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Abstract

Neural networks are state-of-the-art models for machine learning problems.

They are often trained via back-propagation to find a value of the weights that

correctly predicts the observed data. Back-propagation has shown good per-

formance in many applications, however, it cannot easily output an estimate of

the uncertainty in the predictions made. Estimating the uncertainty in the pre-

dictions is a critical aspect with important applications. One method to obtain

this information consists in following a Bayesian approach to obtain a posterior

distribution of the model parameters. This posterior distribution summarizes

which parameter values are compatible with the observed data. However, the

posterior is often intractable and has to be approximated. Several methods

have been devised for this task. Here, we propose a general method for approx-

imate Bayesian inference that is based on minimizing α-divergences, and that

allows for flexible approximate distributions. We call this method adversarial

α-divergence minimization (AADM). We have evaluated AADM in the context

of Bayesian neural networks. Extensive experiments show that it may lead to

better results in terms of the test log-likelihood, and sometimes in terms of

the squared error, in regression problems. In classification problems, however,

AADM gives competitive results.
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1. Introduction

In the past years, Neural Networks (NNs) have become very popular due to

the good empirical achievements in a wide variety of learning problems. Specifi-

cally, Deep Neural Networks (DNNs) trained with back-propagation have signif-

icantly improved the state-of-the-art in supervised learning tasks [1]. Moreover,

variations of the simple original NN models have been specifically designed to

take advantage of underlying structure on the input data. This is the case for

Convolutional Neural Networks (CNNs) [2] or Long-Short Term Memory Net-

works (LSTMs) [3], both of which represent some of the best performing models

for dealing with structured data such as images and texts, respectively. NNs can

be trained on Graphical Processing Units (GPUs), which significantly reduces

the total training time and the effort needed to produce highly accurate results.

These models can therefore be trained on huge amounts of data very quickly,

showing excellent results in regression and a competitive performance also in

classification tasks. In spite of the advantages described, the good performance

results come with some drawbacks, such as the concerns about over-fitting due

to the high number of parameters to be adjusted, or the lack of a confidence

measure on the predicted outputs associated to the input data [4]. More pre-

cisely, regular NNs only produce point-estimate predictions and do not provide

any information about the certainty of such outcome. Even in multi-class prob-

lems where the results are given in terms of a soft-max function which outputs

probabilities, it is important to keep in mind that the output values do not

correspond to the confidence of the prediction. In particular, a high class label

probability may correspond to a data instance that will be often misclassified

by the network.

The problems described can be addressed by following a Bayesian approach

in the training process, instead of relying on back-propagation for finding point-

estimates of the model parameters. One of the main features of Bayesian prob-
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abilistic models such as Bayesian neural networks (BNNs) [5] is that they are

able to capture the uncertainty in the model parameters (the network weights)

and the effects it produces in the final predictions, therefore providing an es-

timate of the models’ ignorance on the input data in each specific case. This

extra output information can be used in different ways: for example, confronting

problems in artificial intelligence safety, performing active learning, or dealing

with possible adversaries which may manipulate the data [4]. Therefore, uncer-

tainty estimates associated to the model predictions can be very important to

make optimal decisions when dealing with input data that the machine learning

algorithm has never seen before.

The Bayesian approach relies on computing a posterior distribution for the

model parameters given the data [4]. This posterior distribution is obtained

using Bayes’ rule simply by multiplying a likelihood function (which captures

how well specific values of the parameters explain the observed data) and a prior

distribution (which includes prior knowledge about what potential values these

parameters may take). This posterior distribution summarizes which model

parameters (i.e., the neural network weights) are compatible with the observed

data. Intuitively, if the model is rather complex, the posterior will be very

broad. By contrast, if the model is fairly simple, the posterior will concentrate

on a specific region of the parameters space. The information contained in the

posterior distribution can be readily translated into a predictive distribution

which carries information about the uncertainty on the predictions made. For

this, one simply has to average the predictions of the model for each parameter

configuration weighted by the corresponding posterior probability.

A difficulty of the Bayesian approach is, however, that computing the pos-

terior distribution is intractable for most problems. Therefore, in practice, one

has to resort to approximate methods. Most of these methods approximate the

exact posterior using an approximate distribution q. The parameters of q are

tuned by minimizing a divergence between q and the exact posterior. This is

how methods such as variational inference (VI), expectation propagation (EP)

or black-box-α work in practice [6, 7, 8]. Although these methods are very fast
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and scalable, they often suffer from the lack of flexibility of the approximate

distribution q, which is typically set to be a parametric distribution that can-

not adequately match the exact posterior. Therefore, these methods may suffer

from strong approximation bias. Importantly, a poor approximation of the ex-

act posterior is expected to lead to a worse predictive distribution, less accurate

predictions, and a worse estimate of the uncertainty in the predictions made.

Recently, several methods have been proposed to increase the flexibility of

the approximate distribution q [9, 10, 11, 12, 13]. Among these, a successful ap-

proach is to use an implicit model for the approximate distribution [14]. Under

this setting, q is obtained by applying an adjustable non-linear function (e.g.,

given by the output of a neural network) to a source of Gaussian noise. If the

non-linear function is flexible enough, almost any distribution can be approx-

imated like this. Nevertheless, even though q is a distribution that is easy to

sample from, its p.d.f. can not be obtained analytically due to the complexity

of the non-linear function. More precisely, marginalizing the Gaussian noise is

intractable. This makes approximate inference (i.e., tuning the parameters of

the non-linear function) very challenging. Adversarial variational Bayes (AVB)

is a technique that solves this problem by minimizing the Kullback-Leibler (KL)

divergence between q and the exact posterior [10]. This technique avoids eval-

uating the p.d.f. of q by learning a discriminator network that estimates the

log-ratio between the posterior approximation q and the prior distribution over

the model parameters.

AVB and also other methods such as VI or EP (only locally and in the

reversed way) rely on minimizing the KL divergence between the approximate

distribution q and the exact posterior. The α-divergence generalizes the KL di-

vergence and includes a parameter α ∈ (0, 1] that can be adjusted. In particular,

when α→ 0, the α-divergence tends to the KL-divergence optimized by VI. By

contrast, if α = 1, the α-divergence is the reversed KL-divergence, i.e., the KL-

divergence between the exact posterior and q, which is locally optimized by EP.

Recently, it has been empirically shown that one can obtain better results, in

terms of the approximate predictive distribution, by minimizing α-divergences
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locally using intermediate values of the α parameter in the case of parametric

q [7]. However, it is not clear if one can also obtain better results in the case of

using implicit models for q, such as the one considered by AVB.

In this paper we extend AVB to locally minimize α-divergences, in an ap-

proximate way (instead of the regular KL divergence) with α an adjustable pa-

rameter. We refer to such a method as Adversarial α-divergence minimization

(AADM). Therefore, AADM can be seen as a generalization of AVB that allows

to optimize a more general class of divergences, resulting in flexible approximate

distributions q with different properties. When α→ 0, AADM targets the same

objective as AVB. When α = 1, AADM is similar to EP with a flexible ap-

proximate distribution q. Intermediate values of α result in different properties

of the approximate distribution. We have evaluated AADM in the context of

Bayesian Neural Networks and tested different values of the α parameter. The

experiments carried out involve several regression and classification problems ex-

tracted from the UCI repository, the MNIST dataset and the CIFAR-10 dataset.

The experiments show that in regression problems one can obtain, in general,

better prediction results than those of AVB and standard VI by using interme-

diate values of α. In particular, the mean squared error, test log-likelihood, and

other performance metrics of the predictive distribution such as the continuous

ranked probability score (CRPS) [15] improve when intermediate values of α are

used. We have also evaluated AADM in the context of binary and multi-class

classification problems. In these cases, however, we have observed that AADM

gives similar results to those of AVB, both in terms of the prediction error and

the test log-likelihood, as well as in terms of other performance metrics based

on the Brier score [15].

2. Variational Inference and Adversarial Variational Bayes

Adversarial Variational Bayes (AVB) [10] is an extension of variational infer-

ence (VI) [16] that allows for implicit models for the approximate distribution

q. We will briefly introduce here first VI and then AVB.
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2.1. Variational Inference

Let w be the latent variables of the model, e.g., the neural network weights.

The task of interest in VI is to approximate the posterior distribution of w given

the observed data. For simplicity we will focus on regression models, but the

method is broadly applicable to any model and is not limited to neural networks.

Consider a training setD = {xi, yi}Ni=1, where xi is some d-dimensional input

vector and yi ∈ R is the associated target value. The posterior distribution is

given by Bayes’ rule:

p(w|D) =
p(y|w,X)p(w)

p(D)
=

[∏N
i=1 p(yi|w,xi)

]
p(w)

p(D)
, (1)

where X is a matrix with the observed vectors of input attributes and y =

(y1, . . . , yN )T. We have assumed i.i.d. data and hence, the likelihood factor-

izes as p(y|w,X) =
∏N
i=1 p(yi|w,xi). In (1) p(w) is the prior distribution of

the latent variables of the model (i.e., the neural network weights) and p(D) =∫
p(y|w,X)p(w)dw is just a normalization constant. In the case of regres-

sion problems p(yi|w,xi) is often a Gaussian distribution, i.e., N (yi|f(xi), σ
2),

where f(xi) is the output of the neural network and σ2 is the variance of the

output noise. In the case of binary classification problems, p(yi|w,xi) is given

by the sigmoid activation function. In multi-class problems, the soft-max func-

tion is used instead. Furthermore, p(w) is often a factorizing Gaussian with zero

mean and variance σ2
0 (see e.g., [6, 7, 8]). Given (1) the predictive distribution

of the model for the label y? of a new test point x? is:

p(y?|D) =

∫
p(y?|w,x?)p(w|D)dw . (2)

In the case of regression problems, the model prediction would be the expected

value of y? under (2) and the confidence in the prediction can be estimated,

e.g., by the standard deviation. In classification problems, the model prediction

would be a probability for each class label (which takes into account the uncer-

tainty about w). In practice, p(w|D) is intractable because p(D) has no closed
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form expression and one has to use an approximation to this distribution in (2).

VI [16] approximates (1) using a parametric distribution q(w) which is often

a factorizing Gaussian N (w|µ,Σ) with Σ a diagonal matrix. Let φ be the

set of parameters of q(w), i.e., φ = {µ,Σ}. These parameters are adjusted to

minimize the KL divergence between q(w) and the exact posterior (1). Consider

the following decomposition of log p(D):

log p(D) = Eqφ(w)[log p(y,w|X)− log q(w)] + KL(q(w)||p(w|D)) , (3)

where KL(q(w)||p(w|D)) is the KL divergence between q(w) and the exact

posterior:

KL(q(w)||p(w|D)) = −
∫
qφ(w) log

p(w|D)

qφ(w)
dw ≥ 0 . (4)

The KL divergence is always non-negative and is only zero if the two distribu-

tions are the same. Therefore, by minimizing this divergence VI enforces that

q(w) looks similar to the exact posterior (1).

Since log p(D) in (3) is a constant term independent of φ, the KL divergence

in (4) can be minimized by maximizing the first term in the r.h.s. of (3) with

respect to φ. This term is often referred to as the evidence lower bound:

L(φ) = Eqφ(w)[log p(y,w|X)− log q(w)]

=
N∑
i=1

Eqφ(w)[p(yi|w,xi)]−KL(q(w)||p(w)) ,
(5)

where KL(q(w)||p(w)) is the KL divergence between q(w) and the prior p(w).

In some cases there exists a closed-form expression for this divergence, e.g. if

q(w) and the prior are Gaussian, which is usually the case for VI [17]. The

maximization of (5) can be done using stochastic optimization techniques that

sub-sample the training data and that approximate the required expectations

using Monte Carlo samples (see [8] for further details). The hyper-parameters

of the model, i.e., the noise and prior variance σ2 and σ2
0 are estimated by max-
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imizing L(φ), which approximates log p(D) since KL(q(w)||p(w|D)) is expected

to be fairly small. Finally, after training, the posterior approximation can re-

place the exact posterior in (2) and the predictive distribution for new data can

be approximated by a Monte Carlo average over the posterior samples.

2.2. Adversarial Variational Bayes

AVB extends VI to account for implicit models for the approximate distri-

bution q(w) [10]. An implicit model for q(w) is is a distribution that is easy to

generate samples from, but that lacks a closed form expression for the p.d.f. An

example is a source of standard Gaussian noise that is non-linearly transformed

by a neural network. That is,

qφ(w) =

∫
δ (w − fφ(ε))N (ε|0, I)dε , (6)

where fφ(ε) is the output of a neural network that receives ε at the input and

δ(·) is a delta function. In general, the integral in (6) is intractable due to

the strong non-linearities of the neural network. Nevertheless, it is very easy to

generate w ∼ qφ. For this, one only has to generate ε ∼ N (0, I) to then compute

w = fφ(ε). If the noise dimension is large enough and fφ(·) is flexible enough,

any probability distribution can be described like this. Therefore, an implicit

model may reduce the bias in VI associated with the parametric distribution

q(w).

Using an implicit distribution in VI is challenging because the lower bound

in (5) cannot be easily evaluated nor maximized. The reason for this is that the

evaluation of the KL divergence term requires the p.d.f. of q(w). AVB provides

an elegant solution to this problem. For this, the KL term is expressed as:

KL(q(w)||p(w)) = Eqφ(w) [log qφ(w)− log p(w)] = Eqφ(w) [T (w)] , (7)

where T (w) is simply the log-ratio between qφ and the prior. AVB estimates

T (w) as the output of another neural network that discriminates between sam-

ples of w generated from qφ and from the prior [10]. This technique has also
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been considered in other works [13, 18, 14]. Let Tω(·) be the output of the dis-

criminator. The following objective is considered in AVB for finding the optimal

discriminator, assuming qφ(w) is fixed:

max
ω

Eqφ(w)

[
log σ(Tω(w)) + Ep(w)[log(1− σ(Tω(w)))]

]
, (8)

where σ(·) is the sigmoid-function. Roughly speaking, this objective tries to

make the discriminator differentiate between samples generated from qφ(w) and

from the prior p(w).

In [10] it is shown that the optimal discriminator Tω? for (8) is precisely

Tω?(w) = log qφ(w)− log p(w), (9)

which is the result desired to correctly estimate the KL divergence between qφ

and the prior. See the supplementary material for further details. In particular,

the discriminator can be plugged in (7) and the expectation can be approximated

simply by a Monte Carlo average by generating samples from qφ.

Given Tω? , the lower bound employed in AVB is obtained by re-writing the

evaluation of the KL divergence between qφ and the prior:

L(φ) =

N∑
i=1

Eqφ(w)[p(yi|w,xi)]− Eqφ(w)[Tω?(w)] . (10)

Note that all the required expectations can be simply approximated by generat-

ing samples from qφ and the sum across the training data can be approximated

using mini-batches. This lower bound can be hence easily maximized w.r.t. φ

using stochastic optimization techniques. For this, however, we need to differen-

tiate the stochastic estimate of the objective with respect to φ. This may seem

complicated since Tω?(w) is defined as the solution of an auxiliary optimization

problem that depends on φ. However, as shown in [10], due to the expression for

the optimal discriminator, Eqφ(w) (∇φTω?(w)) = 0. Therefore the dependence

of Tω?(w) w.r.t φ can be ignored. In practice, both qφ and the discriminator
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Tω(w) are trained simultaneously. Nonetheless, qφ is updated by maximizing

(10) using a smaller learning rate than the one used to update the discriminator

Tω, which considers the objective in (8). This helps to guarantee that Tω is an

accurate estimator of the log-ratio between qφ and the prior, and that the KL

divergence is correctly estimated when updating qφ.

Finally, the performance of AVB depends on achieving a good approxima-

tion Tω(w) to the optimal discriminator. However, in practice the approxi-

mation may not be sufficiently close to the optimum. This can be caused by

the fact that the approximate posterior distribution and the prior are very dif-

ferent from each other. This may result in a relaxed discriminator which can

distinguish with ease the samples from both distributions, but fails to estimate

accurately the log-ratio between the p.d.f’s. To address this issue, in [10] it

is proposed a technique called adaptive contrast, which consists in introducing

a new auxiliary conditional probability distribution rα(w) with known density

that approximates qφ. This auxiliary distribution is set to be a factorizing Gaus-

sian whose mean and variances match those of qφ. When this distribution is

introduced in the objective of VI, the term KL(q(w)||p(w)) is replaced by the

term KL(q(w)||rα(w)), which can be estimated again using a classifier to dis-

criminate samples from q(w) and samples from rα(w). This, in general, results

in an improvement in the final performance of the algorithm. For further details

about adaptive contrast please see the supplementary material.

3. Alpha Divergence Minimization

Before describing the proposed method, we briefly review here the α-divergence,

of which we make extensive use. Let p and q be two distributions over the vector

θ. The α-divergence between p and q is non-negative and only equal to zero if

p = q [19]. The corresponding expression is given by

Dα[p|q] =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−αdθ

)
. (11)
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This divergence has a parameter α ∈ R \ {0, 1}. Depending on the value of α

it recovers different well-known divergences between probability distributions.

For example,

D1[p|q] = lim
α→1

Dα[p|q] = KL[p||q] , (12)

D0[p|q] = lim
α→0

Dα[p|q] = KL[q||p] , (13)

D 1
2
[p|q] = 2

∫ (√
p(θ)−

√
q(θ)

)2
dθ = 4Hel2[p|q] . (14)

The first two limiting cases given by (12) and (13) represent the two different

possibilities for the KL-divergence between distributions. Moreover, (14) is

known as the Hellinger distance, which is the only instance in the family of

α-divergences which is symmetric between both distributions.

Figure 1: Changes on the approximate distribution q (in red) when trying to approximate it
to the original distribution p (in blue) using different values for α in the α-divergence. When
α → −∞ the approximate distribution tries to cover a local mode of the target distribution
(exclusive distribution). When α→∞ the approximate distribution tries to cover the whole
target distribution (inclusive distribution).

The value of the α parameter in the α-divergence has a strong impact on the

inference results. To further understand its effect let us consider a toy problem

in which we try to approximate a slightly complex distribution p with a simpler

one, q. If we considered for example p as a bimodal distribution and q as a

simple Gaussian distribution we could obtain results similar to those displayed

in Figure 1 (reproduced from [20]). In this figure, the resulting unnormalized

approximating distributions have different characteristics (the expression for the

α-divergence can be generalized so that it can be evaluated on distributions that

11



need not be normalized, see [20] for further details). First of all, in the limit

of α → −∞, q, here represented in red, tends to cover only the mode with the

larger mass of the two present in p. By contrast, when α → ∞, q tends to

cover the whole p distribution, overlaying the latter completely. This can be

seen in terms of the form of the α-divergence. More precisely, for α ≤ 0, the

α-divergence emphasizes q to be small whenever p is small (hence, it could be

considered as zero-forcing). On the other hand, when α ≥ 1, it can be said that

the divergence is inclusive, following the terminology in [21]. In this case, the

divergence enforces q > 0 wherever p > 0, hence avoiding not having probability

density in regions of the input space in which p takes large values.

In rest of the cases, α lays inside the interval (0, 1). The behavior of q is

intermediate between the two extreme possibilities that we have seen so far. In

Figure 1 we can see that when α → 0 the q distribution is more centered in

the main mode of p, whereas in α → 1 it begins to open to account for some

of the mass of the secondary peak of p. This behavior also happens when the

distributions considered are more complex than these ones, and therefore, one

has to be careful when choosing α. In particular, the optimal value of α may

depend on the task at hand and the particular model one is working with. As

it has been pointed out before, when α is restricted to be in the interval (0, 1)

we can obtain two notable results at the extremes, Dα = KL(q||p) for α → 0

and Dα = KL(q||p) for α → 1. These two expressions are directly related to

two of the main methods for approximate inference, Variational Inference [16]

and Expectation Propagation [22], respectively.

Our method, AADM, will focus on minimizing the α-divergence for approx-

imate inference instead of the typical KL-divergence. By adjusting the α pa-

rameter we expect to find the best compromise between zero-forcing and more

inclusive approximate distributions. Recall that intermediate values of α in

(0, 1) are not zero-forcing, and therefore may try to capture multiple modes,

but will ignore those modes that are too far away from the main mass of the

distribution (how far will depend on the value of α). This extra flexibility is

expected to better capture the properties of the posterior distribution.
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4. Adversarial Alpha Divergence Minimization

So far we have seen that AVB is a flexible method for approximate infer-

ence that allows for the use of implicit models for the approximate distribution

qφ. If the implicit model is complex enough, AVB should be able to capture

the features of the target distribution. However, AVB strongly relies on the

KL divergence to enforce that the approximate distribution looks similar to the

target distribution. In Section 3 we have pointed out that by employing a more

general form of divergence one can obtain more flexible results, which depending

on the task may mean a better balance between approximating a local mode

of the posterior distribution (exclusive distribution) or having high probability

density in all the regions of the input space in which the target distribution

has high probability (inclusive distribution). The method proposed here is a

generalization of AVB that allows for optimizing in an approximate way the

α-divergence, instead of the KL divergence. By changing the α parameter one

could obtain different approximate distributions q(w) from the ones obtained in

AVB. We refer to this new method as Adversarial Alpha Divergence Minimiza-

tion (AADM). Our assumption here is that, if we are able to use values of α

different from the ones that are used in AVB (i.e., α→ 0), we can perhaps ob-

tain different approximating distributions that lead to more accurate predictive

distributions in terms of different error metrics (e.g., squared error, test log-

likelihood, continuously ranked probability score, etc.), since it will allow the

system to balance the importance assigned to mode-selecting and distribution

covering.

As discussed earlier, when α → 0, the α-divergence recovers the KL diver-

gence typical from VI and AVB, and when α → 1, the opposite KL divergence

is restored (which is the one employed in other algorithms such as Expectation

Propagation [22]). The mid range of values of α between 0 and 1 can be ex-

plored. Therefore, we will search for intermediate α values more suited for each

learning task and performance metric.

To introduce the use of α-divergences in the context of AVB we need to
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modify the AVB objective function so that it accounts for this divergence be-

tween probability distributions. To do so we combine previous results from the

literature. In particular, we briefly describe first black-box α, an extension of

power expectation propagation, that is scalable and that allows for the approx-

imate minimization of α-divergences [7]. Black-box α is, however, limited in

the sense that it can only consider approximate distributions that belong to the

exponential family, such as the Gaussian distribution. Therefore, we also intro-

duce the reparametrization of the black-box α objective proposed in [23], which

allows for more general approximate distributions. Finally, we will then derive

the the objective function of the proposed approach, AADM. Unlike previous

methods, (e.g., power expectation propagation, black-box α, or the black-box α

extension described in [23]) AADM will be able to consider implicit approximate

distributions.

4.1. Black-box α-divergence Minimization

Black-box-α (BB-α) [7] is an improvement over the power expectation prop-

agation method for approximate inference [24]. We will not explain here power

expectation propagation (PEP) and refer the reader for the supplementary ma-

terial for further details on that method. BB-α addresses some of the limitations

of PEP like the O(N) memory space requirements, and also allows to make ap-

proximate inference on complicated probabilistic models [7]. To do so, BB-α

maximizes a modified version of the objective of PEP. Namely,

L(φ) = logZq − logZp(w) +
1

α

N∑
i=1

logEqφ(w)

[(
p(yi|w,xi)
f̃(w)

)α]
, (15)

where Zq is the normalization constant of qφ, Zp(w) is the normalization con-

stant of the prior, φ are the parameters of q(w), p(yi|w,xi) is a likelihood factor

and f̃(w) is a global approximate likelihood factor that is replicated N times,

one per each likelihood factor. This results in qφ(w) ∝ f̃(w)Np(w), which

solves PEP’s problem of having to store in memory the parameters of N ap-

proximate factors (as before, one per each likelihood factor). Furthermore, there
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is a one to one map between f̃(w) and qφ(w). This means that the max-min

optimization problem of the PEP objective is transformed into just a standard

maximization problem (w.r.t to the parameters of q(w), φ), which can be solved

using standard optimization techniques. Importantly, the expectations in (15)

can be approximated via Monte Carlo sampling and the sum across the training

data can be approximated using a mini-batch. The consequence is that BB-α

scales to big datasets, as (15) can be optimized using stochastic techniques, and

moreover, it can be applied to complicated probabilistic models (e.g., Bayesian

neural networks) in which the required expectations are intractable.

As in PEP, BB-α minimizes locally the α-divergence. In particular, it min-

imizes the sum of α-divergences between the approximate distribution qφ and

the tilted distributions, which are defined as p̂i(w) ∝ f̃(w)N−1p(yi|w,xi)p(w),

for i = 1, . . . , N . In general, it is expected that a local minimization of the

α-divergence gives similar results to a global minimization, while being a much

simpler problem, as indicated in [20]. When α→ 0 (15) converges to the lower

bound of VI in (5). When α = 1, (15) is approximately equal to the objective

optimized by Expectation Propagation [7]. A limitation of BB-α is, however,

that the approximate distribution q(w) is restricted to be inside the exponential

family. This is because it must be written as the product of an approximate

factor times the prior distribution. That is, qφ(w) ∝ f̃(w)Np(w). This is a

major limitation that makes difficult using implicit models for q(w).

4.2. Reparameterization of the Black-box-α Objective

In this section we introduce the reparametrization for the general expression

of the BB-α objective that is suggested in [23] for approximate distributions

with a closed form expression for the p.d.f. We combine this reparametrization

with the trick of AVB to estimate the log-ratio between probability distribu-

tions. This will allow to approximately minimize α-divergences with flexible

distributions q(w) such as the ones resulting from implicit models. This will

provide a complete definition of our method, AADM, extending the existing

formulation of AVB. With this goal, we first consider the following alternative
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expression for the BB-α objective that is suggested in [23]:

Lα(φ) =
1

α

N∑
i=1

logEqφ(w)

[(
p(yi|xi,w)p(w)1/N

qφ(w)1/N

)α]
. (16)

In this expression we observe that the hypothesis that qφ(w) ∝ f̃N (w)p(w) is

not required anymore (both Zq and f̃(w) are removed from the expression) and

q(w) can be an arbitrary distribution. It is possible to show that (16) and (15)

become equivalent if q(w) belongs to the exponential family [23]. However, this

expression requires the evaluation of the density qφ(w), which in practice may

be hard to compute.

To overcome this previous limitation we can follow similar steps to [23],

reparameterizing (16) using the so-called cavity distribution. That is, the distri-

bution given by the ratio qφ/f̃
α. If q̃φ(w) denotes a free-form cavity distribution,

the posterior approximation qφ is given by:

qφ(w) =
1

Zq
q̃φ(w)

(
q̃φ(w)

p(w)

) α
N−α

(17)

where we assume Zq < +∞ is the normalizing constant to make q(w) a valid

distribution. When α/N → 0 we have that q → q̃ (and Zq → 1 by assumption),

and this is the case either if we choose α → 0, or when N is sufficiently large

(i.e. N → +∞), see [23]. We rewrite now (16) in terms of q̃ rather than q(w),

as in [23]:

Lα(φ) =
1

α

N∑
i=1

log

∫ (
1

Zq
q̃φ(w)

(
q̃φ(w)

p(w)

) α
N−α

)1− α
N

p(w)
α
N p(yi|w,xi)αdw

= −N
α

(
1− α

N

)
log

∫
q̃φ(w)

(
q̃φ(w)

p(w)

) α
N−α

dw

+
1

α

N∑
i=1

logEq̃φ(w) [p(yi|xi,w)α]

=
1

α

N∑
i=1

logEq̃φ(w) [p(yi|xi,w)α]− Rβ [q̃|p] , (18)
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where β = N/(N − α) and Rβ [q̃|p] represents the Rényi divergence of order β

[26], which is defined as

Rβ [q|p] =
1

β − 1
log

∫
q̃(w)βp(w)1−βdw. (19)

Importantly, when α/N → 0 we recover q → q̃ and Lα(φ) converges to the

objective of VI. Also, we have that Rβ [q̃|p] → KL[q̃||p] = KL[q||p] if Rβ [q̃|p] <

+∞ (which is true assuming Zq < +∞ and α/N → 0). Therefore, following

[23], when this quotient tends to zero, we can make further approximations for

the BB-α energy function, as described in (16), finally obtaining

Lα(φ) ≈ 1

α

N∑
i=1

logEqφ(w)[p(yi|xi,w)α]−KL[qφ(w)||p(w)] . (20)

This will be the objective function that we will maximize in our approach. Note

that the expectations in (20) can be estimated via Monte Carlo sampling. In

particular, logEqφ(w)[p(yi|xi,w)α] ≈ log[K−1
∑K
k=1 p(yi|xi,wk)α], for K sam-

ples of w drawn from qφ. Of course, this estimate is biased, as a consequence of

the non-linearity of the log(·) function, however, the bias can be controlled with

K. Furthermore, we expect a similar behavior as in standard BB-α, in which

the bias has been shown to be very small even for K = 10 samples. See [7] for

further details.

The objective in (20) has been obtained under some conditions that need

not be true in practice, e.g. the quotient α/N → 0 (i.e., either α is small, N

is sufficiently large or a combination of both). Nevertheless, it is much simpler

to estimate and maximize than the objective in (16). It is also similar to the

objective functions found in the deep learning bibliography (i.e., a loss function

plus some regularizer, such as the KL divergence), but it still maintains the

qualities of an approximate Bayesian inference algorithm. Importantly, (20)

allows for implicit models for qφ. The only term that is difficult to approximate

is KL[qφ(w)||p(w)]. However, the approach described in Section 2.2 for AVB

can be used here for that purpose. We can simply use an independent classifier
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to estimate the log-ratio between p(w) and qφ(w), as in AVB. This enables

using implicit distributions when maximizing the objective in (20).

By changing the α parameter of the method we will be able to interpo-

late between AVB (α → 0) and an EP-like algorithm (α = 1). Note that

when α → 0, (20) is expected to focus on reducing the training error since the

factor α−1 logEqφ(w)[p(yi|xi,w)α] will converge to Eqφ(w)[log p(yi|xi,w)], with

p(yi|xi,w) typically a Gaussian distribution with mean given by the output of

the neural network and noise variance σ2. By contrast, when α = 1, (20) will be

expected to focus more on the training log-likelihood. Intermediate values of α

will trade-off between these two tasks, which may lead to better generalization

properties of the predictive distribution.

The specific details of the structure of the proposed approach, AADM, are

analogous to the ones described for AVB [10]. The structure of AADM can

be divided into three main components: An implicit model for qφ, which takes

as input Gaussian noise and outputs neural network weight samples w from

the approximated weights posterior distribution (i.e., the generator network);

a discriminator, which estimates the KL term present in (20) as done in [10];

and finally the main network, that uses the samples of the weights generated

previously to evaluate the factor p(yi|xi,w). The whole system is optimized

altogether. Furthermore, any potential hyper-parameter (e.g., the prior variance

σ2
0 or the output noise variance σ2) is tuned simply by maximizing the objective

in (20).
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Figure 2: Graphical models for AADM. (left) - Assumed probabilistic graphical model for
the observed data. Point-like vertices denote deterministic variables and circular ones indi-
cate random variables, which can either be observed (red) or unobserved (white). (right) -
Probabilistic graphical model of the implicit distribution q used to approximate the posterior.
A source of S samples of Gaussian noise (we assume independence) with mean µnoise and
variances Σnoise is let through through a deep neural network with parameters φ to generate
S samples of the weights of the main neural network. Best seen in color.

Figure 2 (left) shows the main probabilistic graphical model corresponding

to the observed data. Point-like vertices indicate deterministic variables. Circu-

lar vertices denote random variables, which can be observed (red) or unobserved

(white). Figure 2 (right) shows the probabilistic graphical model of the im-

plicit approximate posterior distribution. In this case, we generate S samples

of Gaussian noise in the form of ε ∼ N (µnoise,Σnoise), with Σnoise a diagonal

matrix. These samples are passed through a deep neural network with weights φ

to obtain S samples for the weights of the main neural network. These weights

are then used in the main network, shown in Figure 2 (left), to estimate the

predictive distribution during training and testing.

As a last remark concerning the implementation of the proposed method,

we have also included as trainable parameters both the mean and variances

of the Gaussian noise which is used as input in the generator network (the

implicit model for the weights, qφ(w), in (6)). This allows for a more expressive

implicit model for qφ(w), since it increases its flexibility by enabling the tuning

of the broad parameters that control its input. Using this in combination with

the approximate minimization of α-divergences, the proposed method AADM

is expected to reproduce to a higher degree of accuracy the original posterior
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distribution of the model parameters (neural network weights). Our hypothesis

is that this will lead to more accurate predictive distributions.

Finally, the proposed method AADM may suffer from convergence to bad

local optima. This may happen as a consequence of the strong regularization

effect of the term KL[qφ(w)||p(w)] at the beginning of the training process. To

alleviate this problem and obtain better results, we have considered also the

approach suggested in [27] that consists in adding an extra annealing parameter

β that penalizes the KL term. This parameter takes value 0 at the beginning

and progressively, after each epoch, it increases until it takes value 1. See the

supplementary material for further details.

5. Related Work

Obtaining uncertainty estimates associated to the predictions of machine

learning algorithms is a widely spread problem. The problem of approximat-

ing the posterior has been addressed either by sampling-based methods or by

optimization-based methods [14]. In the former case, the posterior distribution

is approximated by drawing samples from the exact posterior to then use them

for inference and prediction. With this goal, a Markov chain is run, whose sta-

tionary distribution coincides with the target distribution. On the other hand,

optimization-based methods introduce an approximate distribution q(w) whose

parameters are adjusted to match the exact posterior through the optimization

of a certain objective.

Each of the approaches described has advantages and disadvantages. First,

sampling methods can be unbiased only asymptotically, and moreover they can

be highly computationally expensive since the Markov chain has to be run for

long time in practice. Similarly, optimization-based techniques are usually lim-

ited by the definition of the approximating distribution, which is often paramet-

ric, and therefore they may lack expressiveness. Two examples of these methods

are Markov chain Monte Carlo (MCMC) in the case of sampling-based methods

[28, 29, 5], and variational inference (VI) or expectation propagation (EP) in the
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case of optimization-based methods [22, 30, 8, 16, 31]. The method proposed

here alleviates some of the problems of these two techniques. Specifically, it

allows for flexible approximate distributions and it also scales to large datasets,

whereas in some of these cases, large datasets can be a burden to deal with [32].

Most modern techniques for approximate inference take advantage of the

speed of optimization-based methods and try to preserve the flexibility of sampling-

based methods with the goal of obtaining the best results possible in terms of

computational cost and accuracy of the approximation. There are, however,

many different ways of combining both approaches, which is showcased by the

wide variety of methods proposed. In this section we review some of them. Nev-

ertheless, almost all of them rely on optimizing the KL divergence between q(w)

and the target distribution. Our approach is more general and can minimize, in

an approximate way, the α-divergence, which as we pointed out before, includes

the KL divergence as a particular case, as well as other divergences (e.g. the

Hellinger distance).

In [33] it is described how to estimate the gradient of the VI objective when

using an implicit model for the approximate distribution q(w). This gradient

can then be used to maximize the objective. The method proposed there com-

bines Markov chain Monte Carlo methods and VI. While this seems promising,

its implementation is complicated since it relies on running an inner Markov

chain inside the optimization process of the approximate distribution q(w).

Moreover, the parameters of the Markov chain also may need to be adjusted,

depending on the probabilistic model used in practice.

Another approach for flexible approximate distributions q(w) within the

context of VI is normalizing flows (NF) [9]. In NF one starts with a simple

parametric approximate distribution q(w) whose samples are modified using

parametric non-linear invertible transformations that are carefully chosen. This

results in a p.d.f. of the resulting distribution that can be evaluated in closed

form, avoiding the problems arising from the use of implicit models for q(w).

Nevertheless, the family of transformations that can be used is limited to in-

vertible transformations, which may constrain the flexibility of the approximate
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distribution q(w).

Stein Variational Gradient Descent, proposed in [11], is a general VI method

that consists in transforming a set of particles to match the exact posterior

distribution. The results obtained are shown to be competitive with other state-

of-the-art methods, but the main drawback here is that there is a computational

bottleneck on the number of particles that need to be stored to accurately

represent the posterior distribution. More precisely, this method lacks a way

to generate samples from the approximate distribution q(w). The number of

samples is fixed initially, and these are optimized by the method.

The work in [12] combines VI and MCMC methods to obtain flexible ap-

proximate posterior distributions. The key concept is to use a Markov chain

as the approximate distribution q(w) in VI. The parameters of this chain can

then be adjusted to match the target distribution in terms of the KL divergence

as close as possible. This is an interesting idea, but it is also limited by the

difficulty of evaluating the p.d.f. of the approximate distribution. This is solved

in [12] by learning a backward model, that infers the p.d.f. of the initial state of

the Markov chain given the generated samples. Learning this backward model

accurately is a complex task and several simplifications are introduced that may

affect the results.

Another approach used for approximate inference in the context of Bayesian

neural networks is Probabilistic Back-propagation [6]. This method computes

a forward propagation of probabilities through the neural network to then do

back-propagation of the gradients. Although it has been proven to be a fast

approach with high performance, it is limited by the expressiveness of the pos-

terior approximation. In particular, the approximate distribution is restricted

to be Gaussian. This means that this method will suffer from strong approxi-

mation bias. The same applies to a standard application of VI in the context

of Bayesian neural networks [8, 17].

The minimization of α-divergences in the context of Bayesian neural net-

works has also been addressed in [6]. In that work it is described Black-box-α,

a method for approximate inference that allows for very complex probabilistic

22



models and that is efficient and allows for big datasets. The main limitation is,

however, that the approximate distribution q(w) must belong to the exponential

family. That is, the approximate distribution has to be Gaussian, and hence

this method will also suffer from approximation bias. Therefore, Black-box-α

is expected to be sub-optimal when compared to the method proposed in this

paper, which allows for implicit models in the approximate distribution q(w).

The minimization of α-divergences has also been explored in the context of

dropout in [23]. That work considers the same objective as the one optimized by

our approach in Section 4.2. The difference is that the approximate distribution

considered by the authors of that work is limited to the approximate posterior

distribution of dropout. This distribution is given by the mixture of two points

of probability mass, i.e., two delta functions, one of which is located at the

origin [34]. The flexibility of this approximate distribution is therefore very

limited. By contrast, the method we propose allows for implicit approximate

distributions q(w) and is expected to give superior results.

Finally, a closely related method to ours is the one described in [10]. This

method, Adversarial Variational Bayes (AVB), allows to carry out Variational

Inference with implicit models as the approximate distribution q(w). For this,

in that work it is proposed to train a discriminator whose output can be used

to estimate the KL divergence between the approximate distribution q(w) and

the prior. This technique has also been considered in other works [13, 18,

14]. A limitation of AVB is that the method is restricted to minimize the KL

divergence between the approximate and the target distribution. Our approach,

by contrast, can optimize the more general α-divergence, which includes the

KL divergence as a particular case. Therefore, by changing the α parameter

our method can potentially obtain better results than AVB. This hypothesis is

confirmed by the experiments in the next section.
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6. Experiments

To analyze and evaluate the performance of the proposed approach, i.e.,

Adversarial α-divergence Minimization (AADM), we have carried out extensive

experiments, both in synthetic data and on common UCI datasets [35]. Further-

more, we have compared results with previously existing methods such as VI,

using a factorizing Gaussian as the approximate distribution, and AVB. AADM

should give the similar results as AVB for α→ 0. In these experiments we have

also analyzed performance versus computational cost of each method on larger

datasets with up to 2 million data points.

The method AADM employed in our experiments consists in the previously

described three-network system. In particular, the structure we have considered

for AADM (and also AVB), if not stated otherwise, is the following one: The

generator network takes as an input a 100-dimensional Gaussian noise sample,

with adjustable mean and diagonal covariance parameters, and passes it through

2 layers of 50 non-linear units each, outputting a sample of the weights w. We

generate 10 samples for the weights when training, and 50 samples to approxi-

mate the predictive distribution when testing. Similarly, the discriminator takes

these samples of the weights (as well as samples from the auxiliary distribution

from the Adaptive Contrast) and passes them through 2 layers of 50 non-linear

units each to compute Tω(w). Finally, the main network (i.e., the model whose

weights we are inferring) also consists of a 2 layer system with 50 units per layer

as well. This network uses the sampled weights and the original data as input

to estimate the AADM objective Lα(φ). Note that although the network size

employed in our experiments is small, it is similar to the network size considered

in recent related works [6, 23].

The number of training epochs and the presence (or absence) of a warm-

up period depends on the dataset being used, and therefore is specified in

each experiment. All non-linear units are leaky ReLU units. The code im-

plementing the proposed approach is available online at https://github.com/

simonrsantana/AADM. All methods have been trained using stochastic opti-
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mization via ADAM [36]. The learning rate for updating the parameters of the

discriminator is set to the default value in ADAM, i.e., 10−3. The learning rate

for updating the implicit model for qφ (i.e., the generator) and the model hyper-

parameters (which includes the variance of the output noise and the prior) is

set to 10−4. Apart from this, we use the default parameter values in ADAM.

The mini-batch size used is described in each experiment.

In our experiments we have evaluated 3 different performance metrics. The

test log-likelihood is evaluated, as well as a metric concerning the error of the

predictions (i.e. RMSE, in regression problems, and classification error, in bi-

nary and multi-class classification problems). We have also used a third metric

in each case as well, with the goal of measuring the quality of the predictive

distribution, as an alternative to the test log-likelihood. More precisely, we have

used strictly proper scoring rules defined in [15]. For the regression experiments

we have employed the Continuous Ranked Probability Score (CRPS), which has

a close-form expression described in [37]. On the other hand, in classification

problems we have used the Brier score, both for binary and multi-class prob-

lems. The CRPS is the squared distance between the c.d.f. of the empirical

distribution of the target variable and the c.d.f. of the predictive distribution.

The Brier score is simply the squared distance between the vector of predictive

probabilities for each class and a vector with a one-hot encoding of the observed

class. For further information about these metrics, please see [15]. In general,

the smaller their value, the better, and a metric value equal to zero means a

perfect predictive distribution.

6.1. Synthetic Experiments

To illustrate the features of the predictive distribution that the proposed

approach AADM can capture, we evaluate this method on two simple regression

problems extracted from [38]. More precisely, we generate two different toy

datasets. The first one involving a heteroscedastic predictive distribution, and

the second one involving a bimodal predictive distribution.

The structure of the system employed is the one described previously. We
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train this system for 3000 epochs, using the first 500 epochs as the warm-up

period. We repeat the experiments for different values of alpha in the (0, 1].

The first dataset is generated taking x uniformly distributed in the interval

[−4, 4] and y is obtained as y = 7 sinx + 3| cos(x/2)|ε, where ε is normally-

distributed and independent of x, i.e., ε ∼ N (0, 1). Note that this dataset

involves input dependent noise. The second dataset uses x uniformly distributed

in the interval[−2, 2] and y = 10 sinx+ε with probability 0.5 and y = 10 cosx+ε

otherwise. The distribution of ε is the same as in the first dataset. note that

this other dataset involves a bimodal predictive distribution. We use 1000 data

instances for training and the mini-batch size is set to 10.

Figure 3: Results for the toy problems. The blue points on the left represent the original
training data and the ground truth (red lines). In the middle, normalized predictions generated
with α ≈ 0 (i.e. regular AVB), and in the right side are the normalized predictions with
α = 1.0.

The results obtained in the synthetic problems described are represented

in Figure 3. The figures on at the top correspond to the problem involving

the heteroscedastic noise and the bottom ones to the problem with a bimodal

predictive distribution. On the left of the figure we show the original data

we used to train AADM. In these plots, the red lines represent the ground

26



Table 1: Test log-likelihood, RMSE and CRPS for AADM with α = 10−4 and α = 1.0 in
both toy experiments.

Bimodal Heteroscedastic
α L-L RMSE CRPS L-L RMSE CRPS

10−4 -3.05 5.10 3.28 -2.10 1.91 1.07
1.0 -2.23 5.09 2.65 -1.91 1.94 0.97

truth for each dataset and the blue points are the actual samples we used as

training data. The middle and right columns show normalized samples from the

predictive distribution of a neural network trained using AADM, for α = 10−4

and α = 1, respectively. The results obtained for α = 10−4 are expected to

be equal to those of AVB. A low value for α is unable to capture the complex

structure of predictive distribution for the target variable, ignoring features such

as the heteroscedastic noise in the first task, and the bimodality of the predictive

distribution in the second task. However, both of these features are captured

with accuracy when α is higher, as illustrated by the results obtained when

α = 1.

As expected, choosing one value of α or another in AADM significantly

changes the results obtained. In particular, when α = 10−4 the predictive

distribution focuses more on minimizing the squared error and less on the log-

likelihood of the data. By contrast, when α = 1.0, the predictive distribution

plays a closer attention to the log-likelihood of the data, and can hence obtain

a more accurate predictive distribution. As shown in Table 1, although the

squared error obtained when α = 10−4 and α = 1.0 is very similar, the test

log-likelihood obtained when α = 1.0 is much better, which indicates that this

value of α produces more accurate predictive distributions. Moreover, the CRPS

values also improve when α is 1.0 rather than 10−4. Note that the squared

error only measures the expected squared deviation from target value. On the

other hand, the test log-likelihood and the CRPS, measure the overall quality

of the predictive distribution, taking into account, for example, features such as

multiple-modes, heavy-tails or skewness.
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Table 2: Characteristics of the UCI datasets used in the experiments.

Dataset Instances Attributes Epochs
Boston 506 13 2000
Concrete 1,030 8 2000
Energy Efficiency 768 8 2000
Kin8nm 8,192 8 400
Naval 11,934 16 400
Combined Cycle Power Plant 9,568 4 250
Wine 1,599 11 2000
Yatch 308 6 2000

Finally, other values of α give similar results (not shown here). In particular,

for α < 0.5 similar results to those of α = 10−4 are obtained. By contrast, when

α > 0.5 similar results to those of α = 1.0 are obtained (only if the training

procedure is carried out carefully to avoid bad local optima).

6.2. Experiments on UCI Datasets

To analyze in more detail the results of the proposed method, AADM, we

have considered eight UCI datasets [35] that are widely spread for regression [6].

The characteristics of these datasets are displayed in Table 2. Each dataset has

a different size, and in order to train the different methods until convergence

we have employed a different number of epochs in each case. The number of

epochs selected is presented finally in Table 2. Note that, even though there

are differences in the epochs employed for training, all of the datasets share the

same model structure, which is the general one described at the beginning of this

section. In all these experiments we employ the first 10% of the total training

epochs for warming-up before the KL term is completely turned on as in [27].

Moreover, the batch size is set to be 10 data points, and sampling-wise, we

perform 10 samples in the training procedure and 100 for testing. We split the

datasets in a 90%-10% for training/testing. The results reported are averages

over 20 different random splits of the datasets into training and testing.

We compare the results of AADM with VI using a factorizing Gaussian as

the posterior approximation and with regular AVB (which should be the same
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as our algorithm when α→ 0). For all methods we employ the same two-layered

system with 50 units per layer. To make fair comparisons we also perform the

same warm-up period for both AVB and VI as we use in our method. Therefore

only after the first 10% of the total number of epochs, the KL term is completely

activated in the objective function.

The average performance of each method on each dataset, in terms of the test

log-likelihood, is displayed Figure 4. In this case, the higher, the better. The

test log-likelihood measures the overall quality of the predictive distribution,

taking into account, for example, features such as multiple-modes, heavy-tails

or skewness. We observe that values of α that are different from 0 usually

outperform both regular AVB and VI in terms of this metric (the higher the

values the better). From these figures, it seems that higher values of α often lead

to better predictive distributions it terms of the test log-likelihood, probably as

a consequence of being able to better recover the real posterior distribution.

The values obtained are similar and often better than those of other state of

the art methods [6]. Each of the values shown represent the mean performance

of a certain method across the 20 different splits of each dataset, which are

averaged afterwards here. Importantly, we observe that standard VI is almost

always outperformed by the two techniques that allow for implicit models in

the posterior approximation q(w). Namely, AVB and AADM. This points out

the benefits of using an implicit model for the approximate distribution q(w).

Moreover, AVG and AADM give almost the same results when α ≈ 0, which

confirms the correctness of our implementation.

29



Test log-likelihood

●

●
●

● ●
●

●
● ●

●

●

−3.0

−2.8

−2.6

−2.4

−2.2

0.00 0.25 0.50 0.75 1.00
α

BOSTON

● ● ● ● ● ● ● ●
●

●

●

−2.9

−2.8

0.00 0.25 0.50 0.75 1.00
α

CCPP

● ●
● ●

● ●
● ● ●

●

●

−3.4

−3.2

−3.0

−2.8

0.00 0.25 0.50 0.75 1.00
α

CONCRETE

●

●
●

●

●

●
●

● ● ●
●

−2.5

−2.0

−1.5

−1.0

0.00 0.25 0.50 0.75 1.00
α

EE

● ●
● ●

● ● ● ●
●

●
●

1.1

1.2

1.3

0.00 0.25 0.50 0.75 1.00
α

KIN8NM

●
●

●

●

●

●

●
●

●

●

●

5.6

6.0

6.4

6.8

0.00 0.25 0.50 0.75 1.00
α

NAVAL

● ● ● ● ●
● ●

●

●

●

●

−1.00

−0.95

−0.90

0.00 0.25 0.50 0.75 1.00
α

WINE

●

●

●

● ● ●
●

●

●
●

●

−2.5

−2.0

−1.5

0.00 0.25 0.50 0.75 1.00
α

YATCH

Figure 4: Average results in terms of the test log-likelihood for the different UCI datasets
and methods compared (higher values are better). Black represents the performance for our
method, AADM, for different values of α. Red is the performance of AVB. VI is presented in
blue. Best seen in color.

The average results obtained for each method on each dataset, in terms of the

root mean squared error (RMSE) are displayed in Figure 5. Note that the root

mean squared error only measures the expected deviation from the target value

and it may ignore if the model captures accurately the distribution of the target

value. We can see that the proposed approach, AADM, also obtains better

results than VI. In this case, nonetheless, increasing α values do not actually

improve much over the basic results of AVB, and in general we can see that lower

values for α are actually better for obtaining a good performance in terms of

this metric (here, the lower the values the better the performance). This seems

to indicate that one should choose a value for α that is different, depending on

the metric they are most interested in. These results are consistent in the sense

that, as pointed out previously, values of α close to zero actually lead to the

objective that is optimized in AVB and VI, which pays more attention to the

training RMSE. By contrast, values closer to 1.0 result in an objective function

that is more closely related to the log-likelihood of the training data.
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Figure 5: Average results in terms of the root mean squared error for the different UCI datasets
and methods compared (lower values are better). Black represents AADM for different values
of α, red is AVB, and VI is presented in blue. Best seen in color.

We also report the performance of each method in terms of CRPS metric

(lower values are better) in Figure 6. The results obtained are similar to those

obtained in terms of the test log-likelihood. This is the expected behavior since

the CRPS metric also evaluates quality of the predictive distribution for the test

data and it should be correlated with the test log-likelihood. In particular, values

of α different from 0 are expected to give more accurate predictive distributions.

This is confirmed by the results. It seems that the CRPS metric improves in

general when α increases. However, there are few exceptions, such as those of

the Yatch and Naval datasets.
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Figure 6: Average results in terms of the continuous ranked probability score (CRPS) for the
different UCI datasets and methods compared (lower values are better). Again, black here is
AADM, red represents AVB and blue, VI. Best seen in color.

6.2.1. Average Rank Results on the UCI Datasets

To get an overall idea about the performance of AADM, for each value of

α, on the previous experiments we have proceeded as follows: We have ranked

the performance AADM for each α value (i.e., rank 1 means that value of α

gives the best result, rank 2 means that it gives the second best results, etc.).

Then, we have computed the average rank over all the train / test splits of the

datasets, and have calculated the standard deviation in each case. Figure 7

shows the results obtained for the RMSE, test log-likelihood and CRPS.
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Figure 7: Average rank (the lower the better) for AADM and each value of α in terms of the
RMSE (first row, left), test log-likelihood (first row, right) and CRPS (second row) across all
the UCI datasets and splits.

The results obtained are displayed in Figure 7. This figure confirms that

the intermediate values of alpha usually present a better performance than the

extremes (i.e., α ≈ 0 or α = 1), for either the RMSE, the test log-likelihood

metrics and the CRPS). Furthermore, both for the test log-likelihood and the

CRPS, higher values of α provide better results, which means that these values

of α provide more accurate predictive distributions. This is expected to be

related to a better posterior approximation. In spite of this, lower values of α

tend to perform better in terms of the RMSE (although the best results are

still obtained when α > 0). Again, this can be explained by paying attention to

the form of the objective function that is maximized in both extremes, i.e., for

α→ 0 and for α = 1. Recall that the the VI objective is recovered when α→ 0.

This objective gives higher importance to the squared error since log p(yi|xi,w)

is precisely the squared error. By contrast, a similar objective function to the

one used by expectation propagation is obtained when α = 1. This objective

includes terms that involve the log-likelihood of the training data. That is,

33



logEq[p(yi|xi,w)]. The main conclusion from this analysis is that the optimal

value for α depends on the metric we are considering, and that intermediate

values of α, different from 0 or 1 can lead to better results.

A question that may arise at this point is how to choose the α value for

a given task. In a broad sense, the optimal choice would strongly depend on

the performance metric we are interested in. More precisely, as we have seen

in the results of Figure 7, lower values of α tend to produce better predictive

distributions in terms of the squared error, while higher values of α lead to

better the predictive distributions in terms of both the test log-likelihood and

the CRPS. Moreover, at the very least, α > 0 improves the general performance

of pre-existing methods, as can be concluded from Figures 4, 5 and 6. Our

recommendation is to set α close to 0 if one is interested in low squared error

and to choose α close to 1 if one is interested in capturing more general features

of predictive distribution. In practice, however, one should carry out a model

validation procedure (e.g. using cross validation) to test each value of α.

6.3. Binary and Multi-class Classification

We have also evaluated AADM in several binary classification tasks, and on

two multi-class problems. Namely, the MNIST and CIFAR-10 datasets. The

results of these experiments are found in the supplementary material . In those

experiments, however, the differences among all the methods are very small.

In spite of this, AADM has shown to be competitive providing slightly better

results than those of VI and similar results to those of AVB.

6.4. Experiments on Big Datasets

To evaluate the performance of the proposed method on large datasets, we

have carried out additional experiments considering two datasets: Airlines De-

lay, and Year Prediction MSD. Airlines Delay contains information about all

commercial flights in the USA from January 2008 to April 2008 [39]. The task

of interest is to predict the delay in minutes of a flight based on 8 attributes:

age of the aircraft, distance that needs to be covered, air-time, departure time,
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arrival time, day of the week, day of the month and month. This is hence a

very noisy dataset. After removing instances with missing values, 2, 127, 068

instances remain. From these, 10, 000 are used for testing and the rest are used

for training. Year Prediction MSD is publicly accessible on the UCI repository

[35]. This dataset has 515, 345 data instances and 90 attributes. Again, we

use 10, 000 instances for testing and the rest of the data are used for training.

In these experiments the mini-batch size has been set to 100 and we have not

used the warm-up annealing scheme that deactivates the KL term in the ob-

jective of each method during the initial training iterations. For each method,

we measured the performance in the test set, in terms of the RMSE, the test

log-likelihood and the CRPS as a function of the training time.

The results obtained for each method on the Airlines dataset are displayed

in Figure 8. In this figure dashed lines represent other methods, the black being

AVB and the blue VI. Solid lines represent our method, AADM, for different

values of alpha. The figure shows that AADM obtains better results than AVB

and VI in terms of the test log-likelihood and CRPS when α approaches 1.

When α is closer to 0, AADM, gives similar results to those of AVB and VI in

the long term. The performance of our method w.r.t. the computational time is

comparable to that of AVB. In terms of RMSE, however, large values of α seem

to exhibit a more unstable behavior and in general give worse results. This is

probably a consequence of this dataset being very noisy.
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The results obtained for each method on the Year dataset are displayed

in Figure 9. Again, in this figure dashed lines represent other methods, the

black being AVB and the blue VI. Solid lines represent our method, AADM,

for different values of alpha. As in the previous dataset, AADM obtains better

results than AVB and VI in terms of both the test log-likelihood and the CRPS

when α approaches 1. When α is closer to 0, AADM, gives similar results to

those of AVB and VI. Specially, in the case of the CRPS we see that the VI

performs better than both AVB and AADM, for α between 0 and 0.5. However,

when α increases, AADM outperforms all of the previous methods. In terms of
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RMSE, lower values of α seems to give also the best results. However, in this

case higher values of α do not seem to give significantly worse results in terms

of this metric.

7. Conclusions

An estimate of the uncertainty in the predictions made by machine learning

algorithms like neural networks is of paramount importance in some specific ap-

plications. This estimate can be obtained by following a Bayesian approach.

More precisely, the posterior distribution captures which model parameters

(neural network weights) are compatible with the observed data. The poste-

rior distribution can then be used to compute a predictive distribution that

summarizes the uncertainty in the predictions made. A difficulty, however, is

that computing the posterior distribution is intractable and one has to resort

to approximate methods in practice.

In this paper we have described a general method for approximate Bayesian

inference. The method proposed, called Adversarial α-divergence Minimiza-

tion (AADM), allows to tune an approximate posterior distribution by approxi-

mately minimizing the α-divergence between this distribution and the posterior.

The α-divergence generalizes the KL divergence, commonly used to perform ap-

proximate inference. AADM also allows to account for implicit models in the

approximate posterior distribution. Implicit models allow to specify a proba-

bility distribution simply as some non-linear transformation of random input

noise. If the non-linear transformation is complex enough, this will lead to a

flexible model that is able to represent arbitrarily complex posterior distribu-

tions. A drawback of implicit models is, however, that one cannot evaluate the

p.d.f. of the resulting distribution, which is required for approximate inference.

We overcome this problem by following the approach described in [10]. More

precisely, we learn a discriminative model that estimates the log-ratio between

the p.d.f. of the implicit model and a much simpler distribution (i.e., a Gaussian

distribution).
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The proposed method has been evaluated on several experiments and com-

pared to other methods for approximate inference such as Variational Inference

(VI) with a factorizing Gaussian as the approximate distribution, and Adver-

sarial Variational Bayes (AVB) [10]. The experiments carried out, involving

approximate inference with Bayesian neural networks, indicate that implicit

models almost always provide better results than a factorizing Gaussian in terms

of the metrics employed. Moreover, in regression tasks, the minimization of α-

divergences seems to provide overall better results than the plain minimization

of the KL divergence, as done by VI and AVB. In particular, values of α that are

close, but not exactly equal to 1 seem to provide better predictive distributions

in terms of the test log-likelihood and the CRPS metric. By contrast, in terms

of the root mean squared error (RMSE) one should choose values of α that are

close to, but not exactly equal to zero.

The approximate minimization of the α-divergence has been shown empiri-

cally to provide better results than the minimization of the KL divergence that

is used in VI and AVB. More precisely, the proposed method, AADM, allows to

capture patterns in the predictive distribution such as heteroscedastic noise or

multiple modes. By contrast, these patterns are ignored when the typical KL

divergence is minimized. This a consequence of using higher values for the α

parameter that lead to a more inclusive behavior of the divergence. Specifically,

higher values of α are expected to avoid that the approximate posterior distri-

bution does not have high probability density in those regions of the parameter

space in which the exact posterior has high probability density.

Therefore, we conclude that one can obtain better results in terms of the

quality of the predictive distribution (such as the RMSE, the test log-likelihood,

or the CRPS) by employing the proposed method, AADM, and by choosing a

value of α that may depend on the specific performance metric we are interested

in. A better predictive distribution can be obtained, in terms of the RMSE, the

test log-likelihood or the CRPS, by using intermediate values of α. In general,

however, there is no simple way of choosing an adequate value of α for each

task. Our recommendation is that if one is interested in a small prediction
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error, one should use small values for α. By contrast, if one is interested in

more accurate predictive distributions in terms of the test log-likelihood or the

CRPS, larger values for α are preferred. Ideally, one should carry out a cross

validation procedure to choose the optimal value for α.
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