 MonuMAI dataset for architectural style classification
In practice, architectural styles cannot be found in their pure state for two reasons:

• Some styles such as renaissance and baroque share common characteristic ele-
ments.

• Over time monuments may suffer alterations by including elements from other
styles.

Hence, in a recent image of a monument that was built in the ancient world period,
we cannot predict a pure style but rather the dominant style.

MonuMAI dataset contains 1514 RGB images of monument facades of four ar-
chitectural styles Hispanic-Muslim, Gothic, Renaissance, and Baroque, illustrated in
Figure 4. A summary of the characteristics of MonuMAI dataset is shown in Table 1.



(a) Hispanic-Muslim (b) Renaissance

(c) Gothic (d) Baroque

Figure 4: Illustration of the four considered architectural styles. (a) Medina Azahara
(Córdoba, Spain 936) represents the Hispanic-Muslim style, (b) the Royal collegiate
church of Santa Marı́a la Mayor (Antequera, Spain 1514) represents Renaissance style,
(c) the Cathedral of Notre Dame (Parı́s, France 1163) represents the Gothic style and
the Royal Factory of tobacco (Sevilla, Spain 1728) represents the Baroque style.

Architectural style #images ratio (%)

Hispanic-Muslim 327 21.6
Gothic 359 23.7
Renaissance 312 20.6
Baroque 516 34.1

1514

Table 1: Characteristics of MonuMAI architectural style classification dataset (#images
represents the number of images.)

The used images for building MonuMAI dataset were taken so that the monument



is centered and fills most of the image. These high quality images were selected from
Internet and taken by smartphone cameras thanks to the educational MonuMAI app
developed by the same authors of this paper under a citizen science project.

The first annotation is actually a label of the dominant architectural style in the
image, Hispanic-Muslim, Gothic, Renaissance, and Baroque. This annotation makes
MonuMAI dataset useful for the task of architectural style classification.

3.2 MonuMAI dataset for key architectural elements detection
Besides the label that indicates the monument style, additional expert knowledge about
the existent key elements in each image is provided. The area where each characteristic
element is located in the image is delimited using a bounding box and labeled using
the name of one of the fifteen key elements, horseshoe arch, lobed arch, flat arch,
pointed arch, ogee arch, trefoil arch, Gothic pinnacle, triangular pediment, segmental
pediment, serliana, porthole, lintelled doorway, rounded arch, broken pediment, and
solomonic column. The elements that have more than 60% of their pixels occluded are
not included. The architectural elements annotation is illustrated in Figure 5. This type
of annotation makes MonuMAI dataset suitable for the architectural elements detection
task.

Figure 5: Labeling framework. Architectural elements annotation (lobed arch, horse-
shoe arch and flat arch) provides element name and location.

MonuMAI dataset includes 6650 annotated key elements distributed into the fifteen
architectural element classes. A statistical analysis of these elements is shown in Table
2.



Architectural element Count Element rate Repetition ratio Architectural style

Horseshoe arch 640 9.62% 2.09 Hispanic-muslim
Lobed arch 148 2.23% 3.44 Hispanic-muslim
Flat arch 161 2.42% 1.42 Hispanic-muslim
Pointed arch 495 7.44% 2.03 Gothic
Ogee arch 238 3.58% 1.58 Gothic
Trefoil arch 57 0.87% 1.36 Gothic
Gothic pinnacle 346 5.20% 4.81 Gothic
Triangular pediment 743 11.17% 2.07 Renaissance
Segmental pediment 258 3.88% 1.91 Renaissance
Serliana 77 1.16% 1.13 Renaissance
Porthole 392 5.89% 3.27 Renaissance/Baroque
Lintelled doorway 1150 17.29% 2.73 Renaissance/Baroque
Rounded arch 1044 15.70% 1.87 Renaissance/Baroque
Broken pediment 604 9.08% 1.41 Baroque
Solomonic column 297 4.47% 3.67 Baroque

Table 2: Characteristics of the architectural styles dataset, where count is the number of
occurrences of an element in the dataset, element rate is the ratio between the number
of occurrences of an element and the total number of all elements, repetition rate is the
average number of occurrences of an element per image, only in the images where it
occurs at least once.

By analyzing the key architectural elements in images of MonuMAI dataset, we
found an unbalanced number of elements classes. For example, elements such as Tre-
foil arch or Serliana represents only 0.87% and 1.16% of total elements respectively.
In contrast, elements such as Triangular pediment, Rounded arch, or Lintelled doorway
has higher rates, represent 11.17%, 15.7%, and 17.29% of total elements respectively.
This unbalance makes the detection of some characteristic elements more challenging.

It is noteworthy the high repetition rate of several elements. Some are used as a
building component which represents part of the structure such as Porthole or Lin-
telled doorway with 3.27 and 2.73 element repetition rates respectively. However,
other frequent elements are decorative but important for an architectural style such as
lobed arch to Hispanic-muslim, or Solomonic column to Baroque, with 3.44 and 3.67
elements per image respectively. Accordingly, a high element repetition rate do not
always set the predominant architectural style of a monument.

4 MonuNet: optimal lightweight architectural style
classification network

State-of-the-art architectures such as, the latest Inception, DenseNet and ResNet, pro-
vide good performance with less efforts. However, such models contain a large volume
of weights and require high computational load which make them prohibitive for small
devices, e.g. smartphones and tablets. Our design of the optimal network will be
guided by finding a good balance between accuracy, robustness and computation re-



quirements. Our objective is to design a lightweight network that is as good as heavy
state-of-the-art models but more suitable for small devices.

3x3 conv, 64

3x3 conv, 64

max pool 3x3, /2

7x7 conv, 64, /2

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

Adaptative avg pool

fc, softmax

image

(a) Preliminary architecture

max pool 3x3, /2

7x7 conv, 64, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

Adaptative avg pool

fc, softmax

image

1x1 conv, 64

3x3 conv, 192

max pool 3x3, /2

1x1 conv, 64

1x1 conv, 963x3 conv, 128

1x1 conv, 96

3x3 conv, 32

1x1 conv, 16

Depth concat

max pool 3x3

(b) MonuNet

Figure 6: MonuNet architecture construction process, (a) a preliminary net built by
fully stacking basic blocks and residual connections with boosted middle level of ab-
straction, and (b) the best lightweight net, a combination of Inception-style for the
initial level with residual network.

We built a deep CNN, called MonuNet, appropriate for architectural style classi-
fication and devices with limited computational resources. We selected ResNet-18 as
starting point, which is built by stacking the same basic building block [5]. First, we
evaluated the relevance of the different abstraction levels of the network, low, medium
and high level. Each abstraction level is depicted with a different color in Figure 6(a).
Then, we determine the right size and depth of each level by replicating the proper
number of building blocks. Indeed, Residual networks are built following this simple
concept.

We created different models based on the basic building blocks by finding the best
combination of blocks at each abstraction level, low, medium, and last levels. Higher
performance and more stable learning resulted by enhancing the intermediate level.
This architectural tricks along with the reduction of low and last levels provide notably
lighter model in terms of trainable weights and computation load with a marginal loss
of accuracy. The resulting preliminary network is depicted Figure 6(a).

Examples of more powerful building blocks are Inception blocks [20]. They are
used in many state-of-the-art networks [21] and are proven to extract more diverse



Layer name Output size preliminary Layer name Output size MonuNet
conv2d 112× 112× 64 7× 7, 64, /2 conv2d 112× 112× 64 7× 7, 64, /2

max pool 56× 56× 64 3× 3, /2 max pool 56× 56× 64 3× 3, /2

conv2d 56× 56× 64 3× 3, 64 conv2d 56× 56× 64 1× 1, 64

conv2d 56× 56× 64 3× 3, 64 conv2d 56× 56× 192 3× 3, 192

conv2d 28× 28× 128 3× 3, 128, /2 max pool 28× 28× 192 3× 3, /2

conv2d 28× 28× 128 3× 3, 128 conv2d 28× 28× 64 1× 1, 64

conv2d 28× 28× 128 3× 3, 128 conv2d 28× 28× 96 1× 1, 96
conv2d 28× 28× 128 3× 3, 128 conv2d 28× 28× 128 3× 3, 128

conv2d 14× 14× 256 3× 3, 256, /2 conv2d 28× 28× 16 1× 1, 16
conv2d 14× 14× 256 3× 3, 256 conv2d 28× 28× 32 3× 3, 32

conv2d 14× 14× 256 3× 3, 256 max pool 28× 28× 192 3× 3, /1
conv2d 14× 14× 256 3× 3, 256 conv2d 28× 28× 32 1× 1, 32

conv2d 14× 14× 256 3× 3, 256 conv2d 28× 28× 256 3× 3, 256
conv2d 14× 14× 256 3× 3, 256 conv2d 28× 28× 256 3× 3, 256

conv2d 7× 7× 512 3× 3, 512, /2 conv2d 14× 14× 256 3× 3, 256, /2
conv2d 7× 7× 512 3× 3, 512 conv2d 14× 14× 256 3× 3, 256

adapt. avg pool 1× 1× 512 conv2d 7× 7× 512 3× 3, 512, /2

fc 4 softmax conv2d 7× 7× 512 3× 3, 512

adapt. avg pool 1× 1× 512

fc 4 softmax

Table 3: MonuNet architecture schemes in detail, where Output size is specified in
terms of image size and channel depth, MonuNet version column specifies kernel size,
number of channels, and stride (default /1).

features through the various branches of the block. Accordingly, an initial feature
extraction similar to Inception architecture network can be beneficial.

We slightly modified Inception block, i.e., the basic block used in GoogleNet, by
reducing the kernel size from the 5× 5 convolutional layer to 3× 3. Unlike Inception-
ResNet architecture [21] the residual connections and inception block are detached.

The resulting MonuNet architecture is shown in Figure 6(b). In this network, we
replaced the first half of the preliminary architecture by inception-style as early feature
extraction stage. MonuNet increases its width and reduces its length resulting in a more
balanced architecture which requires slightly more computation, but with almost half
of the trainable weights of ResNet-18.

The architecture of the preliminary and MonuNet models are detailed in Table 3.



5 MonuMAI: deep learning pipeline and app
The automatic architectural analysis of a given monument image needs for an accurate
process of visual information extraction. The definition of MonuMAI deep learning
pipeline allows to perform different information extraction strategies such as the style
classification and key architectural elements detection in an unified process. Its au-
tomation makes it suitable to be performed in MonuMAI app through smartphones.

MonuMAI deep learning pipeline and its different stages are described in Section
5.1. MonuMAI-KED model for key architectural element detection is described in
Section 5.2. The aims of MonuMAI app are detailed in Section 5.3.

5.1 MonuMAI deep learning pipeline: Style classification and
key architectural elements detection

Take picture Resize image

Element 
detection

Style 
classification

Draw elements 
on image

internet 
communication

data pipeline

User Server

MonuNet

MonuMAI-KED

User

Metadata

a)

b)

Figure 7: MonuMAI deep learning pipeline illustrate (a) the communication connec-
tions and (b) image processing stages, from take a monument picture to respond to the
user.

The quality of smartphone cameras and internet connection allows broadcasting the
image between user and a central server for heavy processing. For an accurate detec-
tion in real conditions, the architectural element detection requires an object detection
model with a heavy CNN that need to be performed on a high performance computing
server.

MonuMAI app currently runs both elements detection and style classification thought
MonuMAI deep learning pipeline that it is shown in Figure 7. MonuMAI deep learning
pipeline includes several stages that are listed below:

• The camera application returns a high resolution image.

• The size of the image is lowered to fit the networks and then compressed main-
taining its quality.

• The compressed image is sent from user to server.

• MonuMAI deep learning pipeline for classification and detection.



1. Architectural style classification: MonuNet model.
2. Architectural Key elements detection (MonuMAI-KED model).

– Key element localization: Faster R-CNN (bounding boxes).
– Key elements classification: ResNet-101.

• The key elements are indicated in the compressed image.

• The image and architectural information metadata are sent back from server to
user.

• MonuMAI app shows monument information in a visual interface.

The MonuNet lightweight model can also be performed in the smartphones to fur-
ther minimizing data communication time and hence improving response time.

5.2 MonuMAI-KED model
The architectural information extraction performed through MonuMAI deep learning
pipeline considers different levels of information. The key architectural element detec-
tion, called MonuMAI-KED model provides fine-grained information giving the loca-
tion and the name of the key elements present in the picture of a given monument. Each
detected key element contributes to the architectural information of the monument with
its name, location, and relationship between the elements and styles.

MonuMAI-KED model is based on Faster R-CNN object detection model and
ResNet-101 CNN-based model. It is trained using the key architectural elements an-
notations provided by MonuMAI dataset.

Horseshoe 
arch

Horseshoe 
arch

Horseshoe 
arch

Flat arch

Background

Region 
proposal Classification

Input image Output image

Figure 8: Illustration of the key architectural element detection process of MonuMAI-
KED model.

MonuMAI-KED model performs the key architectural element detection through
the object detection task based on a DL model that reformulate the problem of key
architectural element detection (Figure 8) into a two-step approach of a selective search
technique and a CNN classification model:

• The selective search method is implemented in Faster R-CNN by a region pro-
posal network that generates candidate regions from the input image. The can-
didate regions are selected based on a regression learning stage considering the
visual features and region shape of the selected elements.



• Then, each region is classified by ResNet-101 CNN as an architectural element
or background. The classified regions as key elements are shown as the architec-
tural information from the monument image.

5.3 MonuMAI app
MonuMAI is an interdisciplinary project that aims at emulating the knowledge of the
art expert by combining monument images, Artificial Intelligence, and smartphones by
means of a citizen science approach.

The obtained automatic system identifies the architectural style and architectural
elements of monuments through images and artificial intelligence algorithms. Monu-
MAI web as well as Android and iOS mobile app are available 5 for free download as
tools to spread knowledge among the general public. This tool is also used to collect
more monument images in order to increase the available MonuMAI dataset resource.
These images are also revised and labeled by art experts.

(a) (b)

Figure 9: MonuMAI app examples of analysed monuments shared by users. Best
shared monuments are visible to all users. Figure (a) shows the Fontana di Trevi,
Roma, and (b) the Hospital Real, Granada.

The use of mobile applications is one of the most influential achievements for the

5monumai.ugr.es

https://monumai.ugr.es/


society in the last decade. The educational applications represent a rising market de-
mand from users 6. In combination with machine learning techniques, the integration
of artificial intelligence algorithm in our daily apps have become usual [23]. Besides,
these algorithms provides functionalities from intelligent behavior that adapts to users
or performs inherently human tasks. For instance, DL techniques based on CNNs can
perform visual tasks. It is noteworthy several functions of the image processing field
such as the scene recognition [29] in Google Photos for image topic grouping or im-
age quality improvements for camera applications. Facial recognition [4] also is an
important feature of apps such as Facebook and Instagram.

We develop MonuMAI app using DL models to extract the architectural informa-
tion of monument images, illustrated in Figure 9. The architectural element detection
and style classification in combination with the monumental heritage taxonomy pro-
vides meaningful information about some elements on the morphology of the monu-
ment.

6 Experimental Analysis
This section provides a first analysis of MonuNet architectural style classification and
key element detection models using MonuMAI dataset. The experimental setup is
given in Section 6.1. The results of the MonuNet model for architectural style classifi-
cation using the first type of annotations in MonuMAI dataset is given in Section 6.2,
and the results of the object detection model for key architectural element detection
using the second type of annotations of MonuMAI dataset is given in Section 6.3.

6.1 Experimental setup
All the results shown in this section are obtained using 5 fold cross validation tech-
nique. This partition scheme is also used to train and validate the key-elements detec-
tion model and the architectural style classification model.

The performance metrics used to evaluate the architectural style classification of
the four architectural styles are precision, recall, and F1 score (equation 1).

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2× precision× recall

precision+ recall

(1)

where the number of true positives (TP), false positives (FP), and false negatives
(FN) is computed for each class.

The corresponding macro-precision, macro-recall, and macro-F1 are the average
precision, recall, and F1 respectively of the four style categories for the multi-class
classification.

6US-education-technology-education-apps-market-us-2016-2020

https://www.technavio.com/report/usa-education-technology-education-apps-market-us-2016-2020


The detection performance of Faster R-CNN on the 15 element classes is evalu-
ated in terms of mAP (equation 2) and mAR (equation 3) standard metrics for object
detection tasks given 100 output regions.

mAP =

∑K
i=1 APi

K
APi =

1

10

∑
r∈[0.5,...,0.95]

∫ 1

0

p(r)dr (2)

mAR =

∑K
i=1 ARi

K
ARi = 2

∫ 1

0.5

recall(o)do (3)

where given K categories of elements, p represents the precision and r recall define
the area under the interpolated precision-recall curve for each class i. whereas o is IoU
(intersection over union) in recall(o) is the corresponding recall under the recall-IoU
curve for each class i.

The classification models were built and evaluated using PyTorch api [16]. For the
classification task, we trained models on MonuMAI dataset for the architectural style
classification. As optimization algorithm, we used Stochastic Gradient Descent(SGD)
and cross-entropy loss training from scratch. The data augmentation performs equal
normalization at train and test, resize to 224 square images from random crop at train
and center crop at test.

The detection models were built and evaluated using TensorFlow [1] as back-end
and its object detection api [6] as front-end. The architectural element detection we
used Faster R-CNN architecture based on ResNet-101 pre-trained on COCO [10]. We
fine-tuned the weights and retrain model on our dataset. As optimization method, we
used SGD: momentum of 0.9, learning rate of 0.0003, and batch size of 1.

All the experiments were carried out on a GPU cluster with Nvidia Titan RTX.
MonuMAI dataset, pre-trained MonuNet model and all the hyper-parameters for clas-
sification and detection are available at 7.

6.2 MonuNet model analysis
This section provides an exhaustive analysis of diverse well known CNNs in the task of
architectural style classification, in Section 6.2.1. All these models are trained on the
new built MonuMAI classification dataset. The evaluation of the new MonuNet model
is given in Section 6.2.2.

6.2.1 Results of lightweight architectures

We evaluated eight diverse nets in the architectural style classification task using Monu-
MAI dataset. The weight, number of layers, trainable layers, FLOPs, macro-precision,
macro-recall, and macro-F1 are summarized in Table 4.

As we can observe from Table 4, in general, higher performance are achieved by
residual connection based models. In particular, ResNet-18 provides the highest per-
formance with 89.3% macro-precision, 88.54% macro-recall, and 88.87% macro-F1.

7github.com/ari-dasci/OD-MonuMAI

https://github.com/ari-dasci/OD-MonuMAI


#parm(×106) #layer #lrn layer FLOPs(×109) m-prec(%) m-recall(%) m-F1(%)

ResNet-18 11.69 69 41 1.82 89.30 88.54 88.87
ResNet-34 21.80 125 73 3.67 88.66 88.13 88.37
DenseNet-121 7.98 371 242 2.87 87.53 87.53 87.51
GoogleNet 7.01 197 115 1.59 87.21 87.01 87.07
ShuffleNetV2 x2.0 7.39 168 113 0.59 85.63 84.39 84.85
MobileNetV2 3.50 159 105 0.31 83.95 83.99 83.91
ShuffleNetV2 x1.0 2.28 168 113 0.15 81.60 80.34 80.79
SqueezeNet 1.0 1.24 66 26 0.35 71.06 66.85 68.37

Table 4: Characteristics and performance of the considered classification models on
MonuMAI architectural style classification dataset. Performance metrics are present in
terms of macro-precision (m-prec), macro-recall (m-recall), and macro-F1 score (m-
F1). Characteristics are presents in terms of number of parameters (#parm), number of
layers (#layers), number of learnable layers (#lrn layer), and floating point operations
per second (FLOPs).

Deeper and heavier models such as ResNet-34 or DenseNet-121 provide respectively
0.5% and 1.36% lower macro-F1. Notice that GoogleNet model based on stacked In-
ception modules is considerably lighter but provides lower performance than ReseNet-
18, 1.8% lower macro-F1.

6.2.2 MonuNet model performance and optimization

MonuNet and preliminary models pursue an optimal balance between size, computa-
tion, and performance. In this section we analyse and evaluate both networks.

#parm(×106) #layer #lrn layer FLOPs(×109) m-prec(%) m-recall(%) m-F1(%)

Preliminary model 7.56 62 37 1.59 88.95 88.15 88.50
MonuNet 6.38 59 35 1.95 90.09 89.59 89.81

Table 5: Characteristics and performance of MonuNet model and preliminary version
on MonuMAI architectural style classification dataset.

MonuNet model seeks a good balance between accuracy and computation require-
ments as shown in Table 5. Both preliminary and MonuNet models have high perfor-
mance and lower computational requirements. The preliminary model has a compara-
ble number of layers to ResNet-18, however, it has 12.6% and 35.3% less FLOPs and
number of parameters respectively with only 0.37% lower macro-F1.

The best performance on MonuMAI architectural style classification is obtained by
MonuNet model. The integration of the modified Inception module in the low level
layers boosted the model performance up to 90.09% macro-precision, 89.59% macro-
recall, and 89.81% macro-F1.

MonuNet model outperforms ResNet-18 by reducing the number of parameters
by 45.4%, the number of general layers by 14.5%, the number of trainable layers by
14.6%, but increasing the number of FLOPs by 7.1%. Thus, MonuNet model keeps a
low computational cost (FLOPs) but minimizing the model size, which is suitable to
be performed along with numerous processes and apps on smartphones.

The performance of MonuNet model per each architectural style is shown in Table



6.
#img Baroque Gothic Hisp-Muslim Renaissance Precision(%) Recall(%) F1(%)

Baroque 516 469 10 3 34 89.50 90.89 90.19
Gothic 359 4 345 6 4 91.03 96.10 93.50
Hisp.-Muslim 327 3 12 307 5 95.05 93.88 94.46
Renaissance 312 48 12 7 245 85.07 78.53 81.67

macro 90.09 89.58 89.81

Table 6: Results of MonuNet classification model on MonuMAI architectural style
classification dataset.

In general, MonuNet model provides good results in all four styles. In particular,
the Hispanic-Muslim style obtains the highest performance with 95.05% precision,
93.88% recall, and 94.46% F1. Unlike the Renaissance style which obtains the lowest
performance, with 85.07% precision, 78.53% recall, and 81.67% F1. These differences
can be explained by the fact that:

• The Hispanic-Muslim monument appearance is quite distinct in architectural
forms or decorative painting.

• The overlapping between Renaissance and Baroque features such as shared ar-
chitectural elements, or similar building characteristics make the classification
difficult, as it can be seen in the confusion matrix of Table 6.

The overall high performance can be explained by the quality of the dataset that
includes images with high resolution, the monuments facade is centered filling most of
the image area, and very few noise. More monument classification results are shown
in Figure 10. As it can be seen, the style classification is accurate in many cases, but
some uncertain classifications generated in adverse conditions by contextual elements,
shadows, or light conditions.



Figure 10: Examples of architectural style classification in monument facades. Mo-
nuNet model is trained on MonuMAI classification dataset.

6.3 MonuMAI-KED model analysis
This section analyses the performance and results of the architectural elements detec-
tion on the MonuMAI detection dataset, depicted in Section 3.2.

mAP mAP[0.5] mAP[0.75] mAP S mAP M mAP L mAR mAR S mAR M mAR L

0.602 0.911 0.712 0.569 0.527 0.64 0.683 0.58 0.602 0.716

Table 7: Detection performance metrics of the architectural element detection model
trained on MonuMAI key architectural elements dataset.

The evaluation of the object detection model on the fifteen classes are shown in
Table 7. As it can be seen, the detection model achieves an mAP of 0.6 and mAR of
0.68. The performance mAP can be considered as good since the state-of-the-art de-
tectors on COCO detection challenge with 80 classes is 0.52 taking into consideration
the difference in the amount of data. Higher mAP is better.



(a) (b)

Figure 11: Examples of architectural elements detection in complex scenes. Figure (a),
the College of San Pablo (facade built in 1717, Granada), and figure (b), Gate of justice
in Alhambra (1348, Granada).

Two examples of monument images in complex scenes are shown in Figure 11.

• The monument (a) shows the Faculty of Law in the College of San Pablo, which
is a Baroque monument. As it can be seen, this image includes multiple types
of noise, part of a tree, a road sign and low light with shadows. However the
detection model is able to detect architectural elements as the characteristics
Solomonic columns in low light conditions.

• The image (b) shows the Royal Monastery of Cartuja, a renaissance monument.
The image shows smaller elements that are correctly detected, for instance, the
Segmental pediment which is distinctive of Renaissance.

Additional detection results giving architectural element information are presented
in Figure 12. The figure shows diverse monuments and contexts of the four architec-
tural styles with different perspective and natural light conditions. Hence, the potential
of architectural element detection based on CNNs provide outstanding results given
contextual background, distance, or monument features. Despite of common elements
such as pedestrians, plants in general and cars can occlude some parts of the image, or
sometimes urban layout forces the perspective from which the pictures are taken.

The potential of CNN based models have proved their ability to differentiate similar
architectural elements even when their shapes and building features are similar. The
architectural element detection performs in realistic and complex scenarios providing
architectural information.

In conclusion, the detection of architectural elements shows considerable perfor-
mance despite external object in the background or parts of urban infrastructure.



Broken 
pediment

Triangular 
pediment

Lintelled 
doorway

Ground truth: Baroque

Rounded 
arch

Broken 
pediment

Triangular 
pediment

Lintelled 
doorway

Ground truth: Baroque

Segmental
pediment

Rounded 
arch

Ogee arch

Rounded 
arch

Trefoil 
arch

Pointed 
arch

Ground truth: Gothic

Broken 
pediment

Triangular 
pediment

Lintelled 
doorway

Ground truth: Baroque

Rounded 
arch

Ground truth: Renaissance

Lintelled 
doorway

Triangular 
pediment

Porthole

Ogee arch

Rounded 
arch

Ground truth: Gothic

Flat arch

Horseshoe 
arch

Ground truth: Hispanic-muslim

Lintelled 
doorway

Ground truth: Renaissance

Lintelled 
doorway

Triangular 
pediment

Serliana

Porthole

Figure 12: Examples of architectural element detection for monument facades in di-
verse situations, brightness, perspective, distance to monument, or urban elements.

7 Conclusion remarks
This work presents MonuMAI framework that includes the three main axis proposed
in this work. MonuMAI dataset designed according to the defined monumental her-



itage taxonomy, for architectural styles classification and key elements detection tasks.
MonuMAI deep learning pipeline based on MonuNet architecture and MonuMAI-KED
model for architectural style classification and key element detection respectively. Citi-
zen science based MonuMAI app that integrate MonuMAI deep learning pipeline using
MonuMAI dataset for performing in real life conditions.

The obtained MonuNet and MonuMAI-KED models trained on MonuMAI dataset
show high potential even in low quality images and provides satisfactory results in real
condition scenarios as shown by MonuMAI app. Such automatic system could ease the
democratization of this kind of knowledge to a much wider segment of the population
by integrating it into smartphones or in combination with augmented or virtual reality
applications that can be used in several fields, e.g., in tourism, teaching, or science
dissemination.

In conclusion, we highlight MonuMAI dataset and the monumental heritage taxon-
omy as primary resources for building automatic models of architectural information
extraction. We also point out the potential of MonuMAI deep learning pipeline through
MonuNet and MoniMAI-KED models to perform in real life conditions as it is shown
by MonuMAI app.

As future work, we will work on developing an embedded architecture for the archi-
tectural style classification and key elements detection. Both tasks can provide feed-
back to each other, implement explainable mechanisms, and move embedded model
execution to smartphones.

Acknowledgements
This work was partially supported by the Spanish Ministry of Science and Technology
under the project TIN2017-89517-P. S. Tabik was supported by the Ramon y Cajal
Programme (RYC-2015-18136).

References
[1] Martı́n Abadi et al. Tensorflow: A system for large-scale machine learning. Op-

erating Systems Design and Implementation, 16:265–283, 2016.

[2] Alberto Castillo et al. Brightness guided preprocessing for automatic cold steel
weapon detection in surveillance videos with deep learning. Neurocomputing,
330:151–161, 2019.

[3] Wei-Ta Chu and Ming-Hung Tsai. Visual pattern discovery for architecture im-
age classification and product image search. In Proceedings of the 2nd ACM
International Conference on Multimedia Retrieval, page 27. ACM, 2012.

[4] Xuanyi Dong et al. Supervision-by-registration: An unsupervised approach to
improve the precision of facial landmark detectors. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 360–368, 2018.



[5] Kaiming He et al. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[6] Jonathan Huang et al. Speed/accuracy trade-offs for modern convolutional object
detectors. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7310–7311, 2017.

[7] Phillip Isola et al. Image-to-image translation with conditional adversarial net-
works. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1125–1134, 2017.

[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[9] Yi Li et al. Fully convolutional instance-aware semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2359–2367, 2017.

[10] Tsung-Yi Lin et al. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[11] Tsung-Yi Lin et al. Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2117–
2125, 2017.

[12] Tsung-Yi Lin et al. Focal loss for dense object detection. In Proceedings of the
IEEE international conference on computer vision, pages 2980–2988, 2017.

[13] Hantang Liu et al. Deepfacade: a deep learning approach to facade parsing. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pages 2301–2307. AAAI Press, 2017.

[14] Jose Llamas et al. Classification of architectural heritage images using deep learn-
ing techniques. Applied Sciences, 7(10):992, 2017.

[15] Dhruv Mahajan et al. Exploring the limits of weakly supervised pretraining. In
European Conference on Computer Vision, pages 185–201. Springer, 2018.

[16] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems, pages 8024–
8035, 2019.

[17] Shaoqing Ren et al. Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information processing systems, pages
91–99, 2015.

[18] Gayane Shalunts. Architectural style classification of building facade towers. In
International Symposium on Visual Computing, pages 285–294. Springer, 2015.



[19] Gayane Shalunts, Yll Haxhimusa, and Robert Sablatnig. Classification of gothic
and baroque architectural elements. In 2012 19th International Conference on
Systems, Signals and Image Processing (IWSSIP), pages 316–319, April 2012.

[20] Christian Szegedy et al. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[21] Christian Szegedy et al. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference on artificial intelligence,
pages 4278–4284, 2017.

[22] Fei Wang et al. Residual attention network for image classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3156–3164, 2017.

[23] Mengwei Xu et al. A first look at deep learning apps on smartphones. arXiv
preprint arXiv:1812.05448, 2018.

[24] Zhe Xu et al. Architectural style classification using multinomial latent logis-
tic regression. In European Conference on Computer Vision, pages 600–615.
Springer, 2014.

[25] Nianyin Zeng et al. Facial expression recognition via learning deep sparse au-
toencoders. Neurocomputing, 273:643–649, 2018.

[26] Nianyin Zeng et al. Deep-reinforcement-learning-based images segmentation for
quantitative analysis of gold immunochromatographic strip. Neurocomputing,
2020.

[27] Luming Zhang et al. Recognizing architecture styles by hierarchical sparse cod-
ing of blocklets. Information Sciences, 254:141–154, 2014.

[28] Peipei Zhao et al. Architectural style classification based on feature extraction
module. IEEE Access, 6:52598–52606, 2018.

[29] Bolei Zhou et al. Learning deep features for scene recognition using places
database. In Advances in neural information processing systems, pages 487–495,
2014.


	Introduction
	Monumental heritage taxonomy
	MonuMAI: a multi-task monument image dataset 
	MonuMAI dataset for architectural style classification
	MonuMAI dataset for key architectural elements detection

	MonuNet: optimal lightweight architectural style classification network
	 MonuMAI: deep learning pipeline and app 
	 MonuMAI deep learning pipeline: Style classification and key architectural elements detection 
	MonuMAI-KED model
	MonuMAI app

	Experimental Analysis
	Experimental setup
	MonuNet model analysis
	Results of lightweight architectures
	MonuNet model performance and optimization

	MonuMAI-KED model analysis

	Conclusion remarks

