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 
Abstract—Head pose estimation is a crucial problem for many 

tasks, such as driver attention, fatigue detection, and human 
behaviour analysis. It is well known that neural networks are 
better at handling classification problems than regression 
problems. It is an extremely nonlinear process to let the network 
output the angle value directly for optimization learning, and the 
weight constraint of the loss function will be relatively weak. This 
paper proposes a novel Bernoulli heatmap for head pose 
estimation from a single RGB image. Our method can achieve the 
positioning of the head area while estimating the angles of the 
head. The Bernoulli heatmap makes it possible to construct fully 
convolutional neural networks without fully connected layers and 
provides a new idea for the output form of head pose estimation. 
A deep convolutional neural network (CNN) structure with 
multiscale representations is adopted to maintain high-resolution 
information and low-resolution information in parallel. This kind 
of structure can maintain rich, high-resolution representations. In 
addition, channelwise fusion is adopted to make the fusion weights 
learnable instead of simple addition with equal weights. As a 
result, the estimation is spatially more precise and potentially 
more accurate. The effectiveness of the proposed method is 
empirically demonstrated by comparing it with other state-of-the-
art methods on public datasets. 
 

Index Terms— Head pose estimation, Bernoulli heatmap, CNN, 
deep learning, multiscale representations, channel-wise fusion 

I. INTRODUCTION 

UMAN-machine collaboration, such as autonomous 
vehicles and coexisting-cooperative-cognitive robots[3], 
is becoming a long-term trend and an active research 

topic[1,2,4,8]. Human understanding is the key to be solved. 
High accuracy and robustness of head pose estimation are 
crucial to many human-related tasks, including gaze detection, 
driver attention, human behaviour analysis, and fatigue 
detection. It can also  be used to improve the performance for 
some face-related tasks, including expression detection and 
identity recognition. 

Historically, there are several sensors available for head 
pose estimation, including RGB, depth, IR, IMU, and optical 
marker. The nonintrusive method based on vision is more easily 
accepted by users. The development of computer vision 
technology has also promoted an increasing number of 
researchers to adopt vision-based methods. Head pose 
estimation is a task that needs to infer the 3D information of the 
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head from the input data. A naïve idea uses a depth sensor to 
obtain 3D input data [13,14]. Another idea uses spatiotemporal 
data such as video to supplement the temporal information lost 
in a single 2D image [27]. There are several geometry-based 
methods [5,6,16] that use a predefined 3D facial model to fit a 
single RGB or depth face image. The essence of geometry-
based methods is to use the prior information of the head shape. 
As a registration optimization problem, the most critical task is 
how to obtain accurate feature matching. One idea is to obtain 
high-quality 2D facial features with the help of the facial 
landmark, and the other is to optimize or augment a predefined 
3D model. Therefore, geometry-based methods are often a 
combination of multiple methods, and they require a predefined 
3D model and combine some landmark-based methods. The 
landmark-based method means that it is often necessary to first 
obtain landmarks using the facial landmark detection model 
[7,17]. Some methods are inferred directly from these 
landmarks, and some are integrated into their own models. The 
problem is that the ground truth of the face landmark is work 
intensive. In this paper, we prefer to use a landmark-free 
method. What all these solutions have in common is the use of 
extra information. However, extra information means extra 
costs. Therefore, the goal of this paper is to adopt a low-cost 
solution, that is, to achieve head pose estimation based on a 
single 2D image. 

 
Fig.  1. The proposed Bernoulli heatmap. The pitch, yaw, roll correspond to 
different heatmaps. 

The output of head pose estimation generally has two 
categories: direct regression[15] and converting to a 
classification problem, which can be called a “soft label 
problem”[3-4,9-12,28]. Allowing the network to output the 
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angle value directly for optimization learning is an extremely 
nonlinear process; the loss function's weight constraint will be 
relatively weak, and the spatial information of the feature map 
will be lost. When the output of head pose estimate is converted 
into a classification problem, the image is considered as a 
whole, so it is often necessary to preprocess the image first and 
crop out the head area; otherwise, the model is difficult to train. 
Human pose estimation also directly regresses the coordinates 
of joint points when CNN is first applied. However, heatmaps 
will soon be a commonly used method in human body pose 
estimation [18]. The basic approach is that one joint point 
corresponds to one heatmap. The advantage of this approach is 
that the output includes both classification and regression. The 
classification is divided into two levels: classifying the different 
heatmaps that distinguish the different joint points, and 
classifying the foreground and background in one heatmap. The 
regression of the position of the joint point actually belongs to 
a classification problem in a certain sense, that is, the pixel 
value on the heatmap indicates the probability that it belongs to 
a joint point, which can be regarded as a 2D version of one-hot 
encoding commonly used for classification tasks. 

This paper is partially inspired by the Gaussian heatmap, 
but there are clear differences that make the Gaussian heatmap 
unavailable to our task. The output of the head pose is not the 
position of the joint point; it is the angle of the head. Therefore, 
the position or value of the maximum of the Gaussian heatmap 
cannot be used as the output of the head pose. This paper 
proposes a novel output, namely, the Bernoulli heatmap, which 
can achieve a fully convolutional network for head pose 
estimation, which focuses the network on the head area, as 
shown in Fig. 1. The value of the Bernoulli heatmap proposed 
does not conform to the Gaussian distribution but the Bernoulli 
distribution, and the final estimate is the average of nonzero 
values. It combines the two tasks of head detection and pose 
regression from some point of view, so it does not necessarily 
require preprocessing of the head crop. 

As shown in Fig. 2, the network structure of multiscale 
representations is adopted, which is inspired by the HRNet [18]. 
The network has branches with different levels of resolution at 
different stages. The branches are composed of different 

numbers of bottleneck or BasicBlock modules. There is not 
only downsampling fusion through high resolution to low 
resolution but also upsampling fusion through low resolution to 
high resolution. In addition to the first stage, each stage includes 
feature extraction, multiscale fusion and stage transition. To 
better fuse the multiscale feature maps, channelwise fusion is 
used so that the fusion weights can be learned. 

The main contribution of this paper is to propose a novel 
Bernoulli heatmap, which solves the problem that head pose 
estimation cannot construct a fully convolutional neural 
network. This will help to apply advanced models in many other 
fields more conveniently to head pose estimation and facilitate 
integration with human pose estimation to form an end-to-end 
whole-body pose estimation. 

The remainder of this paper is structured as follows. 
Section 2 details our proposed method and network structure. 
Experimental settings and results analysis are presented in 
Section 3, followed by the conclusion and future work in 
Section 4. 

II. METHODOLOGY  

In this section, the concept of the Bernoulli heatmap, the 
receptive field, the multiscale representations and the 
channelwise fusion are introduced.  

A. Bernoulli heatmap 

Spatial generalization is an important capability in computer 
vision tasks, especially for the task of coordinate regression. 
Generally, the convolutional layers have spatial ability due to 
weight sharing, but the fully connected layers are prone to 
overfitting, thus hampering the spatial generalization ability of 
the overall network [20]. 

Gaussian heatmaps are currently the most common method 
used in the field of human pose estimation. The Gaussian 
heatmap can make the overall network into a fully 
convolutional network without the fully connected layer and 
ensure that a larger feature map can be output with a higher 
spatial generalization ability. Because the network is no longer 
required to convert spatial information into coordinate 
information by itself, it is easier to converge. 

 
Fig. 2.  The overall framework of the proposed method. The network is divided into four stages, where each stage has a different number of subnetworks. The 
subnetwork is composed of different numbers of Bottleneck or BasicBlock modules. These modules consist of several convolutional layers, batch normalization
layers and activation layers. The Transition module is used for down-sampling and adding branches as the input for the next stage.  
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 However, there are two problems with the Gaussian heatmap 
[19]. 1. There is a lower bound of theoretical error for the 
coordinate regression problem because its output is an integer. 
When the output map is reduced by n times the original image, 
there is a calculation error. When n is larger, the error is greater. 
2. The Gaussian heat map uses the MSE loss function, which 
may cause an offset, as shown in Fig. 3(a). When the loss is 
low, it does not mean that the prediction is more accurate, but 
there may be deviations. 

 
Fig.  3. The Gaussian heatmap(a)[19] and Bernoulli heatmap(b) 

 
Head pose estimation not only regresses to the coordinates of 

joint points but also to three angles about head rotation. 
Therefore, the Gaussian heat map cannot be used directly. To 
solve this problem, the Bernoulli heatmap is proposed, and 
different angles correspond to different Bernoulli heatmaps. We 
define the ground truth of position p of the 𝑖𝑡ℎ  Bernoulli 
heatmap, 𝐿௜ሺ𝑝ሻ, as 

𝐿௜ሺ𝑝ሻ ൌ ቄ𝑣         𝑖𝑓 𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑐
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (1) 

where v is the value of the 𝑖𝑡ℎ angle, and c is a circle whose 

centre is the centre of the head with a radius 𝓇 . 𝓇  is a 

hyperparameter. During testing, the angle 𝐿௜  is 

 𝐿௜ ൌ
ଵ

௡ሺ௣ሻ
∑ 𝐿௜ሺ𝑝ሻ                                         (2) 

where 𝑛ሺ𝑝ሻ is the mean number of nonzero 𝐿௜ሺ𝑝ሻ. 
The Bernoulli heatmap still focuses the model on the head 

area but does not care about the exact centre head point 
coordinates, so that there is no problem of theoretical error 
lower bound and deviations. 

B. Receptive field 

The receptive field [19] is an important feature of the 
convolutional neural network. The value of each output node of 
the convolutional layer depends on a certain area of the input of 
the convolutional layer, as shown in Fig.4. Other input values 
outside this area do not affect the output value. For example, in 
classic object detection using an region proposal network 
(RPN), anchor is the basis of RPN, and receptive field (RF) is 
the basis of the anchor. 

In [26], the theory of effective receptive field (ERF) was 
proposed. They found that not all pixels of the receptive field 
have the same contribution to the output vector or feature map. 
In many cases, the effective pixels of the receptive field 
conform to the Gaussian distribution, which only occupies a 

part of the theoretical receptive field, and the Gaussian 
distribution rapidly decays from the centre to the edge. This also 
means that the reliability of the predicted value of each pixel on 
the Bernoulli heatmap is different. The closer to the head 
region, the higher the reliability is, and the farther away from 
the head region, the lower the reliability is. Therefore, in 
addition to the Bernoulli heatmap, the final output of the model 
also has a Gaussian heatmap, which represents the probability 
of different positions away from the centre of the head and thus 
the weights of different positions, as shown in Fig. 1 and Fig. 
2. The final estimation formula is as follows: 

𝐿௜ ൌ
ଵ

∑ ௪೛
∑ 𝑤௣ ∗ 𝐿௜ሺ𝑝ሻ                        (3) 

𝑤௣~𝑁ሺ𝜇, 𝜎ଶሻ                               (4) 
where 𝑤௣ represents the corresponding weight on the Gaussian 
heatmap, 𝜇  is the centre of the head area, and 𝜎  affects the 
weight distribution of the heatmap. In this paper, 𝐿௜is set equal 

to  0.6 ∗ 𝓇. The purpose is to make the effective area of the 
Gaussian heatmap smaller than the Bernoulli heatmap. In the 
experiments, only the pixels where 𝑤௣ is greater than 0.5 are 
used for the calculation. 

 

Fig. 4. The receptive field 

In Section 3.1, the Bernoulli heatmap is discussed. The 

hyperparameter, the radius 𝓇, is relevant to the receptive field, 
especially to the ERF. It is not difficult to understand that when 
the head area is included in the receptive field, the angle will be 
predicted; otherwise, it is 0. This is equivalent to cropping the 
input image inside the network, including the head region, as 
positive samples, and the rest as negative samples. 

C. Network structure 

1) Multiscale representations 
Many existing pose estimation networks are constructed by 

high-to-low resolution subnetworks in series, where each 
subnetwork is composed of a sequence of convolution layers 
and a down-sample layer to obtain low resolution. These 
methods need to recover the high-resolution from low-
resolution representations. 

Recently, the HRNet has better performance compared to 
others the HRNet is successful from two aspects: (i) 
maintaining the high-resolution representations through the 
whole network without recovering the high resolution from low 
resolution representations and (ii) fusing multiresolution 
representations repeatedly, rendering reliable high-resolution 
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representations.  
In this study, we adopted this multiscale/multiresolution 

representation as our backbone. It is believed that the key 
capability of the convolution network is that the different level 
features can be learned, and these different levels of features 
have different contributions for the output vector. The current 
fusion is generally the addition of equal weights. However, we 
hope that their weights can also be learned during the fusion of 
feature maps. 
2) Channelwise fusion 

To make the network learn to fuse multiscale feature maps 
and exploit the interdependencies among feature channels, 
inspired by the research of Zhang et al. [22]. Channelwise 
fusion is used (see Fig. 5). Let X = [x1.., xc.., xC] be the feature 
maps of one branch before fusion, which has C feature maps 
with the size of H × W. Then, the c-th weight of w is determined 
by 

𝑤௖ ൌ 𝑓ሺ𝑊ଶ ∗ δሺW1 ∗
∑ ∑ 𝑥𝑐ሺ𝑖,𝑗ሻ𝑊

𝑗ൌ1
𝐻
𝑖ൌ1

𝐻ൈ𝑊
ሻሻ                (5) 

where 𝑥௖ሺ𝑖, 𝑗ሻ is the value at position ሺ𝑖, 𝑗ሻ of c-th feature 𝑥௖. 
It can be seen that global average pooling (GAP) is first 
performed, which can be viewed as the aggregation of local 
descriptors to express the whole information. Wଵ is the weight 
set of a convolution layer as channel-downscaling with 
reduction ratio r. Relatively, 𝑊ଶ  is the weight set of the 
channel-upscaling layer with ratio r, where f (ꞏ) and δ (ꞏ) denote 
the sigmoid and rectified linear unit (ReLU) activation 
functions, respectively. The activation functions can obtain the 
channelwise dependencies from the aggregated vector, and then 
the nonlinear interactions between channels and the non-
mutually exclusive relationship can be learned so that the 
multiple channelwise features can be emphasized instead of 
one-hot activation. 

                                  𝑥௖ෝ ൌ ሺ1 ൅ 𝑤௖ሻ ∙ 𝑥௖                            (4) 
Then, we obtain the final channel weights 𝑤௖, which are used 

to rescale the feature map 𝑥௖. where 𝑤௖ and 𝑥௖ are the scaling 
factor and feature map in the c-th channel.  

III. EXPERIMENT 

This section describes the experiment results, the dataset 
used, evaluation criterions, and comparisons with other 
methods. 

A. Dataset 

Three different kinds of popular head pose datasets were used 
for the experiments: BIWI [21] and AFLW2000[33], whose 
sample is a real image with 3 pose angles, and 300W-LP [33], 
whose sample is a synthesized image with 3 pose angles. Some 
examples of these datasets are shown in Fig.6. Because the 
BIWI dataset is composed entirely of a large number of real 
images, this study used it as the main dataset for discussing the 
proposed method. However, considering diversity, AFLW2000 
was used as a supplementary test set. 

 

Fig.  6. The examples of the BIWI, AFLW2000 and 300W-LP datasets 

 
BIWI The BIWI contains 24 sequences acquired with a 

Kinect sensor. Twenty people (some were recorded twice - 6 
women and 14 men) were recorded while turning their heads, 
sitting in front of the sensor, at approximately one metre of 
distance. There are nearly 15,000 images in the database, and 
the angles include yaw: ± 75 degrees, pitch: ± 60 degrees, and 
roll: ± 50 degrees. 

300W-LP The 300W across Large Poses (300W-LP) 
database contains 61,225 synthesized face samples from 
multiple alignment databases, including AFW, LFPW, 
HELEN, and IBUG, which was further expanded to 122,450 
samples with flipping. For each original image, there are several 
synthesized pose faces with different degrees of yaw. 

AFLW2000 The AFLW2000 database contains the ground-
truth 3D faces and the corresponding 68 landmarks of the first 
2,000 AFLW samples. The samples in the dataset have large 
pose variations with various illumination conditions and 
expressions. 

Fig. 5.  The channel-wise fusion. Before the fusion of feature maps with different resolutions, the weight learning branch is added so that feature maps with 
different resolutions have different fusion weights.  
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B. Network Setting 

As shown in Fig. 2, the network is divided into four stages, 
where each stage has a different number of subnetworks. The 
subnetwork is composed of different numbers of bottleneck or 
BasicBlock, and the number is shown in Tab. 1. The 

corresponding NUM_CHANNELS refers to the corresponding 
channel number of each bottleneck or BasicBlock module. The 
multistep learning rate decay was used, as shown in Tab. 1. 
INITIAL VALUE is the initial learning rate, LR_FACTOR is a 
multiplicative factor of learning rate decay, and LR_STEP is a 
list of epoch indices.  

In addition to the sigmoid activation function used in 
channelwise fusion, the other activation functions were leaky 
ReLU, and the leaky value was 0.2. The optimizer was Adam 
during training. 

C. Results 

In this study, two kinds of evaluation criteria were used to 
evaluate the estimation results. Criterion Ⅰ: The mean absolute 
error (MAE) between the estimation and the ground truth of 
each angle in the test set, which gives a macroscopic assessment 
of the estimation result. Criterion Ⅱ: The proportion of all three 
angles of all samples is less than a specific threshold. This 
criterion is more microscopic compared to the first criterion and 
is more concerned with local bad estimations. 

To compare with others, we first used 16 videos of the BIWI 
dataset for training and the remaining 8 videos for testing. In 
Section 3, we mentioned the hyperparameter 𝓇. To study its 
impact on the results, we performed several sets of experiments, 
as shown in Fig. 7. AT denotes channelwise fusion. BG denotes 
the situation with background; in contrast, nBG denotes the 
situation without background. The first group of experiments is 
that the network has channelwise fusion with different 𝓇, and 
the other group of experiments is that the network does not have 

channelwise fusion. It can be seen that 𝓇 has an effect on the 

results. When 𝓇  was too large, from the perspective of the 
receptive field, the effective receptive field of some effective 
pixels on the heatmap did not contain valid head information, 
which means that the “negative sample” was regarded as a 
“positive sample”, which inevitably led to large errors. 
Similarly, when 𝓇  was too small, some “positive samples” 
were regarded as “negative samples” at this time, which also 
inevitably led to large errors. 

 

 

Fig.  7. The comparisons of different hyperparameter r in case of Criterion Ⅰ: 
HR-AT-nBG (up) and HR-nBG (Down) 

 

Fig.  8. The comparisons of different hyperparameter 𝓇 in case of Criterion 
Ⅱ. The horizontal axis represents the error threshold (degree), and the vertical 
axis represents the percentage under the corresponding threshold. 

 

TABLE I 
THE HYPERPARAMETERS OF THE NETWORKS 

Testing 
BIWI 

With Background Without Background 

Input Size 128x96 64x64 

Stage1 
NUM_BOTTLENECK NUM_CHANNELS 

4 64 

Stage2 

NUM_BASICBLOCK NUM_CHANNELS 

4 32 

4 64 

Stage3 

NUM_BASICBLOCK NUM_CHANNELS 

4 32 

4 64 

4 128 

Stage3 

NUM_BASICBLOCK NUM_CHANNELS 

4 32 

4 64 

4 128 

4 256 

Learning 
Rate 

INITIAL VALUE 0.001 

LR_FACTOR 0.5 

LR_STEP 
15 

30 
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As shown in Fig. 7 and Fig. 8, when the basic parameters are 
the same, channelwise fusion is beneficial to the model. In Fig. 
7, our methods are basically convex curves. It can be roughly 
seen that when the threshold is less than 3, the slope of the curve 
is large, and the percentage at this time is greater than 50%, after 
which the slope gradually decreases. When the threshold is 
approximately 5, the percentage is approximately 80%. This 
means that the overall error of our methods is lower, but the 
presence of a small number of samples with larger errors makes 
the average error higher. 

In addition, to test the robustness of our method, the 
translation and occlusion of the test set were used without 
retraining the model, as shown in Fig. 9. Each case was tested 
five times, and each test sample was randomly processed each 
time. The test results are shown in Fig. 10. When there was 
some occlusion and translation, although the MAE has 
increased, the increase was not large. We believe that if the 
training samples were augmented and then trained, the model 
could handle more severe translation and occlusion problems. 

 

Fig.  9. Some examples of the translation and the occlusion 

 

Fig.  10. The results after different processing of test set. 

For neural networks, the most important feature is 
generalization. To evaluate the generalization of the proposed 
method, we used three protocols. Protocol 1: As before, 16 
videos (~10K) of the BIWI dataset were used for training, and 
the remaining 8 videos (~5K) were used for testing. Protocol 2: 
Approximately 12 videos (~7.5 K) of the BIWI dataset were 
used for training and the remaining 12 videos (~7.5K) for 
testing. Protocol 3: Approximately 8 videos (~5K) of the BIWI 
dataset were used for training, and the remaining 16 videos 
(~10K) were used for testing. As general knowledge, the error 
was lower when there were more training samples. However, it 
can be seen from Fig. 11 that even when there were few training 
samples, the test results remained in a relatively reasonable 
range. This shows that the proposed method has good 

generalization. When the training sample increased, better 
results were obtained. 

 
Fig.  11. The results of different protocols 

D. Comparisons 

For the BIWI dataset, we used 16 videos of the BIWI dataset 
for training and the remaining 8 videos for testing, similar to 
others. As shown in Tab. 2, DeepHeadPose[23] focused on 
lower solution multimodal RGB-D images, which combined 
classification and regression to estimate approximate regression 
confidence. Gu et al. [25] used modified VGG16 and FC-RNN 
based on Bayesian filters to estimate the 3 angles, and they used 
the RNN to handle the sequence images. The SSR-Net [24] took 
a coarse-to-fine structure, where each stage performed 
multiclass classification. FSA-Net [12] was proposed to learn a 
fine-grained structure mapping for spatially grouping features 
before aggregation, which provided part-based information and 
pooled values. Martin et al. [25] used depth information in 
addition to RGB information. These methods crop the 
background and keep the face area. Therefore, there are two 
situations for our approach: one is to remove the background, 
and the other is to retain the background. 

TABLE Ⅱ 
THE COMPARISONS WITH THE-STATE-OF-ART METHODS 

Dataset BIWI 

Method Pitch Yaw Roll MAE 

DeepHeadPose[23] 5.18 5.67 - - 

SSR-Net-MD[24] 4.35 4.24 4.19 4.26 

VGG16[25] 4.03 3.91 3.03 3.66 

VGG16+RNN[25]* 3.14 3.48 2.6 3.07 

Martin [29]† 2.5 2.6 3.6 2.9 

FSA-Caps-Fusion[12] 4.29 2.89 3.6 3.6 

HR-AT-BG, Ours 5.25 4.91 4.25 4.8 

HR-nBG, Ours 3.55 3.4 3.07 3.34 

HR-AT-nBG, Ours 3.74 3.07 3.11 3.31 

‘–’ denotes the corresponding results are unavailable in their papers. * The 

method uses time information. † The method uses depth information. 
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 As shown in Tab. 2, when the input image was a single 
RGB image, that is, when depth information and time 
information were not considered, and the background was 
cropped similar to the other methods, our method performed 
better. When the background was retained, our method still 
maintained a low error. 

 

Fig.  12. The comparisons with others in the AFLW2000 dataset  

      For further comparison, the synthetic dataset 300W-LP was 
used as the training set, and AFLW2000 was used as the test set. 
The mean and standard deviation of ImageNet were used to 
normalize the colour channels of the samples. The remaining 
network hyperparameter settings were basically the same. 
Compared with several state-of-the-art methods, the results are 
shown in Fig. 12. Dlib [20] is a face-related library that contains 
face and landmark detection and several other functions. It can 
be used as a benchmark for landmark-based methods. The FAN 
[31] is a state-of-the-art landmark-based method. It is robust 
against occlusions and different poses. The multiscale 
information is used by merging multiple features across 
different layers. Landmarks[32] retrieves head poses from the 
ground-truth landmarks of the AFLW2000 dataset. 3DDFA [33] 
is a geometry-based method that fits a 3D standard head model 
to an RGB image and allows robust alignment of the landmarks 
of the head. SSR-Net-MD[24] and FSA-Caps(1x1)[12] use a 
hierarchical soft stagewise classification and attention module 
for pose estimation. In terms of the MAE of the AFLW2000 
benchmark, only these two methods are better than ours, and 
the gap is not large. These two methods also use the concept of 
soft labels. 
      To further analyse the performance of the proposed method 
on the AFLW2000 dataset. A new evaluation criterion was 
introduced. Criterion Ⅲ: The MAE of the absolute value of the 
pose angles of the sample within a certain range. This 
evaluation criterion measures the performance of the method in 
different angle intervals. Based on this evaluation criterion, the 
proposed method was compared with the SSR-Net-MD and 
FSA-Caps(1x1). It can be seen in Fig. 13 that when the angle 
range of the sample was small, the MAE of our proposed 
method was significantly lower, and the proportion of such 
samples was larger, reaching almost 90%. This means that a 
few samples with larger angles lead to an increase in the total 
MAE of our proposed method. Therefore, we believe that if 

more such samples are collected, the MAE of the proposed 
method can be reduced. 

 

Fig.  13. The comparisons with two state-of-the-art methods with Criterion Ⅲ.  
The black asterisk curve of AFLW2000 corresponds to the vertical coordinate 
on the right which represents the percentage of samples in different angle 
ranges, the remaining three solid curves correspond to the vertical coordinates 
on the left which represents the MAE in different angle ranges, and the 
horizontal coordinate is shared. 
 

E. Visualization 

To further understand the proposed method and influence 
of the Bernoulli heatmap on intermediate feature maps, the 
feature maps were visualized, as shown in Fig. 14. The feature 
maps after each stage were normalized and merged. It can be 
seen that the activation of the head region was stronger, and its 
range increased as the stage increased. Our visualization 
method adds feature maps of different resolutions with equal 
weights. This does not affect the overall understanding of our 
approach. 

 

Fig.  14. The visualization of the intermediate feature maps 

We randomly selected several samples and visualized the 
estimated results in the BIWI dataset, as shown in Fig. 15. It 
can be found that regardless of whether the background was 
cropped, compared with the ground truth, although there was 
an error in the value, there was no obvious difference from an 
intuitive point of view. Compared with other methods that 
require face detection, our method could directly locate the 
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head  and give the corresponding angles of the head. In addition, 
some AFLW2000 images were randomly selected for 
visualization. These samples had large pose variations with 
various illumination conditions and expressions. As shown in 
Fig. 16, the examples included the estimation and the ground 
truth. In most of the samples with small angles, the estimation 
and ground truth basically coincided. There were deviations in 
a few samples with large angles, but they were within a 
reasonable range.  

 

Fig.  15. The examples of our result in the BIWI dataset 

 
To understand why the proposed method is not good for 

large-angle samples, some large-angle samples were selected 
from the 300W-LP and AFLW2000 datasets. As shown in Fig. 
17, because the 300W-LP is a synthetic dataset, the samples 
with large angles have severe distortions and thus have a large 
difference from the real images of the AFLW2000 dataset. The 
features of the relevant area are distorted and blurred. The 
difference between the training set and the test set on the large-
angle samples led to poor performance of the proposed method 
in this part of the sample. Another reason is that when the head 
angle was large, that is, when turning to the side, two people 
often appear at this time, as shown in the second and fifth 

columns of Fig. 17(b), which will affect the inference of the 
model and cause the error to increase. Through these 
visualization methods, a further understanding of our proposed 
method will also help to find subsequent optimization and 
research directions. 

 

Fig.  17. The large angle examples of 300W-LP and AFLW2000  

IV. CONCLUSION 

In this paper, we proposed a new output called the Bernoulli 
heatmap for the head pose estimation task, which makes the 
network a fully convolutional network and provides a new idea 
for head pose estimation. The Bernoulli heatmap not only 
regresses the angles of the head but also allows the network to 
distinguish between the foreground and the background, 
thereby improving the robustness to the background. This 
benefits integration with human pose estimation to form an end-
to-end whole-body pose estimation. We adopted a multiscale 
representation network structure that is similar to HRNet to 
maintain high-resolution representations. The difference is that 
channelwise fusion was used so that the fusion weights of 
feature maps with different resolutions could be learned. The 
experiments show that our methods performed well compared 
to the state-of-the-art methods in public datasets. 

In future work, we will improve the performance of the 
proposed method on large-angle samples. We think that our 
method can still continue to be optimized and that the Bernoulli 
heatmap can be used for other regression tasks. 

 
Fig. 16.  The estimation examples of the AFLW2000 dataset. These examples include the estimation and ground truth. 
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