
Domain Generalization via Optimal Transport with Metric
Similarity Learning

Fan Zhoua,∗, Zhuqing Jiangb, Changjian Shuic, Boyu Wangd,e, Brahim Chaib-draaa

aDepartment of Computer Science and Software Engineering, Laval University, QC, Canada
bSchool of Information and Communication Engineering, Beijing University of Posts and

Telecommunications, Beijing, China
cDepartment of Electrical and Computer Engineering, Laval University, QC, Canada

dDepartment of Computer Science, University of Western Ontario, ON, Canada
eVector Insitute, ON, Canada

Abstract

Generalizing knowledge to unseen domains, where data and labels are unavailable, is

crucial for machine learning. We tackle in this chapter the domain generalization prob-

lem to learn from multiple source domains and generalize to a target domain with un-

known statistics. The crucial idea is to extract the underlying invariant features across

all the domains. Previous domain generalization approaches mainly focused on learn-

ing invariant features and stacking the learned features from each source domain to

generalize to a new target domain while ignoring the label information, this generally

leads to indistinguishable features with an ambiguous classification boundary. One

possible solution is to constrain the label-similarity when extracting the invariant fea-

tures and take advantage of the label similarities for class-specific cohesion and separa-

tion of features across domains. We adopt here the optimal transport with Wasserstein

distance, which could constrain the class label similarity, for adversarial training. We

also deploy a metric learning objective to leverage the label information for achieving

distinguishable classification boundary. Our empirical results show that our proposed

method could outperform most of the baselines. Furthermore, ablation studies also

demonstrate the effectiveness of each component of our method.

Keywords: Domain Generalization, Adversarial Learning, Metric Learning

∗For any concerns, please contact:
Email address: fan.zhou.1@ulaval.ca (Fan Zhou)

Preprint submitted to Journal of Neurocomputing April 6, 2022

ar
X

iv
:2

00
7.

10
57

3v
2 

 [
cs

.C
V

] 
 4

 A
pr

 2
02

2



1. Introduction

Recent years witness a rapid development of machine learning and its succeeded ap-

plications such as computer vision (Ma et al., 2018a; Zhu et al., 2019; Ma et al.,

2019b), natural language processing (Ma et al., 2013, 2018b) and cross-modalities

learning (Zhu et al., 2019; Xu et al., 2018) with many real-world applications (Xie

et al., 2018; Ma et al., 2019a). Traditional machine learning methods are typically

based on the assumption that training and testing datasets are from the same distribu-

tion. However, in many real-world applications, this assumption may not hold, and

the performance could degrade rapidly if the trained models are deployed to domains

different from the training dataset (Ganin et al., 2016). More severely, to train a high-

performance vision system requires a large amount of labelled data, and getting such

labels may be expensive. Taking a pre-trained robotic vision system as an example,

during each deployment task, the robot itself (e.g. position and angle), the environment

(e.g. weather and illumination) and the camera (e.g. resolution) may result in different

image styles. The cost to annotate enough data for each deployment task could be very

expensive.

This kind of problem has been widely addressed by transfer learning (TL) (Zhuang

et al., 2019) and domain adaptation (DA) (Ganin et al., 2016). In DA, a learner usually

has access to the labelled source data and unlabelled target data, and it is typically

trained to align the feature distribution between the source and target domain. However,

sometimes, we could not expect the target data is accessible for the learner. In the robot

example, the distribution divergences (different image styles) from training to testing

domain can only be identified after the model is trained and deployed. In this scenario,

it’s unrealistic to collect samples before deployment. This would require a robot to

have abilities to handle domain divergences even though the target data is absent.

We tackle this kind of problem under domain generalization (DG) paradigm, under

which the learner has access to many source domains (data and corresponding labels),

and aims at generalizing to the new (target) domain, where both data and labels are

unknown. The goal of DG is to learn a prediction model on training data from the

seen source domains so that it can generalize well on the unseen target domain. An
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Figure 1: Domain Generalization: A learner faces a set labelled data from several source domains, and it aims
at extracting invariant features across the seen source domains and learn to generalize to an unseen domain.
Based on the manifold assumption (Goldberg et al., 2009), each domain i is supported by distribution Di.
The learner can measure the source domain distribution via the source datasets but has no information on the
unseen target distribution. After training on the source domains, the model is then deployed to a new domain
Dt for prediction.

underlying assumption behind domain generalization is that there exists a common

feature space underlying the multiple known source domains and unseen target domain.

Specifically, we want to learn domain invariant features across these source domains,

and then generalize to a new domain. An example of how domain generalization is

processed is illustrated in Fig.1.

A critical problem in DG and DA involves aligning the domain distributions, which

typically are achieved by extracting such representations. Previous DA works usually

tried to minimize the domain discrepancies, such as KL-divergence and Maximum

Mean Discrepancy (MMD) etc. via adversarial training, to achieve domain distribution

alignments. Due to the similar problem setting between DA and DG, many previous

approaches directly adopt the same adversarial training technique for DG. For example,

a MMD metric is adopted by Li et al. (2018b) as a cross-domain regularizer and KL

divergence is adopted to measure the domain shift by Li et al. (2017a) for domain

generalization problem. The MMD metric is usually implemented in kernel space,

which is not sufficient for large-scaled applications, and KL divergence is unbounded,

which is also insufficient for a successful measuring domain shift (Zhao et al., 2019).

Besides, previous domain generalization approaches (Ilse et al., 2019; Ghifary et al.,

2015; Li et al., 2018c; D’Innocente & Caputo, 2018; Volpi et al., 2018) mainly focused
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on applying similar DA technique to extract the invariant features and how to stack

the learned features from each domain for generalizing to a new domain. These meth-

ods usually ignore the label information and will sometimes make the features became

indistinguishable with ambiguous classification boundaries, a.k.a semantic misalign-

ment problem (Deng et al., 2020). A successful generalization should guide the learner

not only to align the feature distributions between each domain but also to discriminate

the samples in the same class could lie close to each other while samples from different

classes could stay apart from each other, a.k.a. feature compactness (Kamnitsas et al.,

2018).

Aiming to solve this, we adopt Optimal Transport (OT) with Wasserstein distance to

align the feature distribution for domain generalization since it could constrain la-

belled source samples of the same class to remain close during the transportation pro-

cess (Courty et al., 2016). Moreover, some information theoretical metrics such as

KL divergence is not capable to measure the inherent geometric relations among the

different domains (Arjovsky et al., 2017). In contrast, OT can exactly measure their

corresponding geometry properties. Besides, compared with (Ben-David et al., 2010),

OT benefits from the advantages of Wasserstein distance by its gradient property (Ar-

jovsky et al., 2017) and the promising generalization bound (Redko et al., 2017). The

empirical studies (Gulrajani et al., 2017; Shen et al., 2018) also demonstrated the effec-

tiveness of OT for extracting the invariant features to align the marginal distributions

of different domains.

Furthermore, although the optimal transport process could constrain the labelled sam-

ples of the same class to stay close to each other, our preliminary results showed that

just implementing optimal transport for domain generalization is not sufficient for a

cohesion and separable classification boundary. The model could still suffer from in-

distinguishable features (see Fig. 4c). In order to train the model to predict well on

all the domains, this separable classification boundary should also be achieved under

a domain-agnostic manner. That is, for a pair of instances, no matter which domain

they come from, they should stay close to each other if they are in the same class and

vice-versa. To this end, we further promote metric learning as an auxiliary objective

for leveraging the source domain label information for a domain-independent distin-
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guishable classification boundary.

To summarize, we deployed the optimal transport technique with Wasserstein distance

for domain generalization for extracting the domain invariant features. To avoid am-

biguous classification boundary, we proposed to implement metric learning strategies

to achieve a distinguishable feature space. Therefore, we proposed the Wasserstein

Adversarial Domain Generalization (WADG) algorithm.

In order to check the effectiveness of the proposed approach, we tested the algorithm

on two benchmarks comparing with some recent domain generalization baselines. The

experiment results showed that our proposed algorithm could outperform most of the

baselines, which confirms the effectiveness of our proposed algorithm. Furthermore,

the ablation studies also demonstrated the contributions of our algorithm.

2. Related Works

2.1. Domain Generalization

The goal of DG is to learn a model that can extract common knowledge that is shared

across source domains and generalize well on the target domain. Compare with DA,

the main challenge of DG is that the target domain data is not available during the

learning process.

A common framework for DG is to extract the most informative and transferable un-

derlying common features from source instances generated from different distributions

and to generalize to unseen one. This kind of approach holds with the assumption that

there exists an underlying invariant feature distribution among all domains, and that

consequently such invariant features can generalize well to a target domain. Muandet

et al. (2013) implemented MMD as a distribution regularizer and proposed the kernel-

based Domain Invariant Component Analysis (DICA) algorithm. An autoencoder-

based model was proposed by Ghifary et al. (2015) under a multi-task learning setting

to learn domain-invariant features via adversarial training. Li et al. (2018c) proposed an

end-to-end deep domain generalization approach by leveraging deep neural networks

for domain-invariant representation learning. Motiian et al. (2017) proposed to mini-

mize the semantic alignment loss as well as the separation loss based on deep learning
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models. Li et al. (2018b) proposed a low-rank Convolutional Neural Network model

based on domain shift-robust deep learning methods.

There are also some approaches to tackle the domain generalization problems in a

meta-learning manner. To the best of our knowledge, Li et al. (2018a) first proposed

to adopt the Meta Agnostic Meta-Learning (MAML) (Finn et al., 2017) which back-

propagates the gradients of ordinary loss function of meta-test tasks. As pointed by Dou

et al. (2019), such an approach might lead to a sub-optimal solution, as it is highly

abstracted from the feature representations. Balaji et al. (2018) proposed MetaReg al-

gorithm in which a regularization function (e.g. weighted L1 loss) is implemented for

the classification layer of the model but not for the feature extractor layers. Then, (Li

et al., 2019) proposes an auxiliary meta loss which is gained based on the feature ex-

tractor. Furthermore, the network architecture of (Li et al., 2019) is the widely used

feature-critic style model based on a similar model from domain adversarial training

technique (Ganin et al., 2016). Dou et al. (2019) and Matsuura & Harada (2020) also

started to implement clustering techniques on the invariant feature space for better clas-

sification and showed better performance on the target domain.

2.2. Metric Learning

Metric learning aims to learn a discriminative feature embedding where similar sam-

ples are closer while different samples are further apart (Deng et al., 2020). Hadsell

et al. (2006) proposed the siamese network together with contrastive loss to guide the

instances stay close with each other in the feature space if they have the same labels

and push them apart vice-versa. Schroff et al. (2015) proposed the triplet loss aiming

to learn a feature space where a positive pair has higher similarity than the negative

pair when comparing by the same anchor with a given margin. Oh Song et al. (2016)

showed that neither the contrastive loss nor triplet loss could efficiently explore the full

pair-wise relations between instances under the mini-batch training setting. They fur-

ther propose the lifted structure loss to fully utilize pair-wise relations across batches.

However, it only choose equal number of positive pairs as negative ones randomly,

and many informative pairs are discarded (Wang et al., 2019), which restricts the abil-

ity of finding the informative pairs. Yi et al. (2014) proposed the binomial deviance
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loss which could measure the hard pairs. One remarkable work by Wang et al. (2019)

combines the advantages both from lifted structure loss and binomial loss to lever-

age the pair-similarity. They proposed to leverage not only pair-similarities (positive

or negative pairs with each other) but also self-similarity which enables the learner

to collect and weight informative pairs (positive or negative pairs) under an iterative

(mining and weighting) manner. For a pair of instances, the self-similarity is gained

from itself. Such a multi-similarity has been shown could measure the similarity and

could cluster the samplers more efficiently and accurately. In the context of domain

generalization, Dou et al. (2019) proposed to guide the learner to leverage from the

local similarity in the semantic feature space, in which the authors argued may con-

tain essential domain-independent general knowledge for domain generalization and

adopt the constrative loss and triplet loss to encourage the clustering for solving this

issue. Leveraging from the across-domain class similarity information can encourage

the learner to extract robust semantic features that regardless of domains, which is an

useful auxiliary information for the learner. If the learner could not separate the sam-

ples (from different source domains) with domain-independent class-specific cohesion

and separation on the domain invariant feature space, it would still suffer from ambigu-

ous decision boundaries. This ambiguous decision boundaries might still be sensitive

to the unseen target domain. Matsuura & Harada (2020) implement unsupervised clus-

tering on source domains and showed better classification performance. Our work is

orthogonal to previous works, proposing to enforce more distinguishable invariant fea-

tures space via Wasserstein adversarial training and encouraging to leverage from label

similarity information for better classification boundary.

3. Preliminaries and Problem Setup

We start by introducing some preliminaries. In order to better summarize the notations

symbols in this work, we provide the list of notations and symbols in Table 1.

3.1. Notations and Definitions

Following Redko et al. (2017) and Li et al. (2017a), suppose we have m known source

domains distributions {Di}mi=1, and ith domain contains Ni labeled instances in total,
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Table 1: List of notations

Symbol Meaning Symbol Meaning

F The feature extraction function θf Parameter of feature extraction network
D The critic function θd Parameter of critic network
C The classification function θc Parameter for classification network
m The number of source domains x

(i)
j The i-th instance from the j-th domain

Ni
The number of instances
in the i-th domain X(i)

The set of instances in the i-th domain
X(i) = {x(i)

j }Nj=1

D
The data distribution.
Di are the source
domain distributions

Z(i) The extracted feature from domain i

W1(Di,Dj)
Wasserstein-1 distance over two
distributions Di and Dj

yj The label for corresponding instance xj

S The similarity matrix Si,j
The value of i-th row and j-th column
of the similarity matrix S

wi,j The weight for similarity Si,j ε
Small margin for roughly select
the positive and negative pairs

α
Fixed parameter for
positive mining β Fixed parameter for negative mining

λ
Parameter for
self-similarity mining λd

Coefficient for regularizing
the adversarial objective

λs
Coefficient for regularizing
the metric learning objective L

The objective functions,
LC is the classification loss,
LD is the adversarial loss,
LMS is the metric similarity loss

denoted by {(x(i)
j , y

(i)
j )}Ni

j=1, where x
(i)
j ∈ Rn is the jth instance feature from the ith

domain and y(i)
j ∈ {1, . . . ,K} are the corresponding labels. For a hypothesis class

H, the expected source and target risk of a hypothesis h ∈ H over domain distribution

Di is the probabilities that h wrongly predicts on the entire distribution Di: εi(h) =

E(x,y)∼Di
`(h(x, y)), where `(·) is the loss function. The empirical loss is also defined

by: ε̂i(h) = 1
Ni

∑Ni

j=1 `(h(xj , yj)).

In the setting of domain generalization, we only have the access to the seen source

domainsDi but have no information about the target domain. The learner is expected to

extract the underlying invariant feature space across the source domains and generalize

to a new target domain.

3.2. Optimal Transport and Wasserstein Distance

We follow Redko et al. (2017) and define c : Rn × Rn → R+ as the cost function for

transporting one unit of mass x to x′, then the primal form of the Wasserstein distance
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between Di and Dj could be computed by,

W p
p (Di,Dj) = inf

γ∈Π(Di,Dj)

∫
Rn×Rn

c(x,x′)pdγ(x,x′) (1)

where Π(Di,Dj) is the probability coupling on Rn × Rn with marginals Di and

Dj referring to all the possible coupling functions. Throughout this paper, we adopt

Wasserstein-1 distance only (p = 1).

Computing the primal form of Wasserstein distance (Eq. 1) is computational ineffi-

ciently. Assuming |Di| = n, |Dj | = m, the time complexity for directly comput-

ing Eq. 1 is O(n3 + m3). On the contrary, leveraging the Kantorovich-Rubinstein

duality (Wainwright, 2019) of Wasserstein distances could help to get a more effi-

cient approximation. Assume f a 1-Lipschitz-continuous w.r.t. the cost function:

‖f(x)− f(x′)‖ ≤ c(x, x′), we can prove that for any function f ,

W1(Di,Dj) ≥ Ex∼Did(x)− Ex′∼Djd(x′)

The equality arrives when f reaches the maximum of the right side,

W1(Di,Dj) = sup
‖f‖L<1

Ex∈Di
f(x)− Ex′∈Dj

f(x′) (2)

In practice, such a function f could be approximated by a neural-network, which al-

lows us to compute this Kantorovich-Rubinstein duality efficiently by computing the

expectation and the complexity w.r.t. f(x) is onlyO(n+m). Empirically, to compute

the sup is equivalent to find out the maximum of W1 (by an arg max operation). Gen-

eral neural network optimizer (e.g. SGD or Adam) can efficiently solve the maximum

problem to evaluate the dual value of W1 distance.

Optimal transport theory and Wasserstein distance were recently investigated in the

context of machine learning (Arjovsky et al., 2017) especially in the domain adapta-

tion area (Courty et al., 2016; Zhou et al., 2020). The general idea of implementing the

optimal transport technique for domain generalization across domains is illustrated in

Fig. 2. To learn domain invariant features, OT technique is implemented to achieve do-

main alignments for extracting invariant features. After the OT transition, the invariant

9
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Invariant featuresUnseen Domain
?

Generalization

Figure 2: Use optimal transport (OT) for domain generalization: Typically to directly predict on the unseen
domain (the white dashed arrow) is difficult. In order to learn domain invariant features, as showed in
the direction of the green arrow we adopted the OT technique to achieve domain alignments for extracting
invariant features. After the OT transition, the invariant features can be generalized to unseen domain.

features can be generalized to unseen domain.

3.3. Metric Learning

For a pair of instances (xi, yi) and (xj , yj), the notion of positive pairs usually refers

to the condition where pair i, j have same labels (yi = yj), while the negative pairs

usually refers to the condition yi 6= yj . The central idea of metric learning is to en-

courage a pair of instances who have the same labels to be closer, and push negative

pairs to be apart from each other (Wu et al., 2017).

Follow the framework of Wang et al. (2019), we show the general pair-weighting pro-

cess of metric learning. Assuming the feature extractor f parameterized by θf projects

the instance x ∈ Rn to a d-dimensional normalized space: f(x;θf ) : Rn → [0, 1]d.

Then, for two samples xi and xj , the similarity between them could be defined as the

inner product of the corresponding feature vector:

Si,j := 〈f(xi;θf ), f(xj ;θf )〉 (3)
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To leverage the across-domain class similarity information can encourage the learner

to extract the classification boundary that regardless of domains, which is an useful

auxiliary information for the learner. We further elaborate it in section 4.2.

4. Proposed Method

The high-level idea of WADG algorithm is to learn a domain-invariant feature space

and domain-agnostic classification boundary. Firstly, we align the marginal distribu-

tion of different source domains via optimal transport by minimizing the Wasserstein

distance to achieve the domain-invariant feature space. And then, we adopt metric

learning objective to guide the learner to leverage the class similarity information for

a better classification boundary. A general workflow of our method is illustrated in

Fig. 3a. The model contains three major parts: a feature extractor, a classifier and a

critic function.

The feature extractor function F , parameterized by θf , extracts the features from dif-

ferent source domain. For set of instances X(i) = {x(i)
j }

Ni
j=1 from domain Di, we can

then denote the extracted feature from domain i as Z(i) = F (X(i)). The classification

functionC, parameterized by θc, is expected to learn to predict labels of instances from

all the domains correctly. The critic function D, parameterized by θd, aims to measure

the empirical Wasserstein distance between features from a pair of source domains. For

the target domain, all the instances and labels are absent during the training time.

WADG aims to learn the domain-agnostic features with distinguishable classification

boundary. During each train round, the network receives the labelled data from all

domains and train the classifier under a supervised mode with the classification loss

LC . For the classification process, we use the typical cross-entropy loss for all m

source domains:

LC = −
m∑
i=1

Ni∑
j=1

yj log(P(C(F (x(i)
j )))) (4)

Through this, the model could learn to train the category information on over all the

domains. The feature extractor F is then trained to minimize the estimated Wasserstein

Distance in an adversarial manner with the critic D with an objective LD. We then
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(a) The whole workflow the proposed WADG model.
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anchor

Negative

Mining

w
eight

w
eight

similarity

similarity
Positive

Weighting Clustering
Mix	extracted	features
	of	m	source	domains

(c) Metric Learning for Clustering Proces

Figure 3: The proposed WADG method. (a): the general workflow of WADG method. The model mainly
consists of three parts, the feature extractor, classifier and critic function. During training, the model receives
all the source domains. The feature extractor is trained to learn invariant features together with the critic
function in an adversarial manner. (b): For each pair of source domains Di and Dj , optimal transport
process for aligning the features from different domains. (c): The metric learning process. For a batch of all
source domain instances, we first roughly mining the positive and negative pairs via Eq. 7. Then, compute
the corresponding weights via Eq. 11 and Eq. 12 to compute LMS to guide the clustering process.

adopt a metric learning objective (namely, LMS) for leveraging the similarities for a

better classification boundary. Our full method then solve the joint loss function,

L = arg min
θf ,θc

max
θd
LC + LD + LMS ,

where LD is the adversarial objective function, and LMS is the metric learning objec-

tive function. In the sequel, we will elaborate these two objectives in section 4.1 and

section 4.2, respectively.

4.1. Adversarial Domain Generalization via Optimal Transport

As optimal transport could constrain labelled source samples of the same class to re-

main close during the transportation process (Courty et al., 2016). We deploy optimal

transport with Wasserstein distance (Redko et al., 2017; Shen et al., 2018) for aligning

the marginal feature distribution over all the source domains.
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A brief workflow of the optimal transport for a pair of sourcce domains is illustrated in

Fig. 3b. The critic function D estimates the empirical Wasserstein Distance between

the each source domain through a pair of instances from the empirical sets x(i) ∈ X(i)

and x(j) ∈ X(j). In practice (Shen et al., 2018), the dual term Eq. 2 of Wasserstein

distance could be computed by,

W1(X(i),X(j)) = max
( 1

Ni

∑
x(i)∈X(i)

D(F (x(i)))− 1

Nj

∑
x(j)∈X(j)

D(F (x(j)))
)

(5)

As in domain generalization setting, there usually exists more that two source domains,

we can sum all the empirical Wasserstein distance between each pair of source do-

mains,

LD =

m∑
i=1

m∑
j=i+1

[ 1

Ni

∑
x(i)∈X(i)

D(F (x(i)))− 1

Nj

∑
x(j)∈X(j)

D(F (x(j)))
]

(6)

Throughout this pair-wise optimal transport process, the learner could extract a domain-

invariant feature space, we then propose to apply metric learning approaches to lever-

age the class label similarity for domain independent clustering feature extraction. We

then introduce the metric learning for domain agnostic clustering in the next section.

4.2. Metric Learning for Domain Agnostic Classification Boundary

As aforementioned, only aligning the marginal features via adversarial training is not

sufficient for DG since there may exist a ambiguous decision boundary (Dou et al.,

2019). When predicting on the target domain, the learner may still suffer from this am-

biguous decision boundary. To this end, we adopt the metric learning techniques (Wang

et al., 2019) to help cluster the instances and promote a better prediction boundary for

better generalization.

To solve this, except to the supervised source classification and alignment of the marginal

distribution across domains with the Wasserstein adversarial training defined above, we

then further encourage robust domain-independent local clustering via leverage from

label information using the metric learning objective. The brief workflow is illustrated

in Fig. 3c. Specifically, we adopt the metric learning objective to require the images
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regardless of their domains to follow the two aspects: 1) images from the same class

are semantically similar, thereby should be mapped nearby in the embedding space

(semantic clustering), while 2) instances from different classes should be mapped apart

from each other in embedding space. Since goal of domain generalization aims to

learn to hypothesis could predict well on all the domains, the clustering should also be

achieved under a domain-agnostic manner.

To this end, we mix the instances from all the source domains together and encourage

the clustering for domain agnostic features via the metric learning techniques to achieve

a domain-independent clustering decision boundary. For this, during each training

iteration, for a batch {x(i)
1 , y

(i)
1 , . . . ,x

(i)
b , y

(i)
b }mi=1 from m source domains with batch

size b, we mix all the instances from each domain and denoted by {(xBi , yBi )}m′

i=1 with

total size m′. We first measure the relative similarity between the negative and positive

pairs, which is introduced in the next sub-section.

4.2.1. Pair Similarity Mining

Assume xBi is an anchor, a negative pair {xBi ,xBj } and a positive pair {xBi ,xBj′} are

selected if Sij and Si,j′ satisfy the negative condition S−i,j and the positive condition

S+
i,j , respectively :

S−i,j ≥ min
yi=yk

Si,k − ε, S+
i,j′ ≤ min

yi 6=yk
Si,k + ε (7)

where ε is a given margin. Through Eq. 7 and specific margin ε, we will have a set

of negative pairs N and a set of positive pairs P . This process (Eq. 7) could roughly

cluster the instances with each anchor by selecting informative pairs (inside of the

margin), and discard the less informative ones (outside of the margin).

With such roughly selected informative pairs N and P , we then assign the instance

with different weights. Intuitively, if a instance has higher similarity with an anchor,

then it should stay closer with the anchor and vice-versa. We introduce the weighting

process in the next section.

4.2.2. Pair Weighting
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For instances of positive pairs, if they are more similar with the anchor, then it should

have higher weights while give the negative pairs with lower weights if they are more

dissimilar, no matter which domain they come from. Through this process, we can

push the instances into several groups via measure their similarities.

ForN instances, computing the similarity between each pair could result in a similarity

matrix S ∈ RN×N . For a loss function based on pair similarity, it can usually be

defined by F(S, y). Let Si,j be the ith row, jth column element of matrix S. The

gradient w.r.t the network could be computed by,

∂F(S, y)

∂θf
=
∂F(S, y)

∂S

∂S

∂θf
=

N∑
i=1

N∑
j=1

∂F(S, y)

∂Si,j

∂Si,j
∂θf

(8)

Eq. 8 could be reformulated into a new loss function LMS as,

LMS =

N∑
i=1

N∑
j=1

∂F(S, y)

∂Si,j
Si,j (9)

usually the metric loss defined w.r.t similarity matrix S and label y could be reformu-

lated by Eq. 9. The term ∂F(S,y)
∂Si,j

in Eq. 9 could be treated as an constant scalar since

it doesn’t contain the gradient of LMS w.r.t θf . Then, we just need to compute the

gradient term ∂Fi,j

∂θf
for the positive and negative pairs. Since the goal is to encourage

the positive pairs to be closer, then we can assume the gradient ≤ 0, i.e., ∂Fi,j

∂θf
≤ 0.

Conversely, for a negative pair, we could assume ∂Fi,j

∂θf
≥ 0. Thus, Eq. 9 is transformed

by the summation over all the positive pair (yi = yj) and negative pairs (yi 6= yj),

LMS =

N∑
i=1

N∑
j=1

∂F(S, y)

∂Si,j
Si,j

=

N∑
i=1

 N∑
j=1,yj 6=yi

∂F(S, y)

∂Si,j
Si,j +

N∑
j=1,yj=yi

∂F
(
S, y)

∂Si,j
Si,j


=

N∑
i=1

 N∑
j=1,yj 6=yi

wi,jSi,j −
N∑

j=1,yj=yi

wi,jSi,j


(10)
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where wi,j =
∣∣∂Si,j

∂θf

∣∣ is regarded as the weight for similarity Si,j . Since our goal is to

encourage the positive pairs to be closer, then we can assume the weight for positive

pairs is smaller than 0. Conversely, for a negative pair, we can assume the weight is

larger than 0. The intuition is that for a negative pair of instances, let the weight be pos-

itive, we can give it a higher loss value. Then, the learner can learn to distinguish them.

On the contrary, we can assign the negative weights towards the positive pairs, which

will guide the learner to not separate them apart. For each pair of instances i, j, we

could assign different weights according to their similarities Si,j . Then, we can denote

w+
i,j and w−i,j as the weight of a positive or negative pairs’ similarity, respectively.

Previously, Yi et al. (2014) and Wang et al. (2019) applied a soft function for measuring

the similarity. We then consider the similarity of the pair itself (i.e. self-similarity),

the negative similarity and the positive similarity. The weight of self-similarity could

be measured by exp(Si,j − λ) with a small threshold λ. For a selected negative pair

{xBi ,xBj } ∈ N the corresponding weight (see Eq. 10) could be defined by the soft

function of self-similarity together with the negative similarity:

w−i,j =
1

exp(β(λ− Sij)) +
∑
k∈N exp(β(Si,k − λ))

=
exp(β(Sij − λ))

1 +
∑
k∈N exp(β(Sik − λ))

(11)

Similarly, the weight of a positive pair {xBi ,xBj } ∈ P is defined by,

w+
i,j =

1

exp(−α(λ− Si,j)) +
∑
k∈P exp(−α(Si,k − Si,j))

(12)

Then, take Eq. 11 and Eq. 12 into Eq. 10, and integrate Eq. 10 with the similarity

mining Si,j , we have the objective function for clustering,

LMS =
1

m

m∑
i=1

{ 1

α
log[1 +

∑
k∈Pi

exp(−α(Sik − λ))] +
1

β
log[1 +

∑
k∈Ni

exp(β(Sik − λ))]
}

(13)

where λ, α and β are fixed hyper-parameters, we elaborate them in the empirical setting
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Algorithm 1 The proposed WADG algorithm (one round)
Require: Samples from different source domains {Di}Mi=1

Ensure: Neural network parameters θf , θc, θd
1: for mini-batch of samples {(x(i)

s , y
(i)
s )} from source domains do

2: Compute the classification loss LC over all the domains according to Eq. 4
3: Compute the Wasserstein distance LD between each pair of source domains

according to Eq. 6
4: Mix the pairs from different domains and compute the similarity by Eq. 3
5: Roughly select the positive and negative pairs by solving Eq. 7
6: Compute similarity loss LMS on all the source instances by Eq. 13
7: Update θf , θc and 1d by solving Eq. 14 with learning rate η:

θf ← θf − η
∂(LC + λdLD + λsLMS)

∂θf
,

θc ← θc − η
∂(LC + λdLD + λsLMS)

∂θc
,

θd ← θd + η
∂LD
∂θd

8: end for
9: Return the optimal parameters θ?f , θ?c and θ?d

section 5.2. Then, the whole objective of our proposed method is,

L = arg min
θf ,θc

max
θd
LC + λdLD + λsLMS (14)

where λd and λs are coefficients to regularize Ld and LMS respectively.

Based on these above, we propose the WADG algorithm in Algorithm 1. And we show

the empirical results in the next section.

5. Experiments and Results

5.1. Datasets

In order to evaluate our proposed approach, we implement experiments on three com-

mon used datasest: VLCS (Torralba & Efros, 2011), PACS (Li et al., 2017a) and

Office-home (Venkateswara et al., 2017) dataset. The VLCS dataset contains im-

ages from 4 different domains: PASCAL VOC2007 (V), LabelMe (L), Caltech (C),
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and SUN09 (S). Each domain includes five classes: bird, car, chair, dog and person.

PACS dataset is a recent benchmark dataset for domain generalization. It consists of

four domains: Photo (P), Art painting (A), Cartoon (C), Sketch (S), with objects from

seven classes: dog, elephant, giraffe, guitar, house, horse, person. Office-Home is a

more challenging dataset, which contains four different domains: Art (Ar), Clipart

(Cl), Product (Pr) and Real World (Rw), with 65 categories in each domain. Previous

work showed that matter the adversarial model is trained under supervised (Long et al.,

2017), semi-supervised (Zhou et al., 2020) or unsupervised (Long et al., 2018) way, the

model will suffer from learning the diverse feature. To test our domain generalization

model on this dataset could also help to affirm the effectiveness of our approach.

5.2. Baselines and Implementation details

To show the effectiveness of our proposed approach, we compare our algorithm on the

benchmark datasets with the following recent domain generalization methods.

• Deep All: We follow the standard evaluation protocol of Domain Generalization

to set up the pre-trained Alexnet or ResNet-18 fine-tuned on the aggregation of

all source domains with only the classification loss.

• TF (Li et al., 2017b): A low-rank parameterized Convolution Neural Network

model which aims to reduce the total number of model parameters for an end-to-

end Domain Generalization training.

• CIDDG (Li et al., 2018c): Matches the conditional distribution by change the

class prior.

• MLDG (Li et al., 2018a): The meta-learning approach for domain generaliza-

tion. It runs the meta-optimization on simulated meta-train/ meta-test sets with

domain shift

• CCSA (Motiian et al., 2017): The contrastive semantic alignment loss was adopted

together with the source classification loss function for both the domain adapta-

tion and domain generalization problem.
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Table 2: The hyper-parameter values for experiments

Hyper-parameters Value Hyper-parameters Value

learning rate PACS: 5× 10−4 λ 1.0

Office-home: 2× 10−4 α 2.0

λd λd = 2
1+exp(−10p) − 1 β 40.0

λs [1e− 4, 1e− 5] ε 0.1

• MMD-AAE (Li et al., 2018b): The Adversarial Autoencoder model was adopted

together with the Mean-Max Discrepancy to extract a domain invariant feature

for generalization.

• D-SAM (D’Innocente & Caputo, 2018): It aggregates domain-specific modules

and merges general and specific information together for generalization.

• JiGen (Carlucci et al., 2019): It achieves domain generalization by solving the

Jigsaw puzzle via the unsupervised task.

• MASF (Dou et al., 2019): A meta-learning style method which based on MLDG

and combined with Consitrastive Loss/ Triplet Loss to encourage domain-independent

semantic feature space.

• MMLD (Matsuura & Harada, 2020): An approach that mixes all the source do-

mains by assigning a pseudo domain label for extract domain-independent clus-

ter feature space.

Following the general evaluation protocol of domain generalization (e.g. Dou et al.

(2019); Matsuura & Harada (2020)), on PACS and VLCS dataset. We first test our

algorithm on by using AlexNet (Krizhevsky et al., 2012) backbones by removing the

last layer as feature extractor. For preparing the dataset, we follow the train/val./test

split and the data pre-processing protocol of Matsuura & Harada (2020). As for the

classifier, we initialize a three-layers MLP whose input has the same number of inputs

as the feature extractor’s output and to have the same number of outputs as the number

of object categories (2048-256-256-K), where K is the number of classes. For the

19



Table 3: Empirical Results (accuracy %) on PACS dataset with pre-trained AlexNet as Feature Extractor.
For each column, we refer the generalization taks as the target domain name. For example, the third column
‘Cartoon‘ refers to the generalization tasks where domain Cartoon is the target domain while the model is
trained on the rest three domains.

Method Art Cartoon Sketch Photo Avg.
Deep All 63.30 63.13 54.07 87.70 67.05
TF(Li et al., 2017b) 62.86 66.97 57.51 89.50 59.21
CIDDG(Li et al., 2018c) 62.70 69.73 64.45 78.65 68.88
MLDG (Li et al., 2018a) 66.23 66.88 58.96 88.00 70.01
D-SAM(D’Innocente & Caputo, 2018) 63.87 70.70 64.66 85.55 71.20
JiGen(Carlucci et al., 2019) 67.63 71.71 65.18 89.00 73.38
MASF(Dou et al., 2019) 70.35 72.46 67.33 90.68 75.21
MMLD(Matsuura & Harada, 2020) 69.27 72.83 66.44 88.98 74.38
Ours 70.21 72.51 70.32 89.81 75.71

critic network, we also adopt a three-layers MLP (2048-1024-1024-1). For the metric

learning objective, we use the output of the second layer of classifier network (with

size 256) for computing the similarity.

In order to better demonstrating the hyper-parameters used in this work, we firstly sum-

marized the value of hyper-parameters in Table. 2. The corresponding descriptions are

provided in the following parts. We adopt the ADAM (Kingma & Ba, 2014) optimizer

for training with learning rate ranging from 5× 10−4 to 5× 10−5 for the whole model

together with mini-batch size 64.

For stable training, we set coefficient λd = 2
1+exp(−10p) − 1 to regularize the adver-

sarial loss, where p is the training progress, to regularize the adversarial loss. This

regularization scheme λd has been widely used in adversarial training based domain

adaptation and generalization setting (e.g. (Long et al., 2017; Wen et al., 2019; Mat-

suura & Harada, 2020)) and have been proved could help to stabilize the training pro-

cess. For the setting of λs, we follow the setting of (Dou et al., 2019) and set the value

to 10−4. In our preliminary validation results, the performance is not sensitive with

λd ∈ [0, 1]. We also tried to range λs from 10−3 to 10−6 via reverse validation and

didn’t observe obvious differences.

Then, we examined our algorithm on the office-home benchmark, which is more chal-
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Method Caltech LabelMe Pascal Sun Avg.

Deep All 92.86 63.10 68.67 64.11 72.19
D-MATE (Ghifary et al., 2015) 89.05 60.13 63.90 61.33 68.60
CIDDG (Li et al., 2018c) 88.83 63.06 64.38 62.10 69.59
CCSA (Motiian et al., 2017) 92.30 62.10 67.10 59.10 70.15
SLRC (Ding & Fu, 2017) 92.76 62.34 65.25 63.54 70.97
TF (Li et al., 2017b) 93.63 63.49 69.99 61.32 72.11
MMD-AAE (Li et al., 2018b) 94.40 62.60 67.70 64.40 72.28
D-SAM (D’Innocente & Caputo, 2018) 91.75 56.95 58.95 60.84 67.03
MLDG (Li et al., 2018a) 94.4 61.3 67.7 65.9 73.30
JiGen (Carlucci et al., 2019) 96.93 60.90 70.62 64.30 73.19
MASF (Dou et al., 2019) 94.78 64.90 69.14 67.64 74.11
MMLD (Matsuura & Harada, 2020) 96.66 58.77 71.96 68.13 73.88
Ours 96.68 64.26 71.47 66.62 74.76

Table 4: Empirical Results (accuracy %) on VLCS dataset with pre-trained AlexNet as feature extractor.

lenging than the previous PACS and VLCS datasets. We follow the setting of (Car-

lucci et al., 2019), which is the most recent work who also evaluated on office-home

dataset, to have a fair comparison. For this Office-home dataset, we also used reverse

validation to set the learning rate as 2e − 4 for the whole model. For the remaining

hyper-parameters, we keep the same with PACS and VLCS experiments. To avoid

over-training, we also adopt the early stopping technique. All the experiments are pro-

grammed with PyTorch (Paszke et al., 2019).

5.3. Experiments Results

We first reported the empirical results on PACS and VLCS dataset using AlexNet as

feature extractor in Table 3 and Table 4, respectively. For each generalization task, we

train the model on all the source domains and test on the target domain and report the

average of top 5 accuracy values. The empirical results refers to the average accuracy

about training on source domains while testing on the target domain.

From the empirical results, we can observe our method outperforms the baselines both

on the PACS and VLCS dataset, indicating an improvement on benchmark perfor-

mances. This showed the effectiveness of our method. Then, we report the empirical

results on Office-home dataset in Table 5. As stated before, Office-home is a more

larger and challenging dataset contains more diverse features from 65 different classes.

To evaluate the performance on this dataset requires large amount of computational
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Art Clipart Product Real-World Avg.

Deep All 52.15 45.86 70.86 73.15 60.51
D-SAM(D’Innocente & Caputo, 2018) 58.03 44.37 69.22 71.45 60.77
JiGen(Carlucci et al., 2019) 53.04 47.51 71.47 72.79 61.20

Ours 55.34 44.82 72.03 73.55 61.44

Table 5: Empirical Results (accuracy %) on Office-home dataset with pre-trained ResNet-18 as feature
extractor.

resources. Due to the limits, we follow the evaluation protocol of Carlucci et al. (2019)

to report the empirical results. From those results, we could observe that our algo-

rithm outperforms the previous Domain Generalization method, this also confirm the

effectiveness of our proposed method.

5.4. Further Analysis

To further show the effectiveness of our algorithm especially on more deep models,

follow Dou et al. (2019), we also report the results of our algorithm by using ResNet-18

backbone on PACS dataset in Table 6. The ResNet-18 backbone, the output feature dim

will be 512. From the results, we could observe that our method could outperform the

baselines on most generalization tasks and on average +1.6% accuracy improvement.

Then, we implement ablation studies on each component of our algorithm. We report

the empirical results of ablation studies in Table 7, where we test the ablation studies

on both the AlexNet backbone and ResNet-18 backbone. We compare the ablations by,

(1) Deep All: Train the model using feature extractor on source domain datasets with

classification loss only, that is, neither optimal transport nor metric learning techniques

is adopted. (2) No LD: Train the model with classification loss and metric learning

loss but without adversarial training component; (3) LMS w.o. w+: omit the positive

weighting scheme in LMS (4) LMS w.o. w− : omit the positive weighting scheme in

LMS . (5) No LMS : Train the model with classification loss and adversarial loss but

without metric learning component; (6) WADG-All: Train the model with full objective

Eq. 14.

From the results, we could observe that one we omit the adversarial training, the ac-

curacy would drop off rapidly (∼ 3.5% with AlexNet backbone and ∼ 5.8% with
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Table 6: Empirical Results (accuracy %) on PACS dataset with pre-trained ResNet-18 as feature extractor .

Method Art Cartoon Sketch Photo Avg.
Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM(D’Innocente & Caputo, 2018) 77.33 72.43 77.83 95.30 80.72
JiGen(Carlucci et al., 2019) 79.42 75.25 71.35 96.03 80.51
MASF(Dou et al., 2019) 80.29 77.17 71.69 94.99 81.04
MMLD(Matsuura & Harada, 2020) 81.28 77.16 72.29 96.09 81.83

Ours 81.56 78.02 78.43 95.82 83.45

Source: Art
Source: Carton

source: Sketch
Target: Photo

(a) Deep All

Source: Art
Source: Carton

source: Sketch
Target: Photo

(b) No LD

Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(c) No LMS

Source: Art
Source: Carton

source: Sketch
Target: Photo

(d) WADG-All

Figure 4: T-SNE visualization of ablation studies on PACS dataset for Target domain as Photo. Detailed
analysis is presented in section 5.4.
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Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(a) Deep All

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(b) No LD

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(c) No LMS

Source: Pascal VOC
Source: LabelMe

Source: SUN
Target: Caltech

(d) WADG-All

Figure 5: T-SNE visualization of ablation studies on VLCS dataset for Target domain as Caltech. Detailed
analysis is presented in section 5.4.

ResNet-18 backbone). The contribution of the metric learning loss is relatively small

compared with adversarial loss. Comparing the ablations LMS w.o. w+ and LMS

w.o. w−, we could observe almost similar accuracy. This indicates that the positive and

negative weighting scheme of the metric learning objective may have equivalent con-

tribution. . Once we omit the metric learning loss, the performance will drop ∼ 2.1%

and ∼ 2.5% with AlexNet and ResNet-18 backbone, respectively.

Then, to better understand the contribution of each component of our algorithm, the

Table 7: Ablation Studies on PACS dataset on all components of our proposed method using AlexNet and
ResNet-18 backbone

AlexNet ResNet-18
Ablation Art Carton Sketch Photo Avg. Art Carton Sketch Photo Avg.

Deep All 63.30 63.13 54.07 87.70 67.05 77.87 75.89 69.27 95.19 79.55
No LD 65.80 69.64 63.91 89.53 72.22 74.62 73.02 68.67 94.86 77.79
No LMS 66.78 71.47 68.12 88.87 73.65 78.25 76.27 73.42 95.68 80.91
LMS w.o. w+ 66.31 70.86 67.11 88.97 73.31 80.58 77.95 75.13 95.63 82.32
LMS w.o. w− 66.41 70.95 68.73 87.38 73.37 79.98 77.65 77.89 95.21 82.68
WADG-All 70.21 72.51 70.32 89.81 75.71 81.56 78.02 78.43 95.82 83.45
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T-SNE visualization of the ablation studies of each components on PACS and VLCS

dataset are represented in Fig. 4 for the generalization task of target domain Photo. and

Fig. 5 for the generalization task of target domain Caltech, respectively. Since our goal

is to not only align the feature distribution but also encourage a cohesion and separable

boundary, in order to show the alignment and clustering performance, we report the T-

SNE features of all the source domains and target domain to show the feature alignment

and clustering across domains.

For PASC dataset, as we can see, the T-SNE features by Deep All could neither project

the instances from different domains to align with each other nor cluster the features

into groups. The T-SNE features by No LD showed the metric learning loss could to

some extent to cluster the features, but without the adversarial training, the features

could not be aligned well. The T-SNE features by No LMS showed that the adversarial

training could help to align the features from different domains but could not have a

good clustering performance. The T-SNE features by WADG-All showed that the full

objective could help to not only align the features from different domains but also could

cluster the features from different domains into several cluster groups, which confirms

the effective of our algorithm.

As for the VLCS dataset, we could observe similar performance on the T-SNE on

the VLCS dataset while the features are somehow overlap with each other. This is

due to the features in Caltech domain is somehow easy to learn and predict. As also

analyzed in (Li et al., 2017a), a supervised model on Caltech domain could achieved

∼ 100% accuracy, which also confirms that the features in Caltech domain is easy to

learn indicating the features might be more likely overlapping with each other. As we

can see from Fig.5d, the WADG method could help to separate the features with each

other, which again confirms the effectiveness of our proposed method.

6. Conclusion

In this paper, we proposed the Wasserstein Adversarial Domain Generalization algo-

rithm for not only aligning the source domain features and transferring to an unseen

target domain but also leveraging the label information across domains. We first adopt
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optimal transport with Wasserstein distance for aligning the marginal distribution and

then adopt the metric learning method to encourage a domain-independent distinguish-

able feature space for a clear classification boundary. The experiments results showed

our proposed algorithm could outperform most of the baseline methods on two stan-

dard benchmark datasets. Furthermore, the ablation studies and visualization of the

T-SNE features also confirmed the effectiveness of our algorithm.
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