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Abstract

State-of-the-art deep neural networks (DNNs) typically consist of several layers of features repre-
sentations, and especially rely on skip connections to avoid the difficulty of model optimization.
Despite the proliferation of different DNN models that employ various forms of skip connections
to achieve remarkable results on benchmarking datasets, a concrete explanation for the successful
operation and improved generalization capability of these DNNs is surprisingly still lacking. In
this paper, we focus on investigating the role of skip connections for training very deep DNNs. Our
exposition directly provides interesting insights and new interpretations to the following important
questions (i) why model optimization is easier (ii) why model generalization is better. Theoret-
ical results reveal that skip connections allow DNNs to circumnavigate the singularity of latent
representations that translate to optimization and generalization problems, which plague models
without skip connections referred to as PlainNets. For substantiating our analysis, our investiga-
tion puts into context some of the most successful skip-connection based DNNs, which include
residual networks (ResNets) and residual network with aggregated features (ResNeXt) in relation
to PlainNets. Experimental evaluations of these models support the theoretical analysis.
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1. Introduction

EEP neural networks (DNNs) have become an indispensable tool for numerous learning tasks.
Unprecedented applications and results on different difficult computer vision tasks have

been reported using DNNs with several layers of features representations [1} 2, [3]. Lately, the
computer vision community has started to theoretically investigate many techniques employed for
various tasks; examples include DNN capacity [4], batch normalization [S)] and variational auto
encoders [[6]. It is not enough to just construct ‘model A’ that outperforms ‘model B’, without a
concrete explanation of why it is so. A fascinating empirical observation in recent times is the
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positive correlation between the depth of DNNs and their generalization performance [7, 8)]. In
the past, DNN models mostly employed 2 to 4 hidden layers [9,10], and did not use skip connec-
tions, hence referred to as PlainNets. However, there has been consistent increase in the number
of model layers over time, e.g., Network-in-Network (NiN) [L1] with 5 layers, AlexNet [12] with
8 layers, VGG-13 [13]], and VGG-16 [13] and VGG-19 [13] with 13, 16 and 19 layers, respec-
tively. Concurrently, there are theoretical works that study the benefit of model depth for learning
complex target functions [[14} 15, [16]].

It is known that extending PlainNets’ depths beyond some certain number of layers results in
optimization problems; that is, the training set cannot be successfully learned [17, [18]]. Subse-
quently, the difficulties of training such DNNs are alleviated by using skip connections of identity
mappings [17, [19]; the works [17, [19] referred to the proposed DNN with skip connections as a
residual network (ResNet).

Following the success of ResNets, the use of very complicated forms of skip connections can be
seen in DNNs such as FractalNet [20], ResNeXt [21]], PolyNet [22], DenseNet [23] and Inception-
ResNet [24]] where the summation or concatenation (or both) of previous layer representations with
the current one is employed. In this paper, we theoretically and experimentally investigate the role
of skip connections for training very deep DNNs. Specifically, we provide new interpretations to
the role of skip connections in: 1)simplifying model optimizations, and 2)in improving model gen-
eralization. However, for the sake of theoretical analysis, we focus in this paper on DNNs that use
skip connections of identity mappings and the summation of previous layers’ representations with
the current layer. Particularly, we consider two popular and very successful models, ResNet [[17/]]
and residual network with aggregated features (ResNeXt) [21]. Our contributions in this paper are
as follows:

1. Theoretical analyses of the optimization characteristics of very deep DNNs with skip con-
nections is provided where:

* Training problems beyond saturating activation functions are identified using the power
iteration method [25]].

* Generalization capabilities are explained based on the stability of learned parameters
(i.e. solutions) for small changes in input or latent data.

2. Extensive experiments are performed to validate the theoretical analysis results using bench-
marking datasets which include, MNIST, CIFAR-10, CIFAR-100 and ImageNet.

The remainder of this paper is organized as follows. In Section 2, we give an overview of
the related work. The preliminaries on DNN with skip connections are provided in Section 3.
In Section 4, the proposed theoretical analysis of the role of skip connections for different DNN
models is presented. We further discuss the impact of skip connections on generalization in Section
5. Afterwards, the experiments and discussions are given in Section 6. Section 7 summarizes the
paper as conclusion.



2. Related work

Several works have reported improved results on various tasks using DNNs that are deeper than
previous state-of-the-art DNNs [26, 27, 28]]. Furthermore, skip connections employed in top-
down modulation framework was shown to improve the task of object detection in the work [29].
Consequently, emerging works naturally gravitate towards learning deeper DNNs, especially on
hard tasks [30]. However, optimizing PlainNets beyond a certain depth is usually not success-
ful [I17,118]]. The work [31]] noted that initialization schemes [32, 33]] and batch normalization [34]]
do not resolve optimization problems beyond some certain model depth.

It has been shown that the optimization problems encountered in PlainNets can be circumvented
by using skip connections [17, 18]. Some popular DNNs that have been successfully trained us-
ing this approach include ResNet [17], ResNeXt [21], highway network (HwNet) [18], densely
connected network (DenseNet) [23]], resnet of resnet (RoR) [35], dual path network (DPN) [36],
PolyNet [22] and Inception-ResNet [24]. Although, the aforementioned models are very suc-
cessful for learning different tasks, their operation has remained considerably elusive. Namely,
theoretical explanations for how DNNs with skip connections manage to avoid optimization prob-
lems, and on top of that, generalize even better than PlainNets are still unclear.

In [37]], optimization problems associated with gradients shattering are studied. Using carefully
crafted experiments and auto correlation function values, it is observed that the gradients of shal-
low PlainNets are assimilated to brown noise. For deep PlainNets, the gradients are noted to be
disorderly and resemble white noise. Interestingly, the gradients of ResNets are found to be well-
behaved; Resnet gradients are considerably resistant; their structure is between white and brown
noise. They posited that optimizing DNNs with gradients that resemble white noise is difficult;
the closer gradients are to white noise, the more difficult optimization becomes.

In [38]], it is observed that ResNets act like ensemble of shallow neural networks models; that
is, their true depths are lesser than their architectural depth. In order to reveal this fascinating
attribute of ResNets, the work in [38] provided and explored an unrolled view of ResNets. The
work [38]] further posited that paths through ResNets vary in length, and have small dependence
on one another. It is concluded that ResNets avoid optimization problems by leveraging shorter
paths in the models. In [39]], an unrolled iterative estimation concept of features at different stages
was proposed. The work argues that a collection of layers iteratively refines the approximations
of similar features rather than computing wholely new features. New features are computed at
other stages. Furthermore, the work in [40], using information bottleneck theory, related the en-
coding length of hidden layer representations to the regularization characteristics of DNNs. Our
work differs from the aforementioned related works [37, 38 39] in the approach of investigation
and interpretations of model operation. In addition, [37] provides no explanation for improved
generalization observed in the ResNet.

3. Background and preliminaries

3.1. Background: importance of studying linear models

For the ease of formalization, the linear activation function is assumed in this paper, as it is typical
in the literature [41} 42, 43] 44} 45]]. This is a very common assumption amongst other simplifica-
tions that make DNNs amenable to theoretical study; the convergence analysis of gradient descent
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Figure 1: Models with skip connections considered in this paper. & denotes addition operation. Left: PlainNet block.
Middle: ResNet block. Right: ResNeXt block. Full DNNs are constructed by stacking several blocks

on linear PlainNets is carried out in [46]. Furthermore, [44] discusses the relevance of studying
linear DNNs, and posits that results are often relatable to DNNs with non-linear activation func-
tions given that the loss function of a DNN (i.e., having two or more layers) with linear activation
function is still non-convex with respect to the parameters space, as in DNNs with non-linear
activation functions. Nevertheless, our experimental results use both non-linear and linear activa-
tion functions to show clear agreement with our theoretical analyses that assume linear activation
function.

3.2. Preliminaries: PlainNet, ResNet and ResNeXt

In this section, the different forms of skip-connections based transformations for ResNet and
ResNeXt are introduced as preliminaries. However, for a holistic investigation, we start with the
PlainNet. Given model input data, , we use ‘h(x)’ to refer to the hidden representations.
(a) Plain network (PlainNet)
This category of DNNs represents the classical-vanilla DNNs that do not use skip connections of
any form; see Figure 1. Each layer is connected via only one path to the the succeeding layer.
Considering the hidden representation at layer [-2, h(x)!"2 € R" (where z € R" is the input
to the DNN), for the two consecutive layer weights, Wtand W1 in Figure 1, we can write the
learned transformation as

h(z)' = W'W' 'h(z) 2, (1)
where W! W!=! € R"*" are random matrices.
(b) Residual network (ResNet)
Residual network (ResNet) [[17] shown in Figure 1 essentially relies on skip connections of identity
mappings that connect every residual block (containing 2 or 3 weight layers) to the previous one.
For the ResNet block, we have
h(z)' = W,W, 'h(z)" ™ + h(z)", )
where Wbl, Wbl’1 € R™ ™ are random matrices, and b indexes weights in a ResNet block. Fur-
thermore, given the identity matrix I, factorizing (2) results in
h(z) = (WyW, ' +1) h(z)' . (3)
4



(c) Residual network with features aggregation (ResNeXt)

Residual network with features aggregation (ResNeXt) [21] relies on aggregating by summing
features learned via m paths through every ResNeXt block as shown in Figure 1. For 1 < £ < m,
the output of the ResNeXt block is

h(z) => W W, " h(z)" + h(z)", 4)
k=1

where Wbl ’k, Wbl_l’k € R™ ™ are random matrices, and b indexes weights in a ResNeXt block.
Again, (4) can be simply factorized as

h(z)' = (Z W, W, +I> h(x)">. (5)

k=1

4. Theoretical analysis of the role of skip connections for optimization

The central idea of this section is to investigate and analyse the role of skip connections presented
in Section 3 in avoiding information loss while training a very deep DNN. Our analysis builds on
the following assumption, propositions, corollary, definition and theorems.

Assumption 1. For an L-layer DNN, all layer weight matrices, Wi e R, for1 <1< L, are
assumed to be jointly diagonizable; implying the same eigenvectors {v;}! |, forming a basis in
R™, and their corresponding eigenvalues {\.}"_,.

We note that a similar assumption can be found in the work [47].
Our analysis starts first on the forward-pass and then on the backpropagation in relation to opti-
mization conditions.

Proposition 1. For a matrix W € R "™ whose column vectors, w;, are randomly drawn from
a uniform distribution U[—r,r| or a Gaussian distribution N (., o*), the probability that W is
non-singular, P(w; ¢ W), is

Plw; ¢ W) =1 :1<i<n (6)
Proof. See Section Al in the appendix. [

Corollary 1. Considering that DNN parameters, Wl 1<I< L, are randomly initialized [32,
33], W' is therefore guaranteed to be a non-singular matrix at the start of training.

Proof. This follows directly from Proposition 1. 0J
Definition 1. Given {v;}!" , is a set of eigenvectors (i.e. orthogonal vectors) as in

any x € R" can be expressed as

xr = Z&ivi, a; € R. (7
i=1
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Definition 2. A batch of N hidden representations, H (x) € R™, is composed of N individual
data points, h(x); € R"; thatis, H(x) = [h(x)1,--- ,h(x);,--- , h(x)N].

Proposition 2. Given a non-invertible matrix M € R"*", and vector v € R", then the transfor-
mation s = M incurs information loss.

Proof. First note that a non-invertible matrix is singular, has a determinant of zero, and its trans-
formation collapses space. Consequently, v cannot be recovered with certainty by M s, where f
denotes the pseudo-inverse of a matrix, since the mapping v — s is non-injective. 0
It is critical to note that singularity, where at least one singular value of M becomes zero is not nec-
essary for optimization problems; near-singularity, where at least one singular value is extremely
small is sufficient. This is directly reflected in the condition number x of M defined as

“(M) = Uma:v(M>/‘7mm(M)v (8)

where 0,4, (M) and 0,,;,,(M) are the maximum and minimum singular values of M, respec-
tively. Problems with (M) > 1 are commonly said to be ill-posed.

4.1. Forward-pass: loss of basis in hidden representations

(a) Plain network (PlainNet)
For the PlainNet in Section 3 (a), we state

Theorem 1. Given an input © € R" to a linear L-layer PlainNet parameterized as {W*'}- | €
R"™*", the hidden layer output, h(x) : L > 1, is

L
h(z)" ~ H A (),
=1

s.1. ’)\ll|>’)\” 2<i<n,

)

where \. are the first components of the eigenvalues. The basis {v;} is the eigenvectors of W',
withl =1,--- | L, and the scalar o is the first coordinate in this space.

Proof. The power iteration method [25] is modified (since different weights are applied at the dif-
ferent layers of the PlainNet) for analysing the impact of successive layer weights transformations
on h(x)" as follows.

Using for layer [, we can write
Wy, = N, (10)

For the final PlainNet output at layer L, we can write
L
h(z)" = [[W'=. (11)
=1
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Putting (7) and into and considering we have (see Section A2 in the

appendix)
n L
h(z)" =Y aw [N, (12)
i=1 =1

which can be rewritten as

L n L
h(x)* = (alvl H A+ Z ;v; H Aﬁ) : (13)
1=1 i=2 I=1

Furthermore, (13)) can be factorized so that

L n L
h(CU)L = H )\ll <a1v1 + Z o,;U; H ()\1/)\1)l) . (14)
=1 =2 1

1=

Finally, () is obtained from (T4) given that [T, (A;/\1)' — Ofor L > land || > |\}| : 2 <
1 < n, as expected for eigenvalues. O

Ultimately, note that a similar observation [, (A;/A;)" — 0 for L > 1 is used for conclud-
ing the following theorems.

Remark 1. For an input x, only one basis vector, vy, contributes to the computation of h(x)*
for L > 1, as a result of repeated multiplication by {W'}E£ . As such, h(z)" for the PlainNet
exhibits significant information loss. Considering |Definition 2| and [Theorem 1| the columns of
H (x)* are colinear; hence, H (x)" is singular.

Going by we observe that [48] used deep Gaussian process to arrive at a similar result
that the representational capacity of DNNs collapses to one degree of freedom as L. — oco. Fur-
thermore, it can be concluded from that the information loss of hidden representations
is not associated with the popular unit saturation problem [32]], as uses linear units.
(b) Residual network (ResNet)

For analyzing features conditioning of ResNet given in Section 3 (b), we rely on the following
lemma and axiom.

Lemma 1. For a matrix W € R™*" with eigenvector v € R" and eigenvalue \ such that Wv =
Av, it can be shown that (W + cI)v = (X + c¢)v for a scalar c.

Proof. (W +cl)v = Wv+cv = v+ cv = (A +¢)v. O

Axiom 1. For sequential products of a sum of variable and constant, we can write HlL:1 A+1) =
1+ZIL:1 N +HZL:1 ., where the middle terms are inconsequential for stating the next theorem.

In addition, results of transformations W/W, ! in a residual block in (3) is lumped as a single
transformation
W= Ww (15)



Theorem 2. Given an input * € R" to a linear L-layer ResNet parameterized as {W'}l, €
R™™", the hidden layer output, h(x)’ : L > 1, is

h(w)L%ZCY@'Uz‘—FOﬂUl (Z)\ll—|—...+H)\ll> y
- =1 (16)
st M| > X s 2<i<n

Proof. Again, the modified power iteration method is employed. Using (3)) and (15]), we can write

for the ResNet .

h(z)" = [[(W'+1)z. (17)

=1

Applyingwith c =1 gives (W! +I)v; = (Al + 1)v;; putting (7) into (17) and consid-
cring [Assumption 1] gives

n L
h(z)" => aw [J(N +1). (18)
=1 1

=

Using [Axiom T|for (I8), we can write

n L L
h(z)" = av; <1+ZA§+---+HA§>. (19)
=1 =1

=1

Furthermore, (I9) can be expanded as

n L L
h(w)L = Zaivi + a1vq (Z )\ll + ...+ H/\ll> +
=1 =1 =1

n L L (20)
i=2 1=1 =1
The factorization of (20)) yields
n L L
h(x)" = Z ;U + (Z A4+ H)\é) {a1v1+
i=1 1=1 =1 Q1)

n L L
S v, LAt Il A L
: SN TN

=2

Lastly, applying L >> 1 and the condition |X}| > |Xl| : 2 < i < n, as expected for eigenvalues

to (21) completes the proof of O

Remark 2. Given the input , all basis vectors {v;}?_,, contribute to the computation of h(x)*
for L > 1. As such, h(x)* for the ResNet retain full information. From|Definition 2|and|Theoren|
the columns of H (x)" are distinct, and therefore H (x)* is non-singular.
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(c) ResNeXt
The following ResNeXt analysis is based on Section 3 (c)

Theorem 3. Theorem 3 Given an input x € R" to a linear L-layer ResNeXt parameterized as
{WURLL the hidden layer output, h(x)* : L > 1, is

n L m L m

h(a:)L ~ Z o,;0; + U1 <Z Z /\ll,m + ...+ H Z )\ll,m>
i—1 =1 j=1 1=1 j=1 (22)
s.1. ‘)\l1|>‘)\” :2<i<n.

Proof. See Section A3 in the appendix. 0

Remark 3. Given the input x, all basis vectors {v;}"_,, contribute to the computation of h(x)*
for L > 1. Similar to ResNet, h(x) for the ResNeXt retain full information. Again, employ-
ing |Definition 2| and Theorem 3| shows that the columns of H (x)* are distinct, and thus H ()"
is non-singular.

4.2. Backpropagation: error gradients singularity

It is well known that the trainability of DNNs is subject to well-conditioned error gradients;
otherwise, optimization is unlikely to converge. For the sake of simplicity, we use the following
lemmas in the subsequent parts.

Lemma 2. Let X € R™" and V. € R™P be matrices. If V is singular, then their product,
Y = XV, is also singular.

Proof. Some row(s) or column(s) of V' are linearly correlated. As such, 3 a vector u € R™ with
| w ||y, # 0: Vu = 0. Hence, X Vu = 0, and thus X'V is singular. O

Lemma 3. Let X € R™*" and V' € R"*P be two matrices. If X and V are non-singular, then
their product, Y = X'V, is also non-singular.

Proof. All row(s) or column(s) of both X and V are linearly uncorrelated. As such, # a vector
u € R" with || w ||, # 0 such that Xu = 0 or Vu = 0. Consequently, X Vu # 0, and thus XV’
is non-singular. O
(a) Plain network (PlainNet)

Definition 3. Given the outputs of units in a hypothetical layer | is H (x)!, the local error gradient
of units, Al, that is connected to units in layer (I + 1) is of the for

Al _ H(w)l (WH-lAH-l) ) (23)

!Given that the linear activation function is employed



For training cost, F, the weight update for W at iteration ¢ using the learning rate 7 is
oF
Tow?
with W'(t) = Wit — 1) + AW'(2). (25)

Given that DNN parameters by convention are randomly initialized and are generally quite far

from the solution, large weight updates are made at the start of training. As such, if the total
number of iterations is 7', we can write

AW!(t) = — =nA'H (z)", (24)

Wit)~ AW (t) 1<t < T. (26)

Remark 4. Using that H (x) exhibits singularity and it can be concluded

from 23)) that the error gradient estimate, A, is singular. Subsequently, via a similar argument,
AW in @4) is singular, and so is W' in (26). Thus, optimization exhibits numerical instabil-
ity [49,50].

From DNN computational results lose precision, and errors can accrue to cause signif-
icant erratic weights updates, and therefore non-convergence. This observation is interesting, as
it directly corroborates the work in [37/] that studied error gradients as white noise in very deep
PlainNets. Our experimental results indeed confirm this.

(b) ResNet and ResNeXt

Remark 5. Using that H (x)" is non-singular and |Corrollary 1| that W' is non-
Lemma 3

singular, it follows from|Lemma 3|and 23) that the error gradient, A, is non-singular. Likewise,
from (24)) and (26)), weights updates and weights are both non-singular and decent estimates for
successful optimization.

Remark 6. Given that H (x)' is non-singular fromand W*lis non-singular from
it follows fromand that the error gradient, A', is also non-singular. Simi-

lar to ResNet, note the non-singularity of weight updates and weights in (24) and (26)), respectively,
which contribute to a successful optimization.

5. Skip connections impact generalization

We show in the following proposition that the condition of input data and hidden representations
not only affect model optimization, but also reflects in the implicit regularization of learned pa-
rameters.

Proposition 3. For a DNN with optimal solution 8, AH (x)' translates to a relative change in

solution, A, as follows

| A6 ||
0<I1<I, 27)
16 | H(z)" |

where H(x) € RN and H(z)° = [z, ..., zN]| for | = 0.
10




| Model | Train accuracy | Testaccuracy |

PlainNet-110 11.20% 11.35%
ResNet-110 99.99% 99.57%
ResNeXt-110 99.99% 99.71%

Table 1: Results after training on the MNIST dataset

| Model | Train accuracy | Test accuracy |
PlainNet-110 10.26% 10.05%
ResNet-110 99.98% 93.29%
ResNeXt-110 99.98% 93.65%

Table 2: Results after training on the CIFAR-10 dataset

Proof. See Section A3 in the appendix. O
From it is seen that the fragility of the solution 6 depends on x(H (x)'). We show in
the experiments that DNNs with skip connections operate with much smaller condition numbers
than PlainNets. As such, a change AH (x)' (that can occur when we move from the training set
to test set) translates to a smaller change in @ for DNNs with skip connections than PlainNets.
Hence, a more stable solution reflects in improved generalization.

6. Experiments

6.1. Datasets, settings and evaluations

For the experiments, MNIST [51], CIFAR-10 [52], CIFAR-100 [52] and ImageNet-2012 [53]]
datasets are used. All experiments except on MNIST dataset use standard data augmentation
as in [54]]. Very deep PlainNet, ResNet and ResNeXt with 110 and 200 layers are trained on
MNIST, CIFAR-10 and CIFAR-100 datasets. For ImageNet-2012 dataset, only ResNet [17] and
ResNeXt [21] models with 101-layers are trained. Mini-batch gradient descent, learning rate in
the range [0.0001-0.1], momentum rate in the range [0.1-0.9], weight decay of 10~*, batch size of
128 and a maximum of 200 epochs are used for training; all model parameters are initialized as
random Gaussian tensors using [32]. All our experiments use the rectified linear units (ReLUs) to
demonstrate the agreement between theoretical analysis and practical DNNs. Namely, we aim to
observe for PlainNets, ResNet and ResNeXt, the following (i) evolution of units’ activations with
depth (i1) weights updates during training (iii) error gradients during training (iv) progressive near-
singularity of model layer weights with depth, which is measured via condition number computed
from singular values as in (8), and (v) information loss of hidden layer representations with depth
via near-singularity (i.e. condition number). The singular values for model tensors are obtained
using Higher Order Singular value decomposition (HOSVD) [S3)], which generalizes the well-
known matrix SVD to n-dimensional arrays (i.e tensors).

6.2. Results and discussion

The experimental results of our investigation are discussed as follows. Tables 1, 2, 3 & 4
show the training and testing accuracies on the other three datasets. The unsuccessful training
of the PlainNet is clearly reflected in the obtained training and testing accuracies. We note that
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| Model | Train accuracy | Testaccuracy |

PlainNet-101 3.72% 3.68%
ResNet-101 99.84% 72.27%
ResNeXt-101 99.99% 72.43%

Table 3: Results after training on CIFAR-100 dataset

| Model | Train accuracy | Testaccuracy |
PlainNet-101 15.37% 14.94%
ResNet-101 88.56% 77.32%
ResNeXt-101 89.74% 78.48%

Table 4: Results (i.e. top-1 accuracy) after training on the ImageNet dataset

CIFAR-100 dataset CIFAR-100 dataset
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Figure 2: Training curves for models. Left: Training loss. Right: Training accuracy
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Figure 3: Testing curves for models. Left: Testing loss. Right: Testing accuracy

hyperparameters search did not yield trainable PlainNets. Figure 2 and Figure 3 show the training
and testing curves, respectively, for the different models trained on CIFAR-100 dataset. Note that
the training and testing losses are plotted to log-scale due to extremely high values for the Plain-
Net. The difficult of optimizing the PlainNet is evident in the extremely large training loss and
poor training accuracy observed. Figure 4 shows the units’ activations for PlainNet, ResNet and
ResNeXt with 110 layers trained CIFAR-100 dataset. For observing the training conditions of the
aforementioned DNNSs, early and later layers are studied. Consequently, layers 1 and 108 are taken
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Figure 4: Units’ activations for 110 layer models trained on the CIFAR-100 dataset. Left column: PlainNet. Middle
column: ResNet. Right column: ResNeXt
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Figure 5: Units” weights for 110 layer models trained on the CIFAR-100 dataset. Left column: PlainNet. Middle
column: ResNet. Right column: ResNeXt

for inspection. It is seen in the layer 1 of the PlainNet that most units have very large activations
(i.e. up to ~ 10°) that are problematic. For ResNet and ResNeXt models, activations in layer 1 are
less than 6.5. At layer 108, all models operate with reasonable units’ activitions values.

Figure 5 shows the progress of weights update for the PlainNet, ResNet and ResNeXt given in
Figure 4. For layer 1, it is seen that the PlainNets have weight values in the problematic range
—180, 000 to 620, 000. Conversely, ResNet and ResNeXt weights are in the reasonable ranges of
—1.8 to 2.6 and —0.55 to 0.65, respectively. At layer 108, the PlainNet’s weight values progres-
sively collaps to zero, while the ResNet and ResNeXt weights both have fairly consistent values
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Figure 6: Units’ gradients for 110 layer models trained on CIFAR-100 dataset. Left column: PlainNet. Middle
column: ResNet. Right column: ResNeXt
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in the reasonable range —0.18 to 0.30.

Figure 6 shows model gradients. Most gradients in layer 1 of the PlainNet are considerably large in
the range —5 to 5; large gradients depict optimization problems. However, ResNet and ResNeXt
have most gradients in the reasonable range —0.07 to 0.07 and —0.8 to 0.8, respectively. The
gradients for the PlainNet, ResNet and ResNeXt at layer 108 are at reasonable values of —1072 to
1072, Note that Figure 4, Figure 5 and Figure 6 are unnormalized to directly convey the severity
of the the training problems.

Figure 7 and Figure 8 show the condition number of model weights. It can be seen that the con-
dition number of the PlainNet weights grows with depth, indicating that the learned model is
progressively ill-posed with depth increase. Interestingly, the condition numbers of ResNet and
ResNeXt weights remain small with depth increase; this indicates good stability of learned param-
eters in line with proposition 3. Figure 9 shows the condition number of hidden layer activations
for the trained PlainNet, ResNet and ResNeXt. As such, the PlainNets have infinite condition
numbers from layer 1 to 70. Note that infinite condition number indicates perfect singularity, and
thus the worst scenario of optimization difficulty. The early layers in the ResNet and ResNeXt
have high condition numbers (but no perfect singularity) that rapidly reduces to allow successful
optimization.

6.3. Results for deeper DNN models

In this section, to reinforce the results obtained in Section 6.2 with models having 110 and
101 layers, we report the results of additional experiments using models with 200 layers trained
on the MNIST dataset. Specifically, we show that models, which are much deeper than those re-
ported in Section 6.2 show similar training characteristics. The 200-layer models for the PlainNet,
ResNet and ResNeXt are referred to as PlainNet-200, ResNet-200 and ResNeXt-200, respectively.
We note that PlainNet-200 achieved training and testing accuracies of 11.23% and 8.92%, re-
spectively; this shows poor optimization. Interestingly, ResNet-200 and ResNeXt-200 both reach
training and testing accuracies of over 99%, showing successful optimization.

Figure 10 shows the condition numbers of the weights in the different layers in the models.
It is seen that PlainNet-200 generally has higher condition numbers than the ResNet-200 and
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ResNeXt-200. Furthermore, Figure 11 shows the condition numbers of the hidden representations
in the different layers of the models. It is seen that the hidden representations of PlainNet-200
has infinite condition numbers up to the 80th layer. In contrast, the hidden representations of
ResNet-200 and ResNeXt-200 both have finite condition numbers for all layers. Ultimately, these
observations about the conditions of the weights and hidden representations are similar to that in
Section 6.2 for models having 110 and 101 layers.

6.4. Results for linear models

In Sections 6.2 and 6.3, the reported experimental results use the rectified linear activation function
(i.e. rectified linear units: ReLUs) for practicality reasons. That is, to show that our theoretical
results in Section 4 and Section 5, which assumed the linear activation function are valid for
the non-linear activation function. Herein, we perform additional experiments using the linear
activation function for the different models trained on the MNIST dataset [51]] to show that similar
conclusions can be made. Specifically, we train the PlainNet, ResNet and ResNeXt with 164 layers
using the linear activation function (i.e. with linear units). The condition numbers for the different

16



— MNIST dataset
v
& O] i ' | |
(W) i i | |
9 ! ! ! ‘
o 4 .
o |
53 ' S S
o : : | —@— PlainNet-164
g 2 fdeefoe 1. —@— ResNet-164
c : : —- PResNeXt-164
= E . ! |
g 3 | 0
S 1 40 80 120 160
Layer

Figure 12: Condition number for layer weights in the models trained with the linear activation function

MNIST dataset

)

® 40 ! ! 5 '

e —&— PlainNet-164

o —&— ResNet-164

g 30 " — ResNeXt-164 ~

o !

g 20 |

= !

< i

510

-J: ; 1

o ! . |

5 0 i i .

] 1 40 80 120 160
Layer

Figure 13: Condition number for hidden layer representations in the models trained with the linear activation function;
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layer weights in the trained models are shown in Figure 12. Similar to models with ReLUs, it
is seen that the PlainNet layer weights have high condition numbers as compared to the ResNet
and ResNeXt; compare Figure 12 with Figure 7 and Figure 8. Furthermore, Figure 13 shows the
condition numbers for the different hidden layer representations in the trained models. Again, the
PlainNet operates with high condition number as compared to the ResNet and ResNeXt. In fact,
the hidden representation in the first layer of the PlainNet has an infinite condition number; this is
the worst scenario for optimization problems to ensue. However, the ResNet and ResNeXt have
finite condition numbers for the hidden representations in different the layers. Importantly, the
condition of the hidden representations in the models with linear units is similar to the models
with ReLUs; compare Figure 13 with Figure 9.

6.5. Skip connections in hindsight

(a) Training problem is beyond activation function: Although RelLUs are used for the reported
experiments, similar training characteristics for units’ activations, weights and gradients are ob-
served when linear units are used. As such, the training problems of PlainNets are beyond the type
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of activation function employed.

(b) Successful training of PlainNet: We posit that working solutions for the successful training
of very deep PlainNets would be related to weights regularization so that the largest eigenvalues
are only slightly larger than others; this would alleviate information loss in the hidden representa-
tions that results from the domination of small eigenvalues by extremely large eigenvalues.

(c) Problem with the DiracNet [56]: The DiracNet claims to reslove the training problem of very
deep PlainNet via a special initialization scheme. The weight initialization of an L-layer DiracNet,
parameterized by Wl e R . 0 < [ < L, is

W' = (W' + diag(a)) :0< [ < L (28)

where W' is a randomly initialized matrix. e.g. as in [32]]; and diag(a) € R™ " is the diagnoal
matrix with diagonal entries @ € R". Subsequently, the output in the final layer of the DiracNet,

—~—L
h(x) ., can be expressed as
L
——L —~
h(z) =][][W'=. (29)
=1

The DiracNet, which initializes @ = 1 mimics the ResNet at the start of training considering
that (28)) temporarily holds, since diag(a) is the identity matrix. That is, the DiracNet behaves
like it uses skip connections of identity mapping at the start of training. Unfortunately, as train-
ing progresses, Wlin (28) can deviate from the desired initialized setting a = 1, since all the
entries in W' are free parameters; there is no constraint on diag(a) in (28) so that it remains
the identity matrix during training. As such, it is not surprising that the DiracNet’s performance
in [S6] is worse than the ResNet, and the ResNet is the preferred model for many tasks based on
performance. In contrast, the DiracNet is rarely used in the literature. Interestingly, keeping the
hidden layer representations close to the input has been posited as crucial for the successful train-
ing of very deep models [39]. We note that the DiracNet invariably violates diag(a) = I in (28)

—_—~—

after several training iterations so that h(a:)L is far from « in (29)), and thus optimization becomes
difficult.

(d) Skip connections are immutable constraints on the geometric structure of layer weights:
The physical skip connections seen in the ResNet [17] and ResNeXt [21] impose an immutable
constraint on the geometric structure of layer weights, (W' + 1), where 1 is always an identity
matrix given that the entries of 1 are not free parameters by model construction, and hence does
not change during training. Consequently, h(x)” stays close to the input x in (I7)), and hence
optimization successfully converges as posited in [39].

7. Conclusion

Remarkable results on various computer vision tasks have been obtained using DNNs with skip
connections. However, their mode of operation as compared to DNNs without skip connections
(PlainNets) remains largely elusive. This paper studies the unique properties of models with skip
connections that eases optimization and improves generalization. Namely, important properties
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such as the information fidelity (i.e. usefulness) of computed hidden representation basis and er-
ror gradient, and stability of solutions based on the conditioning of learned model parameters are
investigated. Our results reveal that the training problem of very deep neural networks is beyond
the saturation of hidden units that is caused by non-linear activation function. Without skip con-
nections, very deep models exhibit singularity problems that plague optimization. However, with
skip connections, the singularity problem is circumnavigated so that optimization successfully
converges.
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Appendix
Al. Proof of Proposition 1

Considering W = [w;|!"_;, where w; is the i-th vector in W, and its elements are randomly sam-
pled from a continuous distribution (i.e. uniform or Gaussian). Given w;, the matrix W excluding
w; is denoted W_;; thus, the span of W; is W2 = span(w, .., w,_1). Consequently, proofing
Proposition 1 translates to showing that any given w; does not lie in the span of W*2"; that is, w;
and W™ are linearly independent.

First, it is easy to note that P(w; # 0) = 1, since the Lebesgue measure of a singleton set is
zero [57]; thus, P(w; ¢ W™*") = 1. Furthermore, forp € {2,....n—1},1let W_, , = [wy, ..., w))]
be the matrix whose columns are the first p vectors, excluding vector w;, such that the columns of
W_, , are linearly independent with a probability of 1. Therefore, we can state with a probablity
of 1 that W_, , spans the p-dimensional subspace of R", and thus also has a Lebesgue measure
of zero. Interestingly, wy41 resides on R”, and hence is on the exterior of the subspace with a
probability of 1. 0

A2. Expanded derivation of (12)

Herein, we provide the expanded derivation of in the main paper, which is based on
ftion 11
Let the basis vectors formed by the eigenvectors of W' (for 1 <1 < L)inR"be V = [vy, ..., v,],
where V is a unitary matrix. Furthermore, given matrices W@ and W that are diagonizable, we
have
AT
VW'V = D = , and (30)

19



/\b
1
VW'V = D' =
)\b
Since V is unitary, we can write the following
W*=VD*V~! and
wW'=vD'V.
Multiplying by (33) gives
WW'=VD'V'VD'V ! =VD'D'V !
T

Forx =) " | a;v;, a; € R; where o = [avy, ..., )", we can write

r=Va,

€19

(32)
(33)

(34)

(35)

The output of a linear L-layer DNN with weight matrices {W% Wi=1...W'... W} can be

written as

L
h(z)" =[[Wz=W'W"" . . W W

=1
Putting (33)) in (36), and applying (34)) yields
h(z)* = VD'V VD'V 1 VD'V !|Va
Tidying up results in
h(z)" = V[][ D',
which can be expressed as

Hlel)‘ll Qi
h(w)L I : |, and

Hf=1 AL Lo

03]

L L
h(@)" = ([ A)or, .. ([[ M)
=1 =1

A

The derivation is completed by writing (40) as

h(x)" = H Nagvp + ...+ H M a,v,,

and

n L
h(x)" = Zaivi H)\i O
i=1 =1

20

(36)

(37)

(38)

(39)

(40)
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(42)



A3. Proof of Theorem 3

First, we lump the weight matrices in (3] of the main paper for 1 < k£ < m to
W = wytwy (43)

so that we can write the output for the ResNeXt as

L

h(z)" =]] (fj WhE I) . (44)

=1 =

Using with ¢ = 1 in the main paper, we have (W + I)v; = (A\V* 4 1)v,. Using
and from the main paper in (15]), we get

L m

h(z)" = i aw [JO A" +1). (45)
=1

=1 j=1

Furthermore, let p* = > e AL% such that (@3)) can now be written as

n L
h(z)" => aw [[(" + 1) (46)
=1 1

1=
Again, using Axiom 1 in the main paper gives

L

n L
h(x)* = Z a;v; + ( pll’k 4ot lelk> {ozyvﬁ—
i=1 1=1

=1
. S pt 4+ T P
Z Qi U; L ik L Ik :
i=2 ZZ:I py et Hl:l P1

> ’pik‘ : 2 < i < n, as expected for eigenvalues to (47),

(47)

Lk
Dy
and substituting p-* = > AL¥ finalizes the proof . O

In conclusion, when L > 1, and

A4. Proof of Proposition 3

Let us consider a simple problem, Y = W X, where W € RV, X € R™" and Y € R™V,
Our goal is to estimate the solution, W, given that X' is the pseudoinvrese of X . Furthermore,
let a small perturbation of A X result in a small solution perturbation, AW, so that

Y=(W+AW)(X + AX). (48)
Given that AWAX ~0andY = WX, results in

WIAW = —AX X', (49)
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Applying Cauchy-Schwarz inequality to gives

| AW | | X ||
e < AX I XT < JAX ||| XT| 5 (50)
| W X
thatts |aw | |ax |
o < R(X) (51)
| W Xl
where k(X)) ~ || X ||| X |. O
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