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ABSTRACT

License plate detection is the first and essential step of the license plate recognition system and is
still challenging in real applications, such as on-road scenarios. In particular, small-sized and oblique
license plates, mainly caused by the distant and mobile camera, are difficult to detect. In this work,
we propose a novel and applicable method for degraded license plate detection via vehicle-plate re-
lation mining, which localizes the license plate in a coarse-to-fine scheme. First, we propose to es-
timate the local region around the license plate by using the relationships between the vehicle and
the license plate, which can greatly reduce the search area and precisely detect very small-sized li-
cense plates. Second, we propose to predict the quadrilateral bounding box in the local region by
regressing the four corners of the license plate to robustly detect oblique license plates. Moreover,
the whole network can be trained in an end-to-end manner. Extensive experiments verify the effec-
tiveness of our proposed method for small-sized and oblique license plates. Codes are available at:
https://github.com/chensonglu/LPD-end-to-end.

1. Introduction

License plate detection (LPD) has attracted great interest
from academia and industry for many years owing to its im-
portance in many practical applications, such as toll control,
parking lot access, and traffic law enforcement. Accurate li-
cense plate detection is crucial for subsequent license plate
recognition [37]. However, it remains a challenging task due
to illumination variations, background changes, size varia-
tions, and viewpoint changes.

Before the deep learning era, most methods [36, 1, 7, 2]
need to design handcrafted features for license plate detec-
tion. Recently, deep learning methods [4, 32, 31] have con-
tributed to improving the license plate detection task. Many
methods [4, 43, 41, 18] propose to localize the license plate
directly from the input image, but these methods can not de-
tect small-sized license plates properly, because the license
plate is only a small part of the input image. There have been
many previous works aiming at small-sized license plate de-
tection by reducing the search area of the license plate using
the vehicle proposal [32, 17, 9]. However, these methods can
not handle large vehicles properly, such as buses and trucks,
because their license plates are also a small part of them.
Furthermore, [31] presents using the vehicle front region to
further reduce the search area of the license plate. The ve-
hicle front region is manually defined as the smallest region
comprising the headlights and tires. However, [31] need to
manually annotate the location of the vehicle front region,
which is ambiguous and a waste of manpower.

Moreover, most previous methods [4, 43, 18,41, 17, 31]
simply consider the license plate in horizontal direction, which
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is only applicable to limited scenes, such as highway bayo-
net charge and parking lot access. When it comes to more
challenging scenes, such as on-road scenarios, they don’t
work for highly oblique license plates. Although in the lit-
erature [6, 32] there are some methods proposed to detect
multi-oriented license plates, they are very complex due to
adopting several separate networks.

In this work, we propose an end-to-end trainable network
for degraded license plate detection via vehicle-plate relation
mining, which can effectively detect the small-sized license
plate and accurately localize the quadrilateral bounding box
of the oblique license plate in real applications (e.g., on-road
scenes). The method can detect the license plate in a coarse-
to-fine manner. At the detection stage, we first estimate the
location of the license plate based on the offset between the
center of the license plate and the vehicle. Considering that
the location obtained in this way is not always accurate, we
refine the quadrilateral bounding box of the license plate in
the local region around the license plate. The local region is
simply obtained by expanding the background region around
the license plate. In this way, many license plate regions of
different vehicles in the input image can be obtained simul-
taneously, and they have various sizes and aspect ratios. To
reduce the running time, all the estimated regions are scaled
to the same size and aggregated together into LP patches, so
all the license plates can be detected simultaneously in the
LP patches. The aforementioned detection stages are com-
bined to build an end-to-end network for license plate de-
tection. Our method can greatly reduce the search area of
the license plate, which can minimize false positives and im-
prove the detection performance of small-sized and oblique
license plates. Furthermore, estimating the local region can
make LPD independent of the size of the vehicles, which is
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advantageous to large vehicles.
Our main contributions can be summarized as:

e We propose a novel and applicable method for small-
sized and oblique license plate detection by utilizing
vehicle-plate relationships, where the license plate is
precisely located in a coarse-to-fine scheme. Further-
more, the whole detection network is constructed as
an end-to-end trainable network.

e We propose a novel method to estimate the local re-
gion around the license plate via vehicle-plate relation
mining, which can greatly reduce the search area of
the license plate.

e We propose a new method to localize the quadrilateral
bounding box of the oblique license plate by regress-
ing the four corners of the license plate.

The rest of this paper is organized as follows. Related
work is described in Section 2. In Section 3, we describe
our method in details. Section 4 presents comparative exper-
iments and analyses. Final remarks are presented in Section
S.

2. Related Work

Direct License Plate Detection The following methods
propose to localize the license plate directly from the input
image. [4] detects the vehicle and the license plate with two
independent branches to remove the effect that the vehicle
suppresses the detection of the license plate. [43] presents
a robust and efficient approach for license plate detection,
which firstly accelerates the license plate localization using
an effective image down-scaling method, then utilizes dense
filters to extract candidate regions, and finally identifies the
true license plates using a cascaded classifier. [41] presents
to use multi-scale features to predict and regress the bound-
ing box of the license plate. [18] proposes a method of de-
tecting and recognizing the license plate, where the license
plate is localized by Faster R-CNN [27] directly from the in-
put image. However, these methods can not always detect
small-sized license plates properly, because the license plate
is only a small part of the input image'.

License Plate Detection with Vehicle Proposal The fol-
lowing methods propose to reduce the search area of the
license plate by the previous detection of vehicle, vehicle
front region, or region around the license plate. In this way,
it can improve the detection performance of small-sized li-
cense plates and reduce false positives of the license plate.
[30] utilizes R-CNN[11] to generate vehicle proposals and
then localizes the license plate in each vehicle region. [9]
applies the Region Proposal Network (RPN) [27] to gener-
ate candidate vehicle proposals and then detects the license
plate based on each proposal. [32] introduces a novel CNN
framework capable of detecting the license plate in each pre-
dicted vehicle region. [17] utilizes YOLOv2 [25] to detect

IThe average size of LPs is 0.26% of the full input image [31].

all the vehicles, then localizes the license plates in the vehi-
cle patches simultaneously. However, these methods are still
not favorable to large vehicles, such as trucks and buses, be-
cause their license plates are still only a small part of them.
[31] proposes to detect the vehicle first, then detects the ve-
hicle front region, and finally localizes the license plate in
each vehicle front region. However, the vehicle front region
needs to be annotated manually, which is a waster of man-
power. [40] employs an attention-like method to estimate
the local region around the license plate, then detects the li-
cense plate in the local region. However, in the literature
[40], it utilizes low-resolution feature map and ROI pooling
[10] for LPD, which causes loss of the spatial and semantic
information, so the end-to-end model in [10] suffers signif-
icant performance degradation, especially for the large IOU
threshold. Our method can maintain the semantic informa-
tion by adopting the high-resolution feature map, and retain
the spatial information by using space-invariant ROI warp-
ing [5].

Multi-Oriented License Plate Detection [40] proposes
a CNN-based MD-YOLO framework for multi-directional
license plate detection via rotation angle prediction. [12]
proposes to detect the license plate with a tightly bound-
ing parallelogram via predicting the top-left, top-right and
bottom-right corners of the license plate. [35] utilizes se-
mantic segmentation to get the rotation angle of the license
plate. [40, 12, 35] regard the oblique license plate as a par-
allelogram. However, it is not always accurate due to the
perspective transformation of the license plate, because a
highly oblique license plate is more like a arbitrary quadrilat-
eral. [6] proposes to generate license plate candidates with
RPN [27], then uses R-CNN [11] to regress the four cor-
ners of the license plate. [32] proposes to obtain the affine
transformation parameters explicitly based on Spatial Trans-
former Networks (STN) [14], which can transform the tilted
license plate into a horizontal direction. However, [6, 32]
are complicated due to adopting several separate networks.
Our method can localize the four corners of the license plate
in an end-to-end manner.

Vehicle Detection Before the deep learning era, most
methods [34] usually utilized information about symmetry,
color, shadow, geometrical features (e.g., corners, horizon-
tal/vertical edges), texture features and vehicle lights for ve-
hicle detection. Recently, deep learning methods [3, 24]
have contributed to improving vehicle detection. [38, 29,
39] design better anchor priors for vehicle detection, which
can facilitate the matching between the anchor box and the
ground truth box. [13, 15] utilize multi-scale features to be
robust to scale change of the vehicles by adopting YOLOv3
[26]. [22, 21] introduce a backward feature enhancement
network to generate high-recall proposals, then adopt a spa-
tial layout preserving network to enhance tiny vehicle de-
tection. In this work, we simply adopt vanilla SSD [20] for
vehicle detection, which can detect various-sized vehicles by
utilizing multi-scale features. We will employ more power-
ful vehicle detectors in future work.
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Figure 1: A thumbnail of the overall architecture is shown in the top-left corner (ALPD: approximate license plate detection;
LREA: local region estimation and aggregation; MOLPR: multi-oriented license plate refinement). At the ALPD stage, first, the
vehicle (orange rectangle) is detected, so the center of the vehicle (orange circle) is determined; second, the center of the license
plate (green circle) is obtained based on the offset (purple arrow) between the center of the license plate and the vehicle; third,
the size of the license plate is directly predicted from the input image. According to the center and size of the license plate, we
can approximately estimate the license plate (green rectangle). Moreover, the probability of the vehicle containing a license plate
(red number) is predicted simultaneously. An enlarged example is shown in the top-right corner. At the LREA stage, the local
region of LP is obtained by expanding the background region around the license plate with a preset ratio, then all the expanded
LP regions (green dashed rectangle) are aggregated into feature patches via ROl warping [5], in which all the LP regions have
the same size and aspect ratio. Therefore, all the license plates can be detected simultaneously in the feature patches. At the
MOLPR stage, the quadrilateral (red circle) and horizontal (green rectangle) bounding boxes of the license plate are detected
simultaneously in the local region of LP. The network can be trained in an end-to-end manner, where the red arrows denote the
backpropagation gradients.

3. Methodology license plate are not accurate in general cases, because they

) are directly predicted from the large input image, of which
We propose an end-to-end trainable network for degraded . . .
the license plate is only a small portion.

license plate detection via vehicle-plate relation mining, which The ALPD network is based on SSD [20] for multi-task
detects the license plate in a coarse-to-fine manner. The
overall architecture is illustrated in Figure 1, where it firstly
predicts the approximate location of the license plate utiliz-
ing spatial relationships between the license plate and the
vehicle (Section 3.1), then estimates the local region by ex-
panding the background region around the license plate fol-
lowed by an aggregation operation (Section 3.2), and finally
refines the quadrilateral bounding box of the license plate
(Section 3.3).

learning. The backbone network is shown in Table 1 with-
out showing the ReLU activation function, and it is trans-
formed from VGG-16 [33] followed by several extra layers.
As for parameters, "k, s, d" mean kernel size, stride size, and
dilation parameters [42] respectively. Moreover, we apply
L2Norm [23] before combining the shallow features and the
deep features, which avoids that the larger parameters "dom-
inate" the smaller ones. As mentioned in Section 3.3, the
first convolutional layer marked with "A" is the input layer
of the MOLPR stage. Besides, layers marked with "*" are
candidates for multi-scale detection.

The training objective of the ALPD network is defined
as (1), which consists of the classification loss of the vehicle
L., 5(c), the regression loss of the vehicle L;,.(/, g), the loss
of whether the vehicle contains a license plate Ly, ;,(v, [pc),
the loss of the offset between the center of the licence plate
and the vehicle L, 5 f(l , &, ), and the size loss of the license

3.1. Approximate License Plate Detection

At this stage, the vehicle is firstly detected, so the center
of the vehicle is determined. After that, the network predicts
the approximate location and size of the license plate, where
the location is obtained based on the offset between the cen-
ter of the license plate and the vehicle, and the size is directly
predicted from the input image. Besides, the probability of
the vehicle containing a license plate is predicted simultane-
ously. As shown in Figure 1, the location, and the size of the
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Table 1

Backbone network of the ALPD network.

Type Filters Parameters Output
ConvolutionA 64 k:3,s:1 512 x 512
Convolution 64 k:3,s:1 512 x 512
Maxpool - k:2,s:2 256 x 256
Convolution 128 k:3,s:1 256 x 256
Convolution 128 k:3,s:1 256 X 256
Maxpool - k:2,s:2 128 x 128
Convolution 256 k:3,s:1 128 x 128
Convolution 256 k:3,s:1 128 x 128
Convolution 256 k:3,s:1 128 x 128
Maxpool - k:2,s:2 64 x 64
Convolution 512 k:3,s:1 64 x 64
Convolution 512 k:3,s:1 64 x 64
Convolution* 512 k:3,s:1 64 x 64
Maxpool - k:2,s:2 32 x 32
L2Norm - - 32 x 32
Convolution 512 k:3,s:1 32 x 32
Convolution 512 k:3,s:1 32 x 32
Convolution 512 k:3,s:1 32 x 32
Maxpool - k:3,s:1 32 x 32
Convolution 1024 k:3,5:1,d:6 32 x 32
Convolution* 1024 k:1l,s:1 32 x 32
Convolution 256 k:1l,s:1 32 x 32
Convolution* 512 k:3,s:2 16 x 16
Convolution 128 k:1,s:1 16 x 16
Convolution* 256 k:3,s:2 8x 8
Convolution 128 k:l,s:1 8 x 8
Convolution* 256 k:3,s:2 4 x4
Convolution 128 k:1l,s:1 4 x4
Convolution* 256 k:3,s:2 2% 2
Convolution 128 k:1,s:1 2x?2
Convolution* 256 k:4,s:1 1x1

plate Llpwh(l’ g,0):

1
Ll(c’ 13 8,0, lpC) = N[Lconf(c) + Llog(L g)

+Lhast(D’ Ipe) + Loff(l’ g v+ Lll’wh (,g,0)]

where N is the number of the matched default boxes with the
ground truth boxes of the vehicle, ¢ is the confidence of the
vehicle, / is the predicted box of the vehicle, g is the ground
truth box of the vehicle, v is the ground truth of whether
the vehicle contains a license plate, and /pc is the predicted
probability of the vehicle containing a license plate.

The learning target of vehicle detection is completely
consistent with SSD [20], which predicts the vehicle pres-
ence confidence with cross-entropy loss (2) and regresses
the bounding box of the vehicle with smooth L1 loss (3):

ey

N

p
Lconf(c) =- Z Z log(cf) C,p = exp(Ci )
=1 p

— (2
Yexp(cl) @

i

N
+ —_—
L. (l,8) = 2 Z ]lfj smoothy | <llm - gj") 3)

i=1 me{cx,cy,w,h}

0.5x2
smoothy; = x| = 0.5

where the category p is {vehicle, background}, the posi-

[x] <1
otherwise

“

tive category p* is vehicle, and ]lf " € {0, 1} is the indica-
tor of whether the i-th default box matches the j-th ground
truth box. The smooth L1 loss [10] is defined as (4). Simi-
lar to SSD [20], the vehicle is regressed based on the center
(cx, cy) of the matched default box (d) and its width (w) and
height (4), as shown in (5).

g = (e —da) a7 = (g7 -d) dl

&)
—w —h
g, =log (g}”/d,f”> g; = log (gf/d,”>
The probability of whether the vehicle contains a license
plate can reduce false positives of the license plate. Very
small-sized vehicles and vehicles with invisible license plate
(occlusion, large vehicle pose, etc.) are recognized as with-
out license plate; otherwise, the vehicles are labeled as con-
taining a license plate. The probability is optimized by bi-
nary cross-entropy loss (6), where o is a sigmoid function to
limit the confidence to [0, 1].

N
Lhusﬁlp(l)’ Ipc) = - Z[Di -log(o (IPC,»))
i=1 (6)

+ (1 - vi) - log (1 -0 (lpci))]
The offset between the center of the license plate and
the vehicle as well as the size of the license plate are esti-
mated with smooth L1 loss [10], as shown in (7). The ve-

hicle should contain a license plate; otherwise, the losses
Loff(l, g,0) and Llpwh (1, g, v) are all set to 0 by setting v; =
0:

N
+ _
Lyl g 0)= Z z Itfj v;smoothy | (ll"’ - g;")
i=1 me{of fy,}

N
+ —
L, 0.8v)= Z Z ]lfj v;smoothy (llm - g;")
i=1 me{lpw,h}

@)

where of f, , is the offset between the center of the license
plate and the vehicle in both x-direction and y-direction, and
Ip,, , 18 the width and height of the license plate. Based on
the matched default box, it directly regresses the offset and
limits the LP size to (0, +c0) by a logarithmic operation to
prevent negative numbers, as shown in (8).

—of f
g

S0/ fx _ ol Ty
/d;* J J i

g =g

—Ip, Ipy -l /
g/ =log (gf /d,-“’) g/ =log (g,-””/d,»">
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3.2. Local Region Estimation and Aggregation

Compared with detecting the license plate directly in the
large input image, it is better to localize the license plate in a
small local region. Based on the predicted center and size of
the license plate obtained at the ALPD stage, the local region
can be obtained by simply expanding the background region
around the license plate with a preset ratio, which can not
exceed the boundary of the corresponding vehicle to reduce
redundant background noises.

After that, many license plate regions of different vehi-
cles can be obtained simultaneously. However, these LP re-
gions have different sizes and aspect ratios. To reduce the
running time, all the estimated regions are aggregated via
ROI warping [5] as feature patches, in which all components
are scaled to the same size and aspect ratio. Therefore, all
the license plates can be detected simultaneously in the fea-
ture patches. All the LP region features are extracted from
the first convolutional layer of the ALPD network, as seen
in Table 1, because the first convolutional layer has the same
size as the input image, which preserves the spatial informa-
tion and is favorable to the detection of small-sized license
plates.

3.3. Multi-Oriented License Plate Refinement

At this stage, the quadrilateral and horizontal bounding
boxes of the license plate are detected simultaneously in the
local region around the license plate. The detection results
are more accurate than those obtained at the ALPD stage, as
illustrated in Figure 1.

Table 2

Backbone network of the MOLPR network.

Type Filters Parameters Output
Convolution 512 k:3,s:1 56 X 56
Convolution* 512 k:3,s:1 56 X 56
Maxpool - k:2,s:2 28 x 28
Convolution 512 k:3,s:1 28 x 28
Convolution* 512 k:3,s:1 28 x 28
Maxpool - k:2,s:2 14 x 14
Convolution 512 k:3,s:1 14 x 14
Convolution* 512 k:3,s:1 14 x 14

The backbone network of this stage is shown in Table 2,
where “k” means kernel size and “s” means stride size. Like
SSD [20], layers marked by “*” are candidates for multi-
scale detection.

The training objective of the MOLPR network is defined
as (9), which consists of the classification loss of the hori-
zontal license plate L., ((c’), the regression loss of the hor-
izontal license plate L;,.(I’, g’), and the corner loss of the
quadrilateral license plate L.,,,.,. (', g’):

1
Ly(e 1", 8") = < Lcons () + Lo (', 8)

+Leormner (I, 8]

C))

where N’ is the number of the matched default boxes with

Figure 2: Four corners regression (red arrow) of the license
plate. The matched default box (green dashed) is responsible
for regressing the quadrilateral bounding box (yellow solid),
where the default box is evaluated by IOU with the horizontal
ground truth box (green solid). The four corners of the license
plate are obtained based on the center of the matched de-
fault box. The irrelevant default box (grey dashed) is ignored
because of low I0OU.

the ground truth boxes of the license plate, ¢’ is the con-
fidence of the license plate, [’ is the predicted box of the
license plate, and g’ is the ground truth box of the license
plate. The losses of the horizontal license plate L,,, f(c’ )
and L,;,.(I',g") are similar to vehicle detection, as shown in
(2) and (3).

The quadrilateral bounding box of the license plate is ob-
tained by regressing the four corners of the license plate, as
illustrated in Figure 2. The corner loss of the license plate is
optimized with smooth L1 loss [10], as shown in (10):

N’
Lcorner(l,v g,) = 2 Z ]]-‘?;JrsmOOIhLl (l,,m - ?T) (10)

i=1 me(tl tr,br.bl}

where the positive category p'™ is license plate and m €
{t1,tr, br, bl } are the four corners (top-left, top-right, bottom-
right, bottom-left) of the license plate. The regression tar-
get is shown in (11), where the four corners of the license
plate are directly regressed based on the center (cx, cy) of
the matched default box (d’) and its width (w) and height
(h).

?j = (g’j( —d’fx> /d'fu X € {tlx,trx, brx, blx}

11
_/Y_ 1Y ey th (in
g; =\g; —d;")/d; Y €luytrybrybly}

3.4. End-to-End Trainable Detection Network

By integrating the aforementioned detection stages, we
develop an end-to-end trainable network for degraded license
plate detection. Combining (1) and (9) together, the loss of
the whole network is shown in (12), where « is simply set to
1 to balance these loss terms.

L=1L(cl guvlpc)+aLy(,l' g 12)
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Table 3
Ablation study (AP) of different datasets and 10U thresholds.
. . I0U=0.5 10U=0.75
Method LREA & MOLPR has_Ip confidence vehicle boundary FIiT720  TILTi080 TILT720 TILT1080
Test Test Test Test
Ours (ALPD) 76.71% 77.71% 26.27% 35.27%
Vv 88.11%  86.20%  53.73%  53.37%
Ours (E2E) Vv Vv 88.95%  87.29%  54.46%  55.94%
v v Vv 89.19%  87.67%  54.51%  56.92%

L

Ly(c,1,g,0,1pc)

Ly(c,1,8)

Loss

Epoch

Figure 3: Training loss. L,(c,/, g, v,Ipc) is the loss of the ALPD
network, L,(c’,l’,g’) is the loss of the MOLPR network, and
L is the total loss of the end-to-end network.

During end-to-end training, the ALPD network can be
firstly optimized to estimate the local region of the license
plate, then the entire network will be optimized simultane-
ously. Concretely, during the first few epochs, L goes down
and L, remains zero because the untrained ALPD network
can not estimate the location of the license plate; then L,
goes up dramatically because the ALPD network can ap-
proximately estimate the license plate after training for some
epochs, and the MOLPR network starts learning to regress
the four corners of the license plate; finally the total loss L
goes down steadily because the ALPD and MOLPR network
are optimized simultaneously.

4. Experiments

We mainly follow SSD [20], including the data augmen-
tation strategies, such as random crop and color distortion,
etc. We adopt SSD512 as the baseline network of the ALPD
stage, which is initialized with the ILSVRC CLS-LOC dataset
[28]. The backbone network of the MOLPR stage is trained
from scratch, where the input size is 56 X 56 X 64 (height
X width X channel). Our model is trained for 60K iterations
using the Adam optimizer [16]. The momentum parameters
are set to f; = 0.9 and f, = 0.999. Batch size and weight
decay are set to 32 and 5 x 10~ respectively. The learning
rate is first initialized to 10~ and then decreased 10 times at
20K and 40K iterations. All the experiments are carried on
a PC with 4 NVIDIA Titan Xp GPUs.

4.1. Datasets

TILT720. We employ an automobile data recorder to
collect on-road videos with a size of 720 x 1280. After
keyframe extraction and careful annotation, a total of 1033
images are obtained. All visible vehicles are labeled with
a horizontal bounding box, and their corresponding license
plates are annotated with a quadrilateral bounding box. The
horizontal bounding box of the license plate is regarded as
the tightest boundary of the quadrilateral bounding box. For
simplicity, we name the dataset TILT720 (mulTi-oriented 1I-
cense pLate deTection dataset 720p). All images are ran-
domly divided into the training-validation set and test set by
9:1.

TILT1080. Similar to the TILT720 dataset, we obtain
the TILT 1080 dataset with another automobile data recorder.
The TILT1080 dataset contains 4112 images, and all images
have a size of 1080 1920. All images are randomly divided
into the training-validation set and test set by 9:1.

4.2. Evaluation Protocols

Horizontal Bounding Box. We adopt the general AP
(Average Precision) to evaluate the horizontal bounding box
of the license plate. To be specific, we follow the 11-points
computation of the VOC2007 [8] with different IOU thresh-
olds (0.5 and 0.75). If it is not specified, the IOU threshold
is set to 0.5.

Moreover, we hope that the expanded region at the LREA
stage could completely contain the license plate for the next
MOLPR stage. To evaluate it, we define a new evaluation
criterion C,,. 4, as shown in (13):

c 1

recall = M ER[ N LPt = LPt

13)

™=

I
_

where E R; means the i-th expanded region, L P; denotes the
i-th license plate, and M is the number of LP ground truths.

Quadrilateral Bounding Box. We adopt the classical
precision (P), recall (R) and F;-score (F) to evaluate the quadri-
lateral bounding box of the license plate:

TP TP

p-_ 1P 5__ TP 2PR
TP+ FP TP+ FN

“p+r Y

where TP means true positive, FP means false positive, and
FN means false negative. A quadrilateral bounding box is
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considered as correct when the [OU with a quadrilateral ground test set of TILT720. Apart from the expansion ratio at the

truth box is greater than the threshold (0.5 or 0.75) under the
confidence threshold 0.5.

4.3. Ablation Study

As demonstrated in Table 3, we adopt the ALPD network
as the baseline model. The network only achieves 26.27%
and 35.27% on the test set of TILT720 and TILT1080 with
10U threshold 0.75, because it fails to accurately localize the
license plate from the large input image.

LREA & MOLPR. By adding the LREA stage and MOLPR

stage, we obtain the end-to-end detection network, as illus-
trated in Figure 1. With a large IOU threshold, it improves
almost 20% on the test set because of localizing the license
plate in the local region, which proves the effectiveness of
our method. With a small IOU threshold, it can also improve
about 10% on the test set.

has_Ip confidence. The ALPD network will inevitably
estimate the approximate location and size of the license
plate, no matter there is a visible license plate or not. How-
ever, the license plate is not always visible, especially for the
very small-sized vehicle, occluded vehicle, and large-posed
vehicle. The confidence of whether the vehicle contains a
license plate can reduce false positives of the license plate,
and it is fixed to 0.5. In this way, the invisible license plate
can be filtered out and the precision is improved.

vehicle boundary. The expanded region at the LREA
stage can be limited by the predicted vehicle boundary to
avoid redundant background noises. It can further improve
the performance on both test sets with different IOU thresh-
olds.

Table 4
The influence to vehicle detection (AP) with IOU
threshold 0.5. "E2E" means end-to-end.

Method TILT720 TILT1080
Test Test
SSD 87.82% 87.51%
Ours (ALPD) 87.85% 87.50%
Ours (E2E) 87.83% 87.52%

Moreover, as demonstrated in Table 4, either the ALPD
network or the end-to-end network (E2E), our methods have
no influence on vehicle detection compared with vanilla SSD
[20]. As can be seen, there is still a lot of room to improve
the performance of vehicle detection, and we will employ
more powerful vehicle detectors in future work.

4.4. Experiments with Expansion Ratio

We hope the expanded region, obtained at the LREA
stage, can fully contain the license plate for the next MOLPR
stage. The expanded region is obtained based on the center
and size of the license plate predicted at the ALPD stage,
which takes the center of the license plate as the center and
expands the width and height with the same ratio. To verify
the effect of different expansion ratios at the LREA stage,
we conduct comparative experiments on the trainval set and

LREA stage, all other settings of our end-to-end network are
the same.

Table 5
The effect of different expansion ratios at the LREA
stage.

Expansion trainval test

Ratio AP(%) Crecall(%) AP(%) Crecal[(%)
1 46.83 5.60 40.35 4.40

2 90.75 96.18 81.14 94.80
3 90.76 96.43 89.19 96.00
4 90.60 97.39 87.23 96.40
5 90.41 97.44 80.62 97.60
+00 88.76 97.73 75.57 98.00

As shown in Table 5, it achieves the best AP performance
with expansion ratio 3 on the trainval set. When the expan-
sion ratio is less than 3, the AP increases gradually; when the
expansion ratio is greater than 3, the AP decreases gradually.
Due to the restriction of the vehicle boundary, the expansion
ratio +oo represents the vehicle region. As can be seen, a
too small or too large expansion ratio leads to significant per-
formance degradation, because a small region can not fully
contain the license plate, and a large region is not favorable
to small-sized license plate. Moreover, the C, ., increases
as the expansion ratio increases. However, when the expan-
sion ratio is greater than 1, the C,,.,;; has little improvement,
so we set it to 3 by default. The results on the test set fur-
ther validate that an expanded region of appropriate size is
favorable to license plate detection.

4.5. Experiments with Horizontal Bounding Box
We compare Faster R-CNN [27], YOLOv2 [25] and SSD
[20] with our proposed method, and the input size of all these
methods is 512. The backbone network of Faster R-CNN,
SSD, and our method is VGG-16 [33], while the backbone
network of YOLOv2? is unchanged. Besides, we conduct
comparative experiments with LPD methods [32] and [4] as
well as scene text detection method TextBoxes [19]. Except
for [32]%, all other methods are trained by ourselves with
the trainval set of TILT720 and TILT1080 respectively. As
shown in Table 6, our method (E2E) achieves the best per-
formance with different datasets and IOU thresholds. More-
over, as shown in Figure 4, with a larger IOU threshold,
our method (E2E) can obtain a larger performance gap than
other methods. For example, with the IOU threshold 0.5, our
method (E2E) is 2.56% and 1.33% better than SSD [20] on
the test set of TILT720 and TILT1080 respectively; with the
10U threshold 0.75, our method (E2E) is 7.45% and 3.04%
better than SSD [20]. Moreover, we enlarge the expanded
region at the LREA stage to the whole vehicle region and uti-

2The backbone network of YOLOV2 has 19 convolutional layers and is
comparable to VGG-16.

3The authors have publicly released their trained models for li-
cense plate detection. Please refer to https://github.com/sergiomsilva/
alpr-unconstrained for more details.
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Table 6
Comparative experiments (AP) with horizontal bounding box. "E2E" means end-to-end, "FC"
means four corners, and "VP" means vehicle proposal.

Method I0U=0.5 I0U=0.75
TILT720 TILT1080 TILT720 TILT1080
Test Test Test Test
Faster R-CNN [27] 81.65% 73.88% 13.63% 14.29%
YOLOv2 [25] 80.80% 79.58% 51.66% 49.32%
SSD [20] 86.63% 86.34% 47.06% 53.88%
TextBoxes [19] 69.67% 67.56% 37.24% 38.66%
Method [32] 74.67% 64.78% 42.67% 38.61%
Method [4] 84.05% 82.05% 45.35% 53.42%
Ours (E2E4+VP) 75.57% 74.29% 34.26% 35.52%
Ours (E2E) 89.19% 87.67% 54.51% 56.92%

TILT720 (10U=0.75) TILT1080 (I0U=0.5) TILT1080 (10U=0.75)

TILT720 (I0U=0.5)

S

Precision
Precision

0.0 0.0 1 0.0

Faster R-CNN
TextBoxes

[Chen et al., 2019]
[Silvaand Jung, 2018]
——— YOLOV2

— SSD

Qurs (E2E)

Precision

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.0
Recall Recall

0.4 0.6 0.8 0.0 0.2 0.4 0.6
Recall Recall

Figure 4: The precision-recall curve of different methods, datasets, and 10U thresholds. Our method achieves the best perfor-

mance, especially for the larger IOU threshold.

lize the vehicle proposal for the next MOLPR stage (E2E4-VP).

As shown in Table 6, the detection performance is signif-
icantly degraded compared with detecting LP in the local
region (E2E), because the vehicle proposal is too large and
not favorable to small-sized license plate detection.

4.6. Experiments with Quadrilateral Bounding
Box

We conduct comparative experiments on the test set of
TILT720 with different IOU thresholds. As shown in Table
7, our method (E2E) achieves the best F|-score with differ-
ent IOU thresholds. SSD [20] has poor performance because
it can only detect the horizontal bounding box of the license
plate. Furthermore, we upgrade vanilla SSD [20] and make
it capable of detecting the four corners of the license plate
(SSD+FC), which simulates the MOLPR stage and can di-
rectly localize the horizontal and quadrilateral bounding box
of the license plate in the input image. SSD+FC achieves
better performance than vanilla SSD [20], especially for the
larger IOU threshold. However, due to directly detecting LP
from the large input image, SSD+FC still lags behind our
end-to-end method (E2E). Besides, our method with vehicle
proposal (E2E+VP) still suffers great performance degrada-
tion, which proves the effectiveness of detecting LP in the
local region of our method (E2E). All methods, except for
our method (E2E), suffer low recall, because these methods
localize the license plate in a relatively large region (input
image or vehicle region), which leaves the confidence of LP

at a low level. Our method can localize the license plate
in a small region around the license plate, which reduces
background noises and can detect the license plate with high
confidence. The aforementioned experiments prove that our
method can precisely localize the quadrilateral bounding box
of the oblique license plate. Some qualitative detection re-
sults are illustrated in Figure 5.

5. Conclusion

In this work, we propose an end-to-end trainable net-
work for small-sized and oblique license plate detection via
vehicle-plate relation mining, which detects the license plate
in an end-to-end scheme. First, we propose a novel method
to estimate the local region around the license plate using
spatial relationships between the license plate and the vehi-
cle, which can greatly reduce the search area and precisely
detect very small-sized license plates. Second, we propose
a new method to localize the quadrilateral bounding box by
regressing the four corners of the license plate to robustly
detect oblique license plates. Finally, based on the afore-
mentioned methods, we develop an end-to-end trainable net-
work for degraded license plate detection. Extensive experi-
ments verify the effectiveness of our method, especially for a
large IOU threshold. In future work, we would further pro-
mote the detection performance of vehicle detection to re-
duce false negatives of the license plate.
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Table 7

Comparative experiments with quadrilateral bounding box on the test set of TILT720. "E2E"
means end-to-end, "FC" means four corners, and "VP" means vehicle proposal.

10U=05 10U=0.75
Method P R F P R F
SSD [20] 98.66%  58.80%  73.68%  65.10%  38.80%  48.62%
Method [32] 88.79%  76.00%  81.00%  5327%  45.60%  49.14%
Ours (E2E+VP)  86.14%  69.60%  76.99%  45.05%  36.40%  40.27%
Ours (SSD+FC)  97.47%  61.60%  75.49%  75.32%  47.60%  58.33%
Ours (E2E) 90.61%  88.80%  89.70%  60.41%  50.20%  59.80%

Figure 5: Detection results of TILT720 (first row) and TILT1080 (second row). Our method can correctly localize small-sized
and oblique license plates as well as license plates of large buses and trucks.
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