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Abstract

Current approaches that generate text from linked data for complex real-world do-

mains can face problems including rich and sparse vocabularies as well as learning

from examples of long varied sequences. In this article, we propose a novel divide-

and-conquer approach that automatically induces a hierarchy of “generation spaces”

from a dataset of semantic concepts and texts. Generation spaces are based on a notion

of similarity of partial knowledge graphs that represent the domain and feed into a hi-

erarchy of sequence-to-sequence or memory-to-sequence learners for concept-to-text

generation. An advantage of our approach is that learning models are exposed to the

most relevant examples during training which can avoid bias towards majority sam-

ples. We evaluate our approach on two common benchmark datasets and compare our

hierarchical approach against a flat learning setup. We also conduct a comparison be-

tween sequence-to-sequence and memory-to-sequence learning models. Experiments

show that our hierarchical approach overcomes issues of data sparsity and learns ro-

bust lexico-syntactic patterns, consistently outperforming flat baselines and previous

work by up to 30%. We also find that while memory-to-sequence models can outper-

form sequence-to-sequence models in some cases, the latter are generally more stable

in their performance and represent a safer overall choice.
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1. Introduction

Current approaches for text generation from complex real-world data, such as Wiki-

pedia or other rich domains, often face the problem of large and varied vocabularies,

long sequences and unbalanced representations of input-output pairs. While state-of-

the-art natural language generation (NLG) architectures, such as sequence-to-sequence5

models, have made good improvements over the last years [1, 2, 3, 4, 5], the problem

of generating long sequences of text and maintaining coherence, grammatical and se-

mantic correctness remains a challenge.

Recent approaches to text generation from Wikipedia have made use of the fact that

semantically similar examples often share similar lexico-syntactic realisations. For10

example, [6] generate text from a semantically conditioned language model, and [7]

group their input semantically rather than sequentially. While both of these models

report improved performance over baselines that do not exploit semantic context, they

still only achieve modest BLEU scores in the range of 22% and 34% respectively,

which in many cases does not lead to a coherent output text.15

In this article, we propose a novel divide-and-conquer approach for natural lan-

guage generation that induces a hierarchy of generation spaces (i.e. input-output pairs,

effectively) automatically from an unlabelled corpus of examples. Generation spaces

are based on a notion of similarity of partial knowledge graphs with entity and rela-

tion embeddings and can be identified with off-the-shelf clustering algorithms. Sub-20

sequently, we train specialised generators for individual generation spaces, so as to

reduce data sparsity, improve the coherence of outputs and reduce the amount of er-

rors in generated texts. To maintain prior knowledge of the domain and context, we

share a set of common weights across the hierarchy of generators that are pre-trained

and passed from parents to children. See Figure 1 for an illustration. Our approach25

is different to other hierarchical approaches such as [8, 9] who work with hierarchical

hidden representations to capture domain context and dialogue history but still train a

single model for the full domain.

For the implementation of our generators, we experiment with both sequence-to-

sequence (Seq2Seq) and memory-to-sequence (Mem2Seq) models, mostly to allow a30
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KB triplets KB entity embeddings
Example: (person, is, walter extra), (walter extra, name_2, extra), (walter extra, name_1, walter),  
(walter extra, birth_date_1, 1954), (walter extra, nationality_1, german), (walter extra, occupation_1, aircraft)

Output sentences
Example: Walter Extra (born 1954) was a German aircraft manufacturer … 

Seq2Seq

Mem2Seq

OR

G

Figure 1: Hierarchy of generators G0
0 . . . G

n
2 , where parent G0

0 represents the full generation domain,

G0
1 . . . G

m
1 represent sub-domains and are trained to capture shared pre-trained weights as prior knowledge,

and G0
2 . . . G

n
2 are sub-domain “expert” generators. Generators in the hierarchy are modelled as either

Seq2Seq or Mem2Seq networks as shown, please see Section 3.3 for details. Agents in a lower level of the

hierarchy use pre-trained weights from the upper level and cannot start training until the above level has beed

trained. In other words, training is done in stages: Stage 1 trains model G0
0, Stage 2 trains models Gi

1, and

Stage 3 trains models Gi
2. During testing, only the models derived from Stage 3 (bottom level) are used.

comparison of alternative attention mechanisms. The general idea of a divide-and-

conquer approach is transferable to other models too, e.g. [10].

We present experiments using two existing benchmarked datasets, WEBNLG of

the recent WebNLG challenge for generating text from RDF triplets [11], and WIKI-

BIO, a large dataset of Wikipedia info boxes and biography texts [6]. We find across35

datasets and metrics that the hierarchical models consistently outperform the flat mod-

els, including competitive baselines. The hierarchical models overcome problems of

incoherent long sequences and learn a robust set of lexico-syntactic patterns specific to

their sub-domain. We also find that while both Seq2Seq and Mem2Seq models achieve

good performance in a divide-and-conquer setup, the former is more consistent and40

shows less variation in output quality.
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The article is structured as follows. We review related work on neural NLG and

NLG from structured data in Section 2. We then introduce our learning model in Sec-

tion 3 including mechanisms for knowledge graph representation, hierarchy induction

and alternative attention mechanisms. Section 4 describes our experimental setup, met-45

rics and baselines, and Section 5 discusses results from objective and human evalua-

tions. We conclude and discuss future research in Section 6.

2. Related Work

2.1. Neural Approaches to Natural Language Generation

Our general approach is related to work on sequence-to-sequence models [12] that50

encode a sequence of input symbols and decode them onto a separate sequence of

output symbols, such as pioneering work on machine translation [13, 14]. Natural

language generation systems have mostly mapped a semantic input sequence, e.g. se-

mantic slots to be filled in a task-oriented dialogue setting, onto a sequence of words,

experimenting e.g. with semantic control gates [1], linguistically inspired input rep-55

resentations [2, 15, 16] or graph-based generation inputs [17, 18] in order to gain se-

mantic control over generated sequences. Other related work has explored sequence-

to-sequence architectures for dialogue generation [4, 19, 3] and programming code

generation [20, 21, 22], amongst others.

An active area of research has also been the role of linguistic information in encoder-60

decoder architectures to improve generated output quality. [3] apply an LSTM encoder-

decoder to the same restaurant domain data as [1] and show that additional perfor-

mance can be gained through the use of dependency trees as an intermediate repre-

sentation. [15] uses an LSTM encoder-decoder for cross-domain NLG, showing that

using linguistically-rich abstract meaning representations (AMRs) [23] as inputs to a65

generator can aid domain transfer. While [15]’s work was based on human annotation

of AMR graphs, [24] are able to extract an effective AMR parser from unlabelled data

which they utilise to produce annotated data for an encoder-decoder generator. Other

work that explores abstract meaning representations to gain semantic control includes
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[17] who generate language from encoded graph networks and [18] who explore graph70

encoding itself.

Other approaches to neural natural language generation include [2] who jointly

model content selection and surface realisation for weather report generation and Robo-

cup summaries; [25] generate weather reports and focus on learning models for rare

data points. [4] generate outputs for a task-oriented spoken dialogue system and show75

that using an ensemble of different encoders — LSTM, bidirectional LSTM and CNN

— outperforms a standard LSTM encoder-decoder with attention. [19] propose to

tackle the problem of semantic inaccuracies in encoder-decoder models through a se-

quence of pre-processing operations on semantic fields. Most recently, there has also

been an increase in approaches that apply transformer networks to NLG [10, 26, 27].80

An alternative model for neural text generation is based on variational autoencoders

(VAEs). Those models are mostly applied to unlabelled data and can consequently offer

less semantic control over the outputs in some cases. An advantage of these architec-

tures is that they mostly operate on unlabelled data, thus cutting down on development

costs whenever high-quality data is available. [28] present a VAE that combines convo-85

lutional and deconvolutional techniques with a recurrent output layer to overcome prob-

lems of existing purely recurrent VAEs that lack coherence in long output sequences.

Working on the problem of semantically variable outputs, [29] show that VAEs trained

from systematically noisy input data can learn to produce semantically-relevant outputs

by treating semantic fields as a corrupted version of the desired representation.90

Finally, recent work has (re-)explored natural language templates in the context

of neural output generation. [30] train a neural hidden Semi-Markov Model that as-

sociates semantic fields with phrases in an attempt to impose more structure on the

generation process and overcome the lack of transparency and semantic control found

in purely neural encoder-decoder models.95

2.2. Natural Language Generation from Large Structured Knowledge Bases

Recent approaches to generating text from linked data are mostly based on recurrent

neural network architectures that encode a set of semantic fields and decode them to

a text that describes them. [6] train an encoder-decoder LSTM generator to map a
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sequence of input semantic fields onto a sequence of output words describing them.100

The authors introduce a set of mechanisms that help address the linguistic variety in

the texts, e.g. the fact that the biography of a cricket player is likely to contain different

semantic fields than the biography of a senior politician. They show that copy actions

can effectively deal with words that apply mostly to subsets of biographies and that

word embeddings are more useful when trained separately for each individual concept.105

Related research has faced similar issues relating to the size and sparsity of vocabulary

and variety in semantic fields. [7] similarly aim to take advantage of semantic “sub-

spaces” in their data when training an open domain NLG system from DBPedia data.

They encode input semantics into a vector of triplets that can then get decoded to

word sequences, especially representing input sequences in semantic groupings rather110

than sequentially. Closely related to this work, [31] address the same task using a

different dataset extracted from Wikipedia. The authors employ an encoder-decoder

LSTM architecture but at the same time use autencoding to reverse-encode outputs

back to inputs in an attempt to constrain generation to include only the required input

semantics. Results outperform the same n-gram baseline as reported by [6]. It is115

regrettable that no direct comparison on the same dataset is presented.

Whereas the above approaches aim to improve the semantic encoding for genera-

tors, [32] focus on a different sub-aspect of sequence classification, the prediction of

rare words. They introduce a novel pointer sentinel architecture that can decide to pre-

dict a word or reproduce one that is salient in the current linguistic context. The authors120

evaluate their approach on a new Wikipedia dataset, this being a challenging domain

given the large and sparse vocabulary.

Finally, the recent WebNLG challenge1 made a step towards more comparability in

the generation of text from linked data. The challenge received 8 system submissions

in 2017, three of which were rule- or template-based, one used supervised learning and125

the remaining four relied on neural approaches. The winning system UMELBOURNE

used an encoder-decoder with attention and entity delexicalisation [11].

Common issues discussed in all of the above approaches include the size and spar-

1http://webnlg.loria.fr/pages/results.html
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occupation= 
[aircraft designer  
and manufacturer]

birth_date= 
[August 21, 1956]

position=[midfielder]
birth_date= 

[3 September  
1946]education= 

[University of  
Great Falls (BA)]

birth_date=[1954]

nationality=[German] office=[US senator 
from Montana]

political_party=[Democratic]

place_of_birth=[Chiguayante, Chile]

teams_managed=[ 
La Serena, Colo-Colo]

person_entry=walter_extra

person

person_entry=jon_tester
person_entry= 

eddio_inostroza

Figure 2: Illustration of a knowledge graph with top-level concept person, e.g. for the biography domain. In-

dividual entities are associated with different combinations of semantic fields, leading to different biography

outputs.

sity of vocabulary and variety in semantic fields when generating from linked data.

This is often exacerbated when using real-world data, such as scraped off the web. Our130

work is closely related to the above approaches, e.g. [6] and [7], in their idea to exploit

the fact that some portions of data are more similar in their lexico-syntactic patterns

than others and that these patterns can be correlated with semantic fields to train se-

mantically specialised models. In contrast to previous work that has learnt a single

generation policy, we propose to work with an automatically induced hierarchy of gen-135

erators, which learn specialised generation policies. Divide-and-conquer approaches

have previously shown promise in other domains [9, 33, 34] but remain relatively un-

explored for natural natural language generation.

3. Learning Model

3.1. Knowledge graph representation140

We define the inputs to our generator as a set of (partial) knowledge graphs con-

sisting of triplets (ea, r, eb) where ea is an entity to the left, eb is an entity to the right

and r is a relation between ea and eb, e.g. (molina, occupation, actor). We further

embed knowledge graph entities and relations into a d-dimensional vector space using
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Word2Vec [35] and padding so that e.g. an embedded entity e is represented as a vector145

e ∈ Rd [36]. The aim is to enhance the generalisability of our models over using raw

input graphs, following studies on knowledge graph embeddings by [37, 38, 39, 40],

amongst others. Note though that we are not using full-fledged knowledge graph em-

beddings [37, 38] in this article, we merely aim to embed individual entities and rela-

tions in order to generalise across individual facts in our knowledge base. Vectors are150

subsequently concatenated to form inputs to the generation models. The final training

set of knowledge graph triplets is then defined as x = (ea0 , r0, e
b
0), . . . , (e

a
m, rm, e

b
m)

for a dataset of m samples, where we concatenate individual vectors of entities and

relations to serve as input to generation.

3.2. Hierarchical Generation Spaces155

Figure 2 shows an example of a partial knowledge graph representing entities from

the Wikipedia domain, where nodes represent fields taken from a Wikipedia info box

describing a person. We specify a high-level parent concept person as a root node

whose children are individual Wikipedia entries. Each entry has a subset of seman-

tic fields relevant to the person it describes, where common fields are birth date and160

death date (if relevant) as well as occupation. Other semantic fields are only rele-

vant for particular subsets of people. For example, position, teams managed and clubs

seem particularly relevant to sports personalities, while office, constituency and politi-

cal party seem relevant to politicians.

The intuition is that combinations of semantic fields as shown are closely related165

to the linguistic choices and lexico-syntactic structures used to express them. In other

words, we make use of the observation that biographies of sports people share a vocab-

ulary and a set of syntactic constructions, so that a football player’s biography reads

more similarly to a cricket player’s biography than a senior politician’s. Earlier work

has captured these “clusters” of input-output pairs by learning separate embeddings for170

semantic fields [6] or by encoding semantic information according to semantic groups

[7]. Our approach is to explore the idea of automatically inducing generation spaces

from data, i.e. clusters of data points (triplets) from knowledge graphs, so as to be

able to train generation models for individual sub-spaces (of input-output pairs) of the
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complete generation domain.175

To this end, we define a hierarchy H of natural language generators, where each

generator is defined as a 3-tuple:

Gj
i ,= 〈xj

i ,y
j
i , θ

j
i 〉, (1)

where xj
i is a set of input knowledge graphs x0 . . .xn, yj

i is a set of output sequences

of words and θji is a set of weights specific to Gj
i . Indices i and j uniquely identify the

model in the hierarchy of generatorsH = {G0
0 . . . G

q
p}, see Figure 1 for an illustration.

Note that i and j are used only for identification in the hierarchy and are independent

of the time step during learning. While index i denotes a layer in the hierarchy, index180

j denotes a model within the current layer.

We use a joint embedded vocabulary across our hierarchy of generators and a

shared set of initial weights, trained from the whole dataset, to capture the general

domain genre and to allow for model transfer across generation spaces. To do this,

parent model G0
0 is trained for the full domain with the primary purpose being to learn185

a set of initial embeddings and weights that can be passed down to the children as prior

knowledge. Models G0
1 . . . G

m
1 have a similar purpose in that they refine weights, and

models G0
2 . . . G

n
2 represent sub-domain generators that are used to generate the final

output texts from the input graphs. For the actual output generation part in Section 3.3,

we make use of our “expert generators” G0
2 . . . G

n
2 only.190

To identify sub-spaces of input data that lend themselves as separate generators for

a sub-domain (i.e. generation space), we useK-Means++ clustering based on the set of

partial knowledge graphs identified in Section 3.1, where K can be a different number

of clusters for level Gm
1 and level Gn

2 of the hierarchy, respectively, see experiments

in Section 4. Algorithm 1 shows pseudocode for identifying clusters of similar data195

points that should be combined into a generator. Our algorithm starts with a random

initialisation of weights for the parent agent G0
0. The parent is then trained on a full

domain dataset to obtain initial weight distributions that capture the domain on the

whole and that can be passed down to child agents. Once training is completed, we

apply K-Means++ clustering to the semantic input set (knowledge graph triplets) x to200

identifyK clusters that behave in semantically similar ways. The number of clustersK
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Algorithm 1 Inducing a hierarchy of natural language generators
1: function FINDGENERATORS(set of all knowledge graphs triplets x, corresponding output

texts y)

2: x = numerical encoding of x

3: G0
0 = 〈x,y, θ〉

4: GK
1 = list []

5: GL
2 = list []

6:

7: Train G0
0 to obtain weights θ

8: K ← decompose x into K clusters

9: for each cluster k in K do:

10: append 〈xk
1 ,y

k
1 , θ〉 to Gk

1

11: train Gk
1 to obtain θk1 from prior weights θ

12: end for

13: for each generator in Gk
1 do:

14: L ← decompose xk
1 into L clusters

15: for each cluster l in L do:

16: append 〈xl
2,y

l
2, θ

k
1 〉 to Gl

2

17: train Gl
2 to obtain θl2 from prior weights θk1

18: end for

19: end for

20: end function

is established empirically through trial and error, see Section 4 for details. Once a set of

clusters has been found, the sub-set of x belonging to these clusters is paired with their

expected outputs y, and each of the new child agents is trained in turn. These generators

make up the second layer of our hierarchy, G0
1 . . . G

m
1 . Their semantic inputs are in205

turn used to find further sub-clusters that will, once trained, form the final layer of the

hierarchy G0
2 . . . G

n
2 .

During generation, we identify the best generator for a new semantic input graph

by assigning the input to an existing cluster, i.e. a generator Gj
i , by calculating its

Euclidean distance with the cluster.210
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Figure 3: Architecture of the H-Seq2Seq model including a bi-LSTM encoder and LSTM decoder with

attention mechanism as in [42].

3.3. Output generation

To implement our generators, we experiment with two alternative learning models,

H-Seq2Seq which comprises Seq2Seq learning models [1], and H-Mem2Seq which

comprises Mem2Seq models [41].

H-Seq2Seq. A Seq2Seq model conditions an output sequence of words on a sequence

of inputs, i.e. knowledge graph triplets in our case. This is done by learning an increas-

ingly abstract representation of the input captured as the hidden state h which is found

through updates to a non-linear activation function f(xt,ht−1) at timestep t. The goal

is to minimise the loss between expected and generated outputs (y, ŷ, respectively) by

for example using categorical cross entropy:

L(y, ŷ) = − 1

N

∑

i

yi log ŷi. (2)

We opted for an LSTM solution to our recurrent neural network which computes h

under consideration of control gates that manage the loss and retention of information
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to the current cell state, see [43]. We follow previous work that has demonstrated the

benefits of using a bidirectional setup to encode inputs [44]. We will work with an

abbreviated notation of the update functions for the forward and backward step:
−→
h t = LSTM(

−→
Wxhxt +

−→
Whh

−→
h t−1 +

−→
b h),

←−
h t = LSTM(

←−
Wxhxt +

←−
Whh

←−
h t+1 +

←−
b h),

(3)

where W is a weight matrix and b is a bias term. We can then compute our final output

sequence yt as:

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by. (4)

Finally, we integrate an attention mechanism into our Seq2Seq model that com-215

putes each word yt from the decoder’s hidden state st = f(st−1,yt, ct), where ct is a

weighted combination of input states h0 . . . ht−1 [42]. See Figure 3 for an illustration.

H-Mem2Seq. The Mem2Seq model combines the notion of a Seq2Seq generator with

the idea of a memory network that computes an output sequence y based on a set of

memories that can capture more of the preceding context than is typically available in220

a Seq2Seq model. For example, in dialogue generation a Mem2Seq model may predict

an utterance over an entire dialogue history of user and system turns rather than just

the input semantics [45, 41]. For our application to NLG, we represent context u as

a concatenation of the d immediately preceding pairs 〈x,y〉, i.e. knowledge graph

triplets {ux0 , . . . , uxd} and generated output sequences {uy0, . . . , uyd}.225

The encoder network is defined as a standard memory network with adjacent weight

tying, which uses u as an input and represents memories as embedded matrices C0, . . . ,

CK that map tokens in u to continuous vectors. The query term q is also embedded

and corresponds in our setting to a single knowledge graph, e.g. xt as defined in the

previous section. We can then compute a probability vector pk
i over memories Ck

i

from qk:

pk
i = Softmax((qk)TCk

i ), (5)

where i is the current memory index and k indicates the current memory hop. The

output memory o is computed as the weighted sum over the transformed inputs CK
i :

ok =
∑

i

pk
iC

K
i . (6)
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Figure 4: Architecture of the H-Mem2Seq model including a stacked memory network encoder as in [45]

and LSTM decoder.

The query q is updated incrementally through qk+1 = qk + ok. After k memory hops

this will produce output vector ok which will serve as an input sequence to the decoder.

The decoder computes an output sequence y as described for the Seq2Seq model

above except that updates to hidden state ht are conditioned on C rather than an atten-

tion vector st as above:

ht = LSTM(C0(ŷt−1,ht−1)). (7)

A probability distribution over words can then be obtained for output sequence y using

greedy or beam search. We follow the implementation of [41] for our Mem2Seq model

except that we replace their standard GRU model in the decoder for an LSTM as in the230

Seq2Seq model above. See Figure 4 for an illustration.

4. Experiments

We present our datasets, baselines and details on experimental setup and hyper-

parameters.
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WIKIBIO WEBNLG

Instances 728,321 25,298

Training split 80% 80%

Validation split 10% –

Test split 10% 20%

Vocabulary 400k 6,547

Fields 74,689 373

Table 1: Overview of dataset properties.

4.1. Datasets and Data Preparation235

We use the following datasets that contain linked data and textual descriptions of

the data:

• WEBNLG2 – maps RDF triplets to text where inputs are of varying complexity

containing between one and seven triplets for generation. Outputs are lexico-

syntactically varied and include microplanning operations such as sentence ag-240

gregation or discourse relations. See [46] for further detail.

• WIKIBIO3 – maps Wikipedia info boxes to biography paragraphs. This dataset

is noisy and sparse as info boxes are not restricted in the fields they can contain,

therefore often not leading to a correspondence between info boxes and text.

Only about a third of the output text is represented in the info box. See [6] for245

further detail.

Table 1 shows a comparison of the datasets in terms of their size, vocabulary, number

of semantic field types as well as the split used for training, testing and validation. We

follow the same split as used in previous work. As can be seen the WIKIBIO dataset is

a much larger collection of semantic inputs and texts with sparse vocabulary. WEBNLG250

is smaller but still challenging due to the smaller number of training examples.

2https://webnlg-challenge.loria.fr/download/
3https://github.com/DavidGrangier/wikipedia-biography-dataset
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In terms of data preparation of the semantic inputs, the WEBNLG data is repre-

sented in the form of RDF triplets so can be directly transferred to our knowledge

graph notation from Section 3.1. The WIKIBIO data comes in the form of a Wikipedia

info box, matching a semantic field, e.g. occupation to a value, e.g. actor. We transfer255

this notation to knowledge graph triplets (ea, r, eb) as before, where ea is the person

whose biography is being generated, r is a semantic relation and eb is its value. For both

datasets we follow previous work [1, 11] and delexicalise ea and eb during generation

to reduce the sparsity associated with specific names, places, dates etc. These values

are copied back into a generated output before presentation to a user, e.g., directly from260

a semantic input representation.

4.2. Experimental Setup and Baselines

We compare the following setups:

• H-Seq2Seq is a hierarchy of Seq2Seq models described in Section 3.3. We

use 4 layers, 256 hidden units, dropout of 0.2, learning rate of 0.0001, Adam265

optimisation and train for 2,000 epochs with early stopping (patience=6).

• H-Mem2Seq is a hierarchy of Mem2Seq models described in Section 3.3. We

use 3 hops, 256 hidden units, dropout of 0.2, learning rate of 0.0001, Adam

optimisation and 2,000 training epochs with early stopping (patience=6).

• Seq2Seq is a flat Seq2Seq bi-LSTM model with attention, using the same model270

setup as above. This model corresponds to generating from G0
0 directly under

the Seq2Seq option.

• Mem2Seq is a flat Mem2Seq model with an LSTM model for decoding, using

the same model setup as above. This model corresponds to generating from G0
0

directly under the Mem2Seq option.275

• Human is the human reference data for each dataset. We present this baseline

as an upper-bound for the performance of other models.

In addition we compare with two published dataset-specific baselines from previous

work that has used the same data:
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Table 1

WikiBio WebNLG WebNLG

10 clusters 21 52 52 10

50 clusters 52 89 89 20

100 clusters 98 100 100 30

200 clusters 100 98 98 40

300 clusters 90 85 85 50

400 clusters 90 70 70 60

500 clusters 85 25 25 70

0

27.5

55

82.5

110

10 clusters 50 clusters 100 clusters 200 clusters 300 clusters 400 clusters 500 clusters

WikiBio WebNLG

1

Figure 5: Performance comparison of using different numbers of clusters for training for WIKIBIO (blue)

and WEBNLG (red) datasets to determine the best number of clusters for the bottom of our hierarchy (layer

Gn
2 ). Here, the top performance achieved across both datasets is marked as 100%. Performance was mea-

sured on the test set.

• Lebret-2016 use a Seq2Seq LSTM with attention, a conditional neural language280

model and copy actions to address sparsity [6] for WIKIBIO. We discussed this

model in more detail in Section 2.

• MELBOURNE4 is the winning system of the WEBNLG challenge, i.e. using the

same test set that we will be using. It is based on a standard encoder-decoder ar-

chitecture with Bahdanau attention [42], but specfically enriches input sequences285

before learning. In particular, this involves appending DBpedia types to entities

in the input, whenever available, and basing delexicalisation on an n-gram search

procedure to ensure that the most accurate delexicalised input sequence is used.

To determine a good number of generators for our hierarchy, we experimented with

numbers [3, 5, 10] for level G1
n and with [10, 50, 100, 200, 300, 400, 500] clusters for290

level G2
m (generation) of our hierarchy. Based on these experiments, all final experi-

ments will use 3 clusters for G1
n and 100 clusters for G2

m for both datasets. Figure 5

illustrates a comparison of different numbers of clusters for G2
m. The top performance

achieved across both datasets (in terms of BLEU score) is used as the upper-bound in

4http://webnlg.loria.fr/pages/melbourne_report.pdf
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this case and other configurations are presented in relation to the upper bound.295

5. Results

Model BLEU ERR AVE LEN INF NAT

H-SEQ2SEQ 51.78 ± 0.17 4.90 ± 1.38 24.78 ± 4.16 4.0 (4) ± 1.04 3.27 (3) ± 1.15

SEQ2SEQ 7.24 ± 0.15 3.33 ± 1.64 14.78 ± 4.45 – –

H-MEM2SEQ 65.59 ± 33.80 5.70 ± 2.10 23.25 ± 12.31 3.97 (4) ± 0.98 3.55 (4) ± 1.05

MEM2SEQ 6.50 ± 12.02 4.94 ± 1.88 12.05 ± 6.30 – –

LEBRET-16 34.7 ± 0.36 – – – –

HUMAN – 0.44 ± 0.17 24.96 ± 5.60 4.51 (5) ± 0.68 4.53 (5) ± 0.74

Table 2: Objective and subjective results for WIKIBIO dataset. Numbers are averages with standard devia-

tion. For subjective metrics INF and NAT, median ratings are shown in parentheses.

Model BLEU ERR AVE LEN INF NAT

H-SEQ2SEQ 48.71 ± 0.19 5.40 ± 1.18 10.38 ± 1.28 3.57 (4) ± 1.05 3.97 (4) ± 1.21

SEQ2SEQ 6.12 ± 0.12 5.45 ± 1.24 6.90 ± 1.65 – –

H-MEM2SEQ 10.23 ± 9.78 1.69 ± 0.66 5.87 ± 2.51 3.32 (4) ± 1.22 3.54 (4) ± 1.53

MEM2SEQ 4.79 ± 5.92 13.20 ± 4.30 7.48 ± 1.98 – –

MELBOURNE 45.13 ± – – – – –

HUMAN – 3.39 ± 1.70 10.50 ± 1.26 4.16 (4) ± 0.79 4.10 (4) ± 1.06

Table 3: Objective and subjective results for WEBNLG dataset. Numbers are averages with standard devia-

tion. For subjective metrics INF and NAT, median ratings are shown in parentheses.

5.1. Objective Evaluation

Table 2 shows objective results for the WIKIBIO data and Table 3 shows objective

results for the WEBNLG dataset, both in terms of BLEU-4, the average length of gen-

erated sequences (AVE LEN) and the semantic error in outputs (ERR). The semantic

error was computed from the number of semantic slots that are either missing or falsely

17



inserted into the generated output in comparison to the slots found in the input:

ERR =
additional slots + missing slots

total number semantic slots
(8)

BLEU. We can see that in terms of BLEU metrics, the hierarchical versions of both

models, H-Seq2Seq and H-Mem2Seq, clearly outperform their flat counterparts for

both datasets by a substantial margin, where Seq2Seq or Mem2Seq never make it300

over 10% for either dataset. This is in line with bi-LSTM baseline results reported

for the WEBNLG challenge [11]. The most note-worthy difference between the H-

Seq2Seq and H-Mem2Seq models is perhaps the large variability in output quality

for H-Mem2Seq. While H-Seq2Seq performs well for both datasets, 51.78 for WIK-

IBIO and 48.71 WEBNLG, the H-Mem2Seq achieves as much as 65.59 for WIKIBIO305

but only 10.23 for WEBNLG. The variance in output quality for H-Mem2Seq is also

clearly visible in the standard deviations for both datasets, ranging between 5.92 to

33.80. This means that while H-Mem2Seq achieves near-human BLEU scores in some

of our hierarchical sub-domains, it fails to learn any reasonable prediction model for

other sub-domains. H-Seq2Seq is much more stable in all cases with standard devi-310

ations between 0.12 and 0.19, despite never getting close to the human upper-bound

for either dataset. For WEBNLG, we find that the second best system overall is MEL-

BOURNE from the WebNLG challenge, achieving an overall BLEU score of 45.13 just

after H-Seq2Seq. This shows that clean and rich input representations also have a

substantial weight towards good outputs as was MELBOURNE’s focus.315

ERR. In terms of the semantic error (ERR), we find the errors relatively consistently

between 3% and 6% for all except H-Mem2Seq (1.69%) and Mem2Seq (13.20) mod-

els for WEBNLG. Interestingly, semantic error rates are not necessarily higher with

lower BLEU scores. Manual inspection revealed that in some cases, a model will learn

to reproduce a sequence of the semantic input tokens, thus achieving a low error, but320

not learn to produce an intelligible lexico-syntactic output. It is further worth noting

that human data does not achieve an error of 0 either, according to Equation 8. This

is likely due to humans in a number of cases paraphrasing semantic content or adding

information that is not represented in the input but that they may know through some

other means, e.g. general world knowledge. See [6] for a similar observation.325
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The utterance is . . . rating (1-5)

human-like 5

nearly human-like 4

somewhat unnatural 3

very unnatural 2

completely wrong 1

naturalness

The utterance contains . . . rating (1-5)

substantial information conveyed 5

some information conveyed 4

states the obvious 3

wrong information conveyed 2

no information conveyed 1

informativeness

Table 4: On the left: definitions for varying scales of naturalness. On the right: definitions for scales of

informativeness.

AVE LEN. In terms of the average length of generated outputs, H-Seq2Seq achieves

an average of 24.78, getting closest to the human average of 24.96, followed by H-

Mem2Seq (23.25) for WIKIBIO, though notice the high standard deviation again (12.31)

for the latter model. For WEBNLG, H-Seq2Seq achieves an average of 10.38, closest

to the human average of 10.50, while H-Mem2Seq generates an average length of330

only 5.87. The latter is likely related to observations relating to other metrics such as

the model just learning to list the correct semantic slots without much lexico-syntactic

structure and the low BLEU scores achieved.

5.2. Subjective Evaluation

To evaluate the subjective quality of our generated outputs, we conducted a human335

rating study on Amazon Mechanical Turk (AMT) comparing our systems against each

other in terms of subjective metrics on output quality. We focus on the subset of sys-

tems that achieved a BLEU score of at least 10% as well as the human upper-bounds.

We restrict our subjective evaluation to the better systems based on the rationale that

systems below 10% in BLEU scores are clearly sub-par and not sufficiently competi-340

tive to assess further. For our evaluation, we recruited 62 human judges from AMT and

asked them to assess the naturalness (NAT) and informativeness (INF) of the generated

outputs on a Likert scale of 1-5, where 5 is the best and 1 is the worst. Table 4 shows

textual descriptions for the categories that were available to human raters, naturalness

is shown on the left and informativeness is shown on the right.345
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Semantic input:

(Ted Zhanovich Ntirubuza, birth date 1, 23 Jan 1995),

(TZN, occupation 1, footballer),

(TZN, current club 1, FC Solaris Moscow)

H-Seq2Seq Ted Zhanovich Ntirubuza born 23 June 1995 in Voronezh, Russia, is

a Russian footballer who currently plays for FC Solyaris Moscow.

H-Mem2Seq Ted Zhanovich Ntirubuza ( born 23 June 1995 in Voronezh, Russia

) is a Russian footballer who plays as a defender for FC Solyaris

Moscow.

Seq2Seq Ted Zhanovich Ntirubuza (FC Solyaris Moscow) born 23 June 1995

is a Russian football is a Russian football.

Mem2Seq Ted Zhanovich Ntirubuza born 1995 is Russian football.

Human Ted Zhanovich Ntirubuza ( born 23 June 1995 ) is a Russian football

player who plays for FC Solyaris Moscow.

Table 5: Examples of generated outputs for WIKIBIO.

We collected overall 4,458 human ratings for a subset of generated outputs that

were chosen randomly from the test sets of our two best performing systems per dataset

(according to objective metrics) as well as our human (gold standard) upper-bound.

Results are shown in Tables 2 and 3 as before in terms of average, median and standard

deviation. Results mostly show the H-Seq2Seq models being ranked slightly higher350

than the H-Mem2Seq models even though the standard deviations are comparable for

both systems. All systems are ranked lower than the human upper-bound, even though

the latter is also not rated perfectly by AMT raters.

5.3. Error Analysis of Outputs

Tables 5 and 6 show example outputs for WIKIBIO and WEBNLG, respectively.355

Noteworthy phenomena are highlighted. For example, in some cases we can see ad-

ditional information being inserted in an output that is not represented in the input.

This is relatively frequent for the human data (see e.g. human baseline in Table 6) but

can also be observed for systems (see e.g. H-Mem2Seq in Table 5). When systems
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Semantic input:

(Bionico, country, Mexico),

(Bionico, course, dessert),

(Bionico, region, Guadalajara),

(Bionico, ingredient, granola),

(Mexico, leader, Enrique Pena Nieto

H-Seq2Seq Enrique Pena Nieto is the leader of Mexico where Bionico is a food.

H-Mem2Seq The granola-based dessert Bionico is a food found in Guadalajara

Mexico.

Seq2Seq Bionico is a food found in Jalisco Mexico in Mexico in in in.

Mem2Seq Enrique Pena Nieto is located in Mexico is the leader.

Human Enrique Pena Nieto is the leader of Mexico where the dish Bionico

can be found in the Jalisco region.

Table 6: Examples of generated outputs for WEBNLG.

insert extra information, we find that this information is not in all cases correct and360

can correspond to “default” information that is frequent in the data overall rather than

specifically relevant to the current data point. For example, for the H-Seq2Seq exam-

ple in Table 5, it is possible that Ted Zhanovich Ntirubuza is a defender but since we

do not know this from the semantic input graph, it is also conceivable that the dataset

just contains a high number of defenders and the model has learnt to insert this slot365

when communicating about footballers. This has been observed for flat learning setups

too, see e.g. [6]. Apart from this, we find that the non-hierarchical models mostly suc-

cessfully generate the first part of an utterance but can lead to ungrammaticalities later

in an output, particularly repeating words or semantic slots (see Seq2Seq example in

Table 6) or ordering semantic phrases in a way that would seem unnatural to a human370

and slightly ungrammatical (see Mem2Seq example in Table 6).

5.4. Computational Comparison

To shed further light on the performance of our models, Table 7 provides a compar-

ison in terms of the number of parameters and the time taken to execute a single epoch
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for our flat and hierarchical models. The computational results (in this section) were375

obtained with a MacBook Pro (2.7 GHz Intel Core i5) and 8 GB in RAM.

As we can see, the Mem2Seq and H-Mem2Seq models work with consistently

fewer parameters across datasets, leading to faster computation. For example, the

Seq2Seq model requires 332.4% more parameters than the Mem2Seq, while H-Seq2Seq

requires 67% more parameters than the corresponding H-Mem2Seq model. The time380

differences are substantial in both cases as well.

At the same time, we can observe an advantage – both in terms of model size

and computational efficiency – in our hierarchical models over their flat baselines. H-

Mem2Seq requires 12.69M parameters (on average across datasets), 4.60% of the flat

Mem2Seq model, and 2.03 seconds to execute a single in epoch (again across datasets)385

in comparison to Mem2Seq’s 78.05 hours, a reduction of over 99%. Similarly, H-

Seq2Seq needs 38.16M parameters on average and 3.65 seconds, 4.5% of Seq2Seq’s

parameters and less than 1% of its time. This in conjunction with the objective and sub-

jective results presented above further supports the argument of a divide-and-conquer

approach to natural language generation in large and noisy domains.390

As outlined in Section 3.2, before training our model/s we need to find a set of

clusters to structure the data space and induce a hierarchy of generation agents. This

step is performed once and takes about 220 minutes (3 hours and 40 minutes) to com-

plete. During testing, we need to allocate each new test instance to a cluster before

being able to generate an output. This step takes on average 49 seconds to complete395

(per example) due to the cost of Euclidean distance calculations. In future we want

to explore ways to shorten this time and make cluster allocation more efficient. For

the time being, however, we consider that the advantages of our method outweigh the

drawbacks, especially in a text generation domain, where speed and responsiveness are

arguably less crucial than e.g. in a highly interactive scenario.400

6. Conclusion and Future Work

We have presented a novel approach to neural NLG from knowledge graphs that

applies a divide-and-conquer approach to automatically induce a hierarchy of genera-
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Model AVE. PARAMETERS (IN MILLION) MIN MAX AVE. TPE MIN MAX

W
IK

IB
IO

H-SEQ2SEQ 74.53 ± 52.23 9.78 210.58 7.07 sec ± 120.2 sec 1.73 ms 6.43 min

SEQ2SEQ 1,642.30 – – 10.13 days – –

H-MEM2SEQ 24.23 ± 21.48 2.59 181.80 4.064 sec ± 27.14 sec 1.083 ms 4.01 min

MEM2SEQ 494.081 – – 6.52 days – –

W
E

B
N

L
G

H-SEQ2SEQ 1.79 ± 416,393 1.37 4.19 0.23 sec ± 0.28 sec 13.18 ms 2.01

SEQ2SEQ 62.46 – – 30.65 sec – –

H-MEM2SEQ 1.15 ± 426,953 638,304 3.20 1.08 ms ± 2.59 ms 0.079 ms 22.76 ms

MEM2SEQ 18.79 – – 1.97 sec – –

Table 7: Computational comparison of flat and hierarchical models in terms of the numbers of parameters

AVE. PARAMETERS (IN MILLION) (average, minimal and maximal observed) and the time takes to train

a single epoch AVE. TIME PER EPOCH (TPE) (average, minimal and maximal observed). For flat models

single numbers are reported.

tors from a dataset based on the similarity of their embedded inputs and K-means++

clustering. Each generator is trained as an “expert” for a sub-set of domain input-405

output pairs with shared knowledge propagated from parents to children. We presented

experiments with two variants of our hierarchy, H-Seq2Seq and H-Mem2Seq, based

on sequence-to-sequence and memory-to-sequence models respectively. We find that

while H-Mem2Seq models can outperform H-Seq2Seq in some cases, the latter are

more stable and reliable in their performance across datasets and evaluation metrics,410

and therefore make a safer choice in most cases. Overall our experiments show that

hierarchical generators consistently outperform their flat counterparts by BLEU scores

of up to 30%, including competitive baselines and previous work.

Future work can address the following:

• In this article we have applied the same setup to all learning models in our hier-415

archy but it is possible that different learning models and/or hyperparameter con-

figurations are optimal for different parts of the “generation space”. Future work

can investigate combinations of different architectures and hyper-parameter con-

figurations within the same hierarchy to further tailor towards individual require-

ments of data sub-portions and find an optimal learning setup.420
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• We expect that the general idea of partioning a dataset according to semantic and

lexical similarity and thus presenting maximally relevant examples to a learning

model during training is transferable and beneficial in other domains, such as

caption generation or dialogue. Future work can establish this empirically.

• Finally, we have focused on a comparison of sequence-to-sequence and memory-425

to-sequence architectures in this articles as two of the most representatives forms

of attention currently used. Future work can extend this comparison to trans-

former architectures [5] and observe any resulting features.
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