
GAPointNet: Graph Attention based Point Neural Network for Exploiting

Local Feature of Point Cloud

Can Chen, Luca Zanotti Fragonara, Antonios Tsourdos

Centre for Autonomous and Cyberphysical Systems, Cranfield University, UK, MK43 0AL

Luca Zanotti Fragonara1,∗

Abstract

Exploiting fine-grained semantic features on point cloud data is still challenging because of its irregular and
sparse structure in a non-Euclidean space. In order to represent the local feature for each central point
that is helpful towards better contextual learning, a max pooling operation is often used to highlight the
most important feature in the local region. However, all other geometric local correlations between each
central point and corresponding neighbourhood are ignored during the max pooling operation. To this end,
the attention mechanism is promising in capturing node representation on graph-based data by attending
over all the neighbouring nodes. In this paper, we propose a novel neural network for point cloud analysis,
GAPointNet, which is able to learn local geometric representations by embedding graph attention mechanism
within stacked Multi-Layer-Perceptron (MLP) layers. Specifically, we highlight different attention weights on
the neighbourhood of each center point to efficiently exploit local features. We also combine attention features
with local signature features generated by our attention pooling to fully extract local geometric structures
and enhance the network robustness. The proposed GAPointNet architecture is tested on various benchmark
datasets (i.e. ModelNet40, ShapeNet part, S3DIS, KITTI) and achieves state-of-the-art performance in both
the shape classification and segmentation tasks.

Keywords: Point Cloud, Graph Attention, Multiple Heads Mechanism, Attention Pooling, Semantic
Segmentation, Shape Classification

1. Introduction

Point cloud data are increasingly popular for a
wide range of applications such as autonomous ve-
hicles perception [1, 2, 3, 4], robotic mapping, and
navigation [5, 6] and 3D shape representation and5

modelling [7]. Thus, many researchers are drawing
attention to shape analysis and understanding, espe-
cially once Convolutional Neural Networks (CNNs)
revolutionized the computer vision field [8]. How-
ever, CNNs heavily rely on data having a regular10

grid structure, which leads to inefficient performance
on irregular and unordered geometric data, such as
the one typically found in a point cloud. As a result,
the full exploitation of contextual information from
point clouds remains a challenging problem.15

∗Corresponding author
Email address: l.zanottifragonara@cranfield.ac.uk

(Luca Zanotti Fragonara)

In order to leverage the advantages of CNNs, some
approaches [9, 10, 11] attempted to map the unstruc-
tured point cloud to a standard 3D grid hence allow-
ing the application of CNN architectures. However,
these volumetric representations are not efficient20

in terms of memory and computational efficiency
due to the typical sparsity of point cloud structure.
PointNet [12] pioneered a direct application of deep
learning over irregular point cloud data, bypassing
the mapping to a gridded point cloud. In particular,25

PointNet renders input point cloud invariant to per-
mutations and exploits point-wise features by inde-
pendently applying a Multi-Layer-Perceptron (MLP)
network and a symmetric function on each point.
However, it only captures the global feature with-30

out local information. PointNet++ [13] extends the
PointNet model by constructing a hierarchical neu-
ral network that recursively applies PointNet with

March 30, 2021

e805814
Text Box
Neurocomputing, Volume 438, May 2021, pp. 122-132
DOI: 10.1016/j.neucom.2021.01.095


e805814
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.neucom.2021.01.095. Please refer to any applicable publisher terms of use.




e805814
Text Box



designed sampling and grouping layers in order to
extract the local features. DGCNN [14] operates an35

edge convolution on points and corresponding edges
to further exploit the local information. Adapted
from the point cloud registration method, KC-Net
[15] builds a kernel correlation layer to measure the
geometric affinities between points. However, it is40

noteworthy that the max pooling operation is of-
ten used to efficiently capture the most important
feature from the local region, but the relationship
between each point and all the corresponding neigh-
bouring points is ignored. Motivated by this prob-45

lem, we employ an attention mechanism to highlight
all the local geometric correlations, rather than the
most important information between each central
point and corresponding neighbourhood, to better
represent local features.50

Attention mechanisms have proved to be efficient
in many areas, especially in machine translation
[16, 17], computer vision [18], and graph analysis
[19]. Inspired by graph attention networks [19],
we wanted to leverage the advantages of both max55

pooling and graph attention to fully exploit the fine-
grained local features for point cloud in an attention
manner for the 3D shape classification and part
segmentation tasks. The key contributions of our
work can be summarized as follows:60

❼ We propose a multi-head GAPLayer, which is
able to capture contextual attention features by
indicating different importance of neighbours
for each point.

❼ We introduce self-attention and neighbouring-65

attention mechanisms allowing the GAPLayer
to learn the attention coefficients by consid-
ering the self-geometric information and local
correlations to the corresponding neighbours.

❼ An attention pooling layer over the neighbours70

is proposed to identify the most important fea-
tures to obtain the local signature representa-
tion to enhance network robustness.

❼ To reduce model complexity and computation,
we integrate a low-dimensional GAPLayer into75

the PointNet pipeline to efficiently extract the
local features from an unordered point cloud.

❼ We evaluate our model also on the KITTI object
detection benchmark [20], which contains large
scale traffic scene point cloud representations80

of the real world. Our model achieves the best

performance and outperforms several previous
state-of-the-art models.

2. Related work

Learning features from volumetric grids.. Voxeliza-85

tion is an intuitive way of converting sparse and
irregular point clouds to a standard 3-dimensional
grid structure, after which standard CNNs can be
applied for feature extraction. Voxnet [9] voxelizes
the point cloud into a volumetric grid where a single90

cell is called voxel, followed by a 3D CNN over the oc-
cupied voxels to predict categories of objects. How-
ever, a 3-dimensional, dense, and sparsely-occupied
volumetric grid leads to large memory and high com-
putational costs to achieve high spatial resolution.95

As a result, some improvements were proposed to
address the sparsity problem. For instance, Kd-Net

[21] uses a kd-tree [22] to build an efficient 3D space
partition structure and a deep architecture to learn
representations of point cloud. Similarly, OctNet100

[11] applies 3D convolution on a hybrid grid-octree
structure generated from a set of shallow octrees to
achieve high resolution.

Learning features from multi-view models.. In or-
der to apply the standard CNN operation, whilst105

avoiding large computational costs in volumetric-
based methods, some researchers are interested in
multi-view based approaches. For instance, Qi et
al. [23] and Wang et al. [24] attempted to learn
features of the point cloud in an indirect way by110

applying a typical 2D CNN architecture to multiple
2D image views that are generated by the multi-view
projections over a 3D point cloud. However, these
multi-view approaches are not capable of carrying
out the semantic segmentation task for point cloud115

data, because 2D images lack the depth informa-
tion, which leads to the fact that it is non-trivial to
classify each point from images only.

Geometrical deep learning.. Geometrical deep learn-
ing is a modern terminology that stands for the ap-120

plication of deep learning methods to non-Euclidean
structured data (e.g. 3D point cloud, social net-
works, or genetic networks) [25]. As aforementioned,
the issue arising with non-Euclidean data is that
the convolution operation cannot be applied directly.125

On the other hand, the direct application of deep
learning to graphs-like data structures discloses the
opportunity of extracting features and information
from nodes and edges, which are naturally carrying

2



individual and local information. This is valid for130

any type of non-Euclidean data, hence also to point
clouds. Geometrical deep learning can be broadly
classified into two categories: GNNs (graph neural
networks) either applied in the spatial domain or in
the spectral domain.135

Spatial domain GNNs apply MLPs on individ-
ual and neighbouring points to extract local fea-
tures. As previously mentioned, PointNet [12] in-
troduced the direct application of deep learning
on raw point cloud data. In more detail, a Multi-140

Layer-Perceptron (MLP) network and a symmetric
function (e.g. max pooling) are applied on every
individual point to extract global features. This
approach provides an efficient way for unstructured
point cloud understanding, but local features are145

not captured. In fact, the architecture only works
on independent points without considering any rela-
tionship measurements between points in the local
regions. To address this problem, PointNet++ [13]
constructs a hierarchical neural network that recur-150

sively applies PointNet with a sampling layer and
a grouping layer to exploit local representations.
DGCNN [14] extends PointNet by having an edge
convolution operation (EdgeConv) that is applied
on edge features which aggregate each point and155

corresponding edges connecting to the neighbour-
ing pairs. In order to leverage the advantages of
standard CNN operation, PointCNN [26] attempts
to learn a χ-convolutional operator to transform a
given unordered point set to a latent canonical order,160

after which a typical CNN architecture is used to
extract local features. RS-CNN [27] learns a CNN-
like filter from relational neighbourhoods, which can
be applied over neighbouring points to capture fine-
grained local representations. In order to address165

the irregularity of point cloud data, A-CNN [28]
processes the point cloud to ring-shaped structure
and introduces an annular convolution to exploit
the local geometric information. In this context, our
model also introduces an attention mechanism and170

builds an efficient framework to capture the local
features.

Spectral domain GNNs rely on the generalization
of the Fourier transform operation to graph-like data.
They typically define convolutions as spectral filter-175

ing applied on the eigenvectors of the graph Lapla-
cian matrix [29] on graphs. Graph CNNs [29, 30, 31]
show advantages of graph representation in many
tasks for non-Euclidean data, as they can naturally
deal with these irregular structures. PointGCN [32]180

builds a graph CNN architecture to capture the local

structure and classify point cloud, which also proves
the good potential for unordered point cloud analy-
sis. On the other hand, this approach seems to be
more susceptible to domain changes as eigenvectors185

tend to be inconsistent across domain [33].

3. GAPointNet architecture

In this section, we present and discuss the main
features of our GAPointNet model aimed at learning
local representations for unstructured point cloud190

data for the shape classification and part segmen-
tation tasks. In the following sections, we discuss
in detail the research gaps and how our model ad-
dresses those.

3.1. Problem statement195

We start by defining a raw set of a point cloud,
which is also the input of our model, as Eq. (1):

X =
{

xi ∈ R
F , i = 1, 2, . . . , N

}

(1)

where xi is the feature vector of the i-th point in
the point cloud with F -dimension. Typical features
used are the 3D space coordinates (xi, yi, zi), the
colour, the intensity, the surface normal, etc. For
the sake of simplicity, in this study we set F = 3,200

and we only use 3D coordinates as the input features.
Finally, the total number of points in the point cloud
is defined N .

As previously mentioned, the method is proposed
for object category classification and semantic seg-
mentation of point cloud data. For the object classi-
fication task, our aim is to find a non-linear mapping
function fc that is capable of estimating the prob-
ability distribution of all the categories C for the
given point cloud X:

C = fc(X) (2)

Similarly, for the point cloud segmentation task,
we aim at inferring another non-linear function fs,
which is able to estimate the probability distribution
of all the categories Si for each point xi:

Si = fs(xi), i = 1, 2, . . . , N (3)

However, it is challenging to design the non-linear
functions fc and fs, for classification and segmen-205

tation respectively, due to the fact that: firstly, the
point cloud is a set of irregular and unstructured
points, so the functions should be permutation in-
variant; secondly, the points of a point cloud are

3



likely to be relatively rotated and translated in a210

real application. As a result, the designed functions
should be invariant for certain transformation, such
as rotation and translation; thirdly, local features
should be considered to better represent relation-
ship between each point and the corresponding local215

region.
Inspired by PointNet [12], we use a symmetric

function (e.g. max pooling, weighted average pool-
ing) to address the permutation invariance prob-
lem and leverage the high non-linear approximation
ability of Multi-Layer-Perceptron (MLP) to extract
useful features. Consequently, our model achieves
the following approximation:

f({x1, . . . ,xN}) ≈ g(h(x1), . . . , h(xN)) (4)

where g is a symmetric function and h indicates the
MLP function. The symbol f can represent either
the classification or the segmentation task.

3.2. Local structure representation220

In order to efficiently represent the point cloud
structure, we propose to convert it to a directed
acyclic graph structure with nodes and edges. It is
worth highlighting that the directed graph structure
ignores the order of the nodes when we apply the
neural network on it, and each node is propagated.
The edges of the graph are a flexible way to represent
different types of information about the connectivity
(e.g. distance, concatenation) existing between a
pair of nodes [34]. As a result, we convert each
point to a node in the graph and define the edge as
the dependency of information between two points.
Generally, a directed graph with nodes V and edges
E is constructed as Eq. (5):

G = (V,E) (5)

where V ⊂ R
F are nodes for points with F dimen-

sion, E ⊆ V ×V are edges connecting neighbouring
pairs of points.
However, considering the fact that the number

of samples in point cloud can be very large in real
applications (e.g. autonomous vehicles, robotics),
allowing every point to attend to all other points will
lead to a high computational cost and the gradient
vanishing problem due to very small weights being
allocated on every other point for every point, so it
is not a practical solution to involve all other points
for each central point being considered. Besides, a
graph structure with edges and nodes is a natural

choice to represent a point cloud structure. As a
result, we construct a directed k-nearest neighbour
graph G = (V,E), as shown in part (b) of Fig. 1, to
represent the local structure of the point cloud, then
E ⊆ V ×Vnei where Vnei is the neighbourhood
set of point xi. We group the neighbouring points
by computing the feature space Euclidean distance
between each central point and all other points, and
clustering k-nearest points as neighbourhood. The
edge features ei of a raw point set X are defined as:

X =
{

xi ∈ R
F , i = 1, 2, . . . , N

}

V = X

yij = xi − xij

ei = (yi1,yi2, . . . ,yiK), i = 1, 2, . . . , N

E = {ei|i = 1, 2, . . . , N}

(6)

where xij indicates a certain point xj belonging to
the i-th central point xi neighbourhood, whilst yij225

is a directed and relative distance edge between
the central point xi and its neighbour xij. The
total number of elements in the neighbourhood for
a certain central point is defined as K.

3.3. Attention-aware local feature extraction230

In order to capture local features, we update the
general function Eq. 4 to:

f({x1, . . . ,xN}) ≈ g(h(e1), . . . , h(ei)) (7)

where g is a symmetric function and h indicates the
MLP function that is applied on local regions. The
function f can represent either the classification or
the segmentation function.

3.3.1. GAPLayer235

In this section we introduce our GAPLayer mod-
ule, aimed at efficiently capture local features of
the point cloud. To the benefit of the readers, we
start by introducing a single-head GAPLayer that
takes point cloud data as the input, jointly with a240

multi-head mechanism that concatenates all heads
together over the feature channels in our network.
In order to pay different attention to different

neighbours, we propose a self-attention mechanism
and a neighbouring-attention mechanism to capture245

the attention coefficients for each point to its neigh-
bourhood as illustrated in part (c) of Fig. 1. In
more detail, the self-attention mechanism learns the
self-coefficients by considering the self-geometric in-
formation for each individual point (the central point250

4



xi1

xi2

xi3

xij

xi4

.

.

.
yi1

yi2

yi3

yi4

yij
xi

.

.

.

.

.

.

self-
coef

local
-coef

.

.

.

softmax

✁ij

(d) 
Attention 

coefficients
xi

yij

(a) A raw point cloud (b) Graph of the point cloud

(c) Encoding

se
lf-

atte
ntio

n

neighboring-
attention

Figure 1: Local attention coefficients mechanism. A raw point cloud is represented in (a), the construction of a locally
directed acyclic graph is represented in (b). xi and xij denote the i-th point and its corresponding neighbours, respectively,
whilst yij are the corresponding edges. Self-coefficients (self-coef for short) and local-coefficients (local-coef for short) are
encoded by a Multi-Layer-Perceptron (MLP) layer and fused by a leaky RELU activation function in (c), and normalized by a
softmax function to generate the attention coefficients for neighbouring pairs in (d).

of each neighbourhood), whilst the neighbouring-
attention mechanism focuses on local-coefficients by
considering the neighbourhood.

As an initial step, we encode the nodes and edges
of the point cloud with respect to the high-level255

features with output dimension F ′ as defined by
Eq. (8) and Eq. (9).

x′
i = h(xi, θ) (8)

y′
ij = h(yij, θ) (9)

where h(.) is any parametric non-linear function,
assumed to be a single-layer MLP neural network
in our experiment, and θ is the set of learnable260

parameters of the filter.
We obtain the attention coefficients by fusing

the self-coef h(x′
i, θ) and the local-coef h(y′

ij
, θ) as

defined by Eq. (10). In particular, due to the fact
that the self-coef and the local-coef are features with
just 1 dimension, we simply fuse them by a sum
operation, and then use the non-linear activation
function leaky RELU [35]:

cij = LeakyReLU(h(x′
i, θ) + h(y′

ij, θ)) (10)

where h(x′
i, θ) and h(y′

ij
, θ) are single-layer neu-

ral network with a 1-dimensional output and
LeakyReLU(.) denotes the non-linear activation
function leaky RELU.265

In order to align the comparison of the attention
coefficients across neighbours for different points,
we use the softmax function to normalize the co-
efficients of all the neighbours to every point as
follows:

αij =
exp(cij)

∑

k∈{1,2,...,K} exp(cik)
(11)

where K is the total number of points in the neigh-
bourhood.

The goal of each single-head GAPLayer is to com-
pute the contextual attention feature for every point.
For this, we utilize the obtained normalized coeffi-
cients to compute a linear combination as shown in
Eq. (12), and we successively apply to it a non-linear
activation function to achieve a better extraction
ability:

x̂i = f(
∑

j∈{1,2,...,K}

αijy
′
ij) (12)

where K is the total number of the neighbouring
points, and f(.) is a non-linear activation function,
chosen to be a RELU [35] in our experiment. As270

shown in Fig. 2(b), the outputs of the single-head
GAPLayer are both the attention feature x̂i ∈ R

F ′

and the graph feature y′
ij
encoded from the graph

edges.

3.3.2. Multi-head mechanism275

In order to obtain sufficient structural informa-
tion and to stabilize the network, we concatenate

5



N
 x

 F

in
p
u
t

single-head 

GAPLayer

single-head 

GAPLayer

concat

N
 x

 (
M

x
F
’)

N
 x

 k
 x

 (
M

x
F
’)

multi-attention 

features

multi-graph 

features

M heads

(a) GAPLayer

N
 x

 F

k-nn

N
 x

 k
 x

 F

MLP

{F’}

MLP

{F’}

N
 x

 k
 x

 1
N

 x
 1

soft

max

N
 x

 1
 x

 k

matrix 

multiply

N
 x

 F
’

MLP

{1}

N
 x

 k
 x

 F
’

N
 x

 k
 x

 F
’

N
 x

 F
’

in
p
u
t

MLP

{1}

attention 

feature

graph 

feature

(b) Single-head GAPLayer

Figure 2: GAPLayer structure. The GAPLayer with M heads, as represented in 2(a), takes N points with F dimensions
as input and concatenates the attention and graph features from all heads to generate multi-attention and multi-graph features
as output. As shown in 2(b), the single-head GAPLayer learns self-attention and neighbouring-attention features in parallel
that are then fused together by a non-linear activation function (i.e. leaky ReLU) to obtain the attention coefficients, which are
further normalized by a softmax function. MLP{} denotes a multi-layer perceptron operation and the number within braces is
the size of a set of filters.

M independent single-head GAPLayers to gener-
ate multi-attention features with M × F ′ channels
(see Eq. (13)). Fig. 2(a) shows how the outputs of
the multi-head GAPLayer (GAPLayer for short),
i.e. the multi-attention features and multi-graph
features x̂′

i, are concatenated attention feature and
graph feature from the corresponding head. The
concatenation is defined as follows:

x̂′
i =

M

‖
m

x̂
(m)
i (13)

such that x̂
(m)
i is the attention feature of the m-

th head, M is the total number of heads, and ‖ is
hereinafter used as the concatenation operation over
all feature channels.

3.3.3. Attention pooling layer280

To enhance the network robustness and improve
the performance, we define an attention pooling
layer on the neighbouring channel of multi-graph
features. We use max pooling as our attention pool-
ing operation, which identifies the most important
feature across all heads to capture the local signature
representation Yi (see Eq. (14)).

Yi =
M

‖
m

max
j∈{1,2,...,K}

y′
ij

(m)
(14)

where y′
ij
are the edge features, M and K are the

total number of heads and the neighbouring points
of the central point, respectively. The local signature

is connected to the intermediate layer for capturing
global features. We know that the max pooling285

operation is a symmetric function, hence is invariant
to the ordering of the points in the point cloud.

3.3.4. Feature aggregation

The attention-aware feature x̂′
i, extracted as in

Eq. (13) from the GAPLayer, and the correspond-
ing local signature feature Yi (Eq. (14)) originated
from our attention pooling layer are aggregated by
relying on a concatenation operation as shown in
Eq. (15) to generate a contextual local feature. Fi-
nally, the classification function C in Eq. (2) and
the segmentation function Si in Eq. (3) can be easily
applied on li in the further fully-connected layers
neural network.

li = [h(x̂′
i),Yi] (15)

where h(.) indicates a MLP neural network.

3.3.5. Spatial transform network290

Inspired by the PointNet [12] architecture, we
also design a mini attention-aware spatial transfor-
mation network applied to the 3D coordinates of
the input points to address the transformation in-
variance problem. To this aim, we use a single head295

GAPLayer module to learn an affine transformation
matrix for the prediction of geometric transforma-
tions (e.g. rotations and translations). The detailed
architecture of the attention-aware spatial transform
network is shown in Fig. 3.300

6



N
 x

 3

in
p
u
t 
p
o
in

t 
c
lo

u
d

spatial 
transform N

 x
 3 GAPLayer

{4,16}

N
 x

6
7

N
 x

 k
 x

 6
4

..
.

shared

MLP
{64,64,64,128}

N
 x

 1
2
8

attention 
pooling

N
 x

 6
4

concat

MLP
{1024}

N
 x

 1
0
2
4

1
0
2
4

max 
pooling

..
.

shared

c

MLP
{512,256,c}

global feature classification 
scores

N
 x

 3

in
p
u
t 
p
o
in

t 
c
lo

u
d

spatial 
transform

N
 x

 3

N
 x

 6
7

..
.

shared

MLP
{64,64,128}

N
 x

 1
2
8

GAPLayer
{4,128}

N
 x

 5
1
2

..
.

shared

MLP
{128,128,512}

N
 x

 5
1
2

concat

MLP
{1024}

N
 x

 1
0
2
4

1
0
2
4

max 
poolingreplication

..
.

shared N
 x

 1
0
2
4

MLP
{256,256,128,s}

N
 x

 s

N
 x

 3

in
p
u
t 
p
o
in

t 
c
lo

u
d

Spatial Transform

N
 x

 3

GAPLayer
{4,16}

matrix 
multiplication

GAPLayer
{4,16}

3x3transform

segmentation scores

attention 
pooling

Classification

Segmentation

Figure 3: GAPointNet architecture: The architecture contains two parts: classification (top branch) and semantic part
segmentation (bottom branch). The classification model takes N points as input and applies one GAPLayer to obtain the
multi-attention features and the multi-graph features followed by shared MLP layers and an attention pooling layer respectively.
Finally, a shared fully-connected layer is used to form a global feature that is used to obtain the classification scores for c

categories. The semantic segmentation model (bottom branch) extends the classification model by a second GAPLayer with
MLP layers to obtain a certain part category for each point from s semantic labels. The two red arrows represent the attention
pooling operation from the corresponding GAPLayers used to generate a local signature that is concatenated to the intermediate
layer for the global feature generation. Besides, GAPLayer{4,16} denotes a GAPLayer with 4 heads and 16 channels of encoding
feature. Spatial Transform: The spatial transform network is used to make point cloud invariant to certain transformations.
The model learns a 3 × 3 matrix for affine transformation from a single-head GAPLayer with 16 channels.

3.4. GAPointNet architecture

Our GAPointNet model shown in Fig. 3 considers
both shape classification and semantic part segmen-
tation for point cloud. The backbone architecture is
similar to PointNet [12]. However, there are three305

main differences between the two architectures:

1. an attention-aware spatial transform network
to make the point cloud invariant to certain
transformations is used;

2. local features are exploited by a GAPLayer310

before the stacked MLP layers instead of only
processing individual points as in PointNet ;

3. an attention pooling layer is used to obtain the
local signature that is connected to the inter-
mediate layer for capturing a global descriptor.315

Classification structure. The classification model
is presented in Fig. 3 top branch. As previously
mentioned, in order to make the input points in-
variant to some geometric transformations, such as
scale, rotation or translation, we firstly apply the320

attention-aware spatial transformer network to align
the point cloud to a canonical space. The spatial
transformer employs a single-head GAPLayer with
16 channels to capture attention features, followed
by three shared MLP layers (64, 128, 1024) to out-325

put neurons with sizes 64, 128, 1024 respectively,
then a max pooling operation and two full-connected
layers (512, 256) are used to finally generate a trans-
formation matrix.

A multi-head GAPLayer is then applied to gener-330

ate multi-attention features with M × F ′ channels,

7



where the number of heads is set as M = 4, and the
number of encoding channels is set as F ′ = 16. Our
multi-attention features aggregate the coordinate
features to obtain a contextual attention feature335

with the number of channels 3 +M × F ′, which is
then used to extract fine-grained features by four
shared MLP layers (64, 64, 64, 128). The skip-
connection method is employed to connect the local
signature and these intermediate layers, followed340

by a shared fully-connected layer (1024) and a max
pooling operation over the feature channels to ob-
tain a global feature for the entire point cloud. We
finally apply three shared MLP layers (512, 256, 40)
and the dropout operation with a keep probability345

of 0.5 to map the global feature to 40 categories.
Besides, the activation function ReLU with batch
normalization is used in each layer, and the number
of neighbours k is set to 20.

Segmentation structure. Our segmentation model,350

as shown in Fig. 3 (bottom branch), aims to predict
a part category label for each point in the point
cloud. The same spatial transformer network and
GAPLayer as described in Section 4.1 are applied,
followed by shared MLP layers (64, 64, 128). Then355

the second GAPLayer with 4 heads and 128 encod-
ing channels is applied, followed by shared MLP
layers (128, 128, 512) to obtain representations with
512 channels, which are concatenated with the local
signature generated from corresponding attention360

pooling layer of GAPLayer. The aggregated feature
is input to a shared full-connected layer (1024) and
a max pooling operation is carried out to obtain a
global feature. This is then duplicated 2048 times
and finally applied to four shared full-connected lay-365

ers (256,256,128,50) with a dropout probability 0.6
to transform the global feature to 50 part categories.

3.5. Comparison to existing models

We further theoretically compare our model to
other state-of-the-art methods. As we know that a370

local feature is helpful to fully represent the geomet-
rical information for the local region. As a result,
the performance heavily depends on how to effi-
ciently extract the local feature. We define the local
feature function with respect to the central point xi375

as h(xi,xij, θ), where h(.) is a non-linear function,
xi, xij are a certain central point and corresponding
neighbouring point respectively. θ denotes a set of
learnable parameters in the non-linear function.
Then we discuss that PointNet [12] has no local380

feature extraction, then the local feature function is

h(xi,xij, θ) = h(xi, θ). PointNet++ [13] considers
the local feature by concatenating each central point
xi and corresponding neighbouring point xij. As
a result, the local feature function in PointNet++385

is h(xi,xij, θ) = h(xi,xij, θ). The results also show
that the performance is improved significantly when
the local feature is involved. DGCNN [14] intro-
duces an edge feature and the local feature func-
tion is defined as h(xi,xij, θ) = h(xi,xi − xij, θ).390

Compare to these methods, the local feature
function used by our model is h(xi,xij, θ) =
h(θm · xi, θn · (xi − xij), θp · (xi − xij)), where θm
and θn are learnable attention-aware parameters
for our self-attention and local-attention modules re-395

spectively. θp indicates a set of learnable edge-aware
parameters. It shows that our model aggregates the
self-attention feature, the local-attention feature and
the edge feature, which can better exploit the local
feature.400

4. Experiments

In this section, we evaluate our GAPointNet
model for both classification and segmentation of
3D point cloud data, and then we compare its per-
formance with respect to several state-of-the-art405

methods. Furthermore, we perform an ablation
study to investigate different design variations and
hyper-parameter settings.

4.1. Classification

Dataset. The effectiveness of our classification410

model is firstly demonstrated on the ModelNet40
benchmark [36] for shape classification. The Model-
Net40 dataset contains 12,311 meshed CAD models
that are classified to 40 man-made categories. We
separated the dataset into 9,843 models for training415

and 2,468 models for testing. Then we normalize
the models in the unit sphere and uniformly sample
1,024 points over the model surface. Furthermore,
we augmented the training dataset by randomly
rotating, scaling the point cloud and jittering the420

location of every point by means of Gaussian noise
with zero mean and 0.01 standard deviation for all
models.

Training details. We used Adam [37] as an opti-
mization algorithm, with momentum set to 0.9. The425

batch size was set to 32 and the learning rate started
from 0.005 and was then divided by 2 every 20
epochs down to 0.00001. The decay rate for batch

8



normalization was initially set to 0.7 and gradually
increased to 0.99. Our model has been trained on an430

NVIDIA GTX1080Ti GPU and TensorFlow v1.6.

Results. It is possible to compare our results and
complexity with several state-of-the-art works (see
Table 1), and our model achieves competitive perfor-
mance on the ModelNet40 benchmark. The metrics435

used for comparison of the accuracy performance
are: mean per-class accuracy (mA %) and overall
accuracy (OA %). Further to this, we estimated
the model complexity by measuring: the number
of parameters (Million), the floating point opera-440

tions (FLOPs) (Billion), and the forward propaga-
tion time. We also evaluated and listed in Table 1
the same metrics for all the available models in the
same experimental environment. It shows that our
model achieves a very competitive trade-off between445

accuracy and complexity.
It is also worth to mention that our model sig-

nificantly improves PointNet [12] and PointNet++

[13] by 3.8% and 2.3% accuracy, respectively. With
respect to GAPointNet, PointNet [12] yields a graph450

without any local information, and PointNet++ [13]
downsamples the number of points and then applies
Multi-Layer-Perceptron (MLP) on features of the
neighbouring points for each central point but with-
out using the edge features. Our model has been455

compared also with DGCNN [14] and outperforms it
by 0.1% accuracy with approximately half of its com-
putational cost. It is easy to observe that DGCNN

[14] uses the sample max pooling operation as the
local region aggregation method, which convincingly460

verifies that our attention-aware aggregation opera-
tion performs better than the max pooling in terms
of accuracy and efficiency.

Discussion. The good performance of our model
arises from a contribution of different factors.465

Firstly, the GAPLayer is efficient in highlighting
the different importance of neighbouring points.
Specifically, we use a better attention-aware local
feature function (see Section 3.5) to represent a
high-level relation expression for the local region470

of the point clouds. Besides, compared to the max
pooling operation, the aggregation of features from
neighbouring points with their learnable attention
coefficients better exploits the local geometric cor-
relations between each central point and its corre-475

sponding neighbourhood. In fact, the max pooling
operation only extracts the most relevant feature
from the neighbourhood. On the other hand, an

Table 1: Classification results on the ModelNet40 dataset.
mA, OA and FLOPs are mean per-class accuracy, overall
accuracy and floating point operations, respectively.

mA
(%)

OA
(%)

params FLOPs time

VoxNet [9] 83.0 85.9 - - -
PointNet [12] 86.0 89.2 3.48M 957M 14.7ms
PointNet++
[13]

- 90.7 1.99M 3136M 32.0ms

KC-Net [15] - 91.0 - - -
SpecGCN
[38]

- 91.5 2.05M 1112M 11254ms

KD-Net [21] - 91.8 - - -
PCCN [39] - 92.3 8.1M - 80ms
PointCNN
[26]

88.8 92.5 0.6M 1681M 12.0ms

A-CNN [28] 90.3 92.6 - - -
DGCNN [14] 90.2 92.9 1.84M 2768M 52.0ms
OURS 90.3 93.0 1.91M 1228M 26.0ms
RS-CNN [27] - 93.6 - - -

attention-weighted sum of neighbourhood takes all
the local region features into account. Secondly,480

the multi-head mechanism is beneficial to capturing
useful information with greater width, as each head
is likely to contribute to learning different kinds of
features, such as geometric shape information or
intrinsic features. Thirdly, our attention pooling485

layer captures local signatures from the neighbour-
hood, which is also the important feature extracted
from all the neighbouring points for each central
point. Then the attention-aware feature and the
important feature are aggregated to efficiently boost490

the performance. As a result, our deep-wide and
attention-aware model is efficient in extracting fine-
grained local representations for point cloud data.
On the other hand, our model just adopts one

multi-head GAPLayer module to PointNet [12]495

pipeline but remarkably improves the accuracy and
reduces the model complexity, which shows the ef-
fectiveness of our attention structure and also the
great feasibility for real-time applications.

Ablation study. We also tested our classification500

model with different hyper-parameters settings on
the ModelNet40 benchmark [36]. As can be seen
in Table 2, we carried out a comprehensive abla-
tion study by involving four factors: points num-
ber, spatial transformer, number of neighbours, and505

grouping method and their influence on the mean
accuracy. The model complexity was also evaluated
resorting to the number of parameters, FLOPs, and
forward time.
Specifically, our attention-aware spatial trans-510

9



Table 2: Ablation study for more hyper-parameters.

model points spatial transformer neighbours grouping
Params

(Million)
FLOPs
(Billion)

Time
(MS)

Accuracy
(%)

A 1k attention-aware 20 knn 1.91 1.23 27 93.0
B 1k local-aware [14] 20 knn 1.89 1.55 30 92.9
C 1k - 20 knn 1.09 0.89 17 91.8
D 2k attention-aware 20 knn 1.91 2.44 57 93.2
E 1k attention-aware 10 knn 1.91 1.22 23 92.0
F 1k attention-aware 40 knn 1.91 1.26 38 92.5
G 1k attention-aware 20 ball query (r=0.1) 1.91 1.22 24 92.0

Table 3: Effectiveness of GAPLayer and attention pooling.

model GAPLayer
Attention
Pooling

OA (%) time

H × × 89.2 14.7ms
I X × 92.6 24.0ms
J × X 92.4 18.9ms
K X X 93.0 26.0ms

Table 4: Effectiveness of different numbers of heads and
encoding channels.

model Heads
Encoding

Channels F ′
OA (%) time

L 1 8 91.6 20.2ms
M 4 8 92.2 24.1ms
N 4 16 93.0 26.0ms
O 8 16 93.0 36.1ms
P 16 16 91.8 51.8ms
Q 4 32 92.9 30.9ms
R 8 32 92.5 41.3ms
S 16 32 91.1 61.3ms

former (model A) is slightly better than the local-
aware method [14] (model B) and significantly better
than model C, having no-spatial transformation at
all. We discuss that the spatial transformer is capa-
ble of boosting the performance. Besides, benefiting515

from the advantages of the GAPLayer, the attention-
aware spatial transformer could better canonicalize
the point clouds before we process GAPointNet. For
what concerns the number of the points, model D
shows that when the number of points becomes520

much larger, the accuracy only slightly improves,
but other performance metric significantly degen-
erated. We also note that too many points of the
point clouds are likely to lead to over-fitting, which
is harmful to the neural networks. Furthermore,525

setting an inappropriate number of neighbouring
points (model E and model F) greatly deteriorates
the performance of the model. In fact, the number
of neighbouring points is equivalent to the recep-

tive field of the network, and the model is unlikely530

to capture sufficient useful local features from a
small receptive field (i.e. 10 points in our study).
In contrast, using a large receptive field makes for
the model more difficult to learn useful information.
Hence, this hyper-parameter show some potential535

for fine-tuning operations. We also compare differ-
ent grouping methods, specifically the k-nn method
(model A) and the ball query method (model G).
We discuss the reason that k-nn grouping method is
more efficient when the layout of point clouds can be540

more or less treated as uniform distribution. How-
ever, when the dataset is extremely non-uniform,
we believe that the ball query method is a better
choice.

Furthermore, the effectiveness of our GAPLayer545

and attention pooling layer have been evaluated
in Table 3 in terms of accuracy and forward-
propagation time. Our GAPLayer module and at-
tention pooling layer show a considerable increase
in accuracy: the 3.4% and 3.2% respectively. The550

application of both components leads to a total
accuracy improvement of 3.8%. It is worth high-
lighting that, when both components are removed,
our model becomes PointNet, which leads to 89.2%
accuracy. We discuss that the main advantage of555

the GAPLayer is that it could better represent the
relative geometric relation expression between each
center point and all its neighbouring points. On the
other hand, the attention pooling layer is capable
of capturing the most important feature in the lo-560

cal region. As a result, we combine both of them
together to fully exploit the local features for each
center point and boost the overall performance.

For what concerns the impact of the different
numbers of heads M and encoding channels F ′, the565

results are presented in Table 4. It shows that an
appropriate number of heads and channels is bene-
ficial to local feature extraction, however the accu-
racy drops significantly and the computation cost

10



Table 5: Semantic part segmentation results on ShapeNet part dataset.

avg air. bag cap car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska. tab.

Kd-Net [21] 82.3 82.3 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
Kc-Net [15] 83.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
PointNet [12] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
3DmFV [40] 84.3 82.0 84.3 86.0 76.9 89.9 73.9 90.8 85.7 82.6 95.2 66.0 94.0 82.6 51.5 73.5 81.8
RSNet [41] 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
PointNet++ [13] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [14] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
SGPN [42] 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

OURS 84.9 84.0 86.2 88.8 78.3 90.7 70.4 91.3 87.3 82.8 96.0 68.7 95.1 82.0 63.0 74.8 81.4

increases remarkably when the number becomes570

too large. For example, model S with 16 heads
and 32 encoding channels achieves the worst per-
formance in both accuracy and forward time. It is
assumed that model S is learning too much infor-
mation and leads quickly to over-fitting. We also575

discuss that too many heads tend to aggregate a
very high-dimensional but low-level feature, making
the overall model performance even worse. That
is why a higher dimension of features is normally
used to represent higher-level of abstraction in the580

deeper layers of a model. In contrast, smaller num-
bers (model L with 1 head and 8 encoding channels)
lead to the fact that the model is unlikely to extract
sufficient useful information.
We investigated the robustness and stability on585

variant attention components (see Table 3) by ran-
domly reducing the number of points, and as illus-
trated in Fig. 4, it is possible to observe that the
sparser the points, the worse the performance. Our
classification model is still considerably stable and590

robust even when the number of points is halved.
However, the performance degenerates dramatically
when the number of points are reduced to less than
256.

The efficiency of the non-linear activation func-595

tion when merging the local-coefficients and the
self-coefficients using a sum operation has also been
studied. When the non-linear activation function
leaky ReLU was removed, the performance dropped
from 93.0% to 92.7%.600

4.2. Semantic segmentation

The segmentation model is evaluated on standard
datasets such as the ShapeNet part [43], the Stan-
ford Large-Scale 3D Indoor Spaces Dataset (S3DIS)
[44], and, in order to test realistic application sce-605

narios, the KITTI object detection benchmark [20]
dataset that includes more than 100K points in a

128 256 512 1024
Number of points

20

30

40

50

60

70

80

90

Ov
er
al
l A

cc
ur
ac
y(

%
)

model H
model I
model J
model K

Figure 4: Random point dropout in point cloud.

single frame. Hereinafter, a short description of the
used dataset is presented.

ShapeNet part dataset. The dataset consists of 16881610

CAD shapes of 16 categories and each point from
a model is annotated with one of 50 part classes.
Besides, each shape model is labelled with several
but less than 6 parts. We follow the same sampling
strategy as described in Section 4.1 to sample 2048615

points uniformly, and split dataset into 14007 mod-
els for training and 2874 models for testing in our
experiment. The task is to classify the part category
for each point from a mesh model.

S3DIS dataset. S3DIS is a large-scale point cloud620

dataset that contains 3D geometric shape informa-
tion (XYZ) and color feature (RGB). It is collected
from 271 rooms in 6 areas using a Matterport scan-
ner. All the rooms are sliced into blocks of 1 meter
by 1 meter. We sampled 4096 points from every625

individual block and converted the feature to 9D-
dimensions (XYZ, RGB, and normalized spatial

11



coordinate). Our model was tested on area 5, whilst
all other areas are used for training.

KITTI dataset. KITTI Object Detection Bench-630

mark [20] is a real traffic scene dataset collected by
a Velodyne HDL-64E Laserscanner, and each frame
contains more than 100000 points. This poses a seri-
ous challenge to our model, as it cannot be applied
directly on all points. Therefore, we firstly filtered635

out the points outside the image view and then the
rest of the points are selected by random sampling
of 11469 points within 40 meters and 4915 points
for the rest. Hence, with this strategy we effectively
downsampled the point cloud from around 100000640

to 16384 points. The KITTI dataset was then split
into 7481 frames for training and 191 frames for
testing.

(a) Visualization (b) Comparison

Figure 5: Visualization of semantic part segmentation results.
Figure (a) visualizes some samples: chair (top), lamp (mid-
dle), and airplane (bottom). While Figure (b) visualizes the
difference between ground truth (left) and prediction (right).

(a) RGB points (b) Ground Truth (c) Prediction

Figure 6: Example visualization of semantic segmentation on
S3DIS dataset.

Training details. The training settings were very
much similar to the settings used for the classifica-645

tion task, except for the batch size that was set to 8,
the number of neighbours k is set to 30, and that we
distributed the task to two NVIDIA TESLA V100
GPUs.

Results. We use the mean Intersection over Union650

(mIoU) [12] as our evaluation scheme to align the
evaluation metrics. The IoU of each shape is calcu-
lated by averaging IoUs for all parts that fall into
the same category, and then the mIoU is the mean
IoUs for all shapes from testing dataset.655

We can observe Table 5 that our model achieves
competitive results on the ShapeNet part dataset
[43]. In fact, GAPointNet and DGCNN [14] win
most of categories for part segmentation. Point-

Net++ has no best categories, although the average660

accuracy slightly outperforms than our model. We
also notice that SGPN [42] achieves the best perfor-
mance due to the fact that it takes the advantages
from the instance segmentation task, which employs
additional losses (e.g. losses for similarity matrix665

and confidence) to precisely distinguish different in-
stances with the same category. As a result, it also
boosts the performance for the semantic segmenta-
tion task. In addition to some shape examples from
our results that are represented in Fig. 5(a)), we also670

visualize the difference between the ground-truth
and our prediction results, and highlight some of the
errors (red circle) as shown in Fig. 5(b), where the
left shapes are the ground truth and right shapes
show the prediction of our model.675

Finally, we present the results of our model when
applied on the KITTI and S3DIS dataset in Table 6
and Table 7 respectively. As shown in Table 7, our
segmentation model performs better overall accuracy
than DGCNN [14], and SPGraph [47] achieves the680

best performance. In fact, SPGraph organizes the
point clouds into different object parts (e.g. legs and
surface for the table). As a result, it becomes much
easier to identify these relative bigger parts, rather
than classifying individual points. We visualise the685

prediction and compare our results with the ground
truth for S3DIS dataset in Fig. 6. Hence, our model
shows promising effectiveness on large scale and
real world point clouds. Finally, our model achieves
the best performance over the KITTI dataset, out-690

matching any other available model, which shows its
great potential for industrialization in the context
of autonomous driving applications.

12



Table 6: Segmentation results on KITTI.

model mIoU accuracy vehicle bicyclist pedestrian background

PointNet [12] 38.1% 92% 76.7% 2.9% 6.6% 89.8%
PCCN [45] 58.1% 95.5% 91.8% 40.2% 47.7% 89.3%

OURS 74.8% 98.9% 85.3% 51.7% 63.2% 98.8%

Table 7: Segmentation results on S3DIS Area 5.

model mIoU overall accuracy

SegCloud [46] 48.9% -
PointNet [12] 47.6% 78.5%
DGCNN [14] 56.1% 84.1%

OURS 51.2% 85.0%
SPGraph [47] 58.0% 86.4%

5. Conclusions

In this paper, we proposed a graph attention based695

point neural network, named GAPointNet, which is
able to learn shape representations for point cloud
data. Typically, solely the max pooling operation
is used to capture the local feature for each central
point in the point cloud. Conversely, we leveraged700

graph attention with a multi-head mechanism to
capture attention-aware local features, and after
aggregating with local signature features captured
from our attention pooling layer, we finally obtained
a contextual and fine-grained local feature for each705

point in the point cloud. Experiments show, for GA-
PointNet, a state-of-the-art performance for both
the shape classification and semantic segmentation
tasks on various datasets. In particular, GAPoint-
Net shows a remarkable 98.9% accuracy on the seg-710

mentation task of the KITTI dataset, which shows
great potential for real-time applications, such as
autonomous driving. The success of our model also
verifies the fact that graph attention network shows
efficiency not only in the similarity computation715

for graph nodes, but also for geometric relationship
understanding.

In the future, we plan to explore several research
avenues. In fact, some applications, such as au-
tonomous vehicle, normally need to process very720

large-scale point cloud data. As a result, how to
efficiently and robustly deal with large-scale data,
without the need of initial downsampling, would be
a promising work. Furthermore, it would be inter-
esting to develop an efficient CNN -like operation725

for unstructured data analysis.

References

[1] Y. Zhou, O. Tuzel, Voxelnet: End-to-end learning for
point cloud based 3d object detection, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern730

Recognition, 2018, pp. 4490–4499.
[2] C. R. Qi, W. Liu, C. Wu, H. Su, L. J. Guibas, Frustum

pointnets for 3d object detection from rgb-d data, in:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 918–927.735

[3] J. Ku, M. Mozifian, J. Lee, A. Harakeh, S. L. Waslander,
Joint 3d proposal generation and object detection from
view aggregation, in: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 1–8.740

[4] Z. Liu, H. Chen, H. Di, Y. Tao, J. Gong, G. Xiong, J. Qi,
Real-time 6d lidar slam in large scale natural terrains
for ugv, in: 2018 IEEE Intelligent Vehicles Symposium
(IV), IEEE, 2018, pp. 662–667.

[5] J. Biswas, M. Veloso, Depth camera based indoor mobile745

robot localization and navigation, in: Robotics and Au-
tomation (ICRA), 2012 IEEE International Conference
on, IEEE, 2012, pp. 1697–1702.

[6] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta,
L. Fei-Fei, A. Farhadi, Target-driven visual navigation750

in indoor scenes using deep reinforcement learning, in:
Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on, IEEE, 2017, pp. 3357–3364.

[7] A. Golovinskiy, V. G. Kim, T. Funkhouser, Shape-based
recognition of 3d point clouds in urban environments,755

in: Computer Vision, 2009 IEEE 12th International
Conference on, IEEE, 2009, pp. 2154–2161.

[8] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature
521 (7553) (2015) 436–444.

[9] D. Maturana, S. Scherer, Voxnet: A 3d convolutional760

neural network for real-time object recognition, in:
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2015, pp. 922–928.

[10] D. Z. Wang, I. Posner, Voting for voting in online point
cloud object detection., in: Robotics: Science and Sys-765

tems, Vol. 1, 2015, pp. 10–15607.
[11] G. Riegler, A. Osman Ulusoy, A. Geiger, Octnet: Learn-

ing deep 3d representations at high resolutions, in: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 3577–3586.770

[12] C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep
learning on point sets for 3d classification and segmen-
tation, Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE 1 (2) (2017) 4.

[13] C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep775

hierarchical feature learning on point sets in a metric

13



space, in: Advances in Neural Information Processing
Systems, 2017, pp. 5099–5108.

[14] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein,
J. M. Solomon, Dynamic graph cnn for learning on point780

clouds, arXiv preprint arXiv:1801.07829.
[15] Y. Shen, C. Feng, Y. Yang, D. Tian, Mining point cloud

local structures by kernel correlation and graph pooling,
in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 4548–4557.785

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez,  L. Kaiser, I. Polosukhin, Atten-
tion is all you need, in: Advances in neural information
processing systems, 2017, pp. 5998–6008.

[17] D. Bahdanau, K. Cho, Y. Bengio, Neural machine trans-790

lation by jointly learning to align and translate, arXiv
preprint arXiv:1409.0473.

[18] V. Mnih, N. Heess, A. Graves, et al., Recurrent models
of visual attention, in: Advances in neural information
processing systems, 2014, pp. 2204–2212.795

[19] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, Y. Bengio, Graph attention networks, arXiv
preprint arXiv:1710.10903.

[20] A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets
robotics: The kitti dataset, The International Journal800

of Robotics Research 32 (11) (2013) 1231–1237.
[21] R. Klokov, V. Lempitsky, Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models,
in: Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 863–872.805

[22] J. L. Bentley, Multidimensional binary search trees used
for associative searching, Communications of the ACM
18 (9) (1975) 509–517.

[23] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, L. J.
Guibas, Volumetric and multi-view cnns for object clas-810

sification on 3d data, in: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016,
pp. 5648–5656.

[24] C. Wang, M. Pelillo, K. Siddiqi, Dominant set cluster-
ing and pooling for multi-view 3d object recognition,815

in: Proceedings of British Machine Vision Conference
(BMVC), Vol. 12, 2017.

[25] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Van-
dergheynst, Geometric deep learning: going beyond
euclidean data, IEEE Signal Processing Magazine 34 (4)820

(2017) 18–42.
[26] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, B. Chen, Pointcnn:

Convolution on x-transformed points, in: Advances in
Neural Information Processing Systems, 2018, pp. 828–
838.825

[27] Y. Liu, B. Fan, S. Xiang, C. Pan, Relation-shape con-
volutional neural network for point cloud analysis, in:
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2019, pp. 8895–8904.

[28] A. Komarichev, Z. Zhong, J. Hua, A-cnn: Annularly830

convolutional neural networks on point clouds, in: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 7421–7430.

[29] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral
networks and locally connected networks on graphs,835

arXiv preprint arXiv:1312.6203.
[30] M. Defferrard, X. Bresson, P. Vandergheynst, Convo-

lutional neural networks on graphs with fast localized
spectral filtering, in: Advances in neural information
processing systems, 2016, pp. 3844–3852.840

[31] Y. Zhang, M. Rabbat, A graph-cnn for 3d point cloud

classification, in: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2018, pp. 6279–6283.

[32] Y. Zhang, M. Rabbat, A graph-cnn for 3d point cloud845

classification, in: International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Calgary,
Canada, 2018.

[33] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda,
M. M. Bronstein, Geometric deep learning on graphs and850

manifolds using mixture model cnns, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5115–5124.

[34] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, M. Sun, Graph neural networks: A review of meth-855

ods and applications, arXiv preprint arXiv:1812.08434.
[35] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation

of rectified activations in convolutional network, arXiv
preprint arXiv:1505.00853.

[36] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,860

J. Xiao, 3d shapenets: A deep representation for volu-
metric shapes, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp.
1912–1920.

[37] D. P. Kingma, J. Ba, Adam: A method for stochastic865

optimization, arXiv preprint arXiv:1412.6980.
[38] C. Wang, B. Samari, K. Siddiqi, Local spectral graph

convolution for point set feature learning, in: Proceed-
ings of the European Conference on Computer Vision
(ECCV), 2018, pp. 52–66.870

[39] M. Atzmon, H. Maron, Y. Lipman, Point convolutional
neural networks by extension operators, arXiv preprint
arXiv:1803.10091.

[40] Y. Ben-Shabat, M. Lindenbaum, A. Fischer, 3d point
cloud classification and segmentation using 3d modi-875

fied fisher vector representation for convolutional neural
networks, arXiv preprint arXiv:1711.08241.

[41] Q. Huang, W. Wang, U. Neumann, Recurrent slice net-
works for 3d segmentation of point clouds, in: Proceed-
ings of the IEEE Conference on Computer Vision and880

Pattern Recognition, 2018, pp. 2626–2635.
[42] W. Wang, R. Yu, Q. Huang, U. Neumann, Sgpn: Simi-

larity group proposal network for 3d point cloud instance
segmentation, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp.885

2569–2578.
[43] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su,

C. Lu, Q. Huang, A. Sheffer, L. Guibas, et al., A scalable
active framework for region annotation in 3d shape col-
lections, ACM Transactions on Graphics (TOG) 35 (6)890

(2016) 210.
[44] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,

M. Fischer, S. Savarese, 3d semantic parsing of large-
scale indoor spaces, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,895

2016, pp. 1534–1543.
[45] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, R. Urta-

sun, Deep parametric continuous convolutional neural
networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp.900

2589–2597.
[46] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, S. Savarese,

Segcloud: Semantic segmentation of 3d point clouds,
in: 2017 International Conference on 3D Vision (3DV),
IEEE, 2017, pp. 537–547.905

[47] L. Landrieu, M. Simonovsky, Large-scale point cloud

14



semantic segmentation with superpoint graphs, in: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4558–4567.

15



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2021-01-26

GAPointNet: Graph attention based

point neural network for exploiting local

feature of point cloud

Chen, Can

Elsevier

Chen C, Zanotti Fragonara L, Tsourdos A. (2021) GAPointNet: Graph attention based point

neural network for exploiting local feature of point cloud. Neurocomputing, Volume 438, May

2021, pp.122-132

https://doi.org/10.1016/j.neucom.2021.01.095

Downloaded from Cranfield Library Services E-Repository


